(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-05
(45)【発行日】2022-04-13
(54)【発明の名称】フレキシブルデバイス基板形成用組成物
(51)【国際特許分類】
C08L 79/08 20060101AFI20220406BHJP
C08G 73/10 20060101ALI20220406BHJP
H05K 1/03 20060101ALI20220406BHJP
【FI】
C08L79/08
C08G73/10
H05K1/03 670A
H05K1/03 610N
(21)【出願番号】P 2019527707
(86)(22)【出願日】2018-07-02
(86)【国際出願番号】 JP2018025103
(87)【国際公開番号】W WO2019009259
(87)【国際公開日】2019-01-10
【審査請求日】2021-05-26
(31)【優先権主張番号】P 2017130419
(32)【優先日】2017-07-03
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003986
【氏名又は名称】日産化学株式会社
(74)【代理人】
【識別番号】110001999
【氏名又は名称】特許業務法人はなぶさ特許商標事務所
(72)【発明者】
【氏名】奚 偉恩
(72)【発明者】
【氏名】何 邦慶
【審査官】堀内 建吾
(56)【参考文献】
【文献】特開2011-216535(JP,A)
【文献】特表2014-524512(JP,A)
【文献】国際公開第2017/010566(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 79/08
C08G 73/10
H05K 1/03
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(C1)で表される脂環式テトラカルボン酸二無水物及び下記式(D1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、下記式(E1)で表されるフルオレンジアミンを含むジアミン成分とを用いて得られるポリイミドと、有機溶媒とを含有する、フレキシブルデバイス基板形成用組成物。
【化1】
〔式中、B
1は、式(X-1)~(X-11)からなる群から選ばれる4価の基を表す。
【化2】
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
【化3】
【化4】
(式(E1)中、R
1はそれぞれ独立に、水素原子、ハロゲン原子、フェニル基またはフェニルエチル基を表し、nは置換基R
1の個数を表し、それぞれ独立に0乃至4の整数を表す。)
【請求項2】
前記ジアミン成分は、式(E1)で表されるフルオレンジアミンを、ジアミン成分の全モル数に対して50モル%乃至100モル%含む、請求項1に記載のフレキシブルデバイス基板形成用組成物。
【請求項3】
前記テトラカルボン酸二無水物成分は、式(D1)で表される脂環式テトラカルボン酸二無水物を、テトラカルボン酸二無水物成分の全モル数に対して20モル%乃至60モル%含む、請求項1または請求項2に記載のフレキシブルデバイス基板形成用組成物。
【請求項4】
機械的剥離法に用いるためのフレキシブルデバイスの基板形成用組成物である、請求項1乃至請求項3のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物。
【請求項5】
請求項1乃至請求項4のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物を用いて作成された、フレキシブルデバイス基板。
【請求項6】
請求項1乃至請求項4のうちいずれか一項に記載のフレキシブルデバイス基板形成用組成物を基材に塗布し、乾燥・加熱して、基材上にフレキシブルデバイス基板を形成する工程、及び
機械的剥離法により前記基材から前記フレキシブルデバイス基板を剥離させる剥離工程を含む、フレキシブルデバイス基板の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フレキシブルデバイス基板形成用組成物に関し、より具体的には、特にキャリア基材からの基板の剥離工程において機械的剥離法を用いる、フレキシブルディスプレイ等のフレキシブルデバイス基板の形成に好適に使用できる組成物に関する。
【背景技術】
【0002】
近年、液晶ディスプレイや有機エレクトロルミネッセンスディスプレイ等のエレクトロニクスの急速な進歩に伴い、デバイスの薄型化や軽量化、更には、フレキシブル化が要求されるようになってきた。
これらのデバイスにはガラス基板上に様々な電子素子、例えば、薄膜トランジスタや透明電極等が形成されているが、このガラス材料を柔軟かつ軽量な樹脂材料に替えることで、デバイス自体の薄型化や軽量化、フレキシブル化が図れる。
このような事情の下、ガラスの代替材料としてポリイミドが注目を集めている。そして、当該用途向けのポリイミドには、柔軟性だけでなく、大抵の場合、ガラスと同様の透明性が要求されることとなる。これらの特性を実現するために、原料に脂環式ジアミン成分や脂環式無水物成分を用いて得られる半脂環式ポリイミドや全脂環式ポリイミドが報告されている(例えば特許文献1~3参照)。
【0003】
一方、フレキシブルディスプレイの製造において、これまで太陽光発電装置の製造において使用されてきた機械的剥離法(MD法)を用いてガラスキャリアからポリマー基板を好適に剥離できることが報告されている(例えば非特許文献1)。
フレキシブルディスプレイの製造では、ガラスキャリア上にポリイミド等からなるポリマー基板を設け、次にその基板の上に電極等を含む回路を形成し、最終的にこの回路等とともに基板をガラスキャリアから剥離する必要がある。この剥離工程においてMD法を採用し、すなわち、ガラスキャリア上のポリマー(ポリイミド)フィルムの4辺を切断した後、吸引することにより、基板上に設けられた回路等にダメージを与えることなく、ガラスキャリアからの基板の剥離を選択的に実行可能であると報告されている。
ディスプレイの基板には、透明基板を通過した偏光の光学異方性に影響を与えないよう、低い複屈折率が要求される。ここで、かさ高い骨格またはかさ高い側鎖を有するポリイミドは、ポリマー鎖どうしの距離が遠くなるため、得られるフィルムは低い複屈折率を示しうるが、自由体積が大きくなることによって熱膨張率が大きくなる。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2013-147599号公報
【文献】特開2014-114429号公報
【文献】国際公開第2015/152178号
【非特許文献】
【0005】
【文献】Advanced Functional Materials Volume27 Issue2 p.p. 1-7 DOI: 10.1002/adfm.201602969
【発明の概要】
【発明が解決しようとする課題】
【0006】
これまで提案されたフレキシブルディスプレイ用基板材料として有望な半脂環式ポリイミドや全脂環式ポリイミドは、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を有する基板を形成し得るものの、該基板は、高い線膨張係数(>50ppm/℃)または高い複屈折率(Δn>0.01)を有するという問題があった。
【0007】
本発明は、このような事情に鑑みてなされたものであって、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を維持すると共に、厚さ10nmのフィルムにおける低い線膨張係数(<50ppm/℃)及び低い複屈折率(Δn<0.001)を同時に維持しうるフレキシブルディスプレイ基板等のフレキシブルデバイス基板のベースフィルムとして優れた性能を有する樹脂薄膜を与えるフレキシブルデバイス基板形成用組成物を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、芳香族ジアミンを含むジアミン成分とからポリイミドを製造する際に、テトラカルボン酸二無水物成分として特定の構造を有する脂環式テトラカルボン酸二無水物とそれとは異なる構造を有する脂環式テトラカルボン酸二無水物を含有させるとともに、ジアミン成分としてフルオレン構造を有するジアミンを芳香族ジアミンに含有させると、これにより得られたポリイミドは、樹脂薄膜とした際に、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を示し得ると共に、MD法によりガラスキャリアから容易に剥離し得ることを見出し、本発明を完成させた。
【0009】
すなわち本発明は、第1観点として、下記式(C1)で表される脂環式テトラカルボン酸二無水物及び下記式(D1)脂環式で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、下記式(E1)で表されるフルオレンジアミンを含むジアミン成分とを用いて得られるポリイミドと有機溶媒とを含有するフレキシブルデバイス基板形成用組成物に関する。
【化1】
〔式中、B
1は、式(X-1)~(X-11)からなる群から選ばれる4価の基を表す。
【化2】
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
【化3】
【化4】
(式(E1)中、R
1はそれぞれ独立に、水素原子、ハロゲン原子、フェニル基またはフェニルエチル基を表し、nは置換基R
1の個数を表し、それぞれ独立に0乃至4の整数を表す。)
第2観点として、前記ジアミン成分は、式(E1)で表されるフルオレンジアミンを、ジアミン成分の全モル数に対して50モル%乃至100モル%含む、第1観点に記載のフレキシブルデバイス基板形成用組成物に関する。
第3観点として、前記テトラカルボン酸二無水物成分は、式(D1)で表される脂環式テトラカルボン酸二無水物を、テトラカルボン酸二無水物成分の全モル数に対して、20モル%乃至60モル%含む、第1観点または第2観点に記載のフレキシブルデバイス基板形成用組成物に関する。
第4観点として、機械的剥離法に用いるためのフレキシブルデバイスの基板形成用組成物である、第1観点乃至第3観点のうちいずれか一つに記載のフレキシブルデバイス基板形成用組成物に関する。
第5観点として、第1観点乃至第4観点のうちいずれか一つに記載のフレキシブルデバイス基板形成用組成物を用いて作成されたフレキシブルデバイス基板に関する。
第6観点として、第1観点乃至第4観点のうちいずれか一つに記載のフレキシブルデバイス基板形成用組成物を基材に塗布し、乾燥・加熱して、基材上にフレキシブルデバイス基板を形成する工程、及び
機械的剥離法により前記基材から前記フレキシブルデバイス基板を剥離させる剥離工程を含む、フレキシブルデバイス基板の製造方法に関する。
【発明の効果】
【0010】
本発明により、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れる(高い光線透過率、低い黄色度)という優れた性能を維持すると共に、MD法により基材(例えばガラスキャリア)から容易に剥離し得る、フレキシブルディスプレイ基板等のフレキシブルデバイス基板のベースフィルムとして優れた性能を有する樹脂薄膜を与えるフレキシブルデバイス基板形成用組成物を提供することができる。
そして、本発明に係るフレキシブルデバイス基板は、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れる(高い光線透過率、低い黄色度)という優れた性能を維持すると共に、MD法により基材(例えばガラスキャリア)から容易に剥離し得ることから、フレキシブルデバイス、特にフレキシブルディスプレイの基板として好適に用いることができる。
【発明を実施するための形態】
【0011】
以下、本発明について詳細に説明する。
本発明のフレキシブルデバイス基板形成用組成物は、下記式(C1)で表される脂環式テトラカルボン酸二無水物及び下記式(D1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、下記式(E1)で表されるフルオレンジアミンを含むジアミン成分との反応生成物であるポリイミドと有機溶媒とを含有する。
【化5】
〔式中、B
1は、式(X-1)~(X-11)からなる群から選ばれる4価の基を表す。
【化6】
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
【化7】
【化8】
(式(E1)中、R
1はそれぞれ独立に、水素原子、ハロゲン原子、フェニル基またはフェニルエチル基を表し、nは置換基R
1の個数を表し、それぞれ独立に0乃至4の整数を表す。)
【0012】
[ポリイミド]
本発明で使用するポリイミドは、主鎖に脂環式骨格を有するポリイミドである。具体的には、前記ポリイミドは、前記式(C1)で表される脂環式テトラカルボン酸二無水物及び前記式(D1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分を、前記式(E1)で表されるフルオレンジアミンを含むジアミン成分と反応させて得られるポリアミック酸をイミド化して得られるポリイミドである。すなわち、上記ポリイミドは、好ましくはポリアミック酸のイミド化物であって、該ポリアミック酸は、前記式(C1)で表される脂環式テトラカルボン酸二無水物及び前記式(D1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、前記式(E1)で表されるフルオレンジアミンを含むジアミン成分との反応物である。
【0013】
【化9】
〔式中、B
1は、式(X-1)~(X-11)からなる群から選ばれる4価の基を表す。
【化10】
(式中、複数のRは、互いに独立して、水素原子またはメチル基を表し、*は結合手を表す。)〕
【0014】
上記式(C1)で表される脂環式テトラカルボン酸二無水物の中でも、式中のB1が式(X-1)、(X-4)、(X-7)で表される化合物であることが好ましい。
好適な例として、上記式(C1)で表される脂環式テトラカルボン酸二無水物及び上記式(D1)で表される脂環式テトラカルボン酸二無水物と、上記式(E1)で表されるジアミンとを反応させて得られるポリアミック酸をイミド化して得られるポリイミドは、後述する式(1)及び(1’)で表されるモノマー単位を含む。
【0015】
本発明の目的である耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を維持すると共に、MD法により基材(例えばガラスキャリア)から容易に剥離し得るフレキシブルデバイス基板に適する樹脂薄膜を得るためには、テトラカルボン酸二無水物成分の全モル数に対して、上記式(C1)で表される脂環式テトラカルボン酸二無水物が40モル%以上90モル%以下であることが好ましく、40モル%以上80モル%以下であることが好ましく、60モル%以上80モル%以下であることがより好ましく、また、テトラカルボン酸二無水物成分の全モル数に対して、式(D1)で表される脂環式テトラカルボン酸二無水物が10モル%以上60モル%以下であることが好ましく、20モル%以上60モル%以下であることが好ましく、20モル%以上40モル%以下であることがより好ましい。
また同様に、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を維持すると共に、MD法により基材(例えばガラスキャリア)から容易に剥離し得るフレキシブルデバイス基板に適する樹脂薄膜を得るためには、ジアミン成分の全モル数に対して、上記式(E1)で表されるジアミンが50モル%以上、例えば50モル%以上100モル%以下であることが好ましく、70モル%以上であることがより好ましく、95モル%以上であることがさらに好ましい。
【0016】
好適な態様の一例として、本発明で使用するポリイミドは、下記式(1)で表されるモノマー単位と下記式(1’)で表されるモノマー単位とを含む。
【化11】
(式(1)中、B
1は、上記式(X-1)~(X-11)からなる群から選ばれる4価の基を表し、R
1はそれぞれ独立に水素原子、ハロゲン原子、フェニル基またはフェニルエチル基を表し、nは置換基R
1の個数を表し、それぞれ独立に0乃至4の整数である。)
【化12】
(式(1’)中、R
1はそれぞれ独立に水素原子、ハロゲン原子、フェニル基またはフェニルエチル基を表し、nは置換基R
1の個数を表し、それぞれ独立に0乃至4の整数である。)
【0017】
上記式(1)で表されるモノマー単位としては、式(1-1)で表されるものが好ましい。
【化13】
(式(1-1)中、複数のRは、互いに独立して、水素原子またはメチル基を表す)
【0018】
上記式(1’)で表されるモノマー単位としては、式(1’-1)で表されるものが好ましい。
【化14】
【0019】
〈ポリアミック酸の合成〉
本発明で使用するポリイミドは、前述したように、上記式(C1)で表される脂環式テトラカルボン酸二無水物及び上記式(D1)で表される脂環式テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と、上記式(E1)で表されるフルオレンジアミンを含むジアミン成分とを反応させて得られるポリアミック酸をイミド化して得られる。
上記成分からポリアミック酸への反応は、有機溶媒中で比較的容易に進行させることができ、かつ副生成物が生成しない点で有利である。
【0020】
これらテトラカルボン酸二無水物成分とジアミン成分との反応におけるジアミン成分の仕込み比(モル比)は、ポリアミック酸、さらにはその後イミド化させることにより得られるポリイミドの分子量等を勘案して適宜設定されるものではあるが、テトラカルボン酸二無水物成分1に対して、通常、ジアミン成分0.8~1.2程度とすることができ、例えば0.9~1.1程度、好ましくは0.98~1.02程度である。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。
【0021】
上記テトラカルボン酸二無水物成分とジアミン成分との反応の際に用いる有機溶媒は、反応に悪影響を及ぼさず、また生成したポリアミック酸が溶解するものであれば特に限定されない。以下にその具体例を挙げる。
例えば、m-クレゾール、2-ピロリドン、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-ビニル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロピルアミド、3-エトキシ-N,N-ジメチルプロピルアミド、3-プロポキシ-N,N-ジメチルプロピルアミド、3-イソプロポキシ-N,N-ジメチルプロピルアミド、3-ブトキシ-N,N-ジメチルプロピルアミド、3-sec-ブトキシ-N,N-ジメチルプロピルアミド、3-tert-ブトキシ-N,N-ジメチルプロピルアミド、γ-ブチロラクトン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸イソプロピル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等があげられるがこれらに限定されない。これらは単独で又は2種以上を組み合わせて使用してもよい。
さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミック酸が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリアミック酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
【0022】
上記テトラカルボン酸二無水物成分とジアミン成分とを有機溶媒中で反応させる方法としては、ジアミン成分を有機溶媒に分散あるいは溶解させた分散液又は溶液を撹拌させ、ここにテトラカルボン酸二無水物成分をそのまま添加するか、又はその成分を有機溶媒に分散あるいは溶解させたものを添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた分散液又は溶液にジアミン成分を添加する方法、そしてテトラカルボン酸二無水物成分とジアミン化合物成分とを交互に添加する方法などが挙げられ、これらのいずれの方法であってもよい。
また、テトラカルボン酸二無水物成分及び/又はジアミン成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
【0023】
上記のポリアミック酸合成時の温度は、上述した使用する溶媒の融点から沸点までの範囲で適宜設定すればよく、例えば-20℃~150℃の任意の温度を選択することができるが、-5℃~150℃、通常0~150℃程度、好ましくは0~140℃程度であるのがよい。
反応時間は、反応温度や原料物質の反応性に依存するため一概に規定できないが、通常1~100時間程度である。
また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、テトラカルボン酸二無水物成分とジアミン成分との反応溶液中での合計濃度が、好ましくは1~50質量%、より好ましくは5~40質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することもできる。
【0024】
〈ポリアミック酸のイミド化〉
ポリアミック酸をイミド化させる方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。
ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100℃~400℃、好ましくは120℃~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。
【0025】
ポリアミック酸の化学(触媒)イミド化は、ポリアミック酸の溶液に、塩基性触媒を添加し、-20~250℃、好ましくは0~180℃での温度条件にて系内を撹拌することにより行うことができる。
塩基性触媒の量はポリアミック酸のアミド酸基の0.5~30モル倍、好ましくは1.5~20モル倍である。
【0026】
塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン、1-エチルピペリジンなどを挙げることができ、中でもピリジン、1-エチルピペリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
【0027】
本発明に用いるポリイミド樹脂において、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整して用いることができる。特に好ましくは50%以上である。
【0028】
本発明において、上記反応溶液をろ過した後、そのろ液をそのまま用い、又は、希釈若しくは濃縮してフレキシブルデバイス基板形成用組成物としてもよい。さらにここに後述するその他の成分(有機又は無機の低分子又は高分子化合物)等を配合してフレキシブルデバイス基板形成用組成物としてもよい。このようにろ過を経た場合、該組成物より得られる樹脂薄膜の耐熱性、柔軟性あるいは線膨張係数特性の悪化の原因となり得る不純物の混入を低減できるだけでなく、効率よくフレキシブルデバイス基板形成用組成物を得ることができる。
【0029】
また、本発明に用いるポリイミドは、前記組成物より得られる樹脂薄膜の強度、樹脂薄膜を形成する際の作業性、樹脂薄膜の均一性等を考慮してゲル浸透クロマトグラフィー(GPC)のポリスチレン換算による重量平均分子量(Mw)が5,000乃至350,000であることが好ましい。
【0030】
〈ポリマー回収〉
ポリアミック酸及びポリイミドの反応溶液から、ポリマー成分を回収し、用いる場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセロソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。
また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2から10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として例えばアルコール類、ケトン類、炭化水素など3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
【0031】
再沈殿回収工程において樹脂成分を溶解させる有機溶媒は特に限定されない。具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-2-イミダゾリジノン、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらの溶媒は2種類以上を混合して用いてもよい。
【0032】
[有機溶媒]
本発明のフレキシブルデバイス基板形成用組成物は、前記ポリイミドに加えて、有機溶媒を含む。該有機溶媒は、特に限定されるものではなく、例えば、上記ポリアミック酸及びポリイミドの調製時に用いた反応溶媒の具体例と同様のものが挙げられる。より具体的には、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-エチル-2-ピロリドン、γ-ブチロラクトンなどが挙げられる。なお、有機溶媒は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
これらの中でも、フレキシブルデバイス基板形成用組成物から平坦性の高い樹脂薄膜を再現性よく得ることを考慮すると、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンが好ましい。
【0033】
[フレキシブルデバイス基板形成用組成物]
本発明は、前記ポリイミドと有機溶媒を含有するフレキシブルデバイス基板形成用組成物である。ここで本発明のフレキシブルデバイス基板形成用組成物は、均一なものであって、相分離は認められないものである。
また本発明のフレキシブルデバイス基板形成用組成物中の固形量は、通常0.5~30質量%の範囲内であるが、膜の均一性の観点から、好ましくは5質量%以上、20質量%以下である。なお、固形分とは、フレキシブルデバイス基板形成用組成物を構成する全成分から溶媒を除いた残りの成分を意味する。
なお、フレキシブルデバイス基板形成用組成物の粘度は、用いる塗布法、作製する樹脂薄膜の厚み等を勘案して適宜決定されるものではあるが、通常25℃で1~50,000mPa・sである。
【0034】
本発明のフレキシブルデバイス基板形成用組成物には、加工特性や各種機能性を付与するために、その他に様々な有機又は無機の低分子又は高分子化合物を配合してもよい。例えば、触媒、消泡剤、レベリング剤、界面活性剤、染料、可塑剤、微粒子、カップリング剤、増感剤等を用いることができる。例えば触媒は該組成物から得られる樹脂薄膜のリタデーションや線膨張係数を低下させる目的で添加され得る。
【0035】
[フレキシブルデバイス基板]
以上説明した本発明のフレキシブルデバイス基板形成用組成物を基材に塗布して乾燥・加熱することで有機溶媒を除去し、耐熱性に優れ、リタデーションが低く、柔軟性に優れ、さらに透明性にも優れるという優れた性能を維持すると共に、MD法により基材(例えばガラスキャリア)から容易に剥離し得る樹脂薄膜、すなわちフレキシブルデバイス基板を得ることができる。本発明のフレキシブルデバイス基板形成用組成物より作成されたフレキシブルデバイス基板も本発明の対象である。
【0036】
フレキシブルデバイス基板(樹脂薄膜)の製造に用いる基材としては、例えば、プラスチック(ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ、メラミン、トリアセチルセルロース、ABS、AS、ノルボルネン系樹脂等)、金属、ステンレス鋼(SUS)、木材、紙、ガラス、シリコンウェハ、スレート等が挙げられる。
特に、フレキシブルデバイス基板として適用する際、既存設備を利用することができるという観点から、適用する基材がガラス、シリコンウェハであることが好ましく、また得られるフレキシブルデバイス基板が良好な剥離性を示すことからガラスであることがさらに好ましい。なお、適用する基材の線膨張係数としては塗工後の基材の反りの観点から、好ましくは40ppm/℃以下、より好ましくは、30ppm/℃以下である。
【0037】
基材へのフレキシブルデバイス基板形成用組成物の塗布法は、特に限定されるものではないが、例えば、キャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等が挙げられ、目的に応じてこれらを適宜用いることができる。
【0038】
加熱温度は、300℃以下が好ましい。300℃を超えると、得られる樹脂薄膜が脆くなり、特にディスプレイ基板用途に適した樹脂薄膜を得ることができない場合がある。
また、得られる樹脂薄膜の耐熱性と線膨張係数特性を考慮すると、塗布したフレキシブルデバイス基板形成用組成物を40℃~100℃で5分間~2時間加熱した後に、そのまま段階的に加熱温度を上昇させ、最終的に175℃超~280℃で30分~2時間加熱することが望ましい。このように、溶媒を乾燥させる段階と分子配向を促進する段階の2段階以上の温度で加熱することにより、より再現性よく低熱膨張特性を発現させることができる。
特に、塗布したフレキシブルデバイス基板形成用組成物は、40℃~100℃で5分間~2時間加熱した後に、100℃超~175℃で5分間~2時間、次いで、175℃超~280℃で5分~2時間加熱することが好ましい。
加熱に用いる器具は、例えばホットプレート、オーブン等が挙げられる。加熱雰囲気は、空気下であっても窒素等の不活性ガス下であってもよく、また、常圧下であっても減圧下であってもよく、また加熱の各段階において異なる圧力を適用してもよい。
【0039】
樹脂薄膜の厚さは、1~200μm程度の範囲内でフレキシブルデバイスの種類を考慮して適宜決定されるものではあるが、特にフレキシブルディスプレイ用の基板として用いることを想定した場合、通常1~60μm程度、好ましくは5~50μm程度であり、加熱前の塗膜の厚さを調整して所望の厚さの樹脂薄膜を形成する。
なお、このようにして形成された樹脂薄膜を基材から剥離する方法としては特に限定はなく、該樹脂薄膜を基材ごと冷却し、薄膜に切れ目を入れ剥離する方法やロールを介して張力を与えて剥離する方法等が挙げられる。
【0040】
更に、該樹脂薄膜は、例えば50℃乃至200℃における線膨張係数が50ppm/℃以下、特に45ppm/℃乃至49ppm/℃という低い値を有することができ、加熱時の寸法安定性に優れたものである。
また該樹脂薄膜は、入射光の波長を590nmとした場合における複屈折(面内の直交する2つの屈折率の差)と膜厚との積で表される面内リタデーションR0、並びに、厚さ方向の断面からみたときの2つの複屈折(面内の2つの屈折率と厚さ方向の屈折率との夫々の差)にそれぞれ膜厚を掛けて得られる2つの位相差の平均値として表される厚さ方向リタデーションRthが、いずれも小さいことを特長とする。
該樹脂薄膜は、平均膜厚が10μm程度である場合において、厚さ方向リタデーションRthが10nmより(例えば6nmより)も小さく、面内リタデーションR0が5nmより(例えば1nmより)も小さく、複屈折率Δnが0.001より(例えば0.0004より)も小さい。
【0041】
以上説明した樹脂薄膜は、上記の特性を有することから、フレキシブルデバイス基板のベースフィルムとして必要な各条件を満たすものであり、フレキシブルデバイス、特にフレキシブルディスプレイの基板のベースフィルムとして特に好適に用いることができる。
【実施例】
【0042】
以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
【0043】
以下の実施例で用いる略記号の意味は、次のとおりである。
<酸二無水物>
BODAxx:ビシクロ[2,2,2]オクタン-2,3,5,6-テトラカルボン酸二無水物
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
BODA:ビシクロ[2,2,2]オクタ-7エン-2,3,5,6-テトラカルボン酸二無水物
<ジアミン>
FDA:9,9’-ビス(4-アミノフェニル)フルオレン
<有機溶媒>
GBL:γ-ブチロラクトン
【0044】
なお、実施例において、試料の調製及び物性の分析及び評価に用いた装置及び条件は、以下の通りである。
1)数平均分子量及び重量平均分子量の測定
ポリマーの数平均分子量(以下、Mnと略す)と重量平均分子量(以下、Mwと略す)は、装置:昭和電工(株)製、Showdex GPC-101、カラム:KD803およびKD805、カラム温度:50℃、溶出溶媒:DMF、流量:1.0ml/分、検量線:標準ポリスチレン、の条件にて測定した。
2)線膨張係数(CTE)、ガラス転移温度(Tg)
TAインスツルメンツ社製 TMA Q400を用いて、樹脂薄膜を幅5mm、長さ16mmのサイズにカットし、まず10℃/minで昇温して50乃至350℃まで加熱(第一加熱)し、次いで10℃/minで降温して50℃まで冷却した後に、10℃/minで昇温して50乃至420℃まで加熱(第二加熱)した際の、第二加熱の50℃乃至200℃における線膨張係数(CTE[ppm/℃])、並びに200℃乃至250℃における線膨張係数(CTE[ppm/℃])の値を測定することで求めた。なお、第一加熱、冷却および第二加熱を通じて、荷重0.05Nを加えた。
ガラス転移温度(Tg)の値は、第二加熱終了付近の急激な寸法変化の開始点より算出した。
3)5%重量減少温度(Td5%)
5%重量減少温度(Td5%[℃])は、TAインスツルメンツ社製 TGA Q500を用い、窒素中、樹脂薄膜約5乃至10mgを50乃至800℃まで10℃/minで昇温して測定することで求めた。
4)光線透過率(透明性)(T308nm、T400nm、T550nm)及びCIE b値(CIE b*)
波長308nm、400nm及び550nmの光線透過率(T308nm、T400nm、T550nm[%])及びCIE b値(CIE b*)は、日本電色工業(株)製 SA4000スペクトロメーターを用いて、室温にて、リファレンスを空気として、測定を行った。
5)リタデーション(Rth、R0)
厚さ方向リタデーション(Rth)及び面内リタデーション(R0)を、王子計測機器(株)製、KOBURA 2100ADHを用いて、室温にて測定した。
なお、厚さ方向リタデーション(Rth)及び面内リタデーション(R0)は以下の式にて算出される。
R0=(Nx-Ny)×d=ΔNxy×d
Rth=[(Nx+Ny)/2-Nz]×d=[(ΔNxz×d)+(ΔNyz×d)/2
Nx、Ny:面内の直交する2つの屈折率(Nx>Ny、Nxを遅相軸、Nyを進相軸とも称する)
Nz:面に対して厚さ(垂直)方向の屈折率
d:膜厚
ΔNxy:面内の2つの屈折率の差(Nx-Ny)(複屈折)
ΔNxz:面内の屈折率Nxと厚さ方向の屈折率Nzの差(複屈折)
ΔNyz:面内の屈折率Nyと厚さ方向の屈折率Nzの差(複屈折)
6)複屈折(Δn)
前述の<6)リタデーション>により得られた厚さ方向リタデーション(Rth)の値を用い、以下の式にて算出した。
Δn=[Rth/d(フィルム膜厚)]/1000
7)膜厚
得られた樹脂薄膜の膜厚は、(株)テクロック製 シックネスゲージにて測定した。
【0045】
[1]ポリイミドの合成手順(下記合成例2の例)
窒素の注入口/排出口、ディーン・スターク、メカニカルスターラー及びコンデンサー(水冷却器)を取り付けた200mLの三口フラスコ内に、FDA 6.272g(0.018mol)を入れ、その後すぐにGBL 20.57gを添加し、撹拌を開始した。ジアミンが溶媒中に完全に溶解した後、溶液を撹拌しながら、BODAxx 2.251g(0.009mol)及びCBDA 1.765g(0.009mol)をこの順に添加し、GBL 20.58gを添加して窒素雰囲気下で内温140℃に昇温した。
次に、この系内に1-エチルピペリジン0.41gを添加し、窒素下で7時間内温180℃に加熱した。加熱を停止した後、反応系内にGBLを加えて溶液を6質量%に希釈し、終夜撹拌した。翌日、ポリイミド反応溶液をメタノール600ml中に滴下して30分間撹拌し、ろ過して固体ポリイミドを回収し、この手順を3回繰り返した。ポリイミド中のメタノール残留物を150℃、-100kPa下の真空オーブンの8時間の乾燥により除去し、最終的に、乾燥した9.42gのポリイミド2を得た。ポリイミドの質量パーセント収率は98%であり、Mw=154,096、Mn=41,946であった。
【0046】
ポリイミド1~5の合成スキームを下記に示す。
【化15】
【0047】
[合成例1]
上記合成手順に従ってP1ポリマー:CBDA/BODAxx/FDA=40/60/100(モル比率)を合成し、7.54gの乾燥したポリイミド1が得られた。ポリイミドの質量パーセント収率は77%であり、MwとMnは表1に記載した通りであった。
[合成例2]
上記合成手順に従ってP2ポリマー:CBDA/BODAxx/FDA=50/50/100(モル比率)を合成し、9.42gの乾燥したポリイミド2が得られた。ポリイミドの質量パーセント収率は98%であり、MwとMnは表1に記載した通りであった。
[合成例3]
上記合成手順に従ってP3ポリマー:CBDA/BODAxx/FDA=60/40/100(モル比率)を合成し、7.39gの乾燥したポリイミド3が得られた。ポリイミドの質量パーセント収率は77%であり、MwとMnは表1に記載した通りであった。
[合成例4]
上記合成手順に従ってP4ポリマー:CBDA/BODAxx/FDA=70/30/100(モル比率)を合成し、7.95gの乾燥したポリイミド4が得られた。ポリイミドの質量パーセント収率は84%であり、MwとMnは表1に記載した通りであった。
[合成例5]
上記合成手順に従ってP5ポリマー:CBDA/BODAxx/FDA=80/20/100(モル比率)を合成し、6.68gの乾燥したポリイミド5が得られた。ポリイミドの質量パーセント収率は71%であり、MwとMnは表1に記載した通りであった。
[比較例1]
比較例1としてのBODA/FDA=100/100(モル比率)のPC1ポリマーは、国際公開第2013/170135号パンフレットの実施例番号1aとして記載されたポリマーである。
[比較例2]
比較例2として、CBDA/FDA=100/100(モル比率)でCBDAとFDAとを上記合成手順に従って合成するが、合成中にゲル化し、ポリマーが得られなかった。
[比較例3]
比較例3として、BODAxx/FD=100/100(モル比率)でBODAxxとFDAとを上記合成手順に従って合成する。PC3ポリマーが9.57g得られたが、フィルムを形成することができなかった。
【0048】
[2]ポリイミド溶液(ワニス)の調製例
室温で、上記各合成例で得られたポリイミドを12質量%となるようにGBL溶媒中に溶解した。
【0049】
[3]フィルム形成例
上記[2]で得られた各ポリイミド溶液(ワニス)を25μmのフィルタを通してゆっくりと加圧ろ過した後、得られた溶液をガラス基材上にコーティングし、空気雰囲気下、80℃の温度で60分間、140℃で30分間、次いで200℃で60分間焼成し、その後、空気中で240℃にて60分間焼成して、例1ないし例5のポリイミド膜(樹脂薄膜)を得た。得られた樹脂薄膜を長方形に切り、評価のために剥離した。
【0050】
[4]樹脂薄膜の評価
上述の手順にて作製した例1ないし例5の樹脂薄膜を機械的切断にて剥がし、その後の評価に供した。
各樹脂薄膜の熱的性能及び光学性能、すなわち、線膨張係数(50~200℃:CTE[ppm/℃]、200~250℃:CTE[ppm/℃])、ガラス転移温度(Tg[℃])5%重量減少温度(Td5%[℃])、光線透過率(T308nm[%]、T400nm[%]、T550nm[%])及びCIE b値(黄色評価:CIE b*)、リタデーション(Rth[nm]、R0[nm])並びに複屈折(Δn)に関して、上記手順に従いそれぞれ評価した。結果を表1に示す。
【0051】
【0052】
表1に示すように、例1~例5の樹脂薄膜は、線膨張係数[ppm/℃]が低く、また、キュア後の400nm及び550nmにおける光線透過率[%]が高く、さらにCIE b*値で表される黄色度が小さく、リタデーションRth、R0及び副屈折率Δnがいずれも低い値となった点が確認された。
また上記例1~5で得られた樹脂薄膜は、両手で持ち鋭角(30度程度)に曲げた場合においても割れることがなく、フレキシブルディスプレイ基板に要求される高い柔軟性を有していた。