(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-04-18
(45)【発行日】2022-04-26
(54)【発明の名称】半導体レーザモジュール
(51)【国際特許分類】
H01S 5/02218 20210101AFI20220419BHJP
G02B 6/42 20060101ALI20220419BHJP
H01S 5/0687 20060101ALI20220419BHJP
H01S 5/50 20060101ALI20220419BHJP
【FI】
H01S5/02218
G02B6/42
H01S5/0687
H01S5/50 610
(21)【出願番号】P 2017024654
(22)【出願日】2017-02-14
【審査請求日】2019-11-22
(73)【特許権者】
【識別番号】000005290
【氏名又は名称】古河電気工業株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】特許業務法人酒井国際特許事務所
(72)【発明者】
【氏名】有賀 麻衣子
(72)【発明者】
【氏名】稲葉 悠介
(72)【発明者】
【氏名】山岡 一樹
【審査官】大和田 有軌
(56)【参考文献】
【文献】国際公開第2013/180291(WO,A1)
【文献】特開2016-189430(JP,A)
【文献】特開2001-154067(JP,A)
【文献】特開2006-216695(JP,A)
【文献】特開2003-110180(JP,A)
【文献】特開2008-153639(JP,A)
【文献】特開平11-074612(JP,A)
【文献】特開平10-084509(JP,A)
【文献】特開平10-010353(JP,A)
【文献】特開平07-084159(JP,A)
【文献】特開平06-338569(JP,A)
【文献】実開平02-048914(JP,U)
【文献】特開昭56-024969(JP,A)
【文献】特開昭51-032176(JP,A)
【文献】米国特許出願公開第2016/0181762(US,A1)
【文献】米国特許出願公開第2003/0108306(US,A1)
【文献】特許第6895763(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
H01S 5/00 - 5/50
H01L 31/00 - 31/20
G02B 6/42 - 6/43
(57)【特許請求の範囲】
【請求項1】
半導体レーザ素子と、
前記半導体レーザ素子から出射されたレーザ光を入射して、入射されたレーザ光を増幅する半導体光増幅器と、
前記半導体レーザ素子から出射されたレーザ光の波長をモニタするための受光素子と、
前記半導体レーザ素子から出射されたレーザ光を平行光化するコリメートレンズと、
前記コリメートレンズによって平行光化されたレーザ光を前記半導体光増幅器の入射端面に集光する集光レンズと、
を筐体内に備え
るとともに、
前記半導体レーザ素子、前記半導体光増幅器、前記受光素子、前記コリメートレンズ、および前記集光レンズの上方に位置し前記筐体とシーム溶接されたリッド
を備え、
前記筐体および前記リッドには、当該筐体およびリッドを金同士のシーム溶接によって接合するために金メッキが施され、
前記リッドの内側面は、前記半導体レーザ素子と前記半導体光増幅器と前記受光素子と前記コリメートレンズと前記集光レンズとを上方から覆う反射抑制用のコーティングが
金メッキ上に施された領域と、
当該コーティングが前記筐体
および前記リッド
の金同士のシーム溶接
を行う箇所
にはみ出ないよう当該金同士のシーム溶接を行う箇所から0.5mm以上の幅を有し
金メッキ上に前記反射抑制用のコーティングが施されない領域と、を有したことを特徴とする半導体レーザモジュール。
【請求項2】
半導体レーザ素子と、
前記半導体レーザ素子から出射されたレーザ光を入射して、入射されたレーザ光を増幅する半導体光増幅器と、
前記半導体レーザ素子から出射されたレーザ光の波長をモニタするための受光素子と、
前記半導体レーザ素子から出射されたレーザ光を平行光化するコリメートレンズと、
前記コリメートレンズによって平行光化されたレーザ光を前記半導体光増幅器の入射端面に集光する集光レンズと、
を筐体内に備え
るとともに、
前記半導体レーザ素子、前記半導体光増幅器、前記受光素子、前記コリメートレンズ、および前記集光レンズの上方に位置し前記筐体とシーム溶接されたリッド
を備え、
前記筐体および前記リッドには、当該筐体およびリッドを金同士のシーム溶接によって接合するために金メッキが施され、
前記リッドの内側面は、前記半導体光増幅器と前記受光素子と前記コリメートレンズと前記集光レンズとを上方から覆う反射抑制用のコーティングが
金メッキ上に施された領域と、
当該コーティングが前記筐体
および前記リッド
の金同士のシーム溶接
を行う箇所
にはみ出ないよう当該金同士のシーム溶接を行う箇所から0.5mm以上の幅を有し
金メッキ上に前記反射抑制用のコーティングが施されない領域と、を有したことを特徴とする半導体レーザモジュール。
【請求項3】
半導体レーザ素子と、
前記半導体レーザ素子から出射されたレーザ光を入射して、入射されたレーザ光を増幅する半導体光増幅器と、
前記半導体レーザ素子から出射されたレーザ光の波長をモニタするための受光素子と、
を筐体内に備え
るとともに、
前記半導体レーザ素子、前記半導体光増幅器、および前記受光素子の上方に位置し前記筐体とシーム溶接されたリッド
を備え、
前記筐体および前記リッドには、当該筐体およびリッドを金同士のシーム溶接によって接合するために金メッキが施され、
前記リッドの内側面は、前記半導体光増幅器と前記受光素子とを上方から覆う反射抑制用のコーティングが
金メッキ上に施された領域と、
当該コーティングが前記筐体
および前記リッド
の金同士のシーム溶接
を行う箇所
にはみ出ないよう当該金同士のシーム溶接を行う箇所から0.5mm以上の幅を有し
金メッキ上に前記反射抑制用のコーティングが施されない領域と、を有したことを特徴とする半導体レーザモジュール。
【請求項4】
前記筐体を封止するリッドの内側面のうち、前記半導体レーザ素子の上方の領域に
は前記コーティングを施さないことを特徴とする請求項2または請求項3に記載の半導体レーザモジュール。
【請求項5】
前記受光素子は、光の波長に対して周期的な透過特性を有する波長依存光学素子を介して前記半導体レーザ素子から出射されたレーザ光の波長をモニタする第1受光素子と、前記波長依存光学素子を介さず前記半導体レーザ素子から出射されたレーザ光の波長をモニタする第2受光素子とからなり、
第1受光素子が取得するレーザ光の強度と第2受光素子が取得するレーザ光の強度との比を用いて、前記半導体レーザ素子から出射されたレーザ光の波長を測定することを特徴とする請求項1から請求項4の何れか1項に記載の半導体レーザモジュール。
【請求項6】
前記コーティングは、カーボンブラックが添加されていることを特徴とする請求項1から請求項5の何れか1項に記載の半導体レーザモジュール。
【請求項7】
前記コーティングは、熱可塑性樹脂を主原料としていることを特徴とする請求項1から請求項6の何れか1項に記載の半導体レーザモジュール。
【請求項8】
前記コーティングは、エポキシ樹脂を主原料としていることを特徴とする請求項1から請求項6の何れか1項に記載の半導体レーザモジュール。
【請求項9】
前記コーティングは、水分ゲッター剤であることを特徴とする請求項1から請求項6の何れか1項に記載の半導体レーザモジュール。
【請求項10】
前記コーティングは、アジピン酸ジメチルまたはアジピン酸アルキルが添加されていることを特徴とする請求項1から請求項6の何れか1項に記載の半導体レーザモジュール。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体レーザモジュールに関する。
【背景技術】
【0002】
従来、光通信用の光源として用いられる半導体レーザモジュールでは、半導体レーザ素子(LD)で発振されたレーザ光を半導体光増幅器(SOA)にて増幅し、半導体レーザモジュールから出力されるレーザ光を高出力化する構成が広く採用されている。このとき、半導体レーザ素子と半導体光増幅器とを同一の素子に集積することも広く一般的に採用されている(例えば特許文献1~4参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2006-216791号公報
【文献】特開2006-216695号公報
【文献】米国特許第9054480号明細書
【文献】国際公開2013/180291号
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、近年は光通信における高出力化への要求がますます高まり、半導体レーザ素子および半導体光増幅器へ供給される電流も増大している。結果、半導体レーザ素子および半導体光増幅器からの発熱量も増大し、半導体レーザ素子と半導体光増幅器とを分離して温度制御する半導体レーザモジュールの構成への需要も高まっている。半導体レーザ素子と半導体光増幅器とを分離して別の熱電素子にて温度制御すれば、熱電素子の温度調節に用いられる消費電力の総和を低く抑えることにもつながる。
【0005】
一方、高出力化に伴い、半導体レーザモジュール内の迷光の問題も高まっている。半導体レーザモジュール内の迷光の強度が高まると、半導体レーザ素子から出射されるレーザ光のモニタに迷光に起因するノイズが含まれることになり、正確な制御を阻害することになる。そして、半導体レーザ素子と半導体光増幅器とを分離した構成では、半導体光増幅器から放出される迷光も大きく影響する。
【0006】
本発明は、上記に鑑みてなされたものであって、その目的は、半導体レーザ素子から出射されるレーザ光をモニタするための受光素子に到達する迷光を低減することができる半導体レーザモジュールを提供することにある。
【課題を解決するための手段】
【0007】
上述した課題を解決し、目的を達成するために、本発明の一態様に係る半導体レーザモジュールは、半導体レーザ素子と、前記半導体レーザ素子から出射されたレーザ光を入射して、入射されたレーザ光を増幅する半導体光増幅器と、前記半導体レーザ素子から出射されたレーザ光の波長をモニタするための受光素子と、前記半導体レーザ素子から出射されたレーザ光を平行光化するコリメートレンズと、前記コリメートレンズによって平行光化されたレーザ光を前記半導体光増幅器の入射端面に集光する集光レンズと、を筐体内に備え、前記筐体を封止するリッドの内側面のうち、前記半導体レーザ素子と前記半導体光増幅器と前記受光素子と前記コリメートレンズと前記集光レンズとを覆う、前記リッドの内側面の領域にコーティングが施されていることを特徴とする。
【0008】
また、本発明の一態様に係る半導体レーザモジュールは、半導体レーザ素子と、前記半導体レーザ素子から出射されたレーザ光を入射して、入射されたレーザ光を増幅する半導体光増幅器と、前記半導体レーザ素子から出射されたレーザ光の波長をモニタするための受光素子と、前記半導体レーザ素子から出射されたレーザ光を平行光化するコリメートレンズと、前記コリメートレンズによって平行光化されたレーザ光を前記半導体光増幅器の入射端面に集光する集光レンズと、を筐体内に備え、前記筐体を封止するリッドの内側面のうち、前記半導体光増幅器と前記受光素子と前記コリメートレンズと前記集光レンズとを覆う、前記リッドの内側面の領域にコーティングが施されていることを特徴とする。
【0009】
また、本発明の一態様に係る半導体レーザモジュールは、半導体レーザ素子と、前記半導体レーザ素子から出射されたレーザ光を入射して、入射されたレーザ光を増幅する半導体光増幅器と、前記半導体レーザ素子から出射されたレーザ光の波長をモニタするための受光素子と、を筐体内に備え、前記筐体を封止するリッドの内側面のうち、前記半導体光増幅器と前記受光素子とを覆う、前記リッドの内側面の領域にコーティングが施されていることを特徴とする。
【0010】
また、本発明の一態様に係る半導体レーザモジュールは、前記筐体を封止するリッドの内側面のうち、前記半導体レーザ素子の上方の領域に前記コーティングを施さないことを特徴とする。
【0011】
また、本発明の一態様に係る半導体レーザモジュールは、前記筐体と前記リッドとをシーム溶接する箇所から、0.5mm以上の幅を残しての前記コーティングが施されていることを特徴とする。
【0012】
また、本発明の一態様に係る半導体レーザモジュールは、前記受光素子は、光の波長に対して周期的な透過特性を有する波長依存光学素子を介して前記半導体レーザ素子から出射されたレーザ光の波長をモニタする第1受光素子と、前記波長依存光学素子を介さず前記半導体レーザ素子から出射されたレーザ光の波長をモニタする第2受光素子とからなり、第1受光素子が取得するレーザ光の強度と第2受光素子が取得するレーザ光の強度との比を用いて、前記半導体レーザ素子から出射されたレーザ光の波長を測定することを特徴とする。
【0013】
また、本発明の一態様に係る半導体レーザモジュールは、前記コーティングは、カーボンブラックが添加されていることを特徴とする。
【0014】
また、本発明の一態様に係る半導体レーザモジュールは、前記コーティングは、熱可塑性樹脂を主原料としていることを特徴とする。
【0015】
また、本発明の一態様に係る半導体レーザモジュールは、前記コーティングは、エポキシ樹脂を主原料としていることを特徴とする。
【0016】
また、本発明の一態様に係る半導体レーザモジュールは、前記コーティングは、水分ゲッター剤であることを特徴とする。
【0017】
また、本発明の一態様に係る半導体レーザモジュールは、前記コーティングは、アジピン酸ジメチルまたはアジピン酸アルキルが添加されていることを特徴とする。
【発明の効果】
【0018】
本発明に係る半導体レーザモジュールは、半導体レーザ素子から出射されるレーザ光をモニタするための受光素子に到達する迷光を低減することができるという効果を奏する。
【図面の簡単な説明】
【0019】
【
図1】
図1は、実施形態に係る半導体レーザモジュールを示す平面構成図である。
【
図2】
図2は、実施形態に係る半導体レーザモジュールを示す側面構成図である。
【
図3】
図3は、反射抑止用のコーティングを施すことが好ましい領域を検討するための実験の結果を示す図である。
【
図4】
図4は、反射抑止用のコーティングを施すことが好ましい領域を検討するための実験の結果を示す図である。
【
図5】
図5は、反射抑止用のコーティングを施すことが好ましい領域を検討するための実験の結果を示す図である。
【
図6】
図6は、反射抑止用のコーティングを施すことが好ましい領域を検討するための実験の結果を示す図である。
【発明を実施するための形態】
【0020】
以下に、図面を参照しながら、本発明の実施形態に係る半導体レーザモジュールを詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。また、各図面において、同一または対応する構成要素には適宜同一の符号を付している。また、図面は模式的なものであり、各構成の寸法などは現実のものとは異なることに留意すべきである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。
【0021】
(実施形態)
図1は、実施形態に係る半導体レーザモジュールを示す平面構成図であり、
図2は、実施形態に係る半導体レーザモジュールを示す側面構成図である。
【0022】
図1および
図2に示すように、実施形態に係る半導体レーザモジュール100は、半導体レーザ素子11と、半導体レーザ素子11から出射されたレーザ光を入射して、入射されたレーザ光を増幅する半導体光増幅器21と、を筐体101内に備えている。
【0023】
半導体レーザ素子11は、電流の注入によりレーザ発振をしてレーザ光を出射するものであり、温度制御によって発振波長を変更することができる、例えば分布帰還型半導体レーザ素子を用いることができる。また、半導体レーザ素子11は、LDサブマウント10の上に固定され、半導体レーザ素子11を載せたLDサブマウント10がLD用熱電素子41の上に配置されている。
【0024】
LD用熱電素子41は、例えばペルチェ素子であり、LD用熱電素子41に供給される電流の強さおよび方向によって、半導体レーザ素子11を加熱および冷却することができる。上述したように、半導体レーザ素子11は、温度制御によって発振波長を変更することができる分布帰還型半導体レーザ素子であり、LD用熱電素子41に供給される電流の強さおよび方向を制御することによって、半導体レーザ素子11から出射されるレーザ光の波長を制御することが可能である。
【0025】
半導体光増幅器21は、SOAサブマウント20の上に固定され、SOAサブマウント20は、SOA用熱電素子42の上に配置されている。SOA用熱電素子42は、例えばペルチェ素子であり、SOA用熱電素子42に供給される電流の強さおよび方向によって、半導体光増幅器21を加熱および冷却することができる。半導体光増幅器21は、大きな発熱源であるので積極的に加熱する状況は限定されるが、本構成の半導体レーザモジュール100では、半導体レーザ素子11の温度制御に用いるLD用熱電素子41と、半導体光増幅器21の温度制御に用いるSOA用熱電素子42とを、独立して備えているので、半導体レーザ素子11と半導体光増幅器21とのそれぞれを最適に温度制御することができる。すなわち、半導体レーザ素子11および半導体光増幅器21の温度制御に無駄な電力が消費されることも減り、LD用熱電素子41とSOA用熱電素子42との総和の消費電力も低く抑えることが可能である。
【0026】
コリメートレンズ12は、集光レンズ22と対になって機能する光学素子であり、コリメートレンズ12と集光レンズ22とは、共に半導体レーザ素子11と半導体光増幅器21との間に配置され、半導体レーザ素子11から出射されたレーザ光が、コリメートレンズ12と集光レンズ22とを介して、半導体光増幅器21の導波路の入射端に空間結合する。コリメートレンズ12は、半導体レーザ素子11から出射されたレーザ光を平行光化し、集光レンズ22は、コリメートレンズ12によって平行光化されたレーザ光を半導体光増幅器21の入射端面に集光する。なお、図示される半導体レーザモジュール100の構成例では、コリメートレンズ12はLD用熱電素子41の上に配置され、集光レンズ22はSOAサブマウント20の上に配置されているが、コリメートレンズ12および集光レンズ22の配置はこれに限らず、コリメートレンズ12をLDサブマウント10の上に配置することや、集光レンズ22をSOA用熱電素子42の上に配置するとしてもよい。
【0027】
図1および
図2に示すように、半導体レーザモジュール100は、コリメートレンズ12と集光レンズ22との間に、第1ビームスプリッタ31とアイソレータ32とを備えている。第1ビームスプリッタ31とアイソレータ32との配置順は、図に示されるものに限定されるものではないが、コリメートレンズ12と集光レンズ22との間のレーザ光が平行光となる箇所に配置することが好ましい。
【0028】
第1ビームスプリッタ31は、半導体レーザ素子11から出射されるレーザ光の一部を波長ロッカー50へ分岐するための光学素子であり、プリズム型のものやフィルタ型のものなど一般的な分岐用光学素子を用いることができる。アイソレータ32は、光学素子の反射等に起因して光路を逆行するレーザ光が半導体レーザ素子11に入射してしまうことを防ぐための素子であり、レーザ光の偏光性を用いて、逆行するレーザ光の光路のみを変化させることができる光学素子である。
【0029】
波長ロッカー50は、第1ビームスプリッタ31で分岐されたレーザ光の波長を測定し、半導体レーザ素子11が出射しているレーザ光の波長をモニタするための装置である。波長ロッカー50がモニタしたレーザ光の波長は、LD用熱電素子41の温度制御へフィードバックされ、半導体レーザ素子11が所望の波長のレーザ光を出射し続けるように、フィードバック制御が行われる。
【0030】
波長ロッカー50は、第2ビームスプリッタ51と、第2ビームスプリッタ51によって分岐されたレーザ光の強度を直接モニタする第2受光素子52と、第2ビームスプリッタ51によって分岐されたレーザ光の強度をエタロンフィルタ53を介してモニタする第1受光素子54と、を備えている。エタロンフィルタ53は、光の波長に対して周期的な透過特性を有する波長依存光学素子である。したがって、エタロンフィルタ53を透過した光と透過していない光との強度比を測定することによって当該光の波長を特定することが可能である。波長ロッカー50は、第1受光素子54が取得するレーザ光の強度と第2受光素子52が取得するレーザ光の強度との比を用いて、第1ビームスプリッタ31で分岐されたレーザ光の波長を測定する。
【0031】
さらに、
図1および
図2に示すように、半導体レーザモジュール100は、半導体光増幅器21から出射されたレーザ光を半導体レーザモジュール100の外部へ導出する光ファイバ60と、半導体光増幅器21から出射されたレーザ光を光ファイバ60へ結合させるための結合光学系61とを備えている。なお、
図1および
図2に示される結合光学系61は、1つのレンズによって構成されているように描かれているが、コリメートレンズと集光レンズとに分離される構成とすることも可能であり、配置される位置も同図に示される位置に限定されるものではない。光ファイバ60は、半導体レーザ素子11から出射されるレーザ光に対して適切な伝搬特性を有する一般的なシングルモードのガラス光ファイバを用いればよい。
【0032】
次に、
図2を参照しながら、半導体レーザモジュール100内で発生した迷光が第1受光素子54や第2受光素子52へ到達することを防ぐ方法について説明する。
【0033】
図2に示すように、半導体レーザモジュール100は、上記説明した各構成部品を筐体101内に備え、筐体101はリッド(蓋)102によって封止されている。このとき、筐体101とリッド102とは、例えば金(Au)同士のシーム溶接によって接着されるために、筐体101およびリッド102は金メッキが施されている。したがって、半導体レーザモジュール100内で発生した迷光がリッド102で反射されて第1受光素子54や第2受光素子52へ到達することもある。
【0034】
一方、筐体101とリッド102とをシーム溶接するためには、リッド102の内側の全面に反射抑止用のコーティングを施すことはできない。筐体101とリッド102との接着面のみをコーティングしないということも理論上はあり得るが、実際はコーティングのはみ出しや接着面への剥離物の混入などによって、シーム溶接の歩留まりが悪化してしまう。
【0035】
そこで、本実施形態の半導体レーザモジュール100は、リッド102の内側における一部の面に反射抑止用のコーティング103を施す。コーティング103は、筐体101内で発生する迷光を吸収する機能を有するものである。一般に、コーティング103は、黒色の材料であれば好適であるが、半導体レーザ素子11の発振波長の光に対して反射率が低ければ適切に利用し得る。以下では、リッド102の内側におけるどの領域に反射抑止用のコーティング103を施すことが好ましいかについて説明する。
【0036】
図3から
図6は、反射抑止用のコーティングを施すことが好ましい領域を検討するための実験の結果を示す図である。
図6のグラフにおける横軸の実験条件(A)(B)(C)は、それぞれ、
図3の領域A、
図4の領域B、
図5の領域Cに対応したリッド102の内側面に反射抑止用のコーティング103を施した場合を示している。さらに、
図6のグラフにおける横軸の(O)(D)は、それぞれ、リッド102を外した場合(つまり反射が全く起きない)と反射抑止用のコーティング103を施さない場合の実験条件を比較例として記載している。一方、
図6のグラフの縦軸は、第1および第2の受光素子52,54で検出される迷光の強度である。
【0037】
また、全ての実験条件に共通して、半導体光増幅器21へ供給する電流の大きさは、200mA、400mA、および600mAである。なお、この電流が大きいほど半導体光増幅器21から発生する迷光の量は多くなる。反射抑止用のコーティングは特に限定されるものではないが、カーボンブラックが添加されているコーティングを用いることが好ましく、例えば熱可塑性樹脂やエポキシ樹脂にカーボンブラックを添加したコーティングを用いることが考えられる。カーボンブラックはコーティング剤の重量比において最大で2%程度添加すれば十分な光吸収効果を発揮できる。また、リッド102の内側面に施すコーティングは、反射抑止専用のコーティングに限定されず、例えば黒色の水分ゲッター剤(乾燥剤)を用いれば、水分吸収にも役立つ。水分ゲッター剤は例えばアジピン酸ジメチルまたはアジピン酸アルキルが考えられる。
【0038】
図3に示すように、実験条件(A)では、リッド102の内側面のうち、筐体101とシーム溶接する箇所から所定の幅を残して全面に反射抑止用のコーティングを施す。このとき、反射抑止用のコーティングを施さない幅は、例えば0.5mmとする。この値は、実験的に求められた値であり、反射抑止用のコーティングを施さない幅を0.5mm以上とした場合、筐体101とリッド102とのシーム溶接における欠陥を抑制し得ることが知見された。
【0039】
また、この実験条件(A)は、筐体101内に配置されたすべての構成部品を覆うリッド102の内側面の領域に反射抑止用のコーティングを施すことと同義であり、具体的には、半導体レーザ素子11と半導体光増幅器21と第1受光素子54と第2受光素子52とコリメートレンズ12と集光レンズ22とを覆うリッド102の内側面の領域に反射抑止用のコーティングを施すことである。
【0040】
図6のグラフから解るように、実験条件(A)ではリッドがない場合と同程度の迷光の抑制を実現し得る。
【0041】
図4に示すように、実験条件(B)では、半導体レーザ素子11以外の構成部品を覆うリッド102の内側面の領域に反射抑止用のコーティングを施す。このとき、反射抑止用のコーティングを施さない筐体101とシーム溶接する箇所からの幅は、0.5mm以上とする。
【0042】
この実験条件(B)は、半導体光増幅器21と第1受光素子54と第2受光素子52とが配置されたSOA用熱電素子42を覆うリッド102の内側面の領域から、半導体レーザ素子11の方向へ5mm程度広げた領域に反射抑止用のコーティングを施すことに対応し、具体的には、半導体光増幅器21と第1受光素子54と第2受光素子52とコリメートレンズ12と集光レンズ22とを覆うリッド102の内側面の領域に反射抑止用のコーティングを施すことである。
【0043】
図6のグラフから解るように、実験条件(B)でもリッドがない場合と同程度の迷光の抑制を実現し得る。すなわち、半導体レーザ素子11の上方のリッド102の内側面に反射抑止用のコーティングを施さなくても、半導体レーザ素子11の上方のリッド102の内側面に反射抑止用のコーティングを施すのと同等な迷光抑制の効果が得られる。当然ながら、反射抑止用のコーティングを施す面積が少なくなれば、シーム溶接の欠陥発生の可能性はより少なくなる。
【0044】
図5に示すように、実験条件(C)では、半導体光増幅器21と第1受光素子54と第2受光素子52とが配置されたSOA用熱電素子42を覆うリッド102の内側面の領域に反射抑止用のコーティングを施す。このとき、反射抑止用のコーティングを施さない筐体101とシーム溶接する箇所からの幅は、0.5mm以上とする。
【0045】
この実験条件(C)は、具体的には、半導体光増幅器21と第1受光素子54と第2受光素子52と集光レンズ22とを覆うリッド102の内側面の領域に反射抑止用のコーティングを施すことであり、半導体レーザ素子11とコリメートレンズ12とを覆わないことを意味する。
【0046】
図6のグラフから解るように、実験条件(C)でもリッドがない場合と同程度の迷光の抑制を実現し得る。特に、半導体光増幅器21に供給する電流が低いときには、実験条件(C)でもリッドがない場合と遜色がない迷光の抑制を実現し得る。また、実験条件(D)との比較から解るように、実験条件(C)において半導体光増幅器21に供給する電流が高い場合であっても、リッド102の内側面の領域に反射抑止用のコーティングを施さない場合と比較して顕著に迷光の抑制効果を得ることができる。
【0047】
以上の実験結果から解るように、実施形態に係る半導体レーザモジュール100は、半導体レーザ素子11と、半導体レーザ素子11から出射されたレーザ光を入射して、入射されたレーザ光を増幅する半導体光増幅器21と、半導体レーザ素子11から出射されたレーザ光の波長をモニタする第1および第2の受光素子52、54と、を筐体101内に備え、筐体101を封止するリッド102の内側面のうち、筐体101とシーム溶接する箇所から所定の幅を残して全面に反射抑止用のコーティングを施すことが好ましく、特にその幅は、0.5mm以上とすることが好ましい。
【0048】
言い換えると、実施形態に係る半導体レーザモジュール100は、半導体レーザ素子11と、半導体レーザ素子11から出射されたレーザ光を入射して、入射されたレーザ光を増幅する半導体光増幅器21と、半導体レーザ素子11から出射されたレーザ光の波長をモニタする第1および第2の受光素子52、54と、半導体レーザ素子11から出射されたレーザ光を半導体光増幅器21に空間結合させるためのコリメートレンズ12および集光レンズ22とを覆うリッド102の内側面の領域に反射抑止用のコーティングを施すことが好ましい。
【0049】
また、実施形態に係る半導体レーザモジュール100は、半導体レーザ素子11の上方のリッド102の内側面に反射抑止用のコーティングを施さなくてもよい。すなわち、実施形態に係る半導体レーザモジュール100は、半導体レーザ素子11から出射されたレーザ光を入射して、入射されたレーザ光を増幅する半導体光増幅器21と、半導体レーザ素子11から出射されたレーザ光の波長をモニタする第1および第2の受光素子52、54と、半導体レーザ素子11から出射されたレーザ光を半導体光増幅器21に空間結合させるためのコリメートレンズ12および集光レンズ22とを覆うリッド102の内側面の領域に反射抑止用のコーティングを施すことが好ましい。言い換えると、これは、半導体光増幅器21と第1受光素子54と第2受光素子52とが配置されたSOA用熱電素子42を覆うリッド102の内側面の領域から、半導体レーザ素子11の方向へ5mm程度広げた領域に反射抑止用のコーティングを施すことに対応している。
【0050】
さらに、実施形態に係る半導体レーザモジュール100は、半導体レーザ素子11およびコリメートレンズ12の上方のリッド102の内側面に反射抑止用のコーティングを施さなくてもよい。すなわち、実施形態に係る半導体レーザモジュール100は、半導体レーザ素子11から出射されたレーザ光を入射して、入射されたレーザ光を増幅する半導体光増幅器21と、半導体レーザ素子11から出射されたレーザ光の波長をモニタする第1および第2の受光素子52、54と、半導体レーザ素子11から出射されたレーザ光を半導体光増幅器21に集光させる集光レンズ22とを覆うリッド102の内側面の領域に反射抑止用のコーティングを施すことが好ましい。言い換えると、これは、半導体光増幅器21と第1受光素子54と第2受光素子52とが配置されたSOA用熱電素子42を覆うリッド102の内側面の領域に反射抑止用のコーティングを施すことに対応している。
【0051】
なお、上記領域の形状および連結性に関しては限定されるものではないが、製造の容易さの観点では、矩形や円形などシンプルな形状とすることが好ましく、連結領域であることが好ましい。リッド102の形状や他の構成部品との関係においてコーティングを施す領域は適宜修正し得る。
【0052】
以上、本発明を実施形態に基づいて説明したが、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明の範疇に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。
【符号の説明】
【0053】
100 半導体レーザモジュール
10 LDサブマウント
11 半導体レーザ素子
12 コリメートレンズ
20 SOAサブマウント
21 半導体光増幅器
22 集光レンズ
31 第1ビームスプリッタ
32 アイソレータ
41 LD用熱電素子
42 SOA用熱電素子
50 波長ロッカー
51 第2ビームスプリッタ
52 第2受光素子
53 エタロンフィルタ
54 第1受光素子
60 光ファイバ
61 結合光学系