(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-03-28
(45)【発行日】2022-04-05
(54)【発明の名称】高圧アニーリング及び湿式エッチング速度の低下
(51)【国際特許分類】
H01L 21/316 20060101AFI20220329BHJP
H01L 21/768 20060101ALI20220329BHJP
C23C 16/56 20060101ALN20220329BHJP
【FI】
H01L21/316 G
H01L21/90 P
C23C16/56
(21)【出願番号】P 2019522519
(86)(22)【出願日】2017-10-23
(86)【国際出願番号】 US2017057911
(87)【国際公開番号】W WO2018085072
(87)【国際公開日】2018-05-11
【審査請求日】2020-10-16
(32)【優先日】2016-11-01
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2016-11-23
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林特許業務法人
(72)【発明者】
【氏名】レスキーズ, カーティス エス.
(72)【発明者】
【氏名】ウォン, キース タットスン
(72)【発明者】
【氏名】ヴァハヴェルベク, スティーヴン
【審査官】長谷川 直也
(56)【参考文献】
【文献】特開2005-229028(JP,A)
【文献】特開2003-068757(JP,A)
【文献】特開2013-065885(JP,A)
【文献】特開2001-189275(JP,A)
【文献】特開2012-204777(JP,A)
【文献】特開2009-117404(JP,A)
【文献】特開2015-115369(JP,A)
【文献】国際公開第2013/065771(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/316
H01L 21/768
C23C 16/56
(57)【特許請求の範囲】
【請求項1】
パターン形成された基板の上で間隙充填誘電体を処理する方法であって、
前記パターン形成された基板の上の間隙に、ポアを含むがそれ以外は前記パターン形成された基板の上の前記間隙を充填する間隙充填誘電体を形成することと、
前記パターン形成された基板を基板処理チャンバの基板処理領域内に配置することと、
湿式エッチング速度が熱酸化ケイ素の湿式エッチング速度の2倍以下である高密度化された間隙充填誘電体を形成するために、前記間隙充填誘電体を
145psiから864psiの分圧で、前
記基板の温度が300℃から700℃の間で、気相H
2Oに曝露することによって、前記間隙充填誘電体を高密度化することと
、
を含む方法。
【請求項2】
前記間隙充填誘電体が、ケイ素及び水素を含む、請求項1に記載の方法。
【請求項3】
前記間隙充填誘電体を高密度化する前に、前記間隙充填誘電体をUV光に曝露することを更に含む、請求項1に記載の方法。
【請求項4】
前記間隙充填誘電体をHF又は緩衝酸化物エッチング溶液でエッチングすることを更に含む、請求項1に記載の方法。
【請求項5】
前記基板処理領域内の露出面の最低温度が180℃を上回る、請求項1に記載の方法。
【請求項6】
前記間隙充填誘電体を高密度化した後に、前記パターン形成された基板を前記基板処理領域から取り外すことを更に含む、請求項1に記載の方法。
【請求項7】
前記間隙充填誘電体を形成することが、前記間隙充填誘電体が前記パターン形成された基板の上の他の場所に最初に堆積された後に、前記間隙に材料を流入させることを含む、請求項1に記載の方法。
【請求項8】
前記間隙充填誘電体を形成することが、液相前駆体から前記パターン形成された基板の上に材料を流動させることを含む、請求項1に記載の方法。
【請求項9】
前記間隙充填誘電体が、前記間隙充填誘電体を形成した後に、ケイ素、炭素、窒素、水素及び酸素以外の元素を包含しない、請求項1に記載の方法。
【請求項10】
前記基板処理領域内での電子温度は、0.5eV未満である、請求項1に記載の方法。
【請求項11】
パターン形成された基板のトレンチを充填する方法であって、
前記パターン形成された基板の上に誘電体膜を形成することであって、誘電体材料を、前記パターン形成された基板の上の他の場所に最初に堆積した後に、前記トレンチに流入させることを含む、誘電体膜を形成することと、
前記パターン形成された基板を基板処理チャンバの基板処理領域内に配置することと、
湿式エッチング速度が熱酸化ケイ素の湿式エッチング速度の2倍以下である高密度化された間隙充填誘電体を形成するために、
145psiから864psiのH2O分圧で
、前記基板の温度が300℃から700℃の間で、前記誘電体材料を気相H
2O曝露することによって、前記トレンチの中の前記誘電体材料を高密度化することと
、
を含む方法。
【請求項12】
前記基板処理領域内で露出される最も冷たい表面の温度が180℃から275℃の間である、請求項11に記載の方法。
【請求項13】
プロセス圧力(psiでの)が(14.7/760)
*10
(a-b/(T+c))未満であり、ここでa=7.96681、b=1668.21、c=228であり、かつTは前記基板処理領域内の任意の露出面の最低温度であり、Tが100°Cから374°Cの間である、請求項11に記載の方法。
【請求項14】
前記誘電体材料を高密度化している間、前記基板処理領域内に結露が形成されない、請求項11に記載の方法。
【請求項15】
前記基板処理領域内での電子温度は、0.5eV未満である、請求項11に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、「高圧アニーリング及び湿式エッチング速度の低下」と題する2016年11月1日出願の米国仮特許出願第62/415,757号、及び「高圧アニーリング及び湿式エッチング速度の低減」と題する2016年11月23日出願の米国非仮出願第15/360,016号の利益を主張する。第62/415,757及び第15/360,016の開示は、あらゆる目的のためにその全体を参照することによって本明細書に組み込まれる。
【0002】
本明細書で開示される実施形態は、間隙充填流動性膜の湿式エッチング速度を低下させることに関する。
【背景技術】
【0003】
半導体回路素子の小型化は、約10nmの特徴サイズが商業規模で製造されるところまで到達した。寸法がより小さくなり続けるにつれて、電気的クロストークを回避する誘電体材料で回路素子間の間隙を充填するようなプロセスステップに対して新たな課題が生じる。素子間の幅が狭くなり続けるにつれ、素子間の間隙はより高く、かつより狭くなることが多く、ボイド又は弱いシームを形成するために誘電体材料が固着することなく、間隙を充填するのが困難になる。従来の化学気相堆積(CVD)の技術では、間隙が完全に充填される前に間隙の上部で材料の過成長を経験することが多い。これにより、堆積する誘電体材料が過成長によって未熟なまま切り離された間隙でボイド又はシームが生成される可能性がある。これは、時にブレッドローフィング(breadloafing)と呼ばれる問題である。
【0004】
ブレッドローフィング問題に対する1つの解決策は、間隙中により容易に流れ込む誘電体出発材料のための液体前駆体を使用することであった。これを行うために現在商業的に使用されている技術は、スピンオングラス(SOG)と呼ばれる。ごく最近になって、CVDによって堆積される誘電体材料に流動性を与える技術が開発された。これらの技術は、流動性のある前駆体を堆積し、ボイド又は弱いシームが生じる発生率を低下させつつ、高く狭い間隙を多孔性材料で充填することができる。新しい流動性CVD技術は、多孔性材料(低誘電率誘電体材料など)で高く狭い(すなわち高アスペクト比)間隙を充填する際に著しい進歩を表すが、依然として、堆積後の間隙充填材料の密度を増加させる必要がある。
【発明の概要】
【0005】
堆積中に間隙内に材料を流入させることによって、パターン形成された基板の上に形成された多孔性膜の湿式エッチング速度を低下させるための方法が記載される。膜は、前駆体が気相からパターン形成された基板の上で反応する流動性のある化学気相堆積によって堆積されてもよく、又は液相(例えば、スピンオングラス(SOG)若しくはスピンオン誘電体(SOD))から堆積されてもよい。多孔性膜は、炭素、酸素及び窒素のうちの少なくとも1つを更に含有するケイ素及び水素含有層でありうる。堆積直後に、多孔性膜は、パターン形成された基板を気相中の高圧水蒸気に曝露することによって処理される。多孔性膜は、パターン形成された基板を高圧の水蒸気に曝露する前に硬化してもしなくてもよい。処理は、多孔性膜、特にトレンチ及び間隙の内側の多孔性膜の部分(多孔性膜の「間隙充填」部分)の湿式エッチング速度を低下させる可能性がある。走査電子顕微鏡は、本明細書に記載の手順によってポアの量又はサイズが減少又は排除されることを確認した。処理では、例えば誘電体膜で充填された間隙の底部で、エッチング速度を低下させることもわかった。
【0006】
本明細書に記載の実施形態は、パターン形成された基板の上で間隙充填誘電体を処理する方法を含む。方法は、パターン形成された基板の上の間隙に間隙充填誘電体を形成することを含む。間隙充填誘電体は、ポアを含むがそれ以外はパターン形成された基板の上の間隙を充填する。方法は、パターン形成された基板を基板処理チャンバの基板処理領域内に配置することを更に含む。方法は、高密度化された間隙充填誘電体を形成するために、間隙充填誘電体を14.7psiを上回る分圧で気相H2Oに曝露することによって、間隙充填誘電体を高密度化することを更に含む。
【0007】
間隙充填誘電体は、ケイ素及び水素を含みうる。方法は、間隙充填誘電体を高密度化する前に、間隙充填誘電体をUV光に曝露することを更に含みうる。方法は、間隙充填誘電体を高密度化する前に、間隙充填誘電体をオゾンに曝露することを更に含みうる。方法は、間隙充填誘電体をHF又は緩衝酸化物エッチング溶液でエッチングすることを更に含みうる。パターン形成された基板の温度は、間隙充填誘電体を高密度化する間、300°Cから700°Cの間でありうる。基板処理領域内の露出面の最低温度は、220°Cを上回りうる。方法は、間隙充填誘電体を高密度化した後に、パターン形成された基板を基板処理領域から取り外すことを更に含みうる。間隙充填誘電体を形成することは、間隙充填誘電体がパターン形成された基板の上の他の場所に最初に堆積された後に、間隙に材料を流入させることを含みうる。間隙充填誘電体を形成することは、液相前駆体からパターン形成された基板の上に材料を流動させることを含みうる。間隙充填誘電体を形成することは、気相前駆体からパターン形成された基板の上に材料を流動させることを含みうる。間隙充填誘電体は、間隙充填誘電体を形成した後に、ケイ素、炭素、窒素、水素及び酸素以外の元素を包含しなくてもよい。
【0008】
本明細書に記載の実施形態は、パターン形成された基板のトレンチを充填する方法を含む。方法は、パターン形成された基板の上に誘電体膜を形成することを含む。誘電体膜を形成することは、誘電体材料を、パターン形成された基板の上の他の場所に最初に堆積した後に、トレンチに流入させることを含む。方法は、パターン形成された基板を基板処理チャンバの基板処理領域内に配置することを更に含む。方法は、高密度化された間隙充填誘電体を形成するために、基板処理領域内のH2Oの分圧で誘電体材料を気相H2Oに曝露することによって、トレンチの中の誘電体材料を高密度化することを更に含む。
【0009】
基板処理領域内で露出される最も冷たい表面の温度は、180°Cから275°Cの間でありうる。基板処理領域内のH2Oの分圧は、145psiから864psiの間でありうる。プロセス圧力(psiでの)は、(14.7/760)*10(a-b/(T+c))未満であり、ここでa=7.96681、b=1668.21、c=228であり、かつTは基板処理領域内の任意の露出面の最低温度である。Tは、100°Cから374°Cの間でありうる。実施形態では、誘電体材料を高密度化している間、基板処理領域内に結露が形成されないことがある。実施形態によれば、誘電体材料を気相H2Oに曝露している間、基板処理チャンバ内に液体H2Oが形成されないことがある。トレンチは、高密度トレンチアレイの一部でありうる。
【0010】
追加の実施形態及び特徴が、一部は以下の記述の中で述べられ、一部は、明細書の検討により当業者に明らかになるであろうし、又は実施形態の実行により分かるかもしれない。実施形態の特徴及び利点は、本明細書に記載された手段、組合せ、及び方法によって、実現され、達成されうる。
【0011】
実施形態の性質及び利点の更なる理解は、本明細書の残りの部分及び図面を参照することにより理解されうる。
【図面の簡単な説明】
【0012】
【
図1A】実施形態による処理前の間隙充填誘電体を示す側面図である。
【
図1B】実施形態による処理後の間隙充填誘電体を示す側面図である。
【
図2】実施形態による様々な処理の前後の湿式エッチング速度のチャートである。
【
図3】実施形態による、水相図における圧力対温度、並びに動作温度及び圧力のチャートである。
【
図4】実施形態による、パターン形成された基板上の多孔性膜を高密度化する方法における選択されたステップを示すフローチャートである。
【
図5】実施形態による、パターン形成された基板上の多孔性膜を高密度化する方法における選択されたステップを示すフローチャートである。
【
図7B】実施形態によるガス分配シャワーヘッドを示す。
【発明を実施するための形態】
【0013】
添付の図面において、類似の構成要素及び/又は特徴は、同一の参照符号を有することがある。更に、同種の様々な構成要素は、ダッシュと、類似の構成要素間で区別を行う第2の符号により、参照符号に従って区別されることがある。第1の参照符号のみが本明細書において使用される場合、その説明は、第2の参照符号に関わりなく、同じ第1の参照符号を有する類似の構成要素のうちの任意の1つに適用可能である。
【0014】
堆積中に材料を間隙に流入させることによって、パターン形成された基板の上に形成された多孔性膜の湿式エッチング速度を低下させる方法が説明される。膜は、前駆体が気相からパターン形成された基板の上で反応する流動性のある化学気相堆積によって堆積されてもよく、又は液相(例えば、スピンオングラス(SOG)若しくはスピンオン誘電体(SOD))から堆積されてもよい。多孔性膜は、炭素、酸素及び窒素のうちの少なくとも1つを更に含有するケイ素及び水素含有層でありうる。堆積直後に、多孔性膜は、パターン形成された基板を気相中の高圧水蒸気に曝露することによって処理される。多孔性膜は、パターン形成された基板を高圧の水蒸気に曝露する前に硬化してもしなくてもよい。処理は、多孔性膜、特にトレンチ及び間隙の内側の多孔性膜の部分(多孔性膜の「間隙充填」部分)の湿式エッチング速度を低下させる可能性がある。走査電子顕微鏡は、本明細書に記載の手順によってポアの量又はサイズが減少又は排除されることを確認した。処理では、例えば誘電体膜で充填された間隙の底部で、エッチング速度を低下させることもわかった。
【0015】
誘電体膜は、パターン形成された基板の間隙及びトレンチを低誘電率誘電体材料で充填するために、流動的に形成されうる。誘電体材料は、誘電体膜の形成中に間隙及びトレンチに流入することがある。
図1Aは、実施形態による、パターン形成された基板101の上に誘電体膜を形成した後の間隙充填誘電体111-1及び過剰な誘電体121-1を示す側面図である。
図1Aは、本明細書に記載の処理前の間隙充填誘電体111-1及び過剰な誘電体121-1を示す。本明細書に記載の処理の前に、ポア112が間隙充填誘電体111-1の内部に存在しうる。ポア112は、間隙充填誘電体111-1のはるかに高いエッチング速度及び湿式エッチング速度をもたらしうる。間隙充填誘電体111-1は、過剰な誘電体121-1よりもはるかに高速でエッチングを実行することがあり、例えば、間隙充填誘電体111-1が再現可能に凹むことになる場合には、不所望でありうる。本明細書に記載の処理の利点は、間隙充填誘電体111-1のはるかに低い(かつより制御可能な)湿式エッチング速度である。
【0016】
多孔性膜は、流動性堆積技術を含む様々な方法によって形成されうる。流動性堆積方法は、多孔性膜がパターン形成された基板101の隙間に浸透できるようにすることによって役立つことがある。形成中に流動する誘電体膜は、間隙充填部分(
図1Aの間隙充填誘電体111-1)において75nm/分を超える希薄(100:1)HF水溶液中で湿式エッチング速度(WER)を示すことがある。比較のために、熱的に形成された酸化ケイ素は、一般に使用されている酸化ケイ素に対して最低の湿式エッチング速度を有し、約3nm/分の湿式エッチング速度を示す。流動性堆積間隙充填誘電体111-1の湿式エッチング速度を低下させるための従来の方法は、UV光処理、オゾン処理、及び約1気圧以下(≦760Torr、≦14.7psi)の様々な圧力でのH
2Oへの曝露を含む。UV光処理及びオゾン処理は、間隙充填誘電体111-1の湿式エッチング速度を50nm/分から75nm/分の間まで低下させる可能性がある。従来の水蒸気アニールは、基板温度を500℃まで上昇させながら準大気圧でH
2Oに曝露することを含み、間隙充填誘電体111-1の湿式エッチング速度を15nm/分から33nm/分の間まで更に減少させることが分かった。
【0017】
図1Bは、実施形態による処理後の間隙充填誘電体を示す側面図である。多くのプロセスフローへのプロセス統合を成功できるようにするための望ましい湿式エッチング速度は、熱酸化ケイ素の湿式エッチング速度の約2倍以下である。言い換えれば、本明細書に記載された処理の利点は、熱酸化ケイ素の湿式エッチング速度の約2倍以下で生じる間隙充填誘電体111-2の形成である。様々なHF溶液(例えば、緩衝酸化物エッチング溶液)中の熱酸化ケイ素の湿式エッチング速度は、4nm/分未満でありうる。本明細書に記載の処理は、HF溶液中で8nm/分未満でエッチングされる間隙充填誘電体111-2を生成することがある。本明細書に記載される処理は、ポア112を除去し、間隙充填誘電体111-2を形成するために(
図1Bではポア112が含まれない状態で示される)、間隙充填誘電体111-1を高密度化することでありうる。間隙充填誘電体111-1によって充填されたような高密度トレンチアレイは、パターン形成された基板101のより疎らなトレンチ及び分離した誘電体領域よりもかなり高密度化される。高密度領域間隙充填誘電体111-2に対する低い湿式エッチング速度が最も広い範囲の用途に対して最も大きな利益を提供するので、本明細書に記載されたデータは、高密度トレンチアレイに適用されるだろう。過剰な誘電体121-2はまた、過剰な誘電体121-1と比較してより低い湿式エッチング速度を有することもあるが、乗数的因子は、間隙充填誘電体111-2と間隙充填誘電体111-1との間の乗数差よりも小さい可能性がある。
【0018】
図2は、実施形態による様々な処理の前後の湿式エッチング速度のチャートである。水性の希釈(100:1)HFエッチング溶液を用いて、トレンチ内のエッチング速度を測定した。すべてのデータは、間隙充填誘電体111-2の除去速度を検出するためにイメージング技術を使用して測定された間隙充填誘電体についての湿式エッチング速度を1分につきナノメートルで表す。「アニールなし」と記された湿式エッチング速度は、UV処理後であるが任意の他の処理が行われる前の間隙充填誘電体111-2のエッチング速度を表す。UV処理のみの後の湿式エッチング速度は、「熱酸化物」湿式エッチング速度の2倍である「ターゲット」エッチング速度よりもかなり高い。1bar(14.7psi、Ts=500℃)で水分を更に処理した後、湿式エッチング速度は半分になるが、依然としてターゲットの湿式エッチング速度を上回る。また、UV処理、それに続く10bar(147psi)及び25bar(368psi)のH
2O処理を用いてサンプルを形成したところ、両方のデータの点でターゲット湿式エッチング速度より低い湿式エッチング速度が得られた。両方の高圧H
2O処理中、基板温度は再び500℃であった。高圧の乾燥酸素源で十分であるかどうかを確かめるために、UV処理とそれに続く高圧酸素(O
2)処理を用いて別のサンプルを製造した。基板温度は再び500℃で、酸素曝露の圧力は221psiであった。間隙充填誘電体121-1から間隙充填誘電体121-2への変換のメカニズムは、明らかに、任意の酸素源の単なる高圧よりも複雑である。
【0019】
図3は、実施形態による水相図における圧力対温度、並びに動作温度及び圧力のチャートである。チャートは、本明細書に記載のプロセス中に結露を避けるため使用されることがある。パターン形成された基板を高圧の水分(H
2O)に曝露しながら、パターン形成された基板を収容するために使用される基板処理領域の表面に、結露が形成されることがある。結露は、基板処理チャンバのハードウェアの未熟な劣化を引き起こす可能性があり、パターン形成された基板の上に水滴が形成又は落下する可能性があるため、半導体プロセスにとって望ましくない。パターン形成された基板から蒸発する水は、歩留まりを低下させる不揮発性残留物を後に残す可能性がある。基板処理領域内の結露を低減又は排除することが、本明細書に記載のプロセスの利点である。
【0020】
チャンバのどの部分もプロセスの圧力で水の結露温度未満に低下しなければ、結露が避けられることがある。従来の基板処理チャンバは、真空シールを形成する壁がパターン形成された基板の処理中に室温近くにあるため、「冷壁(cold-walled)」チャンバと呼ばれることがある。
図3の曲線は、水相図の結露曲線である。曲線は、0.46psi付近で0℃で開始する。曲線の勾配は着実に増加するので、温度が374℃及び3200psi付近の臨界点に向かって上昇するにつれて、結露に必要な圧力は急速に増加する。基板処理領域の最も冷たい露出内面の温度は、結露が生じる可能性がある前に許容される最大圧力を計算するために使用される。温度は、必ずしもパターン形成された基板の温度とは限らない(その温度であることは稀だろう)。いくつかの関連する例が点線の対の形で
図3に示される。基板処理領域内の最も冷たい露出面が220℃である場合、基板処理領域内の最高圧力は、処理中に338psi未満とすべきである。基板処理領域に露出される最も冷たい表面が230℃である場合、基板処理領域内の最高圧力は、408psi未満とすべきである。基板処理領域に露出される最も冷たい表面が260℃である場合、基板処理領域内の最高圧力は、683psi未満とすべきである。これらの関係は、高密度化及び所望の湿式エッチング速度の達成に関するプロセスゴールを達成するためのターゲット圧力を実現するために逆転させてもいい。例えば、基板処理領域内の最も冷たい露出面の温度は、本明細書に記載の処理を400psiで実行するために、230℃を超えて維持されるべきである。
【0021】
一般的に、本明細書に記載の処理をより高いプロセス圧力で実行することにより、間隙充填誘電体111-2の密度を増加させ、間隙充填誘電体111-2の湿式エッチング速度を低下させてもよい。しかしながら、パターン形成された基板101は、費用効果的な方法で基板処理領域に出入り可能でなければならない。200℃までの温度に耐えられる様々な動作温度の市販のOリングが利用可能である。低い湿式エッチング速度と利用可能な再使用可能なシール(Oリング)とのバランスをとることによって、いくつかの望ましい動作範囲が達成されうる。基板処理領域内で露出される最も冷たい表面の温度は、本明細書に記載の処理中の実施形態によれば、180℃から275℃の間、220℃から260℃の間、225℃から255℃の間、又は230℃から250℃の間でありうる。基板処理領域内の圧力は、処理中の実施形態では、145psiから864psiの間、339psiから684psiの間、372psiから630psiの間、又は408psiから580psiの間でありうる。プロセス圧力(psiでの)は、(14.7/760)*10(a-b/(T+c))未満であり、ここでa=7.96681、b=1668.21、c=228であり、かつTは、摂氏100℃から374℃の間の基板処理領域内の任意の露出面の最低温度である。
【0022】
本明細書に記載の処理中の実施形態では、基板は、基板処理領域内の露出面上の最高温度点でありうる。間隙充填誘電体の高密度化を高めるために、基板温度を昇温で維持してもよい。処理中の基板温度は、特定のプロセスフロー及びターゲット装置に関連した「熱エンベロープ(thermal envelope)」によって許容される温度内に留まるのに十分低い温度で維持してもよい。水分(H2O)は、より低い温度での動作を容易にし、よって熱エンベロープ内に留まることが分かった。処理中の基板温度は、実施形態において、300℃から700℃の間、350℃から600℃の間、又は400℃から550℃の間でありうる。これらは、ポアが膜から浸透できるのに十分高いが、それほど高くはないので、熱収支がフロントエンドオブライン(FEOL)処理に対して課題とされる。基板処理領域は、実施形態において、250℃から550℃の間、300℃から500℃の間、又は350℃から450℃の間でありうる。後者の温度は、バックエンドオブライン(BEOL)処理に対する熱収支の課題を回避するために使用されうる。
【0023】
実施形態をよりよく理解し評価するために、ここで
図4を参照するが、
図4は、実施形態によりパターン形成された基板の上の多孔性膜を高密度化する方法401における選択されたステップを示すフローチャートである。工程410で、多孔性ケイ素及び水素含有膜が、パターン形成された基板の上に最初に形成される。次いで、パターン形成された基板は、基板処理領域内に配置されうる。パターン形成された基板は、オプションの工程420の間に紫外線(UV)光で照射される。パターン形成された基板上に紫外線光を照射すること、パターン形成された基板をオゾン(O
3)に曝露すること、及びパターン形成された基板を14.7psi以下の水蒸気(H
2O)中でアニーリングすることのような従来の処理オプションは、本明細書に記載の高圧処理の有効性のため、実施形態により、プロセスに含まれない。いくつかの実施形態では、続く14.7psiを超える圧力でのH
2Oへの曝露前に、オゾン硬化又はオゾンとUVの同時硬化の処理が使用されてもよい。工程430において、パターン形成された基板は、14.7psi(760Torr)を超えるプロセス圧力でH
2Oに曝露される。基板処理チャンバ内の基板処理領域に接する全ての露出した内面は、220℃を上回る温度で維持され、基板処理領域内での結露の形成を回避するために、圧力は、工程440で338psi以下に保たれる。工程450で、高圧H
2Oに曝露されている間、基板温度は300℃から500℃の間で維持される。パターン形成された基板は、工程460において、基板処理領域から取り外される。実施形態によれば、工程430、440、及び450は同時に起こりうる。基板処理領域は、工程430、440、及び430の各々、任意の、又はすべての工程の間に、プラズマがなくても(devoid of plasma)よく、又はプラズマフリー(plasma-free)でもよい。
【0024】
工程410において、多孔性膜は、スピンオングラス(SOG)、スピンオン誘電体(SOD)又は化学気相堆積(CVD)といった様々な方法によって堆積されうる。多孔性膜は、最初の堆積後に流動する可能性があり、これは、パターン形成された基板上の狭い間隙を充填するのに役立つことがある。多孔性膜は、流動性のある多孔性膜と呼ばれることがあり、凝固後に測定されると低誘電率(low-k)を有しうる。実施形態によると、低誘電率誘電体膜は、完成したデバイスのトレンチ内で2.2から3.0の間の誘電率を有しうる。多孔性膜は、ケイ素及び水素を含み、実施形態において、S-C-H膜、Si-N-H膜、Si-O-H膜、Si-C-N-H膜、Si-O-C-H膜又はSi-O-N-H膜でありうる。実施形態によれば、多孔性膜は、ケイ素、炭素及び水素を含んでもよく、又はそれらからなってもよい。実施形態によれば、多孔性膜は、ケイ素、窒素及び水素を含んでもよく、又はそれらからなってもよい。実施形態によれば、多孔性膜は、ケイ素、酸素及び水素を含んでもよく、又はそれらからなってもよい。実施形態によれば、多孔性膜は、ケイ素、炭素、窒素及び水素を含んでもよく、又はそれらからなってもよい。実施形態によれば、多孔性膜は、ケイ素、炭素、酸素及び水素を含んでもよく、又はそれらからなってもよい。実施形態によれば、多孔性膜は、ケイ素、酸素、窒素及び水素を含んでもよく、又はそれらからなってもよい。
【0025】
基板処理領域はまた、UV光から生じるイオン化とは別に、実施形態において、プラズマがなくてもよく、又はオプションの工程420の間プラズマフリーであってもよい。本明細書に記載の技術を使用して充填された間隙(例えば、ビア及びトレンチ)は、1:1よりかなり大きい(例えば、5:1より大きい、6:1より大きい、8:1より大きい、10:1より大きい、又は12:1より大きい)高さ対幅のアスペクト比(AR)を定義する高さ及び幅(すなわち、H/W)を有しうる。多くの場合、高いARは、実施形態による32nm未満、28nm未満、22nm未満又は16nm未満の小さな間隙幅に起因する。本明細書で定義されるような高密度トレンチアレイは、実施形態において、それらの幅の5倍又は3倍未満で隣接するものから分離された少なくとも5つのトレンチを有する。高さは、実施形態によれば、100nm超、150nm超、250nm超又は0.5μm超でありうる。本明細書では、基板平面から直角に遠位であって、直角方向において基板の重心から更に離れた部分/方向を説明するために、「上部(top)」及び「上(up)」が使用されることになる。「垂直(Vertical)」は、「上部」に向かって「上」方向に位置合わせされたアイテムを説明するために使用されることになる。他の類似の用語(「高さ(height)」及び「幅(width)」など)が使用されることがあり、それらの意味はすぐに明らかになるだろう。
【0026】
ここで
図5を参照すると、それは実施形態に従ってパターン形成された基板上の多孔性膜を高密度化する方法501における選択されたステップを示すフローチャートである。工程510において、パターン形成された基板上の高密度トレンチに材料を流入させることによって、多孔性間隙充填誘電体が形成される。次いで、工程520において、パターン形成された基板はオプションで、移送され基板処理領域内に配置されうる。工程530において、基板処理領域の全ての露出された内面が、230℃以上に加熱される。工程540において、パターン形成された基板は、230℃以上に加熱される。工程550では、H
2Oが基板処理領域に流入し、14.7psiを超える分圧に達する。工程560において、多孔性間隙充填誘電体は、高圧のH
2Oへの曝露を通して高密度化される。H
2Oが基板処理領域から除去され(工程570)、次にチャンバが通気され、パターン形成された基板が取り外されうる(工程580)。前述のように、実施形態において、基板処理領域は、工程550及び/又は560の間、プラズマフリーでありうる。実施形態によれば、基板処理領域は、本明細書に記載されるすべての工程中にプラズマフリーでありうる。
【0027】
図6Aは、実施形態による、パターン形成された基板(例えば605-1、605-3、及び605-5)を高分圧のH
2Oに曝露するように構成された基板処理チャンバを示す。基板処理領域にパターン形成された基板605を配置する前の基板処理チャンバが示される。パターン形成された基板605は、チャンバフランジ601に固定されている基板支持体603に装填される。圧縮されていないOリング611が、チャンバフランジ601のOリング溝と接触して示されている。高温適合性を確実にするために、OリングはKalrez(登録商標)又はViton(登録商標)でありうる。実施形態において、Oリング611は、依然としてパターン形成された基板605に使用される温度に耐えることができない可能性がある。Oリング611及びチャンバフランジ601は、基板処理中に基板605と比較してより低い温度でありうる。
図6Aはまた、チャンバ上部602、及びチャンバ上部602を囲むヒータ621を示す。
【0028】
図6Bは、実施形態による、パターン形成された基板605を高分圧のH
2Oに曝露するように構成された基板処理チャンバを示す。
図6Bは、Oリング611が圧縮され、チャンバフランジ601とチャンバ上部602との間にシールを形成するように組み立てられた、基板処理チャンバを示す。基板処理領域は、Oリング611がいったん圧縮されると、チャンバフランジ601及びチャンバ上部602内部に囲まれる空間(volume)である。パターン形成された基板605は、基板処理領域内に存在する。ヒータ621は、抵抗加熱素子であってもよく、チャンバ上部602の底部をより低温に維持することを可能にしつつ、基板605を優先的に加熱するために、チャンバ上部602の上部付近により密に巻かれてもよい。チャンバフランジ601は、Oリング611を製造業者によって与えられた熱的動作限界内に維持するために、基板処理領域内に露出された最も冷たい部分でありうる。例えば、チャンバ上部602の底部分、Oリング611、及びチャンバフランジ601は、基板処理領域内の最も冷たい露出面であり、基板処理中に以前に与えられた温度範囲内(例えば、図示のように230℃)でありうる。処理中にパターン形成された基板605をより高い温度に維持するために、チャンバ上部602の上部分は、約500℃でありうる(図示されるように)。より低い温度がバックエンドオブライン(BEOL)基板処理に使用されてもよい。パターン形成された基板の処理温度範囲がすでに与えられており、簡潔にするためにここでは繰り返さない。
【0029】
本明細書に記載のすべての実施例について、パターン形成された基板は、パターン形成された基板上に多孔性膜を形成する動作から、本明細書に記載の方法を用いた高密度化の前に、パターン形成された基板を水素含有前駆体に曝露し、パターン形成された基板をUV光で照射する又はパターン形成された基板をオゾンに曝露する動作まで、外部雰囲気(半導体処理メインフレーム又はチャンバの外側のクリーンルームからの雰囲気)に曝露されなくてもいい。
【0030】
実施形態による多孔性膜内の深いところで有益な化学反応を確実にするために、本明細書に記載の堆積方法のいずれか又はすべては、堆積中に基板処理領域内で低電子温度を有しうる。電子温度は、基板処理領域内のラングミュア探針を使用して測定されうる。実施形態において、電子温度は、0.5eV未満、0.45eV未満、0.4eV未満、又は0.35eV未満でありうる。代替的な命名法を導入すると、基板処理領域は、本明細書に記載の堆積プロセス中に「プラズマフリー」として本明細書に記載されることがある。「プラズマフリー」とは、必ずしもその領域にプラズマがないことを意味するとは限らない。プラズマ領域内に生成されたイオン化種及び自由電子は、非常に低い濃度で仕切り(シャワーヘッド)内のポア(開孔)を通って移動する可能性がある。チャンバプラズマ領域内のプラズマの境界は、画定するのが困難であり、シャワーヘッド内の開孔を通って基板処理領域上に進入する可能性がある。更に、本明細書に記載の堆積プロセスの望ましい特徴を排除することなく、低強度プラズマが基板処理領域内に生成されうる。励起プラズマ放出物の生成中にチャンバプラズマ領域よりもはるかに低い強度のイオン密度を有するプラズマのすべての原因は、本明細書で使用される「プラズマフリー」の範囲から逸脱しない。
【0031】
図7Aは、実施形態による基板処理チャンバ1101である。遠隔プラズマシステム(RPS)1110は、ガス入口アセンブリ1111をその後に通過するガスを処理しうる。2つの異なるガス供給チャネルが、ガス入口アセンブリ1111内に見られる。第1のチャネル1112が、遠隔プラズマシステム(RPS)1110を通過するガスを運ぶ一方で、第2のチャネル1113は、RPS1110を迂回する。実施形態において、第1のチャネル1112は、プロセスガスのために使用され、第2のチャネル1113は、処理ガスのために使用されうる。リッド(又は導電性上部分)1121及び穿孔された仕切り1153は、間に絶縁リング1124が有る状態で示され、それにより、穿孔された仕切り1153に対するリッド1121にAC電位を印加できるようにする。プロセスガスは、第1のチャネル1112を通ってチャンバプラズマ領域1120へ移動し、チャンバプラズマ領域1120内のみにおいて又はRPS1110との組み合わせにおいて、プラズマによって励起されうる。チャンバプラズマ領域1120及び/又はRPS1110の組合せは、本明細書の中で、遠隔プラズマシステムと呼ばれることがある。穿孔された仕切り(シャワーヘッドとも呼ばれる)1153は、チャンバプラズマ領域1120をシャワーヘッド1153の下方の基板処理領域1170から分離する。シャワーヘッド1153は、チャンバプラズマ領域1120の中にあるプラズマが、基板処理領域1170の中のガスを直接励起することを回避できるようにするが、その一方で、励起された種(プラズマ放出物)が、チャンバプラズマ領域1120から基板処理領域1170に進入できるようにする。
【0032】
シャワーヘッド1153は、チャンバプラズマ領域1120と基板処理領域1170との間に位置決めされ、チャンバプラズマ領域1120の内部で生成されたプラズマ放出物(前駆体又は他のガスの励起誘導体)が板の厚さを横断する複数の貫通孔1156を通過できるようにする。シャワーヘッド1153はまた、1つ又は複数の空洞空間(hollow volume)1151を有し、この空洞空間は、蒸気又はガスの形態の前駆体(ケイ素及び炭素含有前駆体など)(例えばTSA)で充填することができ、小孔1155を通って基板処理領域1170内には通じているが、チャンバプラズマ領域1120には直接通じていない。
【0033】
図示の実施形態では、シャワーヘッド1153は、チャンバプラズマ領域1120内のプラズマによる励起時にプロセスガスのプラズマ放出物を含むプロセスガスを分配しうる(貫通孔1156を介して)。生成されたプラズマ放出物がTSAに遭遇するとき、窒素含有前駆体(例えばNH3)が、RPS1110を通って流動し、Si-N-H膜を形成しうる。前駆体は、化学気相堆積によって本明細書で処理される様々な膜を形成するように選択されてもよい。化学気相堆積を使用せずに多孔性膜を形成するために他の技術(例えばSOD又はSOG)が使用されてもよい。プロセスガスはまた、ヘリウム、アルゴン、窒素(N2)などのキャリアガスを含んでもよい。第2のチャネル1113はまた、成長中又は堆積されたままの膜から不要な成分を除去するために使用されるプロセスガス及び/又はキャリアガス、及び/又は膜処理又は硬化ガスを供給してもよい。プラズマ放出物は、プロセスガスのイオン化された又は中性の誘導体を含んでもよく、また、本明細書では、導入されるプロセスガスの原子成分を指すラジカル-酸素前駆体とも呼ばれることがある。
【0034】
図7Bは、実施形態による、処理チャンバで使用するためのシャワーヘッド1153の底面図である。シャワーヘッド1153は、
図7Aに示されるシャワーヘッドに対応する。シャワーヘッド1153の底部により大きい内径(ID)を有し、上部により小さいIDを有する貫通孔1156が、描かれている。小孔1155は、貫通孔1156の間でさえもシャワーヘッドの表面上に実質的に均一に分布しており、これはより均一な混合を提供するのに役立つ。
【0035】
シャワーヘッド1153内の貫通孔1156を通って到着するプラズマ放出物が、空洞空間1151を発生源にして小孔1155を通って到着するケイ素及び炭素含有前駆体と結合するとき、基板処理領域1170の内部のペデスタル(図示せず)によって支持される基板上で、例示的な膜が形成される。基板処理領域1170は、硬化などの他のプロセスのためにプラズマをサポートするように装備されうるが、例示的な膜の成長の間、プラズマは存在しない。ペデスタルは、比較的低い温度(室温から約120℃まで)を維持するために支持基板を冷却又は加熱するように構成されてもよい。
【0036】
プラズマは、シャワーヘッド1153の上のチャンバプラズマ領域1120、又はシャワーヘッド1153の下の基板処理領域1170のいずれかにおいて点火されうる。励起されていない前駆体の流入からラジカル前駆体を生成するために、チャンバプラズマ領域1120にプラズマが存在する。典型的には無線周波数(RF)範囲のAC電圧が、処理チャンバの導電性上部1121とシャワーヘッド1153との間に印加され、堆積中にチャンバプラズマ領域1120内のプラズマを点火する。RF電源は、13.56MHzの高いRF周波数を発生させるが、また、単独で又は13.56MHz周波数と組合わせて、他の周波数を発生させることもある。例示的なRF周波数は、2.4GHzなどのマイクロ波周波数を含む。実施形態では、流動性膜の堆積中に、遠隔プラズマ出力は、約1000ワット以上、約2000ワット以上、約3000ワット以上又は約4000ワット以上でありうる。基板処理システムは、システムコントローラによって制御される。基板上に膜スタックを堆積するためのプロセスは、システムコントローラによって実行されるコンピュータプログラム製品を使用して実施することができる。
【0037】
図8は、実施形態による、膜を堆積及び高密度化するための例示的な処理システム2101を示す。FOUP(前方開口型統一ポッド)2102は、ロボットアーム2104を介して低圧保持領域2106内に基板を供給する。第2のロボットアーム2110は、基板ウエハを保持領域2106から基板処理チャンバ2108a-fに搬送し、またその逆に搬送するために使用されうる。
【0038】
基板処理チャンバ2108a-fは、堆積層に様々な処理を堆積又は実行するように構成されてもよい。一構成では、2対の処理チャンバ(例えば、2108c-d及び2108e-f)が、流動性誘電体材料を基板上に堆積するために使用され、第3の対の処理チャンバ(例えば、2108a-b)は、紫外線又は電子ビーム照射を使用して誘電体材料を硬化させるために使用されうる。
【0039】
本明細書で使用されるように、「基板」は、その上に形成される層を含む又は含まない支持基板でありうる。支持体基板は、種々のドーピング濃度及びプロファイルの絶縁体又は半導体であり、例えば、集積回路の製造で使用されるタイプの半導体基板であってもよい。「前駆体」という用語は、材料を表面から除去するか又は材料を表面上に堆積するかのどちらかのための反応に関与する任意のプロセスガス又は液体を指すために使用される。前駆体は、液体前駆体又は気相前駆体として供給されうる。「励起状態」にあるガスとは、ガス分子のうちの少なくとも一部が、振動励起状態、解離状態及び/又はイオン化状態であるガスを称する。ガス(又は前駆体)は、2つ以上のガス(又は前駆体)の組合せでありうる。「ラジカル前駆体」は、材料を表面から除去するか又は材料を表面上に堆積するかのどちらかのための反応に関与するプラズマ放出物(プラズマを出て行きつつある励起状態にあるガス)を称するために用いられる。「不活性ガス」という表現は、エッチングするとき又は膜に組み込まれるとき、化学結合を形成しない任意のガスを指す。例示的な不活性ガスは、希ガスを含むが、(典型的には)痕跡量が膜の中に捕えられるときに、いかなる化学結合も形成されない限り、他のガスを含んでよい。
【0040】
「間隙」という用語は、エッチングされた形状寸法が大きな水平方向のアスペクト比を有することを含意せずに、全体を通して使用される。表面上方から見ると、間隙は、円形、楕円形、多角形、長方形又は様々な他の形状に見えることがある。「トレンチ」は、長い間隙である(例えば、5を上回る又は10を上回る長さ対幅の比を有する)。トレンチは、材料の島の周囲のモート(moat)の形状であってよく、そのアスペクト比は、モートの長さ又は外周をモートの幅で除算したものである。「ビア」という用語は、垂直の電気的接続を形成するために、金属で充填されていても又はされていなくてもよい低アスペクト比間隙(上から見て)を指すために用いられる。
【0041】
いくつかの実施形態を説明したが、実施形態の本質から逸脱することなく、様々な修正例、代替構造、及び均等物が使用されうることが、当業者に認識されよう。加えて、いくつかの周知のプロセス及び要素については、実施形態が不必要に曖昧になることを回避するために、説明していない。従って、上述したものは、特許請求の範囲を限定するものと解釈すべきでない。
【0042】
ある範囲の値が提供される場合、その範囲の上限と下限との間の各介在値も、文脈上別途明示されない限り、下限の単位の10分の1まで明確に開示されていることを理解されたい。ある規定された範囲における任意の規定値又は介在値と、その規定された範囲における他の任意の規定値又は介在値との間のより狭い範囲の各々が、包含される。これらのより狭い範囲の上限と下限は、個々に範囲内に含まれることも、除外されることもある。上限と下限のいずれかがより狭い範囲に含まれる場合、上限と下限のいずれもより狭い範囲に含まれない場合、又は上限と下限の両方がより狭い範囲に含まれる場合の各範囲も、規定された範囲における特に除外された任意の限界値に応じて、開示された実施形態の中に包含される。規定された範囲が一方又は両方の限界値を含む場合、含有されたそれらの限界値のいずれか又は両方を除外している範囲も含まれる。
【0043】
本明細書及び添付の特許請求の範囲で使用されるように、単数形「1つの(a、an)」、及び「その(the)」は、文脈上別途明示しない限り複数の指示対象物を含む。したがって、例えば、「1つのプロセス(a process)」への言及は、複数のそのようなプロセスを含み、「その前駆体(the precursor)」への言及は、当業者に知られている1つ又は複数の前駆体及びその均等物への言及を含む、などである。
【0044】
また、「備える(comprise/comprising)」、及び「含む(include/including/includes)」という語も、本明細書及び以下の特許請求の範囲において使用する場合、規定された特徴、整数値、構成要素、又はステップの存在を明示するためのものであるが、1つ又は複数の他の特徴、整数値、構成要素、ステップ、作用、又はグループの存在又は追加を排除するものではない。