IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社荏原製作所の特許一覧

<>
  • 特許-検査装置及び検査方法 図1
  • 特許-検査装置及び検査方法 図2
  • 特許-検査装置及び検査方法 図3
  • 特許-検査装置及び検査方法 図4
  • 特許-検査装置及び検査方法 図5A
  • 特許-検査装置及び検査方法 図5B
  • 特許-検査装置及び検査方法 図6
  • 特許-検査装置及び検査方法 図7
  • 特許-検査装置及び検査方法 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-04
(45)【発行日】2022-04-12
(54)【発明の名称】検査装置及び検査方法
(51)【国際特許分類】
   G01B 11/25 20060101AFI20220405BHJP
   G01N 21/88 20060101ALI20220405BHJP
   G06T 7/00 20170101ALI20220405BHJP
   G06T 7/521 20170101ALI20220405BHJP
【FI】
G01B11/25 H
G01N21/88 J
G06T7/00 130
G06T7/521
G06T7/00 610
G06T7/00 350C
【請求項の数】 10
(21)【出願番号】P 2018091086
(22)【出願日】2018-05-10
(65)【公開番号】P2019196985
(43)【公開日】2019-11-14
【審査請求日】2021-04-16
(73)【特許権者】
【識別番号】000000239
【氏名又は名称】株式会社荏原製作所
(74)【代理人】
【識別番号】230104019
【弁護士】
【氏名又は名称】大野 聖二
(74)【代理人】
【識別番号】230112025
【弁護士】
【氏名又は名称】小林 英了
(74)【代理人】
【識別番号】230117802
【弁護士】
【氏名又は名称】大野 浩之
(74)【代理人】
【識別番号】100106840
【弁理士】
【氏名又は名称】森田 耕司
(74)【代理人】
【識別番号】100131451
【弁理士】
【氏名又は名称】津田 理
(74)【代理人】
【識別番号】100167933
【弁理士】
【氏名又は名称】松野 知紘
(74)【代理人】
【識別番号】100174137
【弁理士】
【氏名又は名称】酒谷 誠一
(74)【代理人】
【識別番号】100184181
【弁理士】
【氏名又は名称】野本 裕史
(72)【発明者】
【氏名】内村 知行
(72)【発明者】
【氏名】織田 健太郎
(72)【発明者】
【氏名】坂井 智哉
【審査官】大河原 綾乃
(56)【参考文献】
【文献】特開平5-164696(JP,A)
【文献】特開平8-285557(JP,A)
【文献】特開平11-118731(JP,A)
【文献】米国特許第6191850(US,B1)
【文献】特開平10-23203(JP,A)
【文献】特開平1-219505(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/84 - G01N 21/958
G01B 11/24 - G01B 11/255
G01B 11/30
G06T 7/00
G06T 7/521
(57)【特許請求の範囲】
【請求項1】
材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置であって、
前記検査対象物に特定の模様を投影する投影装置と、
前記模様が投影された検査対象物を撮像する撮像装置と、
前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有しており、前記撮像装置により撮像された撮像画像を、学習済みの前記人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する判定回路と、
を備える検査装置。
【請求項2】
前記特定の模様は、縞模様、もしくは格子模様である
請求項1に記載の検査装置。
【請求項3】
前記投影装置は2台あり、それぞれの投影装置は、投影方向が略直交する2方向から縞模様を投影することにより、格子模様を前記特定の模様として投影する
請求項1または2に記載の検査装置。
【請求項4】
前記人工知能は、前記検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び前記検査対象物と同種で且つ曲面の表面形状が不良であることが既知の学習用対象物について当該学習用対象物の画像と当該不良の要因を識別する識別情報との組を教師データとして良品の確信度及び不良の要因毎の確信度を出力するよう学習しており、
前記人工知能は、前記検査対象物の撮像画像を用いて、前記検査対象物について良品の確信度及び不良の要因毎の確信度を出力し、
前記判定回路は、前記良品の確信度及び前記不良の要因の確信度を用いて、前記検査対象物について良品か、または不良の要因を識別する識別情報を出力する
請求項1から3のいずれか一項に記載の検査装置。
【請求項5】
前記判定回路には、不良の要因毎に人工知能が設けられており、
前記人工知能それぞれは、前記検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び前記検査対象物と同種で且つ曲面の表面形状に当該人工知能が対象とする不良の要因があることが既知の学習用対象物について当該学習用対象物の画像と前記対象とする不良の要因を識別する識別情報との組を教師データとして良品の確信度及び前記対象とする不良の要因の確信度を出力するよう学習しており、
前記人工知能それぞれは、前記検査対象物の撮像画像を用いて、前記検査対象物について良品の確信度及び互いに異なる不良の要因に対する確信度を出力し、
前記判定回路は、前記人工知能それぞれから出力された前記良品に対する確信度それぞれ及び前記不良の要因の確信度それぞれを用いて、前記検査対象物について良品か、または不良の要因を識別する識別情報を出力する
請求項1から3のいずれか一項に記載の検査装置。
【請求項6】
前記投影装置は、投影と非投影とを切り替えられるようになっており、
前記撮像装置は、前記模様が非投影の状態で前記検査対象物を撮像して第1の画像を取得し、当該模様が投影された状態で検査対象物を撮像して第2の画像を取得し、
前記判定回路は、前記第1の画像と前記第2の画像との差分画像を、同様にして作成された差分画像の教師データを用いて学習した前記学習済みの人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する
請求項1から5のいずれか一項に記載の検査装置。
【請求項7】
前記検査対象物は、表面を研磨して製造した部品である
請求項1から6のいずれか一項に記載の検査装置。
【請求項8】
前記検査対象物は、流体機械の部品である
請求項1から7のいずれか一項に記載の検査装置。
【請求項9】
前記検査対象物は、溶融金属積層法または研磨により製造した部品である
請求項1から8のいずれか一項に記載の検査装置。
【請求項10】
材料を熱で溶融して造形された検査対象物あるいは表面を研磨して製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査方法であって、
前記検査対象物に特定の模様を投影する手順と、
前記模様が投影された検査対象物を撮像する手順と
前記撮像された画像を、学習済みの人工知能に適用して、前記曲面の表面形状の良否を判定する手順と、
を有し、
前記人工知能は、前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習したものである検査方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置及び検査方法に関する。
【背景技術】
【0002】
大型ポンプの羽根車等、複雑な曲面形状をもつ製品およびその部品(以下、部品等)の検査は、数値化が難しく、熟練を必要とし、且つ大きな工数を必要とする作業のひとつである。特に、こういった部品等は鋳造等により製造することが多いが、鋳造等により製造された部品等は、表面の粗さや、うねり(凹凸)を取るために、グラインダ等で研磨を行うことが一般的である。また、機械加工等により製造する場合でも、加工後にいわゆる切削痕を消すため、研磨を行うことがある。あるいは、加工中の熱変形等により、部品等の「そり」や「うねり」が生じることもある。また、近年では金属ワイヤ等を溶融して積層し、部品等を成型する技法(溶融金属積層法等)もあるが、この場合もやはり積層により生じる「段」を、成型後に研磨して除去することがある。このように、溶融による成型、あるいは研磨を行った後の形状の検査は、後述するように数値化が難しく、判断に熟練を要する。
【0003】
従来、羽根車の検査方法が開発されている。例えば、特許文献1では、設置場所に置かれる羽根車の回転軸心方向から羽根車の正面を撮像する工程と、上記撮像工程で撮像された羽根車の回転軸心方向からの羽根車の正面に係わる撮像画像を二値化処理し、二値化画像を得る工程と、上記二値化画像に基づいて羽根車対応明部の周囲に備える全ての羽根対応明部の先端部対応明部の位置を検出する工程と、上記検出された全ての先端部対応明部について、各先端部対応明部と羽根車対応明部における予め定められる基準部との位置関係を算出する工程と、上記算出された位置関係と所定の規定値とを比較して羽根車の羽根形状の良否を判定する工程とを備える、羽根車の羽根形状検査方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2008-51664号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、鋳造時に曲面上に意図しない凹凸が発生したり、鋳造時の表面形状(いわゆる「鋳肌」)は、ポンプ等の流体機械の部品としては表面が荒いために表面を研磨して滑らかにすることが必要なため、時に表面を削りすぎるなどして凹凸が生じたりすることがある。あるいは、機械加工等であっても、加工後に生じる切削痕を消すために表面の研磨を行うことで凹凸が生じることや、加工中の熱変形などが原因で「うねり」や「そり」などの凹凸を生じることがある。こういった凹凸などについては、許容値の設定等が難しい。
【0006】
具体的には、こういった製品の検査方法としては、各種の寸法測定器、あるいは、いわゆる三次元測定器により製品の寸法を精密に測定し、その寸法が許容値内にあるかどうかを検査する方法がある。
【0007】
図1は、設計形状(基準形状)と、許容値の上限及び下限と、製品形状の第1の模式図である。図1には、設計形状(基準形状)を表す一点鎖線L1、寸法の許容値の下限を表す破線L2、寸法の許容値の上限を表す破線L3、及び製品形状を表す実線L4が示されている。例えば図1のように、製品の性能に影響のない範囲で、設計形状(基準形状)に対して寸法の許容値の上限と下限とを定めた場合、製品形状がこの許容値の上限と下限の間(すなわち許容範囲内)にあれば、合格とみなすことができる。
【0008】
一方で、ポンプの羽根車のような流体機械の部品の場合、これだけでは製品を合格とみなせない場合がある。図2は、設計形状(基準形状)と、許容値の上限及び下限と、製品形状の第2の模式図である。図2には、設計形状(基準形状)を表す一点鎖線L11、寸法の許容値の下限を表す破線L12、寸法の許容値の上限を表す破線L13、及び製品形状を表す実線L14が示されている。例えば、図2の製品形状のように、製品の表面に「波打ち」がある場合、製品形状(各点での測定値)は、許容値の上限と下限の間(すなわち許容範囲内)にあるが、このような「波打ち」は検査装置の性能に大きな影響を与えるため、合格とすることはできない。このような流体機械の部品としては、流路中にある部品は多くが対象となるが、特に、下記のような部品が挙げられる。
○羽根車
○ディフューザー(圧力回復流路、渦巻きケーシング・案内羽根等を含む)
○吸込管/吐出管
○軸受・軸封の水中ケーシング、特にその接液面
○吸い込みベル
○および、これらを構成する部品
【0009】
このような不良を、数値測定により判定しようとすると、このような「波打ち」を数値化することが必要になる。その方法は多数考えられるが、いずれにせよ、多数の点を測定し、記録した上で統計処理するなど、複雑な処理が必要となる上、基準値の設定が難しい。
【0010】
図3は、比較例に係る検査方法を示す模式図である。図3には、設計形状(基準形状)を表す一点鎖線L21、寸法の許容値の下限を表す破線L22、寸法の許容値の上限を表す破線L23、製品形状を表す実線L24、及びサンプリングデータを表す階段状の実線L25が示されている。一方、例えば、図3に示すように、形状データを一定間隔でサンプリングし、その隣り合う計測値(サンプリングデータ)の差分を計算し、これに基づいて良否を判定する方法が考えられる。この場合、この差分が、設計形状の差分に比して一定以上大きい、あるいは一定以上小さい場合に不良とする、などの方法がある。しかし、この場合、多数の点を測定する必要があり、また、波打ちの周期(波長)や大きさは、都度異なるため、その閾値を決めることは難しい。
【0011】
そのため、実務的にはこのような「波打ち」などは、寸法(数値)の測定ではなく、検査員の目視検査や、手などの触覚による、いわゆる「官能検査」により行なうことが多い。官能検査であれば、都度基準値を定めなくても、検査員の感覚により製品の良否を判定することができる。また、「波打ち」のような状態は、比較的、人間(検査員)の感性により良し悪しを判断するほうが、基準値等を定めるより、不良品を良品と判定するリスクは小さくできる。
【0012】
しかしながら、官能検査には、(1)測定者により判断がばらつく(合格/不合格の判定が測定者により異なる)こと、(2)人間にしか測定ができないため、自動化できないこと、(3)数値化が難しく、記録等がしにくいこと、(4)数値化が難しいため「許容範囲」を決めることが難しく、得てして「過剰品質」を求める傾向がある(必要以上の修正工数をかけてしまう)ことといった問題がある。特に、昨今は検査員の高齢化と、技術伝承の難しさなどもあり、熟練した検査員の確保が難しくなってきており、これらを客観的且つ自動的に検査できる検査装置や検査方法の開発は急務となっている。
【0013】
また、流体機械の部品等の中でも大型ポンプ等の、いわゆるカスタム製品では、たとえば羽根車の形状は客先の仕様に合わせて最適化されているため、製品ごとに基準形状が異なり、都度、検査に用いるデータを作成する必要がある。これも、自動化の妨げとなる。
【0014】
本発明は、上記問題に鑑みてなされたものであり、寸法公差だけでは判定しにくい物体の曲面の表面形状を客観的且つ自動的に検査することを可能とする検査装置及び検査方法を提供することを目的とする。
【課題を解決するための手段】
【0015】
本発明の第1の態様に係る検査装置は、材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置であって、前記検査対象物に特定の模様を投影する投影装置と、前記模様が投影された検査対象物を撮像する撮像装置と、前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有しており、前記撮像装置により撮像された撮像画像を、学習済みの前記人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する判定回路と、を備える。
【0016】
この構成によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。
【0017】
本発明の第2の態様に係る検査装置は、第1の態様に係る検査装置であって、前記特定の模様は、縞模様、もしくは格子模様である。
【0018】
この構成によれば、表面形状における波打ち、段差、割れがあると、縞模様、もしくは格子模様の一部に波打ち、角が生じたり、模様の一部が消えたりするので、このような模様の変化を人工知能が学習することにより、表面形状における波打ち、段差、割れなどの不良を判定することができる。
【0019】
本発明の第3の態様に係る検査装置は、第1または2の態様に係る検査装置であって、前記投影装置は2台あり、それぞれの投影装置は、投影方向が略直交する2方向から縞模様を投影することにより、格子模様を前記特定の模様として投影する。
【0020】
この構成によれば、格子模様の変化を人工知能が学習することにより、表面形状における波打ち、段差、割れなどの不良を判定することができる。
【0021】
本発明の第4の態様に係る検査装置は、第1から3のいずれかの態様に係る検査装置であって、前記人工知能は、曲面の表面形状が良好であることが既知の検査対象物について当該検査対象物の画像と良品を識別する識別情報との組、及び曲面の表面形状が不良であることが既知の検査対象物について当該検査対象物の画像と当該不良の要因を識別する識別情報との組を教師データとして良品の確信度及び不良の要因毎の確信度を出力するよう学習しており、前記判定回路は、良品の確信度及び不良の要因の確信度を用いて、良品か、または不良の要因を識別する識別情報を出力する。
【0022】
この構成によれば、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。
【0023】
本発明の第5の態様に係る検査装置は、第1から3のいずれかの態様に係る検査装置であって、前記判定回路には、不良の要因毎に人工知能が設けられており、前記人工知能それぞれは、前記検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び前記検査対象物と同種で且つ曲面の表面形状に当該人工知能が対象とする不良の要因があることが既知の学習用対象物について当該学習用対象物の画像と前記対象とする不良の要因を識別する識別情報との組を教師データとして良品の確信度及び前記対象とする不良の要因の確信度を出力するよう学習しており、前記人工知能それぞれは、前記検査対象物の撮像画像を用いて、前記検査対象物について良品の確信度及び互いに異なる不良の要因に対する確信度を出力し、前記判定回路は、前記人工知能それぞれから出力された前記良品に対する確信度それぞれ及び前記不良の要因の確信度それぞれを用いて、前記検査対象物について良品か、または不良の要因を識別する識別情報を出力する。
【0024】
この構成によれば、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。
【0025】
本発明の第6の態様に係る検査装置は、第1から5のいずれかの態様に係る検査装置であって、前記投影装置は、投影と非投影とを切り替えられるようになっており、前記撮像装置は、前記模様が非投影の状態で前記検査対象物を撮像して第1の画像を取得し、当該模様が投影された状態で検査対象物を撮像して第2の画像を取得し、前記判定回路は、前記第1の画像と前記第2の画像との差分画像を、同様にして作成された差分画像の教師データを用いて学習した前記学習済みの人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する。
【0026】
この構成によれば、差分画像は投影された模様のみが強調されるので、学習による判定精度を向上し、判定結果の精度を向上させることができる。特に、溶融金属の積層により造形された部品等の場合、積層により生じる縞模様等による影響を低減することができる。
【0027】
本発明の第7の態様に係る検査装置は、第1から6のいずれかの態様に係る検査装置であって、表面を研磨して製造した部品である。
【0028】
この構成によれば、学習済みの人工知能に適用して、表面を研磨して製造した部品の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい部品の曲面の表面形状を客観的且つ自動的に検査することができる。
【0029】
本発明の第8の態様に係る検査装置は、第1から7のいずれかの態様に係る検査装置であって、前記検査対象物は、流体機械の部品である。
【0030】
この構成によれば、学習済みの人工知能に適用して、流体機械の部品の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい流体機械の部品の曲面の表面形状を客観的且つ自動的に検査することができる。
【0031】
本発明の第9の態様に係る検査装置は、第1から8のいずれかの態様に係る検査装置であって、前記検査対象物は、溶融金属積層法または研磨により製造した部品である。
【0032】
この構成によれば、学習済みの人工知能に適用して、溶融金属積層法または研磨により製造した部品の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい部品の曲面の表面形状を客観的且つ自動的に検査することができる。
【0033】
本発明の第10の態様に係る検査方法は、材料を熱で溶融して造形された検査対象物あるいは表面を研磨して製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査方法であって、前記検査対象物に特定の模様を投影する手順と、前記模様が投影された検査対象物を撮像する手順と前記撮像された画像を、学習済みの人工知能に適用して、前記曲面の表面形状の良否を判定する手順と、を有し、前記人工知能は、前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習したものである検査方法である。
【0034】
この構成によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。
【発明の効果】
【0035】
本発明の一態様によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。
【図面の簡単な説明】
【0036】
図1】設計形状(基準形状)と、許容値の上限及び下限と、製品形状の第1の模式図である。
図2】設計形状(基準形状)と、許容値の上限及び下限と、製品形状の第2の模式図である。
図3】比較例に係る検査方法を示す模式図である。
図4】本実施形態に係る検査装置の構成を示す模式的構成図である。
図5A】良品の羽根車に格子模様が投影された場合の模式図である。
図5B】不良品の羽根車に格子模様が投影された場合の模式図である。
図6】本実施形態に係る判定回路の構成を説明する模式図である。
図7】本実施形態に係る判定処理の一例を示すフローチャートである。
図8】変形例に係る判定回路の構成を説明する模式図である。
【発明を実施するための形態】
【0037】
以下、各実施形態について、図面を参照しながら説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
【0038】
本実施形態に係る検査装置及び検査方法は、材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査するものである。特に、大型ポンプやコンプレッサーのような流体機械の部品等の表面検査に適し、流体機械の部品の中でも羽根車のような複雑な三次元形状を有する製品の検査に適する。ここで流体機械の部品は、例えば、羽根車、ディフューザー(圧力回復流路、渦巻きケーシング・案内羽根等を含む)、吸込管/吐出管、軸受・軸封の水中ケーシング、特にその接液面、吸い込みベルおよび、これらを構成する部品などである。また材料を熱で溶融して造形されるものとしては、例えば鋳造、粉末冶金、溶融金属の積層などがある。このように、材料を熱で溶融して造形された検査対象物は、冷却の過程で材料が収縮するため、曲面の表面形状が設計どおりの寸法にならないことがあるので、検査が必要である。また、表面を研磨して製造した場合、時に表面を削りすぎるなどして凹凸が生じたりすることがある。この場合も、同様に検査が必要である。
【0039】
図4は、本実施形態に係る検査装置の構成を示す模式的構成図である。検査装置は、検査対象物(ここでは一例として羽根車2)に特定の模様を投影する投影装置を備える。模様は、縞模様、あるいは格子模様であることが望ましい。図4に示すように、本実施形態に係る検査装置1は、投影装置11及び投影装置12を備え、一例として、投影方向が略直交する2つの投影装置、すなわち投影装置11および投影装置12から縞模様を投影することで、検査対象物である羽根車2に格子状の模様を投影してもよい。
【0040】
これにより、製品の表面にはその曲面により、複数の曲線W1~W10が現れる。このとき、前述のような波打ち等があると、投影された模様にも波打ちによるゆがみが生じる。
【0041】
ここで本実施形態に係る検査装置1は、模様が投影された検査対象物である羽根車2を撮像する撮像装置13と、撮像装置13により撮像された画像を、学習済みの人工知能を適用して、曲面の表面形状の良否を判定する判定回路14とを備える。
【0042】
図5Aは、良品の羽根車に格子模様が投影された場合の模式図である。図5Aは、不良品の羽根車に格子模様が投影された場合の模式図である。例えば、良品であれば図5Aのように、羽根車上には滑らかな曲線が現れる。一方、前述のような「波打ち」があれば、図5Bに示したように、投影された模様も波打つ。また、表面に鈍角が生じるような「段差」であれば、投影された模様に「角」が生じる。また、表面に「割れ」等が生じていれば、投影された模様の一部が消えたり、角が生じたりする。
【0043】
例えばこの「波打ち」を第1の不良要因として、第1の不良要因を有する場合、第1の不良であり、第1の不良要因を有する羽根車の分類が第1の不良クラスに設定されている。例えばこの「段差」を第2の不良要因として、第2の不良要因を有する場合、第2の不良であり、第2の不良要因を有する羽根車の分類が第2の不良クラスに設定されている。例えばこの「割れ」を第3の不良要因として、第3の不良要因を有する場合、第3の不良であり、第3の不良要因を有する羽根車の分類が第3の不良クラスに設定されている。
【0044】
図6は、本実施形態に係る判定回路の構成を説明する模式図である。予め人(例えば、熟練した検査担当者)が、既知の羽根車について、良否として例えば、良品、第1の不良、第2の不良、第3の不良に判別している。そして、検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮像装置13により撮像されて取得された既知の羽根車の画像とその良否との組が教師データとなり、判定回路14における人工知能は、この教師データを用いて学習する。
このように、人工知能を用いた判定回路14には、良品と不良品との撮像データと、人によって判別された良否との組を、予め決められた必要な数用いて、予め学習させておく。その際、不良品の場合についてはいくつかの不良要因に分けて、撮像データを学習させておくことで、良否の判定と同時に、不良要因の特定もできる。
【0045】
要するに、人工知能32は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該検査対象物の画像と良品を識別する識別情報との組、及び曲面の表面形状が不良であることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該不良の要因を識別する識別情報(ここでは例えば、第1の不良、第2の不良、または第3の不良)との組を教師データとして学習している。人工知能32は、検査対象物の撮像画像を用いて、検査対象物について良品の確信度及び不良の要因毎の確信度を出力する。そして、判定回路14は例えば、この良品の確信度及びこの不良の要因の確信度を用いて、検査対象物について良品か、または不良の要因を識別する識別情報(ここでは例えば、第1の不良、第2の不良、または第3の不良)を出力する。この構成により、検査者は、検査対象物の良品か不良品かだけでなく、不良品の場合、その不良の要因を特定することができる。
【0046】
ここで、判定回路で用いる人工知能について述べる。本実施形態で使用する人工知能は、いわゆる「画像認識」に類するものであり、ニューラルネットワーク、特にディープニューラルネットワーク(以下、DNNともいう)を用いたものが好適であるため、ここではディープニューラルネットワークを例として説明する。
【0047】
一般にDNNでは、事前に「良品」と、複数の「不良品」の画像を、必要数用意し、これらを「深層学習(ディープラーニング)」と呼ばれる手法で学習する。本実施形態であれば、ここまで説明してきた方法により、製品の画像を取得するとともに、同じ製品に対して従来どおりの官能検査を実施して良否の判定を行い、良品、および複数の不良品の画像を、それぞれ必要枚数(例えば、数十枚から数百枚程度)用意し、DNNに学習させる。これにより、DNNは一般に、「良品」には現れず、それぞれの「不良品」に現れる「特徴」に対して、強い反応を示し、該当する「クラス」の「スコア」を高く評価するようになる。このように判定回路14は、検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有している。
【0048】
ここで重要なのは、これらの「特徴」については何らかの基準値が存在するわけではなく、DNN内の論理素子である「ニューロン」のうち、それらの特徴に対応するものが、「学習」により強い反応を返すようになることである。一般に、画像処理に使用されるDNNでは、さまざまな状態の「不良」を学習させることにより、それらの特徴が現れる位置や大きさによらず、強い反応を得ることができる。
【0049】
また、学習させる場合は、使用する製品について、多くのバリエーション(種類)を有する製品を用いて学習データを作成することが重要である。例えば、ポンプの羽根車であれば、大きなものや小さなもの、異なるNs値(軸流ポンプと斜流ポンプなど)、羽根車の枚数、二次元羽根車と三次元羽根車などである。これにより、これらの違いによる画像の変化は、製品の良否と「関係ない」ことを、DNNは学習することができ、これにより、DNNは規準形状がなくとも製品の良否が判断できるようになる。
【0050】
したがって、本実施形態のような場合、従来の形状測定を行う場合などと異なり、寸法数値などとしての閾値は不要となるし、設計(基準)形状がわからなくても製品の良否を判定することが可能となる。このため、いったん学習が完了すれば、検査等を自動化することも容易である。
【0051】
なお、判定回路に用いる人工知能としては、本実施形態では一例としてニューラルネットワーク(特にディープニューラルネットワーク)を使用するが、場合により、他の人工知能アルゴリズムを用いたもの(例えば、KNN法、決定木法、MT法等)であってもよい。
【0052】
良否の判定は、次のような方法による。図6における人工知能32の出力は、「良品」を含む、複数の出力項目(クラス)と、その確信度(スコア)の行列となる。具体的には、出力項目(クラス)は、良品クラスと、1以上の不良要因に対応した不良クラスとなる。なお、ここでは複数要因(2以上)の不良クラスを有するものとして説明する。
【0053】
具体的には、本実施形態では図6に示すように一例として、検査対象物を撮像した撮像画像が入力画像31として判定回路14の人工知能32に入力される。人工知能32から出力される出力行列33は、良品クラスとその確信度(スコア)、第1の不良クラスとその確信度(スコア)、第2の不良クラスとその確信度(スコア)、第3の不良クラスとその確信度(スコア)を含む。ここで確信度(スコア)は、対応するクラスへの確信度を示し、スコアの値が大きいほど確信度が高い。この出力行列33が判定回路14の最終判定部34に入力される。
【0054】
その後、最終判定部34では、図7に沿って、判定する。図7は、本実施形態に係る判定処理の一例を示すフローチャートである。
(ステップS101)まず最終判定部34は、「良品」クラスのスコアを確認する。例えば、良品の基準スコアを0.8とすれば、最終判定部34は、「良品」クラスのスコアが0.8以上であるか否か判定する。
【0055】
(ステップS102)ステップS101で良品クラスのスコアが0.8以上である場合、最終判定部34は、検査対象物を良品と判定する。
【0056】
(ステップS103)ステップS101で良品クラスのスコアが0.8未満の場合、次に最終判定部34は、複数ある不良項目(不良クラス)のスコアを順次確認する。ここで、各不良項目のスコアのうち、最もスコアの高いものが、不良要因として可能性が高いこととなる。よって、最終判定部34は、第1~3の不良クラスのうち最もスコアが高いクラスを判別し、最もスコアが高いクラスに対応する不良要因を識別する識別情報(例えば、第1の不良など)を出力してもよい。ここでは一例として、まず最終判定部34は、第1~3の不良クラスのうち第1の不良クラスのスコアが最大であるか否か判定する。
【0057】
(ステップS104)ステップS103で第1~3の不良クラスのうち第1の不良クラスのスコアが最大である場合、最終判定部34は、第1の不良と判定する。
【0058】
(ステップS105)ステップS103で第1~3の不良クラスのうち第1の不良クラスのスコアが最大でない場合、最終判定部34は、第1~3の不良クラスのうち第2の不良クラスのスコアが最大であるか否か判定する。
【0059】
(ステップS106)ステップS105で第1~3の不良クラスのうち第2の不良クラスのスコアが最大である場合、最終判定部34は、第2の不良と判定する。
【0060】
(ステップS107)ステップS105で第1~3の不良クラスのうち第2の不良クラスのスコアが最大である場合、最終判定部34は、第3の不良と判定する。
【0061】
そして、最終判定部34は、検査対象物についての良否の判定結果として、良品か、または不良の要因を識別する識別情報(具体的には、第1の不良、第2の不良または第3の不良)を出力する。これにより、検査対象物の良否を把握することができ、不良の場合には、不良の要因を把握することができる。
【0062】
このように、本実施形態では、人工知能32は、良品に対する確信度、及び不良の要因毎の確信度を出力する。判定回路14は、良品に対する確信度それぞれ、及び不良の要因の確信度それぞれを用いて、曲面の表面形状の良否を判定する。これにより、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。
【0063】
なお、不良要因のクラスが第1の不良クラス、第2の不良クラスの二つの場合、判定回路14は、良品、第1の不良、または第2の不良のいずれかを出力してもよいし不良要因のクラスが4つ以上の場合、判定回路14は、良品とそれぞれの不良のいずれかを出力してもよい。
【0064】
撮像装置13は、このように模様が投影された検査対象物(ここでは一例として羽根車)を撮像する。撮像装置13は、最終的にデジタルデータが必要となるため、いわゆるデジタルカメラやそれに類するものが望ましい。
【0065】
なお、投影装置11および投影装置12を、模様の投影と非投影とを切り替えられるようにしてもよい。その場合、撮像装置13は、計測時にまず、模様が非投影の状態で検査対象物を撮像して第1の画像を取得し、次に、模様が投影された状態で検査対象物を撮像して第2の画像を取得する。そして、撮像装置13は、第1の画像と第2の画像の差分を求め、この差分画像を画像データとして判定回路14に出力してもよい。判定回路14は、第1の画像と第2の画像との差分画像を、同様にして作成された差分画像の教師データを用いて学習した学習済みの人工知能を適用して、曲面の表面形状の良否を判定する。これにより、差分画像は投影された模様のみが強調されるので、学習による判定精度を向上し、判定結果の精度を向上させることができる。特に、溶融金属の積層により造形された部品等の場合、積層により生じる縞模様等による影響を低減することができる。すなわち、溶融金属積層法等により成型した部品等は、表面を研磨しても、積層時の接合面(積層の「段」)が、縞模様となって残りやすい。このような縞模様は、検査のために投影する格子模様等と紛らわしく、判定に影響する。このため、画像の差分を使用することとすると、これらの縞模様がほぼ消去され、判定に影響しにくくなる。なお、さらに精度を上げようとした場合、差分をとる前に第1の画像と第2の画像に、投影する格子模様の反射光等の影響を抑えるため、画質調整等を加えてもよい。
【0066】
以上、本実施形態に係る検査装置1は、材料を熱で溶融して造形された検査対象物あるいは表面を研磨して製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置である。検査装置1は、検査対象物に特定の模様を投影する投影装置11、12と、模様が投影された検査対象物を撮像する撮像装置13とを備える。更に検査装置1は、検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有しており、撮像装置13により撮像された撮像画像を、学習済みの前記人工知能に適用して、検査対象物の曲面の表面形状の良否を判定する判定回路14を備える。
【0067】
この構成によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった、「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。
【0068】
<変形例>
変形例として、複数の不良要因に対して、個々に合格と不合格とを判定する人工知能を用いた判定回路を用い、同時に、もしくは順次、撮像画像について判定してもよい。
【0069】
図8は、変形例に係る判定回路の構成を説明する模式図である。図8に示すように、変形例に係る判定回路14bは、第1の不良要因用の人工知能41と、第2の不良要因用の人工知能42と、第3の不良要因用の人工知能43とを備える。
【0070】
<学習時の処理>
人工知能41の学習時には、第1の不良要因用の人工知能41は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状が第1の不良要因(ここでは一例として波打ち)があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該第1の不良要因を識別する識別情報(ここでは例えば、第1の不良)との組を教師データとして予め学習する。
【0071】
また人工知能42の学習時には、第2の不良要因用の人工知能42は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状が第2の不良要因(ここでは一例として段差)があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該第2の不良要因を識別する識別情報(ここでは例えば、第2の不良)との組を教師データとして予め学習する。
【0072】
また人工知能43の学習時には、第3の不良要因用の人工知能43は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状が第3の不良要因(ここでは一例として割れ)があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該第3の不良要因を識別する識別情報(ここでは例えば、第3の不良)との組を教師データとして予め学習する。
【0073】
<判定時の処理>
人工知能41の判定時には、第1の不良要因用の人工知能41に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第1の不良クラスとそのスコアの組とを含む出力行列51が出力される。
また人工知能42の判定時には、第2の不良要因用の人工知能42に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第2の不良クラスとそのスコアの組とを含む出力行列52が出力される。
また人工知能43の判定時には、第3の不良要因用の人工知能43に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第3の不良クラスとそのスコアの組とを含む出力行列53が出力される。
【0074】
最終判定部61に、これら三つの出力行列51~53が入力される。最終判定部61は例えば、出力行列51の良品クラスのスコアが第1の不良クラスのスコアより高く、出力行列52の良品クラスのスコアが第2の不良クラスのスコアより高く、且つ出力行列53の良品クラスのスコアが第3の不良クラスのスコアより高い場合、良品と判定する。一方、例えば、最終判定部61は、第1の不良クラスのスコアが出力行列51の良品クラスのスコアより高い場合、第1の不良と判定する。また例えば、最終判定部61は、第2の不良クラスのスコアが出力行列52の良品クラスのスコアより高い場合、第2の不良と判定する。また例えば、最終判定部61は、第3の不良クラスのスコアが出力行列53の良品クラスのスコアより高い場合、第3の不良と判定する。この場合、最終判定部61は、第1の不良クラスのスコアが出力行列51の良品クラスのスコアより高く且つ第2の不良クラスのスコアが出力行列52の良品クラスのスコアより高い場合、検査対象物に対して、第1の不良で、第2の不良であると判定することになる。このように、検査対象物に対して、複数の不良があると判定することができる。
【0075】
このように、判定回路14bには、不良の要因毎に人工知能が設けられている。人工知能41~43それぞれは、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状に当該人工知能が対象とする不良の要因があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と対象とする不良の要因を識別する識別情報との組を教師データとして良品の確信度及び対象とする不良の要因の確信度を出力するよう学習している。人工知能41~43それぞれは、検査対象物の撮像画像を用いて、検査対象物について良品の確信度及び互いに異なる不良の要因に対する確信度を出力する。判定回路14bは、人工知能それぞれから出力された良品に対する確信度それぞれ及び不良の要因の確信度それぞれを用いて、検査対象物について良品か、または不良の要因を識別する識別情報を出力する。これにより、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。
【0076】
ここで、本実施形態と変形例とを比べると、本実施形態では、短時間で計算機資源をあまり消費せずに判定できることが長所である。一方、変形例の場合、複数の不良要因が複合して発生している場合でも、個々の不良要因を適切に判断できることが長所である。
大抵の場合、複数の不良要因が同時に発生することは少なく、発生していたとしても、本実施形態の方法でもスコアの大小である程度の判定ができる。また、良否の判定だけであれば特段の不都合はない。このため、変形例と比べて本実施形態による方が利便性は高いが、用途に応じて使い分けることが好ましい。
【0077】
以上、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
【符号の説明】
【0078】
1 検査装置
11、12 投影装置
13 撮像装置
14、14b 判定回路
2 羽根車
31 入力画像
32 人口知能
33 出力行列
34 最終判定部
41、42、43 人工知能
51、52、53 出力行列
61 最終判定部
図1
図2
図3
図4
図5A
図5B
図6
図7
図8