IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立化成株式会社の特許一覧

<>
  • 特許-接合体及び半導体装置 図1
  • 特許-接合体及び半導体装置 図2
  • 特許-接合体及び半導体装置 図3
  • 特許-接合体及び半導体装置 図4
  • 特許-接合体及び半導体装置 図5
  • 特許-接合体及び半導体装置 図6
  • 特許-接合体及び半導体装置 図7
  • 特許-接合体及び半導体装置 図8
  • 特許-接合体及び半導体装置 図9
  • 特許-接合体及び半導体装置 図10
  • 特許-接合体及び半導体装置 図11
  • 特許-接合体及び半導体装置 図12
  • 特許-接合体及び半導体装置 図13
  • 特許-接合体及び半導体装置 図14
  • 特許-接合体及び半導体装置 図15
  • 特許-接合体及び半導体装置 図16
  • 特許-接合体及び半導体装置 図17
  • 特許-接合体及び半導体装置 図18
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-11
(45)【発行日】2022-04-19
(54)【発明の名称】接合体及び半導体装置
(51)【国際特許分類】
   B22F 7/08 20060101AFI20220412BHJP
   H01B 5/02 20060101ALI20220412BHJP
   B22F 1/00 20220101ALI20220412BHJP
   B32B 15/01 20060101ALI20220412BHJP
   H01L 21/52 20060101ALI20220412BHJP
【FI】
B22F7/08 C
H01B5/02 A
B22F1/00 L
B32B15/01 H
H01L21/52 B
【請求項の数】 4
(21)【出願番号】P 2020216854
(22)【出願日】2020-12-25
(62)【分割の表示】P 2017539198の分割
【原出願日】2016-09-07
(65)【公開番号】P2021063300
(43)【公開日】2021-04-22
【審査請求日】2021-01-22
(31)【優先権主張番号】P 2015176067
(32)【優先日】2015-09-07
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004455
【氏名又は名称】昭和電工マテリアルズ株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100128381
【弁理士】
【氏名又は名称】清水 義憲
(74)【代理人】
【識別番号】100169454
【弁理士】
【氏名又は名称】平野 裕之
(72)【発明者】
【氏名】中子 偉夫
(72)【発明者】
【氏名】蔵渕 和彦
(72)【発明者】
【氏名】江尻 芳則
(72)【発明者】
【氏名】石川 大
(72)【発明者】
【氏名】須鎌 千絵
(72)【発明者】
【氏名】川名 祐貴
【審査官】國方 康伸
(56)【参考文献】
【文献】特開2013-247060(JP,A)
【文献】特開2009-275229(JP,A)
【文献】特開2015-082385(JP,A)
【文献】国際公開第2013/125022(WO,A1)
【文献】特開2013-239486(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B22F 1/00- 8/00
(57)【特許請求の範囲】
【請求項1】
第一の部材と、第二の部材と、前記第一の部材と前記第二の部材とを接合する焼結金属層と、を備え、
前記焼結金属層が、前記第一の部材又は前記第二の部材と前記焼結金属層との界面に対して略平行に配向したフレーク状の銅粒子に由来し、長径の長さが1μm以上で且つ長径/厚みの比が4以上であるフレーク状構造を含み、
前記焼結金属層の断面画像に基づき下記式(F)により算出される、前記焼結金属層における前記フレーク状構造の含有割合が、20~30%であり、
前記フレーク状構造の下記式(1)により算出される配向秩序度Sは、0.88以上1.00以下である、接合体。
前記フレーク状構造の含有割合(%)={(前記フレーク状構造部分の断面積)/(前記焼結金属層の金属焼結体部分の断面積)}×100・・・(F)
S=1/2×(3<cosθ>-1)・・・(1)
[式中、θは、前記焼結金属層の断面画像における前記界面と前記フレーク状構造の長径とが成す角度を示し、<cosθ>は複数のcosθの値の平均値を示す。]
【請求項2】
前記第一の部材及び第二の部材の少なくとも一方が、前記焼結金属層と接する面に、銅、ニッケル、銀、金及びパラジウムからなる群から選択される少なくとも1種の金属を含む、請求項1に記載の接合体。
【請求項3】
第一の部材と、第二の部材と、前記第一の部材と前記第二の部材とを接合する焼結金属層と、を備え、前記第一の部材及び前記第二の部材の少なくとも一方が半導体素子である、半導体装置であって、
前記焼結金属層が、前記第一の部材又は前記第二の部材と前記焼結金属層との界面に対して略平行に配向したフレーク状の銅粒子に由来し、長径の長さが1μm以上で且つ長径/厚みの比が4以上であるフレーク状構造を含み、
前記焼結金属層の断面画像に基づき下記式(F)により算出される、前記焼結金属層における前記フレーク状構造の含有割合が、20~30%であり、
前記フレーク状構造の下記式(1)により算出される配向秩序度Sは、0.88以上1.00以下である、半導体装置。
記フレーク状構造の含有割合(%)={(前記フレーク状構造部分の断面積)/(前記焼結金属層の金属焼結体部分の断面積)}×100・・・(F)
S=1/2×(3<cosθ>-1)・・・(1)
[式中、θは、前記焼結金属層の断面画像における前記界面と前記フレーク状構造の長径とが成す角度を示し、<cosθ>は複数のcosθの値の平均値を示す。]
【請求項4】
ダイシェア強度が、30MPa以上である、請求項3に記載の半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、接合体及び半導体装置に関する。
【背景技術】
【0002】
半導体装置を製造する際、半導体素子とリードフレーム等(支持部材)とを接合させるため、さまざまな接合材が用いられている。半導体装置の中でも、150℃以上の高温で動作させるパワー半導体、LSI等の接合には、接合材として高融点鉛はんだが用いられてきた。近年、半導体素子の高容量化及び省スペース化により、175℃以上の高温で動作させる要求が高まっており、高融点鉛はんだ層からなる接合部では耐熱性及び熱伝導率が不充分であり、接続信頼性を確保することが難しくなってきている。一方で、RoHS規制強化に伴い、鉛を含有しない接合材が求められている。
【0003】
これまでにも、鉛はんだ以外の材料を用いた半導体素子の接合が検討されている。例えば、下記特許文献1には、銀ナノ粒子を低温焼結させ、焼結銀層を形成する技術が提案されている。このような焼結銀はパワーサイクルに対する接続信頼性が高いことが知られている。
【0004】
更に別の材料として、銅粒子を焼結させ、焼結銅層を形成する技術も提案されている。例えば、下記特許文献2には、半導体素子と電極とを接合するための接合材として、酸化第二銅粒子及び還元剤を含む接合用銅ペーストが開示されている。また、下記特許文献3には、銅ナノ粒子と、銅マイクロ粒子もしくは銅サブマイクロ粒子、あるいはそれら両方とを含む接合材が開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第4928639号
【文献】特許第5006081号
【文献】特開2014-167145号公報
【非特許文献】
【0006】
【文献】R. Khazaka, L. Mendizabal, D. Henry: J. ElecTron. Mater, 43(7), 2014, 2459-2466
【発明の概要】
【発明が解決しようとする課題】
【0007】
半導体装置の高温動作では、半導体素子を接合する接合部における接続信頼性が重要な課題となる。銅は銀に比べて、高い剪断弾性率(銅:48GPa、銀:30GPa)、及び低い熱膨張率(銅:17μm/(m・K)、銀:19μm/(m・K))を有する。そのため、上記特許文献2に記載の半導体装置及び上記特許文献3に記載の電子部品等の接続信頼性は、上記特許文献1に記載の焼結銀層を有する接合体に比べて優れている可能性がある。
【0008】
しかし、接合部が焼結金属層の場合、構成する金属の物性だけでなく、焼結金属層自体のモルフォロジーもその接続信頼性に影響することが本発明者らの検討により判明した。上記特許文献1~3においては焼結体層のモルフォロジーと接続信頼性との関係は明らかにされておらず、特に高温条件を含む温度サイクル試験での接続信頼性を充足し得る焼結金属層の実現は未だなされていない。
【0009】
本発明は、高温条件を含む温度サイクル試験においても充分な接続信頼性を有する焼結金属層を備える接合体及び半導体装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記課題を解決するために本発明者らは鋭意検討した結果、フレーク状の銅粒子を含む特定の接合用銅ペーストから形成される焼結金属層が、熱伝導性及び接合強度に優れ、高温条件を含む温度サイクル試験においても充分な接続信頼性を有する構造を備えていることを見出し、この知見に基づき本発明を完成するに至った。
【0011】
すなわち、本発明は、第一の部材と、第二の部材と、第一の部材と第二の部材とを接合する焼結金属層と、を備え、焼結金属層が、第一の部材又は第二の部材と焼結金属層との界面に対して略平行に配向したフレーク状の銅粒子に由来する構造を含み、焼結金属層における銅の含有量が、焼結金属層の体積を基準として、65体積%以上である、接合体を提供する。
【0012】
なお、本明細書において、「フレーク状」とは、板状、鱗片状等の平板状の形状を包含する。
【0013】
本発明の接合体は、上記の焼結金属層を備えることにより、高温条件を含む温度サイクル試験においても充分な接続信頼性を有することができる。このような効果が得られることの理由について、上記の焼結金属層は、65体積%以上という銅の緻密度を有することで充分な熱伝導性と接合強度が得られるとともに、所定の方向に配向したフレーク状の銅粒子に由来する構造を含むことで、熱応力が分散されること及び焼結金属層の一部が破壊されてもその破壊が広がりにくいこと等の作用が得られることが考えられる。
【0014】
上記接合体において、第一の部材及び第二の部材の少なくとも一方が、焼結金属層と接する面に、銅、ニッケル、パラジウム、銀、金、白金、鉛、錫、及びコバルトからなる群から選択される少なくとも1種の金属を含んでいてもよい。この場合、第一の部材及び第二の部材の少なくとも一方と、焼結金属層との接着性を更に高めることができる。
【0015】
本発明はまた、第一の部材と、第二の部材と、第一の部材と第二の部材とを接合する焼結金属層と、を備え、第一の部材及び第二の部材の少なくとも一方が半導体素子である半導体装置であって、焼結金属層が、第一の部材又は第二の部材と焼結金属層との界面に対して略平行に配向したフレーク状の銅粒子に由来する構造を含み、焼結金属層における銅の含有量が、焼結金属層の体積を基準として、65体積%以上である、半導体装置を提供する。
【0016】
本発明の半導体装置は、高温条件を含む温度サイクル試験においても充分な接続信頼性を有することができる上記の焼結金属層を備えることにより、高温動作性の向上が可能となり、半導体素子の高容量化及び省スペース化に対応し得るものになり得る。
【0017】
上記半導体装置において、ダイシェア強度が30MPa以上であることができる。
【0018】
本発明はまた、第一の電極と、前記第一の電極と電気的に接続されている半導体素子と、金属配線を介して半導体素子と電気的に接続されている第二の電極と、を備え、半導体素子と前記金属配線との間、及び、前記金属配線と前記第二の電極との間に、銅を含む焼結金属層を有する、半導体装置を提供する。
【0019】
本発明の半導体装置は、高温条件を含む温度サイクル試験においても充分な接続信頼性を有することができる上記の焼結金属層を備えることにより、高温動作性の向上が可能となり、半導体素子の高容量化及び省スペース化に対応し得るものになり得る。
【0020】
上記半導体装置において、焼結金属層が、金属配線と接しており、金属配線との界面に対して略平行に配向したフレーク状の銅粒子に由来する構造を含み、焼結金属層における銅の含有量が、焼結金属層の体積を基準として、65体積%以上であってもよい。
【0021】
本発明はまた、第一の熱伝導部材と、第二の熱伝導部材と、第一の熱伝導部材及び第二の熱伝導部材の間に配置される半導体素子と、を備え、第一の熱伝導部材と半導体素子との間、及び、半導体素子と第二の熱伝導部材との間のうちの少なくとも一方の間に、銅を含む焼結金属層を有する、半導体装置を提供する。
【0022】
本発明の半導体装置は、高温条件を含む温度サイクル試験においても充分な接続信頼性を有することができる上記の焼結金属層を備えることにより、高温動作性の向上が可能となり、半導体素子の高容量化及び省スペース化に対応し得るものになり得る。
【0023】
上記半導体装置において、焼結金属層が、第一の熱伝導部材又は第二の熱伝導部材と接しており、第一の熱伝導部材又は第二の熱伝導部材の界面に対して略平行に配向したフレーク状の銅粒子に由来する構造を含み、焼結金属層における銅の含有量が、焼結金属層の体積を基準として、65体積%以上であってもよい。
【発明の効果】
【0024】
本発明によれば、高温条件を含む温度サイクル試験においても充分な接続信頼性を有する焼結金属層を備える接合体及び半導体装置を提供することができる。
【図面の簡単な説明】
【0025】
図1】本実施形態の接合体における焼結金属層の典型的なモルフォロジーの一例を示す模式断面図である。
図2】本実施形態の接合用銅ペーストを用いて製造される接合体の一例を示す模式断面図である。
図3図1の拡大図であり、フレーク状の銅粒子に由来する構造の長径及び厚みの測長方法を示す模式断面図である。
図4】本実施形態の接合体のフレーク状の銅粒子に由来する構造の被着面に対する角度θを計測する方法を示す模式断面図である。
図5】本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。
図6】本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。
図7】本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。
図8】本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。
図9】本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。
図10】本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。
図11】本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。
図12】本実施形態の接合用銅ペーストを用いて製造される半導体装置の一例を示す模式断面図である。
図13】実施例1の接合体の断面を示すSEM像である。
図14】実施例4の接合体の断面を示すSEM像である。
図15】比較例3の接合体の断面を示すSEM像である。
図16】比較例6の接合体の断面を示すSEM像である。
図17】比較例7の接合体の断面を示すSEM像である。
図18】比較例8の接合体の断面を示すSEM像である。
【発明を実施するための形態】
【0026】
以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。本発明は、以下の実施形態に限定されるものではない。
【0027】
以下、図面を参照しながら好適な実施形態について詳細に説明する。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は、図示の比率に限られるものではない。
【0028】
<接合体>
本実施形態に係る接合体は、第一の部材と、第二の部材と、第一の部材と第二の部材とを接合する焼結金属層と、を備え、焼結金属層が所定の配向構造を有し、且つ焼結金属層における銅の含有量が、焼結金属層の体積を基準として、65体積%以上である。
【0029】
図1は、本実施形態の接合体における焼結金属層の典型的なモルフォロジーの一例を示す模式断面図である。図1に示される焼結金属層は、フレーク状の銅粒子に由来する構造(以下、「フレーク状構造」という場合もある)を有する焼結銅1と、他の銅粒子に由来する焼結銅2と、空孔3とを含む。
【0030】
図2は、本実施形態の接合体の一例を示す模式断面図である。図2に示される接合体100は、第一の部材5と、第二の部材6と、第一の部材5と第二の部材6とを接合する焼結金属層4と、を備える。
【0031】
第一の部材5及び第二の部材6としては、例えば、IGBT、ダイオード、ショットキーバリヤダイオード、MOS-FET、サイリスタ、ロジック、センサー、アナログ集積回路、LED、半導体レーザー、発信器等の半導体素子、リードフレーム、金属板貼付セラミックス基板(例えばDBC)、LEDパッケージ等の半導体素子搭載用基材、銅リボン及び金属フレーム等の金属配線、金属ブロック等のブロック体、端子等の給電用部材、放熱板、水冷板などが挙げられる。
【0032】
第一の部材5及び第二の部材6は、焼結金属層4と接する面7a及び7bに金属を含んでいてもよい。金属としては、例えば、銅、ニッケル、銀、金、パラジウム、白金、鉛、錫、コバルト等が挙げられる。これらの金属は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、焼結体と接する面は、上記金属を含む合金であってもよい。合金に用いられる金属としては、上記金属の他に、亜鉛、マンガン、アルミニウム、ベリリウム、チタン、クロム、鉄、モリブデン等が挙げられる。焼結金属層と接する面に金属を含む部材としては、例えば、各種金属メッキを有する部材、ワイヤ、金属メッキを有するチップ、ヒートスプレッダ、金属板が貼り付けられたセラミックス基板、各種金属メッキを有するリードフレーム又は各種金属からなるリードフレーム、銅板、銅箔が挙げられる。また、第二の部材6が半導体素子である場合、第一の部材5は、金属フレーム等の金属配線、金属ブロック等の熱伝導性及び導電性を有するブロック体などであってもよい。
【0033】
本実施形態の焼結金属層は、構成する元素のうち軽元素を除いた元素中の銅元素の割合が95質量%以上であってもよく、97質量%以上であってもよく、98質量%以上であってもよく、100質量%であってもよい。焼結金属層における銅元素の割合が、上記範囲内であれば、金属間化合物の形成又は金属銅結晶粒界への異種元素の析出を抑制でき、焼結金属層を構成する金属銅の性質が強固になりやすく、より一層優れた接続信頼性が得られやすい。
【0034】
軽元素を除いた元素中の銅元素の割合は、焼結金属層のScanning Electron Microscope-Energy Dispersive X-ray Spectroscop(SEM-EDX)測定、Inductively Coupled Plasma-Optical Emission Spectrometry(ICP-OES)測定、Inductively Coupled Plasma-Mass Spectrometry(ICP-MS)測定等により定量できる。
【0035】
本実施形態に係るフレーク状構造を有する焼結銅は、フレーク状の銅粒子を含む接合用銅ペーストを焼結することより形成することができる。なお、フレーク状とは板状、鱗片状等の平板状の形状を包含する。フレーク状構造としては、長径と厚みとの比が5以上であってもよい。フレーク状構造の長径の数平均径は2μm以上であってもよく、3μm以上であってもよく、4μm以上であってもよい。フレーク状構造の形状がこの範囲内であれば、焼結金属層に含まれるフレーク状構造による補強効果が向上し、接合体が接合強度及び接続信頼性により一層優れるものとなる。
【0036】
フレーク状構造の長径及び厚みは、例えば、接合体のSEM像から求めることができる。以下に、フレーク状構造の長径と厚みをSEM像から測定する方法を例示する。接合体をエポキシ注形樹脂でサンプル全体が埋まるように注ぎ、硬化する。注形したサンプルの観察したい断面付近で切断し、研磨で断面を削り、CP(クロスセクションポリッシャ)加工を行う。サンプルの断面をSEM装置により5000倍で観察する。接合体の断面画像(例えば5000倍)を取得し、稠密な連続部であり、直線状、直方体状、楕円体状の部分で、この部分の内に内包される直線の中で最大の長さのものを長径、それと直交してこの部分に内包される直線の中で最大の長さのものを厚みとしたときに、長径の長さが1μm以上で且つ長径/厚みの比が4以上であるものをフレーク状構造とみなし、測長機能のある画像処理ソフトによりフレーク状構造の長径と厚みを測長することができる。それらの平均値については、無作為に選んだ20点以上で数平均を計算することで得られる。
【0037】
図3は、図1に示されるフレーク状構造を有する焼結銅1を拡大した図である。図3に例示したように、フレーク状構造の長径9は、フレーク状構造に外接する平行二直線のうち平行二直線間距離が最大となるように選ばれる平行直線間の距離として与えられる。フレーク状構造の厚み8は、長径を与える平行二直線に直交し、且つフレーク状構造に外接する平行二平面のうち、平行二平面間距離が最大となるように選ばれる平行二平面間の距離として与えられる。
【0038】
画像処理ソフトとしては、特に限定されるものではなく、例えば、Microsoft PowerPoint(Microsoft社製)、ImageJ(アメリカ国立衛生研究所製)を用いることができる。
【0039】
上述した第一の部材又は第二の部材と焼結金属層との界面に対して略平行に配向したフレーク状の銅粒子に由来する構造の配向度は、配向秩序度Sによって表すことができる。配向秩序度Sは式(1)により算出することができる。
S=1/2×(3<cosθ>-1)・・・(1)
式中、θは界面とフレーク状構造とが成す角度を示し、<cosθ>は複数のcosθの値の平均値を示す。
配向秩序度Sは、0.88以上1.00以下であってもよく、0.90以上1.00以下であってもよく、0.92以上1.00以下であってもよい。配向秩序度Sがこのような範囲内であれば、焼結金属層に含まれるフレーク状構造が、接合面に対して略平行に配向するため、接合体の接合強度及び接続信頼性が向上する傾向にある。
【0040】
配向秩序度Sは、例えば、接合体のSEM像から求めることができる。以下に、配向秩序度SをSEM像から算出する方法を例示する。フレーク状構造の長径及び厚みの測定と同様の方法により、接合体のSEM断面図を得る。得られた断面画像に対し、角度測定機能を有する画像処理ソフトを用いてフレーク状構造の長径が界面と成す角度を測定する。図4は、本実施形態の接合体のフレーク状構造の被着面に対する角度θを計測する方法を示す模式断面図である。図4に示すように、無作為に選んだ50個以上のフレーク状構造を有する焼結銅1のチップ10の被着面に対する角度θを測定し、式(1)に代入することで配向秩序度Sを算出することができる。配向秩序度Sは0から1の値をとり、完全配向状態で1、完全ランダム状態で0である。
【0041】
画像処理ソフトとしては、特に限定されるものではなく、例えば、Microsoft PowerPoint(Microsoft社製)、ImageJ(アメリカ国立衛生研究所製)を用いることができる。
【0042】
構造体全体に対するフレーク状構造の含有割合は、後述する実施例に記載の方法により算出することができる。すなわち、接合体のSEM像から接合体の断面積を求め、前述の方法により測定したフレーク状構造の長径と厚みからフレーク状構造の断面積を求め、これらを合計したフレーク状構造の総断面積を接合体の断面積で割ることにより、構造体全体に対するフレーク状構造の含有割合を算出することができる。本実施形態に係る接合体は、上記の方法で求められる構造体全体に対するフレーク状構造の含有割合が、10~40%であってもよく、20~30%であってもよい。
【0043】
焼結金属層における銅の含有量(体積割合)は、焼結金属層の体積を基準として、65体積%以上とすることができる。焼結金属層における銅の含有量が上記範囲内であれば、焼結金属層の内部に大きな空孔が形成したり、フレーク状構造を繋ぐ焼結銅が疎になったりすることを抑制できる。そのため、焼結金属層における銅の含有量が上記範囲内であれば、充分な熱伝導性が得られるとともに部材と焼結金属層との接合強度が向上し、接合体は接続信頼性に優れるものとなる。焼結金属層における銅の含有量は、焼結金属層の体積を基準として、67体積%以上であってもよく、70体積%以上であってもよい。焼結金属層における銅の含有量は、焼結金属層の体積を基準として、製造プロセスの容易さの観点から、90体積%以下であってもよい。
【0044】
焼結金属層を構成する材料の組成が分かっている場合には、例えば、以下の手順で焼結金属層における銅の含有量を求めることができる。まず、焼結金属層を直方体に切り出し、焼結金属層の縦、横の長さをノギス又は外形形状測定装置で測定し、厚みを膜厚計で測定することにより焼結金属層の体積を計算する。切り出した焼結金属層の体積と、精密天秤で測定した焼結金属層の重量とから見かけの密度M(g/cm)を求める。求めたMと、銅の密度8.96g/cmとを用いて、下記式(2)から焼結金属層における銅の含有量(体積%)が求められる。
焼結金属層における銅の含有量(体積%)=[(M)/8.96]×100・・・(2)
【0045】
接合体の接合強度は、10MPa以上であってもよく、15MPa以上であってもよく、20MPa以上であってもよく、30MPa以上であってもよい。接合強度は、万能型ボンドテスタ(4000シリーズ、DAGE社製)等を用いて測定することができる。
【0046】
焼結金属層の熱伝導率は、放熱性及び高温化での接続信頼性という観点から、100W/(m・K)以上であってもよく、120W/(m・K)以上であってもよく、150W/(m・K)以上であってもよい。熱伝導率は、焼結金属層の熱拡散率、比熱容量、及び密度から、算出することができる。例えば、焼結金属層の熱拡散率をレーザーフラッシュ法(LFA467、ネッチ社製)で測定し、この熱拡散率と、示差走査熱量測定装置(DSC8500、パーキンエルマー社製)で得られた比熱容量と、上記と同様にして求めた密度との積により、25℃における焼結金属層の熱伝導率[W/(m・K)]を算出することができる。
【0047】
本実施形態に係る接合体(例えば、電子デバイス等)では、接合された部材間の熱膨張率差で生じた熱応力が焼結金属層(接合層)にかかった場合でも、高い接続信頼性を維持できる。この理由として、熱応力が生じてもフレーク状構造で応力が分散されることにより、応力集中が起こり難くなり、また、多孔質の焼結銅の一部が破壊してもフレーク状構造を有する焼結銅で破壊が止まるために接合体の接続信頼性が高まったと推察される。また、この焼結金属層は、金属結合で繋がった金属銅を充分に含んで構成されていることから、高い熱伝導率が発現し、発熱の大きな電子デバイスの実装において速やかな放熱が可能である。更に、焼結金属層は金属結合で強固に接合されるため、上述した金属を含む部材に対し、優れた接合強度を示すことができる。このように、本実施形態に係る焼結金属層は、パワーデバイス、ロジック、アンプ等の発熱の大きな電子デバイスの接合に非常に有効な性質を有する。これを適用した接合体は、より高い投入電力が許容でき、更に高い動作温度で動作させることが可能となる。
【0048】
<接合体の製造方法>
本実施形態の接合体は、例えば以下の方法で製造することができる。接合体の製造方法としては、第一の部材、該第一の部材の自重が働く方向側に、接合用銅ペースト、及び第二の部材がこの順に積層された積層体を用意し、接合用銅ペーストを、第一の部材の自重、又は第一の部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程を備える方法が挙げられる。
【0049】
上記積層体は、例えば、第二の部材の必要な部分に接合用銅ペーストを設け、次いで接合用銅ペースト上に第一の部材を配置することにより用意することができる。
【0050】
接合用銅ペーストを、第二の部材の必要な部分に設ける方法としては、接合用銅ペーストを堆積させられる方法であればよい。このような方法としては、例えば、スクリーン印刷、転写印刷、オフセット印刷、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、ニードルディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、ソフトリソグラフ、バーコート、アプリケータ、粒子堆積法、スプレーコータ、スピンコータ、ディップコータ、電着塗装等を用いることができる。接合用銅ペーストの厚みは、1μm以上1000μm以下であってもよく、10μm以上500μm以下であってもよく、50μm以上200μm以下であってもよく、10μm以上3000μm以下であってもよく、15μm以上500μm以下であってもよく、20μm以上300μm以下であってもよく、5μm以上500μm以下であってもよく、10μm以上250μm以下であってもよく、15μm以上150μm以下であってもよい。
【0051】
第二の部材上に設けられた接合用銅ペーストは、焼結時の流動及びボイドの発生を抑制する観点から、適宜乾燥させてもよい。乾燥時のガス雰囲気は大気中であってもよく、窒素、希ガス等の無酸素雰囲気中であってもよく、水素、ギ酸等の還元雰囲気中であってもよい。乾燥方法は、常温放置による乾燥であってもよく、加熱乾燥であってもよく、減圧乾燥であってもよい。加熱乾燥又は減圧乾燥には、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。乾燥の温度及び時間は、使用した分散媒の種類及び量に合わせて適宜調整してもよい。乾燥の温度及び時間としては、例えば、50℃以上180℃以下で1分以上120分間以下乾燥させてもよい。
【0052】
接合用銅ペースト上に第一の部材を配置する方法としては、例えば、チップマウンター、フリップチップボンダー、カーボン製又はセラミックス製の位置決め冶具が挙げられる。なお、前述の乾燥工程は、第一の部材を配置する工程の後に行っても良い。
【0053】
積層体を加熱処理することで、接合用銅ペーストの焼結を行う。焼結は加熱処理で行う。加熱処理には、例えば、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。
【0054】
焼結時のガス雰囲気は、焼結体、第一の部材及び第二の部材の酸化抑制の観点から、無酸素雰囲気であってもよい。焼結時のガス雰囲気は、接合用銅ペーストの銅粒子の表面酸化物を除去するという観点から、還元雰囲気であってもよい。無酸素雰囲気としては、例えば、窒素、希ガス等の無酸素ガスの導入、又は真空下が挙げられる。還元雰囲気としては、例えば、純水素ガス中、フォーミングガスに代表される水素及び窒素の混合ガス中、ギ酸ガスを含む窒素中、水素及び希ガスの混合ガス中、ギ酸ガスを含む希ガス中等が挙げられる。
【0055】
加熱処理時の到達最高温度は、第一の部材及び第二の部材への熱ダメージの低減及び歩留まりを向上させるという観点から、250℃以上450℃以下であってもよく、250℃以上400℃以下であってもよく、250℃以上350℃以下であってもよい。到達最高温度が、200℃以上であれば、到達最高温度保持時間が60分以下において焼結が充分に進行する傾向にある。
【0056】
到達最高温度保持時間は、分散媒を全て揮発させ、また、歩留まりを向上させるという観点から、1分以上60分以下であってもよく、1分以上40分未満であってもよく、1分以上30分未満であってもよい。
【0057】
接合時の圧力は、焼結体における銅の含有量(堆積割合)が、焼結体を基準として65体積%以上となる条件とすることができる。例えば、以下に記載する接合用銅ペーストを用いることで、積層体を焼結する際、加圧しなくても、上述した本実施形態に係る焼結金属層を形成することができる。この場合、接合用銅ペーストに積層した第一の部材による自重のみ、又は第一の部材の自重に加え、0.01MPa以下、好ましくは0.005MPa以下の圧力を受けた状態で、充分な接合強度を得ることができる。焼結時に受ける圧力が上記範囲内であれば、特別な加圧装置が不要なため歩留まりを損なうこと無く、ボイドの低減、接合強度及び接続信頼性をより一層向上させることができる。接合用銅ペーストが0.01MPa以下の圧力を受ける方法としては、例えば、第一の部材上に重りを載せる方法等が挙げられる。
【0058】
(接合用銅ペースト)
本実施形態の接合体の製造方法で用いられる接合用銅ペーストの一例を以下に示す。
【0059】
本実施形態の接合用銅ペーストは、金属粒子と、分散媒と、を含む接合用銅ペーストであって、金属粒子がサブマイクロ銅粒子及びフレーク状マイクロ銅粒子を含む。
【0060】
(金属粒子)
本実施形態に係る金属粒子としては、サブマイクロ銅粒子、フレーク状マイクロ銅粒子、これら以外の銅粒子、その他の金属粒子等が挙げられる。
【0061】
(サブマイクロ銅粒子)
サブマイクロ銅粒子としては、粒径が0.12μm以上0.8μm以下の銅粒子を含むものが挙げられ、例えば、体積平均粒径が0.12μm以上0.8μm以下の銅粒子を用いることができる。サブマイクロ銅粒子の体積平均粒径が0.12μm以上であれば、サブマイクロ銅粒子の合成コストの抑制、良好な分散性、表面処理剤の使用量の抑制といった効果が得られやすくなる。サブマイクロ銅粒子の体積平均粒径が0.8μm以下であれば、サブマイクロ銅粒子の焼結性が優れるという効果が得られやすくなる。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の体積平均粒径は、0.15μm以上0.8μm以下であってもよく、0.15μm以上0.6μm以下であってもよく、0.2μm以上0.5μm以下であってもよく、0.3μm以上0.45μm以下であってもよい。
【0062】
なお、本願明細書において体積平均粒径とは、50%体積平均粒径を意味する。銅粒子の体積平均粒径を求める場合、原料となる銅粒子、又は接合用銅ペーストから揮発成分を除去した乾燥銅粒子を、分散剤を用いて分散媒に分散させたものを光散乱法粒度分布測定装置(例えば、島津ナノ粒子径分布測定装置(SALD-7500nano,株式会社島津製作所製))で測定する方法等により求めることができる。光散乱法粒度分布測定装置を用いる場合、分散媒としては、ヘキサン、トルエン、α-テルピネオール等を用いることができる。
【0063】
サブマイクロ銅粒子は、粒径が0.12μm以上0.8μm以下の銅粒子を10質量%以上含むことができる。接合用銅ペーストの焼結性の観点から、サブマイクロ銅粒子は、粒径が0.12μm以上0.8μm以下の銅粒子を20質量%以上含むことができ、30質量%以上含むことができ、100質量%含むことができる。サブマイクロ銅粒子における粒径が0.12μm以上0.8μm以下の銅粒子の含有割合が20質量%以上であると、銅粒子の分散性がより向上し、粘度の上昇、ペースト濃度の低下をより抑制することができる。
【0064】
銅粒子の粒径は、下記方法により求めることができる。銅粒子の粒径は、例えば、SEM像から算出することができる。銅粒子の粉末を、SEM用のカーボンテープ上にスパチュラで載せ、SEM用サンプルとする。このSEM用サンプルをSEM装置により5000倍で観察する。このSEM像の銅粒子に外接する四角形を画像処理ソフトにより作図し、その一辺をその粒子の粒径とする。
【0065】
サブマイクロ銅粒子の含有量は、金属粒子の全質量を基準として、20質量%以上90質量%以下であってもよく、30質量%以上90質量%以下であってもよく、35質量%以上85質量%以下であってもよく、40質量%以上80質量%以下であってもよい。サブマイクロ銅粒子の含有量が上記範囲内であれば、上述した本実施形態に係る焼結金属層を形成することが容易となる。
【0066】
サブマイクロ銅粒子の含有量は、サブマイクロ銅粒子の質量及びフレーク状マイクロ銅粒子の質量の合計を基準として、20質量%以上90質量%以下であってもよい。サブマイクロ銅粒子の上記含有量が20質量%以上であれば、フレーク状マイクロ銅粒子の間を充分に充填することができ、上述した本実施形態に係る焼結金属層を形成することが容易となる。サブマイクロ銅粒子の上記含有量が90質量%以下であれば、接合用銅ペーストを焼結した時の体積収縮を充分に抑制できるため、上述した本実施形態に係る焼結金属層を形成することが容易となる。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の含有量は、サブマイクロ銅粒子の質量及びフレーク状マイクロ銅粒子の質量の合計を基準として、30質量%以上85質量%以下であってもよく、35質量%以上85質量%以下であってもよく、40質量%以上80質量%以下であってもよい。
【0067】
サブマイクロ銅粒子の形状は、特に限定されるものではない。サブマイクロ銅粒子の形状としては、例えば、球状、塊状、針状、フレーク状、略球状及びこれらの凝集体が挙げられる。分散性及び充填性の観点から、サブマイクロ銅粒子の形状は、球状、略球状、フレーク状であってもよく、燃焼性、分散性、フレーク状マイクロ粒子との混合性等の観点から、球状又は略球状であってもよい。
【0068】
サブマイクロ銅粒子は、分散性、充填性、及びフレーク状マイクロ粒子との混合性の観点から、アスペクト比が5以下であってもよく、3以下であってもよい。本明細書において、「アスペクト比」とは、粒子の長辺/厚みを示す。粒子の長辺及び厚みの測定は、例えば、粒子のSEM像から求めることができる。
【0069】
サブマイクロ銅粒子は、特定の表面処理剤で処理されていてもよい。特定の表面処理剤としては、例えば、炭素数8~16の有機酸が挙げられる。炭素数8~16の有機酸としては、例えば、カプリル酸、メチルヘプタン酸、エチルヘキサン酸、プロピルペンタン酸、ペラルゴン酸、メチルオクタン酸、エチルヘプタン酸、プロピルヘキサン酸、カプリン酸、メチルノナン酸、エチルオクタン酸、プロピルヘプタン酸、ブチルヘキサン酸、ウンデカン酸、メチルデカン酸、エチルノナン酸、プロピルオクタン酸、ブチルヘプタン酸、ラウリン酸、メチルウンデカン酸、エチルデカン酸、プロピルノナン酸、ブチルオクタン酸、ペンチルヘプタン酸、トリデカン酸、メチルドデカン酸、エチルウンデカン酸、プロピルデカン酸、ブチルノナン酸、ペンチルオクタン酸、ミリスチン酸、メチルトリデカン酸、エチルドデカン酸、プロピルウンデカン酸、ブチルデカン酸、ペンチルノナン酸、ヘキシルオクタン酸、ペンタデカン酸、メチルテトラデカン酸、エチルトリデカン酸、プロピルドデカン酸、ブチルウンデカン酸、ペンチルデカン酸、ヘキシルノナン酸、パルミチン酸、メチルペンタデカン酸、エチルテトラデカン酸、プロピルトリデカン酸、ブチルドデカン酸、ペンチルウンデカン酸、ヘキシルデカン酸、ヘプチルノナン酸、メチルシクロヘキサンカルボン酸、エチルシクロヘキサンカルボン酸、プロピルシクロヘキサンカルボン酸、ブチルシクロヘキサンカルボン酸、ペンチルシクロヘキサンカルボン酸、ヘキシルシクロヘキサンカルボン酸、ヘプチルシクロヘキサンカルボン酸、オクチルシクロヘキサンカルボン酸、ノニルシクロヘキサンカルボン酸等の飽和脂肪酸;オクテン酸、ノネン酸、メチルノネン酸、デセン酸、ウンデセン酸、ドデセン酸、トリデセン酸、テトラデセン酸、ミリストレイン酸、ペンタデセン酸、ヘキサデセン酸、パルミトレイン酸、サビエン酸等の不飽和脂肪酸;テレフタル酸、ピロメリット酸、o-フェノキシ安息香酸、メチル安息香酸、エチル安息香酸、プロピル安息香酸、ブチル安息香酸、ペンチル安息香酸、ヘキシル安息香酸、ヘプチル安息香酸、オクチル安息香酸、ノニル安息香酸等の芳香族カルボン酸が挙げられる。有機酸は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。このような有機酸と上記サブマイクロ銅粒子とを組み合わせることで、サブマイクロ銅粒子の分散性と焼結時における有機酸の脱離性を両立できる傾向にある。
【0070】
表面処理剤の処理量は、サブマイクロ銅粒子の表面に一分子層~三分子層付着する量であってもよい。この量は、サブマイクロ銅粒子の表面に付着した分子層数(n)、サブマイクロ銅粒子の比表面積(A)(単位m/g)と、表面処理剤の分子量(M)(単位g/mol)と、表面処理剤の最小被覆面積(S)(単位m/個)と、アボガドロ数(N)(6.02×1023個)から算出できる。具体的には、表面処理剤の処理量は、表面処理剤の処理量(質量%)={(n・A・M)/(S・N+n・A・M)}×100%の式に従って算出される。
【0071】
サブマイクロ銅粒子の比表面積は、乾燥させたサブマイクロ銅粒子をBET比表面積測定法で測定することで算出できる。表面処理剤の最小被覆面積は、表面処理剤が直鎖飽和脂肪酸の場合、2.05×10-19/1分子である。それ以外の表面処理剤の場合には、例えば、分子モデルからの計算、又は「化学と教育」(上江田捷博、稲福純夫、森巌、40(2),1992,p114-117)に記載の方法で測定できる。表面処理剤の定量方法の一例を示す。表面処理剤は、接合用銅ペーストから分散媒を除去した乾燥粉の熱脱離ガス・ガスクロマトグラフ質量分析計により同定でき、これにより表面処理剤の炭素数及び分子量を決定できる。表面処理剤の炭素分割合は、炭素分分析により分析できる。炭素分分析法としては、例えば、高周波誘導加熱炉燃焼/赤外線吸収法が挙げられる。同定された表面処理剤の炭素数、分子量及び炭素分割合から上記式により表面処理剤量を算出できる。
【0072】
表面処理剤の上記処理量は、0.07質量%以上2.1質量%以下であってもよく、0.10質量%以上1.6質量%以下であってもよく、0.2質量%以上1.1質量%以下であってもよい。
【0073】
サブマイクロ銅粒子としては、市販されているものを用いることができる。市販されているサブマイクロ銅粒子としては、例えば、CH-0200(三井金属鉱業株式会社製、体積平均粒径0.36μm)、HT-14(三井金属鉱業株式会社製、体積平均粒径0.41μm)、CT-500(三井金属鉱業株式会社製、体積平均粒径0.72μm)、Tn-Cu100(太陽日酸株式会社製、体積平均粒径0.12μm)が挙げられる。
【0074】
(フレーク状マイクロ銅粒子)
フレーク状マイクロ銅粒子としては、最大径が1μm以上20μm以下であり、アスペクト比が4以上の銅粒子を含むものが挙げられ、例えば、平均最大径が1μ以上20μm以下であり、アスペクト比が4以上の銅粒子を用いることができる。フレーク状マイクロ銅粒子の平均最大径及びアスペクト比が上記範囲内であれば、接合用銅ペーストを焼結した際の体積収縮を充分に低減でき、上述した本実施形態に係る焼結金属層を形成することが容易となる。より一層上記効果を奏するという観点から、フレーク状マイクロ銅粒子の平均最大径は、1μm以上10μm以下であってもよく、3μm以上10μm以下であってもよい。フレーク状マイクロ銅粒子の最大径及び平均最大径の測定は、例えば、粒子のSEM像から求めることができ、後述するフレーク状構造の長径X及び長径の平均値Xavとして求められる。
【0075】
フレーク状マイクロ銅粒子は、最大径が1μm以上20μm以下の銅粒子を50質量%以上含むことができる。接合体内での配向、補強効果、接合ペーストの充填性の観点から、フレーク状マイクロ銅粒子は、最大径が1μm以上20μm以下の銅粒子を70質量%以上含むことができ、80質量%以上含むことができ、100質量%含むことができる。接合不良を抑制する観点から、フレーク状マイクロ銅粒子は、例えば、最大径が20μmを超える粒子等の接合厚みを超えるサイズの粒子を含まないことが好ましい。
【0076】
フレーク状マイクロ銅粒子の長径XをSEM像から算出する方法を例示する。フレーク状マイクロ銅粒子の粉末を、SEM用のカーボンテープ上にスパチュラで載せ、SEM用サンプルとする。このSEM用サンプルをSEM装置により5000倍で観察する。SEM像のフレーク状マイクロ銅粒子に外接する長方形を画像処理ソフトにより作図し、長方形の長辺をその粒子の長径Xとする。複数のSEM像を用いて、この測定を50個以上のフレーク状マイクロ銅粒子に対して行い、長径の平均値Xavを算出する。
【0077】
フレーク状マイクロ銅粒子は、アスペクト比が4以上であってもよく、6以上であってもよい。アスペクト比が上記範囲内であれば、接合用銅ペースト内のフレーク状マイクロ銅粒子が、接合面に対して略平行に配向することにより、接合用銅ペーストを焼結させたときの体積収縮を抑制でき、上述した本実施形態に係る焼結金属層を形成することが容易となる。
【0078】
フレーク状マイクロ銅粒子の含有量は、金属粒子の全質量を基準として、1質量%以上90質量%以下であってもよく、10質量%以上70質量%以下であってもよく、20質量%以上50質量%以下であってもよい。フレーク状マイクロ銅粒子の含有量が、上記範囲内であれば、上述した本実施形態に係る焼結金属層を形成することが容易となる。
【0079】
サブマイクロ銅粒子の含有量及びフレーク状マイクロ銅粒子の含有量の合計は、金属粒子の全質量を基準として、80質量%以上であってもよい。サブマイクロ銅粒子の含有量及びマイクロ銅粒子の含有量の合計が上記範囲内であれば、上述した本実施形態に係る焼結金属層を形成することが容易となる。より一層上記効果を奏するという観点から、サブマイクロ銅粒子の含有量及びフレーク状マイクロ銅粒子の含有量の合計は、金属粒子の全質量を基準として、90質量%以上であってもよく、95質量%以上であってもよく、100質量%であってもよい。
【0080】
フレーク状マイクロ銅粒子において、表面処理剤の処理の有無は特に限定されるものではない。分散安定性及び耐酸化性の観点から、フレーク状マイクロ銅粒子は表面処理剤で処理されていてもよい。表面処理剤は、接合時に除去されるものであってもよい。このような表面処理剤としては、例えば、パルミチン酸、ステアリン酸、アラキジン酸、オレイン酸等の脂肪族カルボン酸;テレフタル酸、ピロメリット酸、o-フェノキシ安息香酸等の芳香族カルボン酸;セチルアルコール、ステアリルアルコール、イソボルニルシクロヘキサノール、テトラエチレングリコール等の脂肪族アルコール;p-フェニルフェノール等の芳香族アルコール;オクチルアミン、ドデシルアミン、ステアリルアミン等のアルキルアミン;ステアロニトリル、デカニトリル等の脂肪族ニトリル;アルキルアルコキシシラン等のシランカップリング剤;ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、シリコーンオリゴマー等の高分子処理材等が挙げられる。表面処理剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
【0081】
表面処理剤の処理量は、粒子表面に一分子層以上の量であってもよい。このような表面処理剤の処理量は、フレーク状マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積により変化する。表面処理剤の処理量は、通常0.001質量%以上である。フレーク状マイクロ銅粒子の比表面積、表面処理剤の分子量、及び表面処理剤の最小被覆面積については、上述した方法により算出することができる。
【0082】
上記サブマイクロ銅粒子のみから接合用銅ペーストを調製する場合、分散媒の乾燥に伴う体積収縮及び焼結収縮が大きいため、接合用銅ペーストの焼結時に被着面より剥離しやすくなり、半導体素子等の接合においては充分なダイシェア強度及び接続信頼性が得られにくい。サブマイクロ銅粒子とフレーク状マイクロ銅粒子とを併用することで、接合用銅ペーストを焼結させたときの体積収縮が抑制され、上述した本実施形態に係る焼結金属層を形成することが容易となる。
【0083】
本実施形態の接合用銅ペーストにおいて、金属粒子に含まれる、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量は、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子全量を基準として、50質量%以下が好ましく、30質量%以下とすることがより好ましい。平均最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量を制限することにより、接合用銅ペースト内のフレーク状マイクロ銅粒子が、接合面に対して略平行に配向しやすくなり、接合用銅ペーストを焼結させたときの体積収縮をより有効に抑制することができる。これにより、上述した本実施形態に係る焼結金属層を形成することが容易となる。このような効果が更に得られやすくなる点で、平均最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量は、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子全量を基準として、20質量%以下であってもよく、10質量%以下であってもよい。
【0084】
本実施形態に係るフレーク状マイクロ銅粒子としては、市販されているものを用いることができる。市販されているフレーク状マイクロ銅粒子としては、例えば、MA-C025(三井金属鉱業株式会社製、平均最大径4.1μm)、3L3(福田金属箔粉工業株式会社製、体積最大径7.3μm)、1110F(三井金属鉱業株式会社製、平均最大径5.8μm)、2L3(福田金属箔粉工業株式会社製、平均最大径9μm)が挙げられる。
【0085】
本実施形態の接合用銅ペーストにおいては、配合するマイクロ銅粒子として、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子を含み、且つ、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、上記フレーク状マイクロ銅粒子全量を基準として、50質量%以下、好ましくは30質量%以下であるマイクロ銅粒子を用いることができる。市販されているフレーク状マイクロ銅粒子を用いる場合、最大径が1μm以上20μm以下であり、アスペクト比が4以上のフレーク状マイクロ銅粒子を含み、且つ、最大径が1μm以上20μm以下であり、アスペクト比が2未満のマイクロ銅粒子の含有量が、上記フレーク状マイクロ銅粒子全量を基準として、50質量%以下、好ましくは30質量%以下であるものを選定してもよい。
【0086】
(銅粒子以外のその他の金属粒子)
金属粒子としては、上述したサブマイクロ銅粒子及びマイクロ銅粒子以外のその他の金属粒子を含んでいてもよく、例えば、ニッケル、銀、金、パラジウム、白金等の粒子を含んでいてもよい。その他の金属粒子は、体積平均粒径が0.01μm以上10μm以下であってもよく、0.01μm以上5μm以下であってもよく、0.05μm以上3μm以下であってもよい。その他の金属粒子を含んでいる場合、その含有量は、充分な接合性を得るという観点から、金属粒子の全質量を基準として、20質量%未満であってもよく、10質量%以下であってもよい。その他の金属粒子は、含まれなくてもよい。その他の金属粒子の形状は、特に限定されるものではない。
【0087】
銅粒子以外の金属粒子を含むことで、複数種の金属が固溶又は分散した焼結金属層を得ることができるため、焼結金属層の降伏応力、疲労強度等の機械的な特性が改善され、接続信頼性が向上しやすい。また、複数種の金属粒子を添加することで、形成される焼結金属層は、特定の被着体に対して、接合強度及び接続信頼性が向上しやすい。
【0088】
(分散媒)
分散媒は特に限定されるものではなく、揮発性のものであってもよい。揮発性の分散媒としては、例えば、ペンタノール、ヘキサノール、ヘプタノール、オクタノール、デカノール、エチレングリコール、ジエチレングリコール、プロピレングリコール、ブチレングリコール、α-テルピネオール、イソボルニルシクロヘキサノール(MTPH)等の一価及び多価アルコール類;エチレングリコールブチルエーテル、エチレングリコールフェニルエーテル、ジエチレングリコールメチルエーテル、ジエチレングリコールエチルエーテル、ジエチレングリコールブチルエーテル、ジエチレングリコールイソブチルエーテル、ジエチレングリコールヘキシルエーテル、トリエチレングリコールメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールブチルメチルエーテル、プロピレングリコールプロピルエーテル、ジプロピレングリコールメチルエーテル、ジプロピレングリコールエチルエーテル、ジプロピレングリコールプロピルエーテル、ジプロピレングリコールブチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールメチルエーテル、トリプロピレングリコールジメチルエーテル等のエーテル類;エチレングリコールエチルエーテルアセテート、エチレングリコールブチルエーテルアセテート、ジエチレングリコールエチルエーテルアセテート、ジエチレングリコールブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート(DPMA)、乳酸エチル、乳酸ブチル、γ-ブチロラクトン、炭酸プロピレン等のエステル類;N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等の酸アミド;シクロヘキサノン、オクタン、ノナン、デカン、ウンデカン等の脂肪族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;炭素数1~18のアルキル基を有するメルカプタン類;炭素数5~7のシクロアルキル基を有するメルカプタン類が挙げられる。炭素数1~18のアルキル基を有するメルカプタン類としては、例えば、エチルメルカプタン、n-プロピルメルカプタン、i-プロピルメルカプタン、n-ブチルメルカプタン、i-ブチルメルカプタン、t-ブチルメルカプタン、ペンチルメルカプタン、ヘキシルメルカプタン及びドデシルメルカプタンが挙げられる。炭素数5~7のシクロアルキル基を有するメルカプタン類としては、例えば、シクロペンチルメルカプタン、シクロヘキシルメルカプタン及びシクロヘプチルメルカプタンが挙げられる。
【0089】
分散媒の含有量は、金属粒子の全質量を100質量部として、5~50質量部であってもよい。分散媒の含有量が上記範囲内であれば、接合用銅ペーストをより適切な粘度に調整でき、また、銅粒子の焼結を阻害しにくい。
【0090】
(添加剤)
接合用銅ペーストには、必要に応じて、ノニオン系界面活性剤、フッ素系界面活性剤等の濡れ向上剤;シリコーン油等の消泡剤;無機イオン交換体等のイオントラップ剤等を適宜添加してもよい。
【0091】
(接合用銅ペーストの調製)
接合用銅ペーストは、上述のサブマイクロ銅粒子、マイクロ銅粒子、その他の金属粒子及び任意の添加剤を分散媒に混合して調製してもよい。各成分の混合後に、撹拌処理を行ってもよい。接合用銅ペーストは、分級操作により分散液の最大粒径を調整してもよい。
【0092】
接合用銅ペーストは、サブマイクロ銅粒子、表面処理剤、分散媒をあらかじめ混合して、分散処理を行ってサブマイクロ銅粒子の分散液を調製し、更にマイクロ銅粒子、その他の金属粒子及び任意の添加剤を混合して調製してもよい。このような手順とすることで、サブマイクロ銅粒子の分散性が向上してマイクロ銅粒子との混合性が良くなり、接合用銅ペーストの性能がより向上する。サブマイクロ銅粒子の分散液を分級操作によって凝集物を除去してもよい。
【0093】
<半導体装置、及び半導体装置の製造方法>
本実施形態の半導体装置は、第一の部材と、第二の部材と、第一の部材と第二の部材とを接合する焼結金属層と、を備え、第一の部材及び第二の部材の少なくとも一方が半導体素子である、半導体装置であって、焼結金属層が所定の配向構造を有し、且つ焼結金属層における銅の含有量が、焼結金属層の体積を基準として、65体積%以上である。
【0094】
半導体素子としては、ダイオード、整流器、サイリスタ、MOSゲートドライバ、パワースイッチ、パワーMOSFET、IGBT、ショットキーダイオード、ファーストリカバリダイオード等からなるパワーモジュール、発信機、増幅器、LEDモジュール等が挙げられる。半導体素子以外の部材としては、リードフレーム、金属板貼付セラミックス基板(例えばDBC)、LEDパッケージ等の半導体素子搭載用基材、銅リボン、金属ブロック、端子等の給電用部材、放熱板、水冷板等が挙げられる。
【0095】
本実施形態における焼結金属層は、上述した本実施形態の接合体における焼結金属層と同様とすることができる。
【0096】
本実施形態の半導体装置は、以降のプロセス適合性、接続信頼性の観点から、ダイシェア強度が、10MPa以上であってもよく、15MPa以上であってもよく、20MPa以上であってもよく、30MPa以上であってもよい。ダイシェア強度は、万能型ボンドテスタ(4000シリーズ、DAGE社製)等を用いて測定することができる。
【0097】
図5は、本実施形態の半導体装置の一例を示す模式断面図である。図5に示す半導体装置110は、リードフレーム11a上に焼結金属層4を介して接続された半導体素子14と、これらをモールドするモールドレジン13とからなる。半導体素子14は、ワイヤ12を介してリードフレーム11bに接続されている。
【0098】
本実施形態の半導体装置としては、例えば、ダイオード、整流器、サイリスタ、MOSゲートドライバ、パワースイッチ、パワーMOSFET、IGBT、ショットキーダイオード、ファーストリカバリダイオード等からなるパワーモジュール、発信機、増幅器、高輝度LEDモジュール、センサー等が挙げられる。
【0099】
本実施形態の半導体装置は、高温動作時の高い接続信頼性、高い熱伝導率による放熱性の向上及び高い電気伝導性が得られ、高放熱半導体素子を用いた半導体装置、高温環境で動作する半導体装置等に好適に用いることができる。
【0100】
上記半導体装置は、上述した接合体の製造方法と同様にして製造することができる。すなわち、第一の部材、該第一の部材の自重が働く方向側に、接合用銅ペースト、及び第二の部材がこの順に積層され、第一の部材及び第二の部材のうちの少なくとも一方が半導体素子である積層体を用意し、接合用銅ペーストを、第一の部材の自重、又は第一の部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程を備える方法が挙げられる。
【0101】
上記の方法は、第二の部材が半導体素子である場合、第一の部材として金属配線又はブロック体等を半導体素子に接合するときの半導体素子へのダメージを低減することができる。半導体素子上に金属配線又はブロック体等の部材を接合した半導体装置について、以下に説明する。
【0102】
係る半導体装置の一実施形態としては、第一の電極と、第一の電極と電気的に接続されている半導体素子と、金属配線を介して半導体素子と電気的に接続されている第二の電極と、を備え、半導体素子と金属配線との間、及び、金属配線と第二の電極との間に、銅を含む焼結金属層を有するものが挙げられる。
【0103】
図6は、上記の半導体装置の一例を示す模式断面図である。図6に示される半導体装置200は、第一の電極22及び第二の電極24を有する絶縁基板21と、第一の電極22上に焼結金属層4によって接合された半導体素子23と、半導体素子23と第二の電極24とを電気的に接続する金属配線25とを備える。金属配線25と半導体素子23、及び金属配線25と第二の電極24はそれぞれ焼結金属層4によって接合されている。また、半導体素子23は、ワイヤ27を介して第三の電極26に接続されている。半導体装置200は、絶縁基板21の上記電極等が搭載されている面とは反対側に、銅板28を備えている。半導体装置200は、上記構造体が絶縁体29で封止されている。半導体装置200は、第一の電極22上に半導体素子23を1個有しているが、2個以上有していてもよい。この場合、複数ある半導体素子23はそれぞれ焼結金属層4によって金属配線25と接合することができる。
【0104】
図7は、半導体装置の別の例を示す模式断面図である。図7に示される半導体装置210は、半導体素子23と金属配線25との間にブロック体30が設けられており、半導体素子23とブロック体30、及びブロック体30と金属配線25がそれぞれ焼結金属層4によって接合されていること以外は、図6に示される半導体装置200と同様の構成を有する。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。
【0105】
図8は、半導体装置の別の例を示す模式断面図である。図8に示される半導体装置220は、第一の電極22上に、半導体素子23及びブロック体30並びにこれらを接合する焼結金属層4が更に設けられていること以外は、図7に示される半導体装置210と同様の構成を有する。半導体装置220は、第一の電極22上に半導体素子を2個有しているが、3個以上有していてもよい。この場合も、3個以上ある半導体素子23はそれぞれブロック体30を介して焼結金属層4によって金属配線25と接合することができる。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。
【0106】
絶縁基板21としては、例えば、アルミナ、窒化アルミ、窒化珪素等のセラミックス、高熱伝導粒子/樹脂コンポジット、ポリイミド樹脂、ポリマレイミド樹脂などが挙げられる。
【0107】
第一の電極22、第二の電極24及び第三の電極26を構成する金属としては、例えば、銅、ニッケル、銀、金、パラジウム、白金、鉛、錫、コバルト等が挙げられる。これらの金属は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。また、電極は、焼結金属層4と接する面に上記金属を含む合金を有していてもよい。合金に用いられる金属としては、上記金属の他に、亜鉛、マンガン、アルミニウム、ベリリウム、チタン、クロム、鉄、モリブデン等が挙げられる。
【0108】
金属配線としては、帯状、板状、立方体状、円筒状、L字状、コ字状、へ字状等の形状を有する金属フレームなどが挙げられる。金属配線の材質としては、例えば、銀、銅、鉄、アルミニウム、モリブデン、タングステン、タンタル、ニオブ、或いはこれらの合金が挙げられる。これら、金属配線表面には、耐酸化及び接着性のために、めっき、スパッタ等でニッケル、銅、金、銀などがコーティングされていてもよい。また、金属配線は、幅が1μm~30μmであってもよく、厚みが20μm~5mmであってもよい。
【0109】
ブロック体としては、熱伝導性及び導電性に優れるものが好ましく、例えば、銀、銅、鉄、アルミニウム、モリブデン、タングステン、タンタル、ニオブ、或いはこれらの合金を用いることができる。ブロック体表面には、耐酸化及び接着性のために、めっき、スパッタ等でニッケル、銅、金、銀などがコーティングされていてもよい。半導体素子上にブロック体を設けることで、放熱性が更に向上する。ブロック体の数は適宜変更することができる。
【0110】
絶縁体29としては、例えば、シリコーンゲル、ポリマレイミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂等が挙げられる。
【0111】
焼結金属層4は、上述した接合用銅ペーストを焼結したものである。この焼結金属層4は、金属配線25と接しており、金属配線25との界面に対して略平行に配向したフレーク状の銅粒子に由来する構造を含み、焼結金属層4における銅の含有量が、焼結金属層の体積を基準として、65体積%以上であってもよい。また、焼結金属層4が第一の電極、第二の電極、半導体素子、又はブロック体に接する場合、焼結金属層4は、第一の電極、第二の電極、半導体素子、又はブロック体との界面に対して略平行に配向したフレーク状の銅粒子に由来する構造を含み、焼結金属層4における銅の含有量が、焼結金属層の体積を基準として、65体積%以上であってもよい。
【0112】
図6~8に示される半導体装置は、大容量で高信頼性を要求されるパワーモジュールに用いることができる。
【0113】
図6~8に示される半導体装置は、例えば、第一の電極及び第二の電極を備える絶縁基板を用意し、第一の電極上に接合用銅ペースト、半導体素子、必要に応じて更に接合用銅ペースト、ブロック体、接合用銅ペーストを、第一の電極側からこの順に設け、第二の電極上に接合用銅ペーストを設け、半導体素子又はブロック体上の接合用銅ペースト及び第二の電極上の接合用銅ペースト上に、これらの接合用銅ペーストを架橋するように金属配線を配置する工程と、接合用銅ペーストを、各部材の自重又は各部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程とを備える方法により製造することができる。
【0114】
このような製造方法によれば、無加圧で半導体装置を製造することができるため、ブリッジ部を有する金属配線を変形することなく接合できることに加え、半導体素子上に半導体素子よりも面積の小さい部材を接合する場合であっても半導体素子に対するダメージをより軽減することができる。
【0115】
図9は、半導体装置の更に別の例を示す模式断面図である。図9に示される半導体装置300は、第一の電極22と、第一の電極22上に焼結金属層4によって接合された半導体素子23と、半導体素子23と第二の電極24とを電気的に接続する金属配線25とを備える。金属配線25と半導体素子23、及び金属配線25と第二の電極24はそれぞれ焼結金属層4によって接合されている。また、半導体素子23は、ワイヤ27を介して第三の電極26に接続されている。半導体装置300は、上記構造体が封止材31で封止されている。半導体装置300は、第一の電極22上に半導体素子23を1個有しているが、2個以上有していてもよい。この場合、複数ある半導体素子23はそれぞれ焼結金属層4によって金属配線25と接合することができる。
【0116】
図10は、半導体装置の別の例を示す模式断面図である。図10に示す半導体装置310は、半導体素子23と金属配線25との間にブロック体30が設けられており、半導体素子23とブロック体30、及びブロック体30と金属配線25がそれぞれ焼結金属層4によって接合されていること以外は、図9に示される半導体装置300と同様の構成を有する。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。
【0117】
図11は、半導体装置の別の例を示す模式断面図である。図11に示される半導体装置320は、第一の電極22上に、半導体素子23及びブロック体30並びにこれらを接合する焼結金属層4が更に設けられていること以外は、図10に示される半導体装置310と同様の構成を有する。半導体装置320は、第一の電極22上に半導体素子を2個有しているが、3個以上有していてもよい。この場合も、3個以上ある半導体素子23はそれぞれブロック体30を介して焼結金属層4によって金属配線25と接合することができる。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。
【0118】
図9~11に示される第一の電極22及び第二の電極24は、リードフレーム、銅板、銅・モリブデン焼結体等であってもよい。
【0119】
封止材31としては、例えば、耐熱性固形封止材、高熱伝導コンポジット等が挙げられる。
【0120】
焼結金属層4は、半導体装置200~220で説明したものと同様にすることができる。
【0121】
図9~11に示す実施形態の半導体装置は、第一の電極及び第二の電極としてリードフレーム等を採用することで、小型化したパワーモジュールに用いることができる。このような半導体装置は、上述した半導体装置の製造方法と同様にして製造することができる。
【0122】
更に、半導体素子上にブロック体を接合した構造を有する半導体装置の別の実施形態について説明する。
【0123】
上記の半導体装置としては、第一の熱伝導部材と、第二の熱伝導部材と、第一の熱伝導部材及び第二の熱伝導部材の間に配置される半導体素子と、を備え、第一の熱伝導部材と半導体素子との間、及び、半導体素子と第二の熱伝導部材との間のうちの少なくとも一方の間に、銅を含む焼結金属層を有するものが挙げられる。
【0124】
図12は、本実施形態の一例を示す模式断面図である。図12に示す半導体装置400は、第一の熱伝導部材32と、第一の熱伝導部材32上に焼結金属層4を介して接合された半導体素子23と、半導体素子23上に焼結金属層4を介して接合されたブロック体30と、ブロック体30上に焼結金属層4を介して接合された第二の熱伝導部材33と、を備える。半導体素子23は、ワイヤ35を介して電極34に接続されている。半導体装置400は、第一の熱伝導部材32と第二の熱伝導部材の間が封止材31で封止されている。半導体装置400は、半導体素子を2個有しているが、1個又は3個以上有していてもよく、ブロック体の数も適宜変更することができる。なお、ブロック体30の位置は適宜変更でき、例えば、第一の電極22と半導体素子23との間に設けられていてもよい。
【0125】
熱伝導部材は、半導体素子23から発生した熱を外部へ放出する機能、及び半導体素子を外部と電気的に接続するための電極としての機能を併せ持つものである。このような熱伝導部材には、例えば、銅、アルミニウム、又はこれらの合金が用いられる。
【0126】
焼結金属層4は、上述した接合用銅ペーストを焼結したものである。この焼結金属層4は、第一の熱伝導部材32又は第二の熱伝導部材33と接しており、第一の熱伝導部材32又は第二の熱伝導部材33との界面に対して略平行に配向したフレーク状の銅粒子に由来する構造を含み、焼結金属層4における銅の含有量が、焼結金属層の体積を基準として、65体積%以上であってもよい。また、焼結金属層4が半導体素子又はブロック体に接する場合、焼結金属層4は、半導体素子又はブロック体との界面に対して略平行に配向したフレーク状の銅粒子に由来する構造を含み、焼結金属層4における銅の含有量が、焼結金属層の体積を基準として、65体積%以上であってもよい。
【0127】
図12に示す半導体装置は、半導体素子の両面側に熱伝導部材を備えることで、放熱性に優れる両面冷却構造を有することができる。このような半導体装置は、第一の熱伝導部材上に接合用銅ペースト、半導体素子、接合用銅ペースト、ブロック体、接合用銅ペースト、第二の熱伝導部材を、第一の熱伝導部材側からこの順に積層した積層体を用意し、接合用銅ペーストを、各部材の自重又は各部材の自重及び0.01MPa以下の圧力を受けた状態で焼結する工程を備える方法により、製造することができる。なお、上記積層体は、上記とは逆の順に積層されたものであってもよい。
【実施例
【0128】
以下、実施例により本発明を更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
【0129】
<測定条件>
(1)ダイシェア強度の測定
銅板(19×25×3mm)上に、厚さ70μmのステンレス板に3×3mm正方形の開口を3行3列有するメタルマスクを載せ、メタルスキージを用いてステンシル印刷により接合用銅ペーストを塗布した。塗布した接合用銅ペースト上に、チタン、ニッケルがこの順で形成され、3×3mmの被着面がニッケルであるシリコンチップ(チップ厚:600μm)を載せ、ピンセットで軽く押さえた。これをチューブ炉(株式会社エイブイシー製)にセットし、アルゴンガスを1L/minで流して空気をアルゴンガスに置換した。その後、水素ガスを300mL/minで流しながら昇温10分、350℃10分の条件で焼結処理して銅板とシリコンチップとを焼結金属層で接合した接合体を得た。その後、アルゴンガスを0.3L/minに換えて冷却し、50℃以下で接合体を空気中に取り出した。
接合体の接合強度は、ダイシェア強度により評価した。1kNのロードセルを装着した万能型ボンドテスタ(4000シリーズ、DAGE社製)を用い、測定スピード500μm/s、測定高さ100μmでシリコンチップを水平方向に押し、接合体のダイシェア強度を測定した。8個の接合体の測定した値の平均値をダイシェア強度とした。
【0130】
(2)焼結金属層における銅の含有量(体積割合)
厚さ1mmのテフロン(登録商標)板に15×15mmの開口を設けた。ガラス板上にこのテフロン(登録商標)板を置き、開口部に接合用銅ペーストを充填し、メタルスキージで開口から溢れた接合用銅ペーストを除去した。テフロン(登録商標)板をはずし、チューブ炉にセットし、アルゴンガスを0.3L/minで流しながら、150℃に加熱して1時間保持して溶媒を除去した。そのまま、ガスを水素ガス300mL/minに換え、350℃に昇温して60分焼結処理して、焼結金属層を得た。その後、アルゴンガスを0.3L/minに換えて冷却し、50℃以下で焼結金属層を空気中に取り出した。板状の焼結金属層をガラス板から剥離し、紙やすり(800番)で研磨して10×10mmのサイズで表面が平坦な板状サンプルを得た。板状サンプルの縦、横、厚みの寸法を測定し、板状サンプルの重量を測定した。これらの値から板状サンプルの密度を算出し、更に下記の式に従い金属銅の体積割合を算出した。
焼結金属層における銅の含有量(体積%)=板状サンプルの密度(g/cm)/8.96(g/cm)×100(%)
【0131】
(3)断面モルフォロジー観察
接合体をカップ内にサンプルクリップ(Samplklip I、Buehler社製)で固定し周囲にエポキシ注形樹脂(エポマウント、リファインテック株式会社製)をサンプル全体が埋まるまで流し込み、真空デシケータ内に静置して1分間減圧して脱泡した。その後、室温で10時間静置し、エポキシ注形樹脂を硬化し、サンプルを調製した。リファインソーエクセル(リファインテック株式会社製)を用いて、サンプルをシリコンチップ近傍で切断した。耐水研磨紙(カーボマックペーパー、リファインテック株式会社製)をつけた研磨装置(Refine Polisher HV、リファインテック株式会社製)で接合体の中央付近まで削り断面を出した。研磨したサンプルは、余分なエポキシ注形樹脂を削り落とし、イオンミリング装置で加工できるサイズにした。イオンミリング装置(IM4000、株式会社日立ハイテクノロジーズ製)をCP加工モードで用い、アルゴンガス流量0.07~0.1cm/min、処理時間120分の条件で、サイズ加工したサンプルを断面加工してSEM用サンプルとした。このSEM用サンプルをSEM-EDX装置(ESEM XL30、Philips社製)により、焼結金属層断面を印加電圧15kVで観察した。
【0132】
(4)配向秩序度の算出
「(3)断面モルフォロジー観察」で得られた3000倍のSEM像をImage J(アメリカ国立衛生研究所製)で読み込んだ。SEM像としては、基板又はシリコンチップと焼結金属層との接合界面が写っているものを用いた。[T]キーを押してROI Managerウインドウを表示し、Show Allのチェックボックスにチェックを入れた。メインウインドウからStraight Lineを選択した。画像上の稠密な連続部であり、直線状、直方体状、楕円体状の部分で、この部分の内に内包される直線の中で最大の長さのものを長径、それと直交してこの部分に内包される直線の中で最大の長さのものを厚みとしたときに、長径の長さが1μm以上で且つ長径/厚みの比が4以上であるものをフレーク状構造と特定した。このフレーク状構造の断面の端から端までをクリック→ドラッグでラインを引き、[T]キーを押してROI Managerウインドウに登録した。この操作を画面上のフレーク状構造全てに対し、重複無く繰り返した。ただし、画面端からはみ出て像が切断されているフレーク状構造は選択しなかった。次に、ROI Managerウインドウ内のMeasureボタンを押した。計測された角度がResultsウインドウに表示されるので、[File]→[Save As]でファイルにセーブした。基板又はシリコンチップとの接合界面が画像に対し水平からずれている場合には、同様にしてその角度を計測した。セーブされた結果のファイルをMicrosoft Excelで読み込んだ。基板又はシリコンチップと焼結金属層との界面が画像に対し水平からずれている場合には、測定された各角度から接合界面の角度を減算した。各角度θに対しcosθを求め、その平均値<cosθ>を算出し、S=1/2×(3<cosθ>-1)に代入して配向秩序度Sを算出した。
Sが0.83以上である場合を、部材と焼結金属層との界面に対して略平行に配向したフレーク状構造が「有」とした。
【0133】
(5)フレーク状構造の長軸と厚みの比の算出
「断面モルフォロジー観察」で得られた5000倍のSEM像をImage J(アメリカ国立衛生研究所製)で読み込んだ。メインウインドウからStraight Lineを選択した。画像下部のスケール(本例では5μmを示すスケール)の端から端までクリック→ドラッグでラインを引き、メインウインドウから[Analyze]→[Set Scale]を選択し、Set Scaleウインドウを表示させ、Known Distance:のボックスに「5」、Unit of length:のボックスに「μm」を入力し[OK]ボタンをクリックした。[T]キーを押してROI Managerウインドウを表示し、Show Allのチェックボックスにチェックを入れた。(4)と同じ方法によりフレーク状構造を特定し、画像上のフレーク状構造の断面の端から端までをクリック→ドラッグでラインを引き、[T]キーを押してROI Managerウインドウに登録した。この操作を画面上のフレーク状構造全てに対し、重複無く繰り返した。画面端からはみ出て像が切断されているフレーク状構造は選択しなかった。次に、ROI Managerウインドウ内のMeasureボタンを押した。計測された長さがResultsウインドウに表示されるので、[File]→[Save As]でファイルにセーブした。同様にして画像上のフレーク状構造の断面の厚み方向の長さを計測してファイルにセーブした。セーブしたファイルをMicrosoft Excelで読み出し、測長結果の平均を計算した。こうして、フレーク状構造の長径の平均及びフレーク状構造の厚みの平均を得た。更に、フレーク状構造の長径の平均を板状構造の厚みの平均で除することで、「フレーク状構造の長軸方向の数平均長さと厚み方向の数平均長さの比」を得た。
【0134】
(6)軽元素を除いた元素中の銅元素の割合
「(3)断面モルフォロジー観察」で得られたSEM用サンプルをSEM-EDX装置にセットし、ワークディスタンス10mm以内、Spot:4、印加電圧15kV、5000倍の条件で画面全体が焼結金属層となるように視野を設定し、ピントを合わせ、必要に応じてエニグマ補正を行った。EDXの測定プログラム「EDX Control」を立上げ、積算ボタンを押して5分間積算した。測定プログラムで得られたスペクトルを同定(自動)した。この際、軽元素(Li、Be、B、C、N、O)のピークは検出対象から除外した。更に、ベースライン設定(自動)を行ったうえで、組成比の計算を行って各成分の組成比を定量し、銅の割合を「軽元素を除いた元素中の銅元素の割合」とした。
【0135】
(7)熱伝導率
「(2)金属銅の体積割合」で作製した板状サンプルを用い、熱拡散率をレーザーフラッシュ法(LFA467、ネッチ社製)で測定した。この熱拡散率と、示差走査熱量測定装置(DSC8500、パーキンエルマー社製)で得られた比熱容量と、「(2)金属銅の体積割合」で求めた密度との積により、25℃における銀焼結体の熱伝導率[W/(m・K)]を算出した。
【0136】
(8)温度サイクル接続信頼性試験
「(1)ダイシェア強度」と同様にして、銅板(19×25×3mm)と4×8mmの被着面がニッケルであるシリコンチップ(チップ厚:600μm)とを焼結金属層で接合した接合体を得た。接合体上に接着性向上材(HIMAL、日立化成株式会社製)を塗布、乾燥した後、固形封止材(CEL、日立化成株式会社製)で封止しして温度サイクル用試験片を得た。この温度サイクル用試験片を温度サイクル試験機(TSA-72SE-W、エスペック株式会社製)にセットし、低温側:-40℃、15分、室温:2分、高温側:200℃、15分、除霜サイクル:自動、サイクル数:1000サイクルの条件で温度サイクル接続信頼性試験を実施した。超音波探傷装置(Insight-300、インサイト株式会社製)を用い、温度サイクル接続信頼性試験前後の焼結金属層と基板又はチップとの界面の接合状態のSAT像を得て、剥離の有無を調べた。接合部の剥離面積が、20面積%未満の場合を良好(○)とし、20面積%以上の場合を不良(×)とした。
【0137】
(9)接合体におけるフレーク状構造の含有割合の測定
(5)で用いたものと同じSEM像をImage Jで読み込み、[Image]→[Type]→[RGB color]を選んだ。次に、[Image]→[Adjust]→[Color Threshold]でThreshold Colorウインドウを呼びだし、Threshold ColorウインドウのBrightnessのグラフにおいて、明るさの下限を分布曲線の暗色側にある変曲点に合わせ、上限を明色側100%の位置にした。その後、Threshold Colorウインドウの[Select]を押し、SEM像のうち金属焼結体部分を選択した。この状態で[Analyze]→[Measure]を押し、焼結体部分の断面積を算出した。一方で、(5)で特定したフレーク状構造の長径及び厚みを乗算し、これらを合計することによりフレーク状構造部分の断面積を算出した。{(フレーク状構造部分の断面積)/(焼結体部分の断面積)}×100の式から、接合体全体におけるフレーク状構造の含有割合(%)を算出した。
【0138】
(実施例1)
分散媒としてα-テルピネオール(和光純薬工業株式会社製)5.2g及びイソボルニルシクロヘキサノール(MTPH、日本テルペン化学株式会社製)6.8gと、サブマイクロ銅粒子としてCH0200(三井金属鉱業株式会社製、0.12μm以上0.8μm以下の銅粒子の含有量95質量%)52.8gとをポリ瓶に混合し、超音波ホモジナイザー(US-600、日本精機株式会社製)により19.6kHz、600W、1分処理し分散液を得た。この分散液に、フレーク状マイクロ銅粒子としてMA-C025(三井金属鉱業株式会社製、最大径が1μm以上20μm以下の銅粒子の含有量100質量%)35.2gを添加し、スパチュラで乾燥粉がなくなるまでかき混ぜた。ポリ瓶を密栓し、自転公転型攪拌装置(Planetry Vacuum Mixer ARV-310、株式会社シンキー製)を用いて、2000rpmで2分間撹拌し、減圧下、2000rpmで2分間撹拌して接合用銅ペーストを得た。この接合用銅ペーストを用いて、接合体を調製し、各種の測定及び分析を行った。
【0139】
(実施例2及び3)
表1に記載した仕込み量を用いたこと以外は、実施例1と同様にして接合用銅ペーストを得た。これらの接合用銅ペーストを用いて、接合体を調製し、各種の測定及び分析を行った。
【0140】
(実施例4)
銅粒子としてフレーク状マイクロ銅粒子であるMA-C025の代わりに、フレーク状マイクロ銅粒子である3L3(福田金属箔粉株式会社製、最大径が1μm以上20μm以下の銅粒子の含有量100質量%)を35.2g用いたこと以外は実施例1と同様にして接合用銅ペーストを得た。この接合用銅ペーストを用いて、接合体を調製し、各種の測定及び分析を行った。
【0141】
(実施例5)
銅粒子としてフレーク状マイクロ銅粒子であるMA-C025の代わりに、フレーク状マイクロ銅粒子である1110F(三井金属鉱業株式会社製、最大径が1μm以上20μm以下の銅粒子の含有量100質量%)を35.2g用いたこと以外は実施例1と同様にして接合用銅ペーストを得た。この接合用銅ペーストを用いて、接合体を調製し、各種の測定及び分析を行った。
【0142】
(実施例6)
接合用銅ペーストとして実施例4と同様の物を用いた。この接合用ペーストをチタン、ニッケル、金がこの順で形成され、3×3mmの被着面が金であるシリコンチップ(チップ厚:600μm)を用いて接合体を作製し「(1)ダイシェア強度の測定」を行った。また、4×8mmの被着面が金であるシリコンチップ(チップ厚:600μm)を用いて「(8)温度サイクル接続信頼性試験」を行った。
【0143】
(実施例7)
接合用銅ペーストとして実施例4と同様の物を用いた。この接合用ペーストとチタン、ニッケル、銀がこの順で形成され、3×3mmの被着面が金であるシリコンチップ(チップ厚:600μm)と用いて接合体を作製し「(1)ダイシェア強度の測定」を行った。また、4×8mmの被着面が銀であるシリコンチップ(チップ厚:600μm)を用いて「(8)温度サイクル接続信頼性試験」を行った。
【0144】
(比較例1)
銅粒子としてフレーク状マイクロ銅粒子であるMA-C025の代わりに、擬球状粒子であるCu-HWQ3μm(アトマイズ粉、福田金属箔粉株式会社製)を35.2g用いたこと以外は実施例1と同様にして接合用銅ペーストを得た。この接合用銅ペーストを用いて、接合体を調製し、各種の測定及び分析を行った。
【0145】
(比較例2~5)
表2に記載した組成としたこと以外は、実施例1と同様にして接合用銅ペーストを得た。これらの接合用銅ペーストを用いて、接合体を調製し、各種の測定及び分析を行った。
【0146】
(比較例6)
銅粒子としてCH0200の代わりに、球状銅粒子であるCS-10(50%体積平均粒径1μm、三井金属鉱業株式会社製)を52.8g用いたこと以外は実施例1と同様にして接合用銅ペーストを得た。この接合用銅ペーストを用いて、接合体を調製し、各種の測定及び分析を行った。
【0147】
(比較例7)
実施例1の接合用銅ペーストに0.88質量%の酢酸(0.88g)を加えて接合用銅ペーストを得た。この接合用銅ペーストを用いて、接合体を調製し、各種の測定及び分析を行った。
【0148】
(比較例8)
銅粒子としてCH0200を52.8g用いる代わりに、酸化銅(II)粒子(合成品)26.4及びCH0200を26.4g用いたこと以外は実施例1と同様にして接合用銅ペーストを得た。この接合用銅ペーストを用いて、接合体を調製し、各種の測定及び分析を行った。
【0149】
(比較例9)
厚さ100μmのシート状の高温鉛はんだ(93.5Pb5Sn1.5Ag、千住金属工業株式会社製)を3×3mmのサイズに切断した。銅板(19×25×3mm)上に3.5×3.5mmの開口を有するカーボン製冶具を置き、切断した高温鉛はんだと3×3mmの被着面がニッケルであるシリコンチップ(チップ厚:600μm)をこの順にカーボン冶具の開口内にセットした。水素オーブン内で、水素雰囲気中、最高温度350℃の条件で加熱し、銅板とシリコンチップを高温鉛はんだで接合して接合サンプルを得た。この接合サンプルを用いて、各種の測定及び分析を行った。
【0150】
(比較例10)
銀粒子としてLM1(トクセン工業株式会社製)75gとAgC239(福田金属箔粉工業株式会社製)25g、分散媒としてテルピネオール(和光純薬工業株式会製)13.6g、添加剤としてステアリン酸(新日本理化株式会社製)1gを秤量、混合し、らいかい機を用いて15分間混練し接合用銀ペーストを作製した。焼成処理条件を空気中で110℃に加熱したホットプレート上に10分、200℃に加熱したホットプレート上に60分保持して焼結銀接合サンプルを作製し、各種の測定及び分析を行った。
【0151】
実施例及び比較例で調製した接合用ペーストの組成を表1及び表2に示す。また、実施例及び比較例の測定結果を表3及び表4に示す。
【0152】
【表1】
【0153】
【表2】
【0154】
【表3】
【0155】
【表4】
【0156】
実施例の結果に示されるように、焼結金属層がフレーク状構造を含み、且つ、焼結金属層における銅の含有量が65体積%以上である場合、接合体は、熱伝導率、ダイシェア強度及び接続信頼性に優れたものだった。図13及び図14には、実施例1及び実施例4の接合体のSEM像を示す。実施例の接合体では、銅の焼結体において、チップ15又は16に対して略平行に配向した複数のフレーク状構造を有する焼結銅1の隙間を、銅粒子に由来する焼結銅2によって緻密に埋められていることが分かる。実施例では、焼結金属層が、フレーク状構造を有することで応力集中が分散され、また銅粒子同士が強固且つ緻密に結合することでダイシェア強度に優れた接合体が得られたと考えられる。
【0157】
一方、比較例の接合体は熱伝導率、ダイシェア強度、又は接続信頼性に優れないものだった。図15図18には、比較例3及び比較例6~8の接合体のSEM像を示す。これらの結果から、焼結金属層における銅の含有量が低いと空孔3が多くなり、フレーク状構造を有する焼結銅1間の接合が弱くなり、基板及びチップと焼結金属層との間の接合が弱くなり、接合体の熱伝導率、ダイシェア強度、又は接続信頼性が低下したと考えられる。また、図17及び図18に示されるように、比較例7及び8の接合体では、焼結体においてフレーク状構造を有する焼結銅1が基板17又はチップに対して略平行に配向していないため、応力集中が分散しなかったことも、接合体の熱伝導率、ダイシェア強度、又は接続信頼性が低下した原因であると考えられる。
【0158】
高温鉛はんだを用いた比較例9では、ダイシェア強度及び接続信頼性が良好である一方で、熱伝導率が低かった。また、接続用銀ペーストを用いた比較例10では、熱伝導率及びダイシェア強度が良好である一方で、接続信頼性に優れなかった。これらの結果から、従来の接合材を用いた接合体に比べ、本願発明の接合体は、熱伝導率、ダイシェア強度及び接続信頼性に優れることが示された。
【符号の説明】
【0159】
1…フレーク状構造を有する焼結銅、2…銅粒子に由来する焼結銅、3…空孔、4…焼結金属層、5…第一の部材、6…第二の部材、8…フレーク状構造の厚み、9…フレーク状構造の長径、10…チップ、11a、11b…リードフレーム、12…ワイヤ、13…モールドレジン、14…半導体素子、15…チップ(被着面:金)、16…チップ(被着面:銀)、17…基板、100…接合体、110…半導体装置、21…絶縁基板、22…第一の電極、23…半導体素子、24…第二の電極、25…金属配線、26…第三の電極、27…ワイヤ、28…銅板、29…絶縁体、30…ブロック体、31…封止材、32…第一の熱伝導部材、33…第二の熱伝導部材、34…電極、35…ワイヤ、200…半導体装置、210…半導体装置、220…半導体装置、300…半導体装置、310…半導体装置、320…半導体装置、400…半導体装置。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18