(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-09
(45)【発行日】2022-05-17
(54)【発明の名称】垂直プラズマ源からの改良されたプラズマ暴露のために成形された電極
(51)【国際特許分類】
H05H 1/46 20060101AFI20220510BHJP
H01L 21/31 20060101ALI20220510BHJP
C23C 16/455 20060101ALI20220510BHJP
C23C 16/509 20060101ALI20220510BHJP
【FI】
H05H1/46 M
H01L21/31 C
C23C16/455
C23C16/509
(21)【出願番号】P 2020532636
(86)(22)【出願日】2018-12-14
(86)【国際出願番号】 US2018065612
(87)【国際公開番号】W WO2019118808
(87)【国際公開日】2019-06-20
【審査請求日】2020-08-12
(32)【優先日】2017-12-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林特許業務法人
(72)【発明者】
【氏名】ベラ, カロル
(72)【発明者】
【氏名】ジルノ, ドミートリイ エー.
(72)【発明者】
【氏名】スブラマニ, アナンタ ケー.
(72)【発明者】
【氏名】フォスター, ジョン シー.
(72)【発明者】
【氏名】田中 努
【審査官】井海田 隆
(56)【参考文献】
【文献】特開2003-338399(JP,A)
【文献】特開2010-009890(JP,A)
【文献】特開平09-268370(JP,A)
【文献】特表2016-535410(JP,A)
【文献】特表2018-534723(JP,A)
【文献】特表2010-541770(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H05H 1/24
H01L 21/31
C23C 16/455
C23C 16/509
(57)【特許請求の範囲】
【請求項1】
プラズマ源アセンブリであって、
内周端面と、外周端面と、前面とを有するハウジングであって、前記ハウジングはガス入口を含み、前記ガス入口からの流路が形成され、ガスの流れが前記ハウジングを通って前記前面に設けられた開口を出ることが可能となる、ハウジングと、
前記ハウジングの内部のRFホット電極であって、前記RFホット電極は、細長い本体を有し、前記細長い本体は、内周端が前記ハウジングの前記内周端面の近傍にあり及び外周端が前記ハウジングの前記外周端面の近傍にあって、前記RFホット電極の長さが定められ、前記RFホット電極は前記細長い本体に対して或る一定の角度で延在する脚部を含む、RFホット電極と、
前記ハウジングの前記内周端面と前記外周端面との間に延在する細長い本体を有するリターン電極であって、前記リターン電極は、プラズマが形成可能な間隙を設けるために前記RFホット電極から離間している、リターン電極と、
前記RFホット電極の前記内周端から、前記RFホット電極の前記長さの約25%以下の距離を取って、前記RFホット電極に接続されたRF供給部と
を備える、プラズマ源アセンブリ。
【請求項2】
前記リターン電極が前記ハウジングである、請求項1に記載のプラズマ源アセンブリ。
【請求項3】
前記RF供給部は、前記RFホット電極の前記内周端から、前記RFホット電極の前記長さの約5%以下の距離を取って
前記RFホット電極に接続されている、請求項1に記載のプラズマ源アセンブリ。
【請求項4】
前記RFホット電極は、前記
RFホット電極の前記脚部及び前記細長い本体の近傍の三角形部を含み、前記三角形部は前記間隙内へと延在する、請求項1に記載のプラズマ源アセンブリ。
【請求項5】
前記RFホット電極が暴露されないように配置されたRFホット電極クラッドをさらに含む、請求項1に記載のプラズマ源アセンブリ。
【請求項6】
前記リターン電極が暴露されないように配置されたリターン電極クラッドをさらに含む、請求項5に記載のプラズマ源アセンブリ。
【請求項7】
前記RFホット電極と前記RFホット電極クラッドとの間にRFホット電極間隙が存在し、前記RFホット電極間隙は、前記RFホット電極と前記リターン電極との間の前記間隙の前記長さに沿って寸法が変わる、請求項6に記載のプラズマ源アセンブリ。
【請求項8】
前記リターン電極と前記リターン電極クラッドとの間にリターン電極間隙が存在し、前記リターン電極間隙は、前記RFホット電極と前記リターン電極との間の前記間隙の前記長さに沿って寸法が変わる、請求項6に記載のプラズマ源アセンブリ。
【請求項9】
前記RFホット電極クラッドは、前記RFホット電極と前記リターン電極との間の前記間隙の前記長さに沿って寸法が変わる、請求項6に記載のプラズマ源アセンブリ。
【請求項10】
前記リターン電極クラッドは、前記RFホット電極と前記リターン電極との間の前記間隙の前記長さに沿って寸法が変わる、請求項6に記載のプラズマ源アセンブリ。
【請求項11】
前記RFホット電極クラッドは、前記RFホット電極と前記リターン電極との間の前記間隙の前記長さに沿って誘電率が変わる、請求項6に記載のプラズマ源アセンブリ。
【請求項12】
前記リターン電極クラッドは、前記RFホット電極と前記リターン電極との間の前記間隙の前記長さに沿って誘電率が変わる、請求項6に記載のプラズマ源アセンブリ。
【請求項13】
処理チャンバであって、
前記処理チャンバの内部のサセプタアセンブリであって、前記サセプタアセンブリは、複数の基板を支持して中央軸の周りを回転させるための上面を有する、サセプタアセンブリと、
前記サセプタアセンブリの前記上面に対向する前面を有し、前記サセプタアセンブリの前記上面に向かってガスの流れを方向付け
るガス分配アセンブリであって、請求項1から12のいずれか一項に
記載のプラズマ源アセンブリを含むガス分配アセンブリと
を備え、
前記プラズマ源アセンブリの前記ハウジングの前記前面は、前記サセプタアセンブリの前記上面から、約1mmから約5mmの範囲内の距離を取って配置されており、前記RFホット電極の内周端で生成されるイオンフラックスが、前記RFホット電極の外周端で生成されるイオンフラックスよりも少量である、
処理チャンバ。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施形態は概して、基板を処理するための装置に関する。より具体的には、本開示の実施形態は、バッチプロセッサのような処理チャンバと使用するためのモジュール型プラズマ源に関する。
【背景技術】
【0002】
一般に、半導体素子の形成は、複数のチャンバを含む基板処理プラットフォームにおいて行われる。幾つかの場合、マルチチャンバ処理プラットフォーム又はクラスタツールの目的は、制御された環境内で2つ以上のプロセスを1枚の基板に対して順次実行することである。しかしながら、その他の場合には、マルチチャンバ処理プラットフォームは基板に対して単一の処理ステップだけを実行し、追加のチャンバは、このプラットフォームによって基板が処理される速度を最大化することを目的としている。後者の場合、基板に対して実行されるプロセスは、典型的にバッチプロセスであり、比較的多数の基板、例えば25又は50個の基板が、所与のチャンバ内で同時に処理される。バッチ処理は、原子層堆積(ALD:atomic layer deposition)プロセス及び一部の化学気相堆積(CVD:chemical vapor deposition)プロセスといった、経済的に実行可能なやり方で個々の基板に対して実施するには時間が掛かりすぎるプロセスにとって、特に有益である。
【0003】
一部のALDシステム、特に回転式基板プラテンを備えた空間的ALDシステムにとっては、モジュール型プラズマ源、即ち上記システムに容易に挿入することが可能な供給源が有益である。プラズマ源は、プラズマが生成される容積室と、荷電粒子及び活性化学ラジカル種(active chemical radical species)のフラックスに加工物を暴露するための通路と、から成る。
【0004】
熱的ALDプロセス及びCVDプロセスには、膜の品質向上のため処理がしばしば組み込まれる。上記の処理は典型的に、エネルギー種又は反応性種を含んでいる。プラズマ源は、このような種のための一次的供給源である。プラズマ源についての懸念には、イオンを通じたエネルギー衝突、及び、スパッタリングに因るプラズマ源からの材料の汚染が含まれることがある。
【0005】
(プラテンとも呼ばれる)回転サセプタを備えた任意のシステム内の線形的なラジアルプラズマ源について、プラズマ暴露(処理)が、ウエハの内径では、外径と比較して約2.7倍大きい。従って、均一なプラズマ暴露のために、外径でのプラズマが内径よりも強度であるべきである。従って、回転プラテン処理システム内での均一なプラズマ暴露を実現するプラズマ源に対する必要性が当該技術分野には存在している。
【発明の概要】
【0006】
本開示の1つ以上の実施形態は、RFホット電極を含むハウジング、リターン電極、及びRF供給部を備えたプラズマ源アセンブリを対象とする。ハウジングは、内周端面と、外周端面と、前面とを有する。ハウジングは、ガス入口を含み、当該ガス入口からの流路が形成され、ガスの流れがハウジングを通って前面に設けられた開口を出ることが可能となる。RFホット電極はハウジングの内部に存在し、細長い本体を有しており、細長い本体は、内周端がハウジングの内周端面の近傍にあり及び外周端がハウジングの外周端面の近傍にあって、RFホット電極の長さが定められる。RFホット電極は、細長い本体に対して或る一定の角度で延在する脚部を含んでいる。リターン電極が、ハウジングの内周端面と外周端面との間に延在する細長い本体を有する。リターン電極は、プラズマが形成可能な間隙を設けるために、RFホット電極から離間している。RF供給部は、RFホット電極の内周端から、RFホット電極の長さの約25%以下の距離を取って接続されている。
【0007】
本開示の実施形態の上述の特徴を詳しく理解できるように、上記で簡単に要約されている本開示の実施形態のより詳細な説明が、実施形態を参照することによって得ることができる。そのうちの幾つかの実施形態は添付の図面に示されている。しかし、添付の図面は本開示の典型的な実施形態のみを示すものであり、従って、本開示の範囲を限定するものと見做されず、本開示が他の等しく有効な実施形態も許容しうることに留意されたい。
【図面の簡単な説明】
【0008】
【
図1】本開示の1つ以上の実施形態に係る基板処理システムの概略的な断面図を示す。
【
図2】本開示の1つ以上の実施形態に係る基板処理システムの斜視図を示す。
【
図3】本開示の1つ以上の実施形態に係る基板処理システムの概略図を示す。
【
図4】本開示の1つ以上の実施形態に係るガス分配アセンブリの前面の概略図を示す。
【
図5】本開示の1つ以上の実施形態に係る処理チャンバの概略図を示す。
【
図6】本開示の1つ以上の実施形態に係るプラズマ源アセンブリの概略的な断面図を示す。
【
図7】本開示の1つ以上の実施形態に係るプラズマ源アセンブリの部分的な斜視図を示す。
【
図8】本開示の1つ以上の実施形態に係るプラズマ源アセンブリの概略的な等角図を示す。
【
図9】本開示の1つ以上の実施形態に係るプラズマ源アセンブリの概略的な底面図を示す。
【
図10】本開示の1つ以上の実施形態に係るプラズマ源アセンブリの概略的な側面図を示す。
【
図11】本開示の1つ以上の実施形態に係るプラズマ源アセンブリを備えた処理チャンバの部分的な等角図を示す。
【
図12】本開示の1つ以上の実施形態に係るプラズマ源アセンブリの電極の概略的な部分側方断面図を示す。
【
図13】本開示の1つ以上の実施形態に係るプラズマ源アセンブリの部分的な断面図を示す。
【
図14A】本開示の1つ以上の実施形態に係るプラズマ源アセンブリの断面図を示す。
【
図14B】本開示の1つ以上の実施形態に係るプラズマ源アセンブリの側方断面図を示す。
【
図15】本開示の1つ以上の実施形態に係る脚部を有するRFホット電極を備えたプラズマ源アセンブリの概略的な底面図を示す。
【
図16】本開示の1つ以上の実施形態に係る、脚部及び三角形部を含むRFホット電極を備えたプラズマ源アセンブリの概略的な底面図を示す。
【
図17A】本開示の1つ以上の実施形態に係る、電極とクラッドとの間の間隙を含むプラズマ源アセンブリの概略的な底面図を示す。
【
図17B】本開示の1つ以上の実施形態に係る、電極とクラッドとの間の間隙を含むプラズマ源アセンブリの概略的な底面図を示す。
【
図18A】本開示の1つ以上の実施形態に係る、クラッドの寸法が可変的なプラズマ源アセンブリの概略的な底面図を示す。
【
図18B】本開示の1つ以上の実施形態に係る、クラッドの寸法が可変的なプラズマ源アセンブリの概略的な底面図を示す。
【
図19A】本開示の1つ以上の実施形態に係る、クラッドの特性が可変的なプラズマ源アセンブリの概略的な底面図を示す。
【
図19B】本開示の1つ以上の実施形態に係る、クラッドの特性が可変的なプラズマ源アセンブリの概略的な底面図を示す。
【発明を実施するための形態】
【0009】
本開示の実施形態は、スループットを最大化し処理の効率を改善する連続基板堆積のための基板処理システムを提供する。この基板処理システムは、堆積前及び堆積後の処理にも使用することが可能である。
【0010】
本明細書及び添付の特許請求の範囲で使用される場合、「基板」及び「ウエハ」という用語は交換可能に使用されており、いずれも処理が作用する表面又は表面の一部のことを指す。これも当業者には当然のことであるが、基板に対して言及がなされるとき、文脈上他のことが明示されない限り、基板の一部のみを指すこともあり得る。さらに、基板上への堆積に対して言及がなされるとき、それは、ベア基板と、1つ以上の膜又はフィーチャが堆積又は形成された基板と、の両方を意味しうる。
【0011】
本明細書及び添付の特許請求の範囲で使用される、「反応性ガス」、「前駆体」、「反応物」等の用語は、交互可能に使用され、基板表面と反応する種を含むガスを意味する。例えば、第1の「反応性ガス」は、単に基板の表面上に吸着され、第2の反応性ガスとのさらなる化学反応のために利用されうる。
【0012】
本明細書及び添付の特許請求の範囲で使用される、「減少圧力」という用語は、約100トル未満、又は約75トル未満、又は約50トル未満、又は約25トル未満の圧力を意味する。例えば、約1トルから約25トルの範囲内にあると規定される「中間圧力」は、減少圧力である。
【0013】
数多くの用途について、回転プラテンチャンバが検討されている。このようなチャンバでは、1つ以上のウエハが、回転ホルダー(「プラテン」)の上に置かれる。プラテンが回転するにつれて、ウエハは様々な処理領域の間を移動する。例えば、ALDでは、処理領域でウエハが前駆体及び反応物に曝露されることになる。さらに、プラズマ曝露は、反応物として使用されてもよく、又は、膜成長の強化又は膜特性の改質のために膜又は基板表面を処理するようために利用されうる。本開示の幾つかの実施形態は、回転プラテンALDチャンバ(rotating platen ALD chamber)の利用時に、ALD膜の均一な堆積及び後処理(例えば、高密度化)をもたらす。
【0014】
回転プラテンALDチャンバは、従来の時間領域(time-domain)プロセス又は空間的ALDによって膜を堆積させることが可能である。時間領域プロセスでは、ウエハ全体が、第1のガスに曝露され、パージングされ、次いで、第2のガスに曝露される。空間的ALDでは、ウエハの一部が、第1のガスに曝露され、一部が第2のガスに曝露され、これらのガス流を通るウエハの移動により層が堆積される。
【0015】
本明細書及び添付の特許請求の範囲において使用される場合、「パイ形状」及び「くさび形状」という用語は、扇形状体である本体を描写するために交換可能に使用される。例えば、くさび形状のセグメントは、円又はディスク状構造体の一片であってよく、複数のくさび形状のセグメントを繋いて1つの円形体を形成することが可能である。上記扇形状体は、円の2つの半径及びその間に延びる円弧により囲まれた円の一部として定義されうる。パイ形状のセグメントの内周端は尖っていてよく、又は平坦な端面となるよう先端が切れてよく、又は丸みを帯びるように加工されてもよい。幾つかの実施形態では、上記扇形状体は、リング部又は環状体の一部として定義されうる。
【0016】
基板の経路は、ガスポートに対して垂直でありうる。幾つかの実施形態では、各ガス注入アセンブリは、基板が横断する経路に対して実質的に垂直な方向に延在する複数の細長いガスポートを備えており、ガスポートの前端は、プラテンに対して実質的に平行である。本明細書及び添付の特許請求の範囲において使用される場合、「実質的に垂直(substantially perpendicular)」という表現は、基板の移動の概略方向が、ガスポートの軸線に対してほぼ垂直な(例えば、約45°から90°)平面に沿っていることを意味する。くさび形状のガスポートについて、ガスポートの軸線は、ポートの長さに沿って延びるポートの幅の中間として定義される線と見做されうる。
【0017】
図1は、ガス分配アセンブリ120(注入器又は注入アセンブリとも称される)と、サセプタアセンブリ140と、を含む処理チャンバ100の断面を示している。ガス分配アセンブリ120は、処理チャンバ内で用いられる任意の種類のガス供給装置である。ガス分配アセンブリ120は、サセプタアセンブリ140に対向する前面121を含む。前面121は、サセプタアセンブリ140に向けてガスの流れを伝達するための、任意の数の開口又は様々な開口を有しうる。ガス分配アセンブリ120は、図示されている実施形態では実質的に円形である外縁124も含む。
【0018】
利用されるガス分配アセンブリ120の特定の種類は、利用中の特定のプロセスに従って変わりうる。本開示の実施形態は、サセプタとガス分配アセンブリとの間の間隙が制御される任意の種類の処理システムと併用することが可能である。様々な種類のガス分配アセンブリ(例えばシャワーヘッド)を用いることが可能であるが、本開示の実施形態は、複数の実質的に平行なガスチャネルを有する空間的ALDガス分配アセンブリで特に有用であり得る。本明細書及び添付の特許請求の範囲において使用される場合、「実質的に平行(substantially parallel)」という用語は、ガスチャネルの長手方向軸が概ね同じ方向に延在することを意味する。ガスチャネルの平行度は若干不完全であってもよい。複数の実質的に平行なガスチャネルは、少なくとも1つの第1の反応性ガスAのチャネル、少なくとも1つの第2の反応性ガスBのチャネル、少なくとも1つのパージガスPのチャネル、及び/又は少なくとも1つの真空Vのチャネルを含み得る。第1反応性ガスAのチャネル、第2反応性ガスBのチャネル、及びパージガスPのチャネルから流れるガスは、ウエハの上面に向けられる。ガス流の一部は、ウエハの表面に亘って水平に移動し、パージガスPのチャネルを通って処理領域から出る。基板が、ガス分配アセンブリの一方の端部から他方の端部まで移動することで、処理ガスの各々に順に曝露され、基板表面上に層が形成されることになる。
【0019】
幾つかの実施形態では、ガス分配アセンブリ120は、単一の注入ユニットで作られた固定の定常物体である。1つ以上の実施形態において、ガス分配アセンブリ120は、
図2に示すように、複数の個別扇形状体(例えば、複数の注入ユニット122)で構成される。単体の物体であっても、又は複数の扇形状体で構成された物体でも、記載される本開示の様々な実施形態と共に利用されうる。
【0020】
サセプタアセンブリ140は、ガス分配アセンブリ120の下方に位置付けられる。サセプタアセンブリ140は、上面141と、上面141に設けられた少なくとも1つの凹部142と、を含む。サセプタアセンブリ140は、底面143及び縁部144も有する。凹部142は、処理される基板60の形状及び大きさに従った任意の適切な形状及び大きさでありうる。
図1に示す実施形態では、凹部142は、ウエハの底部を支持する平坦な底部を有しているが、凹部の底部は変わりうる。幾つかの実施形態では、凹部の外周端面の周りには、ウエハの外周端面を支持するよう大きさが定められた段差領域がある。段差によって支持されるウエハの外周端面の寸法は、例えば、ウエハの厚さと、ウエハの裏側に既にあるフィーチャの存在とに従って様々でありうる。
【0021】
幾つかの実施形態では、
図1に示すように、サセプタアセンブリ140の上面141に設けられた凹部142は、凹部142内で支持される基板60が、サセプタ140の上面141と実質的に同一平面の上面61を有するように、大きさが定められる。本明細書及び添付の特許請求の範囲で利用される場合、「ほぼ同一平面」という用語は、ウエハの上面とサセプタアセンブリの上面とが、±0.2mmの範囲内で同一平面にあることを意味する。幾つかの実施形態では、上面同士が、±0.15mm、±0.10mm、又は±0.05mmの範囲内で同一平面にある。幾つかの実施形態の凹部142は、ウエハの内径(ID:inner diameter)がサセプタの中心(回転軸)から約170mmから約185mmの範囲内に位置するように、ウエハを支持する。幾つかの実施形態では、凹部142は、ウエハの外径(OD:outer diameter)がサセプタの中心(回転軸)から約470mmから約485mmの範囲内に位置するように、ウエハを支持する。
【0022】
図1のサセプタアセンブリ140は、サセプタアセンブリ140を上昇、下降、及び回転させることが可能な支持ポスト160を含む。サセプタアセンブリは、支持ポスト160の中央内部に、ヒータ又はガスライン又は電気的構成要素を含みうる。支持ポスト160は、サセプタアセンブリ140とガス分配アセンブリ120との間の間隙を広げたり狭めたりしてサセプタアセンブリ140を適切な位置へと動かす主たる手段でありうる。サセプタアセンブリ140は、サセプタアセンブリ140とガス分配アセンブリ120との間に所定の間隙170を生じさせるためにサセプタアセンブリ140に対してマイクロ調整を行うことが可能な微調整アクチュエータ162も含みうる。幾つかの実施形態では、間隙170の距離は、約0.1mmから約5.0mmの範囲内、若しくは約0.1mmから約3.0mmの範囲内、若しくは約0.1mmから約2.0mmの範囲内、若しくは約0.2mmから約1.8mmの範囲内、若しくは約0.3mmから約1.7mmの範囲内、若しくは約0.4mmから約1.6mmの範囲内、若しくは約0.5mmから約1.5mmの範囲内、若しくは約0.6mmから約1.4mmの範囲内、若しくは約0.7mmから約1.3mmの範囲内、若しくは約0.8mmから約1.2mmの範囲内、若しくは約0.9mmから約1.1mmの範囲内であるか、又は、約1mmである。
【0023】
図に示す処理チャンバ100は、サセプタアセンブリ140が複数の基板60を保持することが可能なカルーセル型チャンバである。
図2に示すように、ガス分配アセンブリ120は、複数の別体の注入ユニット122を含んでよく、各注入ユニット122は、ウエハが注入ユニットの下方で移動する際に、ウエハ上に膜を堆積させることが可能である。サセプタアセンブリ140の上方の、おおよそ対向している両側に配置された2個のパイ形状注入ユニット122が示されている。注入ユニット122の上記数は、例示のためにのみ示されている。より多く又はより少ない数の注入ユニット122が含まれうることが分かるであろう。幾つかの実施形態では、サセプタアセンブリ140の形状に従った形状を形成するのに十分な数のパイ形状注入ユニット122が存在する。幾つかの実施形態では、個別パイ形状注入ユニット122の各々が、他の注入ユニット122のいずれにも影響を与えることなく個別に動かされ、取り外され、及び/又は交換されうる。例えば、ロボットがサセプタアセンブリ140とガス分配アセンブリ120との間の領域にアクセスして、基板60をロード/アンロードすることを可能にするために、1つのセグメントが上昇しうる。
【0024】
複数のウエハが同じ処理フローを経るように複数のウエハを同時に処理するために、複数のガス注入器を有する処理チャンバが使用されうる。例えば、
図3に示すように、処理チャンバ100は、4個のガス注入アセンブリ及び4個の基板60を有する。処理開始時に、基板60は、注入アセンブリ30の間に配置されうる。サセプタアセンブリ140を45度回転させた(17)結果、ガス分配アセンブリ120の間にある各基板60が、ガス分配アセンブリ120の下に点線円で示されているように、膜堆積のためにガス分配アセンブリ120のところに移動させられる。さらに45°回転させると、基板60は注入アセンブリ30から離れるように移動するであろう。空間的ALD注入器を用いると、注入アセンブリに対してウエハが移動している間、ウエハ上に膜が堆積される。幾つかの実施形態では、サセプタアセンブリ140は、基板60がガス分配アセンブリ120の下で停止しないような増分で、回転される。基板60の数とガス分配アセンブリ120の数は、同じであってもよく、又は異なっていてもよい。幾つかの実施形態では、ガス分配アセンブリと同じ数のウエハが処理される。1つ以上の実施形態では、処理されるウエハの数は、ガス分配アセンブリの数の分数または整数倍である。例えば、4個のガス分配アセンブリが存在する場合、処理されるウエハの数は4xとなり、ここでxは、1以上の整数値である。
【0025】
図3に示す処理チャンバ100は、可能な一構成を表しているに過ぎず、本開示の範囲を限定すると見なすべきではない。ここでは、処理チャンバ100は複数のガス分配アセンブリ120を含んでいる。図示している実施形態では、処理チャンバ100の周りに均等に離間した4個のガス分配アセンブリ(注入アセンブリ30とも言われる)が存在する。図示の処理チャンバ100は八角形であるが、当業者であれば、これは1つの可能な形状であり、本開示の範囲を限定すると見なすべきではないことを理解されよう。図示されているガス分配アセンブリ120は台形であるが、単体の円形構成要素であってよく、又は、
図2に示すように、複数のパイ形状セグメントで構成されてよい。
【0026】
図3に示す実施形態は、ロードロックチャンバ180、又は、バッファステーションのような補助チャンバを含む。上記チャンバ180は、例えば基板(基板60とも称される)をチャンバ100にロード/チャンバ100からアンロードすることを可能にするために、処理チャンバ100の1つの側面に接続されている。基板をサセプタ上に移動させるため、ウエハロボットをチャンバ180内に配置してもよい。
【0027】
カルーセル(例えば、サセプタアセンブリ140)の回転は、連続的であってもよく、又は非連続的であってもよい。連続処理においては、ウエハは、注入器の各々に順に曝露されるように常に回転している。非連続処理においては、ウエハを注入器の領域へと移動させて停止させ、次いで、注入器間の領域84へと移動させて停止させることが可能である。例えば、カルーセルは、ウエハが注入器間領域から注入器を越えて移動し(又は、注入器に隣接して停止し)、そして次の注入器間領域へと移動し、そこでカルーセルが再度休止し得るように、回転することが可能である。注入器間で休止することにより、各層の堆積の間に追加の処理ステップ(例えば、プラズマへの曝露)のための時間が付与されうる。
【0028】
図4は、注入ユニット122と称されうる、ガス分配アセンブリ220の一セクタ又は一部分を示している。注入ユニット122は、個別に使用してもよく、又は他の注入ユニットと組み合わせて使用してもよい。例えば、
図5に示すように、
図4の注入ユニット122が4つ組み合わされて、単一のガス分配アセンブリ220が形成される。(分かりやすくするために、4個の注入ユニットを分ける線は示されていない。)
図4の注入ユニット122は、パージガスポート155及び真空ポート145に加えて、第1反応性ガスポート125と第2ガスポート135との両方を有するが、注入ユニット122に、これらの構成要素の全てが必要なわけではない。
【0029】
図4と
図5の両方を参照すると、1つ以上の実施形態に係るガス分配アセンブリ220は、複数のセクタ(又は注入ユニット122)を含んでよく、各セクタは全く同一であり又は異なっている。ガス分配アセンブリ220は、処理チャンバの中に配置されており、ガス分配アセンブリ220の前面121に複数の細長いガスポート125、135、145を備えている。複数の細長いガスポート125、135、145、及び真空ポート155は、内周端面123に隣接した領域から、ガス分配アセンブリ220の外周端面124に隣接した領域に向かって延在する。図示の複数のガスポートは、第1の反応性ガスポート125、第2の反応性ガスポート135、第1の反応性ガスポートと第2の反応性ガスポートそれぞれを取り囲む真空ポート145、及びパージガスポート155を含む。
【0030】
図4又は
図5に示す実施形態を参照すると、ポートは少なくとも内周領域周辺から少なくとも外周領域周辺まで延在すると述べていても、ポートが、単に内側領域から外側領域まで径方向に延在するだけではないことがある。上記ポートは、真空ポート145が反応性ガスポート125及び反応性ガスポート135を取り囲んでいることから、接線方向に延在しうる。
図4及び
図5に示す実施形態では、くさび形状の反応性ガスポート125、135は、内周領域及び外周領域に隣接する縁部を含む全ての縁部が、真空ポート145によって囲まれている。
【0031】
図4を参照すると、基板が経路127に沿って移動するに際に、基板表面の各部分が様々な反応性ガスに曝露される。経路127を辿ると、基板は、パージガスポート155、真空ポート145、第1反応性ガスポート125、真空ポート145、パージガスポート155、真空ポート145、第2ガスポート135、そして真空ポート145に曝露され、又は、それらに「遭遇する(see)」ことになる。ゆえに、
図4に示す経路127の終わりには、基板は第1反応性ガス125及び第2反応性ガス135からのガス流に曝露されて、層が形成されている。図示される注入ユニット122は四分円をなしているが、より大きく又はより小さいものである可能性もある。
図5に示すガス分配アセンブリ220は、順次接続された
図4の4個の注入ユニット122を組み合わせたものと見做されうる。
【0032】
図4の注入ユニット122では、複数の反応性ガスを分離させるガスカーテン150が示されている。「ガスカーテン」という用語は、混合しないように反応性ガスを分離するガス流又は真空の任意の組み合わせを描写するために使用されている。
図4に示すガスカーテン150は、真空ポート145の、第1反応性ガスポート125と隣り合った部分と、中間のパージガスポート155と、真空ポート145の、第2ガスポート135と隣り合った部分と、を含んでいる。このガス流と真空との組み合わせは、第1の反応性ガスと第2の反応性ガスとの気相反応を防止又は最小化するために利用されうる。
【0033】
図5を参照すると、ガス分配アセンブリ220からのガス流と真空との組み合わせにより、複数の処理領域250への分離がもたらされる。処理領域は、処理領域250間のガスカーテン150によって、個々の反応性ガスポート125、135の周囲で大まかに画定されている。
図5に示す実施形態では、8つの別個の処理領域250が作られており、それらの間に8つの別個のガスカーテン150がある。処理チャンバは、少なくとも2つの処理領域を有しうる。幾つかの実施形態では、少なくとも3、4、5、6、7、8、9、10、11、又は12個の処理領域が存在する。
【0034】
処理中に、基板はどの時点においても1つより多くの処理領域250に暴露されうる。しかし、別々の処理領域に曝露される部分は、その2つを分離するガスカーテンを有することになる。例えば、基板の前端部が第2反応性ガスポート135を含む処理領域に入る場合、基板の中央部はガスカーテン150の下にあり、かつ、基板の後端部は第1反応性ガスポート125を含む処理領域内にあることになる。
【0035】
ファクトリインターフェース280は、例えば、ロードロックチャンバでありうるが、処理チャンバ100に接続された状態で示されている。基準のフレームを提示するために、基板60が、ガス分配アセンブリ220に重ねた状態で示されている。基板60はしばしば、ガス分配プレート120の前面121の近傍で保持されるようにサセプタアセンブリに載置されうる。基板60は、ファクトリインターフェース280を介して、処理チャンバ100の中へとロードされて、基板支持体又はサセプタアセンブリに載置される(
図3参照)。基板60は、当該基板60が第1反応性ガスポート125の隣に配置され、かつ2つのガスカーテン150a、150bの間に配置されているため、処理領域内に配置された状態で示されうる。基板60を経路127に沿って回転させることにより、この基板は、処理チャンバ100をぐるりと反時計回りに移動することになる。従って、基板60は、第1処理領域250aから第8処理領域250hまでの処理領域に曝露される(第1から第8までの領域の間に全ての処理領域が含まれる)。図示されているガス分配アセンブリを使用する、処理チャンバを回る各サイクルでは、基板60は、第1反応性ガスと第2反応性ガスとの4つのALDサイクルに暴露されることになる。
【0036】
図5のようなバッチ処理装置における従来のALDシーケンスでは、空間的に分離された注入器からの化学物質A及びBの流れがそれぞれ維持され、それらの間にポンプ/パージセクションがある。この従来のALDシーケンスには、開始パターン及び終了パターンがあり、それゆえに堆積された膜が不均一となることがある。発明者らは、驚くべきことに、空間的ALDバッチ処理チャンバ内で実施される時間ベースのALDプロセスが、より均一性の高い膜を提供することを発見した。ガスAへの曝露、反応性ガスがない状態、ガスBへの曝露、反応性ガスがない状態という基本プロセスは、基板を注入器の下方でさっと動かし、基板を化学物質Aと化学物質Bのそれぞれで浸して、膜に開始パターン及び終了パターンが形成されることを避けるためのものである。発明者らは、驚くべきことに、ターゲット膜厚が薄く(例えば20ALDサイクル未満で)、開始・終了パターンがウエハ均一性性能に大きな影響を与える場合に、時間ベースの手法が特に有利であることを見出した。発明者らは、本明細書に記載されたSiCN、SiCO、及びSiCONの膜を生成する反応プロセスは、時間領域プロセスでは達成されないことも発見した。処理チャンバをパージするのに用いられる時間の量によって、基板表面から材料が除去される結果となる。記載されている空間的ALDプロセスでは、上記除去は生じない。というのは、ガスカーテンの下にいる時間が短いからである。
【0037】
従って、本開示の実施形態は、複数の処理領域250a~250hを有し、各処理領域がガスカーテン150によって隣の領域から分離されている処理チャンバ100を含む処理方法を対象とする。例えば、上記処理チャンバが
図5に示されている。処理チャンバ内のガスカーテン及び処理領域の数は、ガス流の配設に従った任意の適切な数でありうる。
図5に示す実施形態は、8個のガスカーテン150と、8個の処理領域250a~250hと、を有する。ガスカーテンの数は概して、処理領域の数と等しく、又は当該数より大きい。例えば、領域250aが反応性ガス流を有さず、ローディングエリアとしての役割を果たすにすぎない場合、処理チャンバは7つの処理領域と8つのガスカーテンとを有することになる。
【0038】
複数の基板60が、
図1及び
図2に示すサセプタアセンブリ140などの基板支持体に載置されている。複数の基板60は、処理のために処理領域を回って回転させられる。概して、ガスカーテン150は、チャンバに反応性ガスが流れ込まない期間を含めて、処理の間ずっと稼働している(ガスが流れ、真空はオンになっている)。
【0039】
第1の反応性ガスAが処理領域250のうちの1つ以上に流れ込んでいる間に、不活性ガスが、第1の反応性ガスAが流れ込んでいない任意の処理領域250に流し込まれる。例えば、第1反応性ガスが処理領域250bから処理領域250hまでの処理領域に流れ込んでいる場合は、不活性ガスは、処理領域250aに流れ込むであろう。不活性ガスは、第1反応性ガスポート125または第2反応性ガスポート135を通じて流し込まれうる。
【0040】
処理領域内の不活性ガス流は一定であり又は変わりうる。幾つかの実施形態では、反応性ガスが不活性ガスと共流する。不活性ガスは、キャリア及び希釈剤として作用する。キャリアガスに対する反応性ガスの量が少ないため、共流することによって隣り合う領域間の圧力差が減少し、処理領域間のガス圧のバランスを取ることが容易になりうる。
【0041】
本開示の幾つかの実施形態は、注入モジュールを対象とする。注入モジュールは、空間的ALD処理チャンバに関連して説明されるが、当業者であれば、このモジュールは、空間的ALDチャンバに限定されるものではなく、ガス流の均一性向上が有益である任意の注入用途に適用することができることを理解されよう。
【0042】
本開示の幾つかの実施形態は、有利には、モジュール型プラズマ源、即ち、容易に処理システム内に挿入し及び処理システムから取り外すことが可能な供給源を提供する。このような供給源は、そのすべての又はほとんどのハードウェアが、原子層堆積プロセスと同じ圧力レベル(典型的に、1から50トル)で稼働しうる。本開示の幾つかの実施形態は、ウエハ表面全体にわたってイオンフラックスが改善されるプラズマ源を提供する。幾つかの実施形態では、プラズマ源は、ウエハ表面に対して実質的に垂直に位置付けられた3個のプレート間の容量性供給源を含む。幾つかの実施形態では、外側のプレートが接地されて、内側のプレートに電力供給される。ウエハ表面に向かって上記プレート間をガス種が流れる間に、当該プレート間でプラズマが生成されうる。プラズマは、実質的に上記供給源に閉じ込められており、上記電力供給されたプレートからのスパッタ材料がウエハ表面に達することが最小に抑えられる。本開示の幾つかの実施形態は、有利に、ホット電極からのスパッタ材料による基板の汚染を最小限に抑え又は当該汚染を無くすプラズマ源を提供する。幾つかの実施形態はまた、有利に、基板表面を実質的に変えないソフトプラズマを提供する。1つ以上の実施形態が、電気帰還路が基板を通ることを可能とせずにプラズマを生成しうる装置を提供する。本開示の幾つかの実施形態は、ガス分配アセンブリに追加し又は取り外すことが可能なモジュール型遠隔プラズマ源を提供する。遠隔プラズマ源は、基板、又は、電極としての基板支持体を利用することなくプラズマを生成する。
【0043】
RFホット電極(電力供給される電極)と(リターン電極と称される)グランドプレートとの間の間隙は変更されうる。幾つかの実施形態では、間隙は、約3mmから約15mmの範囲内にあり調整可能でありうるRFホット電極の幅は変更されうる。例えば、プレート同士の幅が、イオンを加速させるために狭くなりうる。利用時には、RFホット電極とリターン電極との間の間隙を流れるガス種がイオン化される。その後、イオン化されたガス種が基板表面に接触しうる。幾つかの実施形態では、形成されたプラズマは、基板表面を実質的に変えないソフトプラズマである。
【0044】
図6から
図19Bを参照しながら、本開示の1つ以上の実施形態は、モジュール型容量結合プラズマ源300を対象とする。本明細書及び添付の特許請求の範囲で使用される場合、「モジュール型(modular)」という用語は、プラズマ源300を処理チャンバに取り付け又は処理チャンバから取り外すことができることを意味する。モジュール型の供給源は一般に、一人で移動させ、取り外し、又は取り付けることが可能である。
【0045】
図6は、本開示の1つ以上の実施形態に係るプラズマ源アセンブリ300の断面を示している。
図6に示されるプラズマ源アセンブリ300は、ハウジング310を備え、ハウジング310は、ガス入口315及び前面312を含んでいる。ガス入口315によって、ガスの流れが、流路318に沿ってハウジング310を通って、前面312に設けられた開口313から出ることが可能となる。図示された実施形態では、説明のために中心から外れて描かれたガス入口315が示されているが、当業者は、ガス入口315がハウジング310内の中央に配置されていてもよいことが分かるであろう。さらに、幾つかの実施形態は、流路318を通るガス流の均一性を向上させるためのプレナム316を含む。幾つかの実施形態のプレナム316は、少なくとも部分的に誘電体で満たされており、プラズマのキャビティ(間隙340、340b)に達することを可能とする複数の貫通孔及び/又はプレナムを有している。上記貫通孔及び/又はプレナムは、プラズマブレイクダウンを防止するために充分小さな寸法を有する。幾つかの実施形態では、上記貫通孔は、直径がおおよそ1mm未満、0.95mm未満、0.9mm未満、0.85mm未満、0.8mm未満、0.75mm未満、0.7mm未満、0.65mm未満、又は0.6mm未満である。
【0046】
プラズマ源アセンブリ300は、RFホット電極320と、少なくとも1つのリターン電極330と、を含んでいる。リターン電極330は、RFホット電極320と完全な回路を形成する任意の導電性材料である。当業者は、リターン電極330が、電子が流れるための経路を提供しうることが分かるであろう。このように使用される「リターン(return)」という用語は、電極が、プラズマ成分の電気的経路の一部であり、電流又は電子の流れのための方向を暗示しないことを意味している。
【0047】
図6から
図8を参照すると、RFホット電極320は、第1の表面322と、第1の表面322に対向する第2の表面324と、を有している。
図6は、プラズマ源アセンブリ300の断面図を示しており、
図7及び
図8は、電極の部分的な斜視図を示している。これに関して、第1の表面322と第2の表面324とは、RFホット電極320の厚さTの、対向する側面上に存在している。RFホット電極320は概して、高さH、厚さT、及び長さLを有する矩形の角柱状体として成形されている。RFホット電極320は、流路318に対して実質的に平行に方向付けられた第1の表面322を有する。これに関して、「実質的に平行(substantially parallel)」という用語は、上記表面が、平行(0oと定義される)に対して±10oの範囲内であることを意味している。
【0048】
リターン電極330は、RFホット電極320と同様に成形されている。リターン電極は、流路318に対して実質的に平行に方向付けられた第1の表面332を有している。リターン電極330の第1の表面332は、RFホット電極320の第1の表面322から離間しており、間隙340が形成される。
【0049】
リターン電極330、330bは、アルミニウム、ステンレス鋼、及び銅を含む任意の適した材料でありうるが、これらに限定されない。リターン電極330、330bは、任意の適した電気的特徴を有しうる。幾つかの実施形態では、リターン電極330、330bは接地電極である。接地電極は、電気接地と接触する任意の適した導電性材料である。
【0050】
幾つかの実施形態では、リターン電極330、330bは、RFホット電極320とは異なる電力供給される電極である。このように使用される「RFホット電極と異なる(different from the RF hot electrode)」とは、電気特性又は電位がRFホット電極とは異なることを意味している。例えば、生成されるプラズマの駆動電力は、ウエハとの相互作用が最小に抑えるために、位相調整器を用いて、単一の供給源からプッシュ-プル(push-pull)形式で調整することが可能であり、この種の実施形態では、RFホット電極320は、例えば、リターン電極330の位相とは180oずれていてもよい。
【0051】
図7に示すように、プラズマ源アセンブリの幾つかの実施形態は、第2のリターン電極330bをさらに含んでいる。第2のリターン電極330bは、流路318に対してほぼ平行に方向付けられた第1の表面332bを有する。第2のリターン電極330bの第1の表面332bは、間隙340bを形成するために、RFホット電極320の第2の表面324から離間している。間隙340と間隙340bとは、同じ寸法であってよく又は異なる寸法であってもよい。幾つかの実施形態では、RFホット電極源320とリターン電極330との間の間隙340、及び、RFホット電極源320とリターン電極330bとの間の間隙340bは、約4mmから約15mmの範囲内、若しくは約5mmから約14mmの範囲内、若しくは約7mmから約13mmの範囲内、若しくは約9mmから約12mmの範囲内にあり、又は、約11mmである。
【0052】
RFホット電極320の厚さTは、例えば、電極材料に従った任意の適切な厚さでありうる。幾つかの実施形態では、RFホット電極の厚さは、約3mmから約11mmの範囲内、若しくは約4mmから約10mm、若しくは約6mmから約9mmの範囲内にあり、又は約8mmである。
【0053】
電極320の高さHは変更されうる。幾つかの実施形態では、電極320の高さHは、約8mmから約40mmの範囲、若しくは約9mmから約35mmの範囲内、若しくは約10mmから30mmの範囲内、若しくは約11mmから約25mmの範囲内、若しくは約12mmから約20mmの範囲内、若しくは約13mmから約15mmの範囲内にあり、又は、約14mmである。
【0054】
幾つかの実施形態において、プラズマ源アセンブリ300のハウジング310は、くさび形状をしている。
図9は、くさび形状のハウジング310を組み込んだ一実施形態を示している。図示するように、RFホット電極320とリターン電極330とがハウジング310の主軸308に沿って延在する。このように使用される主軸308は、内周端面123を形成する円弧の中間と、外周端面124を形成する円弧の中間とを貫通する軸を指している。
【0055】
RFホット電極320とリターン電極330との空間は、主軸308に沿って実質的に同じであってよく、プラズマ源アセンブリは変わっていてもよい。例えば、幾つかの実施形態では、RFホット電極とリターン電極とは、くさび形状のハウジング310の外周端面124では、内周端面123の近傍よりも離間している。
【0056】
幾つかの実施形態は、RFホット電極320の下方端329に隣接するクラッド360を含む。
図10を参照すると、RFホット電極320が、2つのリターン電極330の間に図示されている。クラッド360によって、RFホット電極320の下方端329が、基板60及びサセプタアセンブリ140から分離されている。幾つかの実施形態では、クラッド360の存在が、RFホット電極320のスパッタリングが基板60を汚染することを防止又は最小化することを支援する。クラッド360は、限定するわけではないが、誘電体(例えばセラミック材料)を含む任意の適切な材料で作製されうる。クラッド360の大きさは、RFホット電極320の下方端329を、基板60のキャビティから動かすために調整されうる。幾つかの実施形態では、クラッド360の長さLsは、約10mmから約25mmの範囲内、若しくは約13mmから約20mmの範囲内にあり、又は約17mmである。
【0057】
図1、
図2、
図8、及び
図11を参照しながら、本開示の幾つかの実施形態は、サセプタアセンブリ140及びガス分配アセンブリ120を含む処理チャンバ100を対象とする。
図11は、本開示の1つ以上の実施形態に係る、処理チャンバ100の等角図を示している。サセプタアセンブリ140は、複数の基板60を支持して中心軸161の周りで回転させる上面141を有する。
【0058】
ガス分配アセンブリ120は、サセプタアセンブリ140の上面141に対向する前面121を有し、それにより、サセプタアセンブリ140の上面141に向けてガスの流れを方向付ける。幾つかの実施形態のガス分配アセンブリ120は、くさび形状のハウジング310を備えたプラズマ源アセンブリ300を含んでいる。くさび形状のハウジングは、ハウジング310の主軸308を画定する内周端面123及び外周端面124を有している。ハウジング310は、第1の側面371と、第2の側面372と、ガス入口315と、前面312と、を有する。流路が、ガス入口315からハウジング310を通って前面312から流れ出るガスが辿る経路として定められる。
【0059】
プラズマ源アセンブリ300は、少なくとも1つのRFホット電極320を有し、少なくとも1つのRFホット電極320は、流路に対して実質的に平行に方向付けられた第1の表面322を含む。図示される実施形態では、3個のRFホット電極320が存在する。少なくとも1つのリターン電極330が、ハウジング310の内部に存在しており、流路に対して平行に方向付けられRFホット電極320の第1の表面322から離間する第1の表面332を有しており、間隙340が形成される。プラズマ源アセンブリ300のくさび形状のハウジング310の前面312は、サセプタアセンブリ140の上面141から、約1mmから約5mmの範囲内、若しくは約1.5mmから約4mmの範囲内、又は約2mmの距離を取って配置されている。
図15に示す実施形態は、プラズマ源アセンブリを備えた処理チャンバの一可能な構成を単に例示しており、本開示の範囲を制限するものとして見做されない。
【0060】
図6に戻って参照すると、幾つかの実施形態は、ハウジング310を通る同軸RF供給ライン380を含み、間隙340内でプラズマを生成するためにRFホット電極320のための電力を供給する。同軸RF供給ライン380は、絶縁体386によって分離された外側導体382及び内側導体384を含む。内側導体384は、RFホット電極320と電気的に連通しており、外側導体382は、電気接地と電気的に連通しており又はRFホット電極とは異なる位相の電源(図示せず)である。本明細書及び添付の特許請求の範囲において使用される場合、「電気的に連通(electrical communication)」という用語は、構成要素同士が、直接的に接続されているか、又は中間構成要素を介して接続されており、電気抵抗が少ないことを意味する。内側導体384と外側導体382との間の間隙は誘電体で充填されうるが、誘電体は、セラミックであってもよいが任意の適切な誘電材料でありうる。
【0061】
同軸RF供給ライン380は、外側導体382がリターン電極330で終端するように構成されうる。内側導体384は、RFホット電極320で終端しうる。幾つかの実施形態では、ガス入口315が、同軸供給部の外周の周りのハウジングに供給される。RF供給部は、同軸伝送線の形態であってもよい。外側導体は、リターン電極に接続/終端されていてもよく、内側導体は、RFホット電極に接続されている。リターン電極330は、限定するわけではないが、金属ガスケットを含む任意の適切な方法で金属製ハウジングに接続されうる。このことは、リターン電流の対称的な形態を確保するのに役立つ。すべてのリターン電流は、供給部の外側導体を昇流し、RFノイズを最小に抑える。幾つかの実施形態では、RF供給部は、RFホット電極への対称的なRF供給電流、及び対称的なリターン電流を供給するよう設計されている。すべてのリターン電流は外側導体を昇流し、RFノイズを最小に抑え、動作に対する供給源設置の影響を最小に抑える。
【0062】
図6~
図8に示すような線形的なラジアルプラズマ源について、回転サセプタ(プラテン)を利用する任意の処理システムでは、プラズマ暴露(処理)が、ウエハの外径(OD:outer diameter)と比較して、ウエハの内径(ID:inner diameter)においてより大きい。同軸供給部がホット電極のほぼ中央に接続されたシステムでは、ID暴露とOD暴露の差は約2.7倍でありうる。ここで、同軸供給部は、電極のほぼ中央でホット電極に接続されている。本接続構成は、ウエハのID及びODにおける均一なプラズマ暴露を提供しえない。本開示の1つ以上の実施形態は、有利に、シンプルに線形的に設計されたプラズマ源を提供する。幾つかの実施形態は、有利に、高周波による、又は、ウエハのIDからODまでプラズマフラックスが増大する非常に高い周波数による内径供給部を提供する。
【0063】
図11及び
図12を参照すると、垂直なプラズマ源(VPS)は、ウエハのIDからODへと延在してそれをさらに超えて延在する、電力供給される電極(ホット電極)及びリターン電極を備えた線形的なプラズマ源でありうる。ホット電極とリターン電極との間の間隙は、IDからODへの電極の長さに沿って実質的に均一でありうる。
【0064】
幾つかの実施形態の電極は、金属汚染を最小に抑えるために誘電材料から作製された内側クラッド及び外側クラッドにより包まれている。「内側クラッド(inner cladding)」は、RFホット電極と関連するクラッドを指すために利用され、「外側クラッド(outer cladding)」は、リターン電極と関連するクラッドを指すために利用されうる。間隙が、クラッドの底部と、ウエハ/ウエハにプラズマを暴露するサセプタと、の間で維持される。
【0065】
概して、プラズマアセンブリ内で生成された電界(及びプラズマフラックス)は、RF供給部の近傍でもっとも大きく、RF供給部から遠ざかるほど電界強度が下がる。線形的な垂直プラズマ源では、最小の電界及びプラズマ密度が、驚くべきことにRF供給部の下方で生じる。如何なる動作理論に束縛されることなく、このことは、RF電力の周波数により増大する電磁効果に因るものと考えられる。発明者らは、RF供給部をホット電極のID末端の方に向かって移動させることで、暴露の不均一性が補償されうるということを見出した。
【0066】
電源390は、任意の適切な周波数で稼働しうる。より高周波の電力によって、サセプタの回転に因るIDとODとの間の異なる暴露を補償しうるプラズマ密度の変化を起こしうるということが分かっている。幾つかの実施形態では、電源390は、(20~30MHzの)高周波で、又は非常に高い周波数(30~100MHz)で稼働する。幾つかの実施形態では、電源390は60MHzで稼働する。
【0067】
図11から
図13を参照しながら、本開示の1つ以上の実施形態は、モジュール型容量結合プラズマ源300を対象としている。プラズマ源アセンブリ300は、
図13に示すようにハウジング310を含んでいる。幾つかの実施形態のハウジング310は、使用されることもある電源接続又はガス線接続を除いた、プラズマ源アセンブリの構成要素の全てを保持又は支持している。ハウジングに組み込むと、プラズマ源アセンブリはモジュールとなることが可能であり、当該アセンブリを移動させ、処理装置から取り外し又は処理装置に取り付けることが可能となる。幾つかの実施形態のハウジング310はくさび形状をしており、
図4又は
図5に示すようなガス分配アセンブリ120にぴったりと合わせられる。ハウジング310はくさび形状でありうるが、プラズマがそこで形成されるプラズマキャビティ又は間隙の形状は、線形的でありうる。説明のため、
図11に示す実施形態では、ハウジングが示されていない。
【0068】
図12は、幾つかの実施形態のプラズマ源アセンブリ300の部分的な断面側面図を示している。ハウジング310は、
図4及び
図5に示すガス分配アセンブリ120に対して位置決めされうる内周端面123及び外周端面124を有している。
図13に示すように、ハウジング310は、ガス入口315を含むことが可能であり、ガス入口315は、当該ガス入口315からの流路318を形成し、ガスの流れがハウジング310を通って、プラズマ源アセンブリ300の前面312に設けられた開口313から出ることを可能とする。前面312は、ハウジング310、RFホット電極320、リターン電極330、又は、サセプタアセンブリから或る一定の距離を取って配置可能な任意の適切な材料によって形成されうる。幾つかの実施形態では、前面312は、別々の構成要素の組み合わせから形成され、結果的に材料の混合物となる。
【0069】
プラズマ源アセンブリは、RFホット電極320を備え、RFホット電極320は、細長い本体321を有する。細長い本体321は、第1の表面322と、当該第1の表面322に対向する第2の表面324と、を含む。第1の表面322と第2の表面324とが、RFホット電極320の幅を定める。幾つかの実装形態では、第1の面322と第2の表面324とは実質的に平行である。このように使用される「ほぼ平行(substantially parallel)」という用語は、表面が、平行な状態の±10o、±9o、±8o、±7o、±6o、±5o、±4o、±3o、±2o、又は±1oの範囲内にある主要平面を形成するということを意味している。幾つかの実施形態では、RFホット電極320の幅は、約2mmから約20mmの範囲内、若しくは約3mmから約15mmの範囲内、若しくは約4mmから約10mmの範囲内、若しくは約5mmから約9mmの範囲内、若しくは約6mmから約8mmの範囲内にあり、又は約7mmである。
【0070】
RFホット電極320の細長い本体321は、内周端323と、外周端325とを有する。RFホット電極320の内周端323は、ハウジング310の内周端面123の近傍のハウジング310内に配置されている。RFホット電極320の外周端面325は、ハウジング310の外周端面124の近傍のハウジング310内に配置されている。内周端323と外周端325とが、RFホット電極320の長さLを定める。
図12に図示する実施形態は、RFホット電極320と同じ長さを有するハウジング310を示している。これは単に可能な一構成を示しているにすぎず、本開示の範囲を限定するものとみなすべきではない。幾つかの実施形態のハウジングは、RFホット電極の末端を超えて延びて、RFホット電極の少なくとも一部の周りを包みうる。幾つかの実施形態のRFホット電極320の長さLは、約160mmから約440mmの範囲内にある。RFホット電極320の長さLは、処理される基板の幅にわたるよう構成されうる。例えば、処理される基板が、直径が200mmのウエハである場合には、RFホット電極の長さLは、約160mmから約440mmの範囲内、又は約180mmから約220mmの範囲内、又は約190mmから約210mmの範囲内、又は、約195mmから約205mmの範囲内でありうる。処理される基板が、直径が300mmのウエハである場合には、RFホット電極の長さLは、約160mmから約440mmの範囲内、又は約260mmから約440mmの範囲内、又は約280mmから約320mmの範囲内、又は、約290mmから約310mmの範囲内、又は約295mmから約305mmの範囲内でありうる。
【0071】
リターン電極330は、リターン電流が、RFホット電極からの極性が逆の電圧を流し又は供給することを可能とするために適した任意の構成要素でありうる。「リターン電極」という用語は、RFホット電極と共に完全な回路を形成する電気的接続を表すために利用されており、電流や電子の流れの方向を暗示しているものとは見做されない。幾つかの実施形態のリターン電極330は、ハウジング310である。幾つかの実施形態では、リターン電極330は、ハウジング310内の別体の構成要素である。リターン電極330は、ハウジング310と同じ材料で作製されうるが、ハウジング310から電気的に絶縁させることが可能であり、又は、リターン電極330は、ハウジング310とは異なる材料で作製されうる。図示される実施形態において、リターン電極330は、ハウジング310とは異なる材料である。幾つかの実施形態のリターン電極330は、ハウジングの内周端面から外周端面へと延在する細長い本体を有している。リターン電極は、プラズマが形成されうる間隙340を設けるために、RFホット電極320から離間している。
【0072】
RF供給部380が、電源390をRFホット電極320に接続する。RF供給部380は、
図6に示したもののように、同軸RF供給ラインでありうる。
図12に図示するように、RF供給部380は、RFホット電極320の内周端面323から距離Deを取って、RFホット電極に接続している。幾つかの実施形態の距離Deは、RFホット電極320の長さLの約25%以下である。幾つかの実施形態では、距離Deは、RFホット電極320の長さLの約20%、15%、10%、5%、4%、3%、2%、又は1%以下である。
【0073】
図13に図示するように、幾つかの実施形態において、RFホット電極320は、当該RFホット電極320が、基板又はサセプタアセンブリに直接的に暴露されないように配置されたRFホット電極クラッド360を有する。このように使用される「直接的に暴露されない(not exposed directly)」等の用語は、RFホット電極320から出た原子が、真っすぐな経路を移動して基板の表面に影響を与えられないことを意味している。図示される実施形態において、RFホット電極クラッド360が、RFホット電極320の暴露される全ての側面及び表面を包んでいる。幾つかの実施形態のRFホット電極クラッド360は、ケイ素又は酸化ケイ素の1つ以上を含む。幾つかの実施形態では、RFホット電極クラッド360は、石英を含み、又は実質的に石英から成る。幾つかの実施形態では、RFホット電極クラッド360は、処理されるウエハ上の汚染としてスパッタされていない材料から作製される。RFホット電極クラッド360の材料は、実施されるプロセス又は堆積に依存しうる。
【0074】
幾つかの実施形態では、リターン電極330は、リターン電極クラッド361を含む。幾つかの実施形態のリターン電極クラッド361は、リターン電極330が基板又はサセプタ表面に直接的に暴露されないように配置されている。幾つかの実施形態では、リターン電極クラッド361は、ケイ素、酸化ケイ素、又は、酸化アルミニウムの1つ以上を含む。
【0075】
幾つかの実施形態のリターン電極クラッド361は、リターン電極クラッド360とは異なる材料を含んでいる。幾つかの実施形態では、RFホット電極クラッド360及びリターン電極クラッド361は、同じ材料で作製される。幾つかの実施形態では、RFホット電極クラッド360は石英を含み、リターン電極クラッドは、酸化アルミニウムを含む。幾つかの実施形態では、リターン電極クラッド360は、実質的に石英から成り、及び/又は、リターン電極クラッドは、実質的に酸化アルミニウムから成る。このように使用される表現「実質的に~から成る(consists essentially of)」は、問題のクラッドの組成が、重量単位で約95%、98%、又は99%以上が言及される材料であることを意味する。
【0076】
RFホット電極クラッド360及びリターン電極クラッド361は、プラズマ源アセンブリ300の前面312を形成しうる。リターン電極クラッド360から基板60までの距離Ghは、リターン電極クラッド361から基板60までの距離Grと同じであってよく又は異なっていてよい。
【0077】
幾つかの実施形態のプラズマ源アセンブリ300は、RFホット電極320の内周端323で生成されるイオンフラックスが、RFホット電極320の外周端325で生成されるイオンフラックスよりも少量であるプラズマを提供する。
【0078】
本開示の追加的な実施形態は、基板を処理する方法を対象とする。基板60が、ガス分配アセンブリ120の隣のサセプタアセンブリ140に配置されている。ガス分配アセンブリ120は、本開示の1つ以上の実施形態に係るプラズマ源アセンブリを含む。ガスが、ハウジング310のガス入口315を通って、RFホット電極320とリターン電極330との間の間隙340に流し込まれる。RFホット電極320は、間隙340においてプラズマを形成するために、内周端323から測定されたRFホット電極320の長さLの25%の範囲内に配置されたRF供給部380を通じて、稼働させられる。プラズマがハウジング310の前面312から流れ出て、基板60がこのプラズマに暴露される。
【0079】
内径に向かってRF供給部を稼働させることで、IDからODに向かうプラズマフラックスの増大がもたらされる。しかしながら、ウエハOD最後の25~30mmにおいて低下(より少量のイオンフラックス)があり、このことが、処理性能に不利な影響を与えることが分かっている。従って、本開示の1つ以上の実施形態は、有利に、プラズマフラックスの均一性を上げるための装置及び方法を提供する。
【0080】
図14A及び
図14Bはそれぞれ、本開示の1つ以上の実施形態に係るプラズマ源アセンブリ300の断面図及び底面図を示している。プラズマ源アセンブリ300は、RFホット電極320及びリターン電極330を含んでいる。図示される実施形態では、リターン電極330は、プラズマ源アセンブリ300のハウジングである。RFホット電極は、誘電体370によってリターン電極330から隔離されている。同軸供給ラインの内側導体384が、外径端325に対して相対的に、内径端323の近傍でRFホット電極320に接続している。
【0081】
図示される実施形態では、クラッド360が、RFホット電極320の下方端329及び側方端328の周りを包んでいる。内径端323から外径端325へとRFホット電極320の長さに沿って、クラッド360が、RFホット電極320と他の構成要素との間に直接的なラインが僅かにも存在しないように、RFホット電極320を隣接する構成要素から遮蔽している。
【0082】
外側クラッド361が、当該外側クラッド361がリターン電極330と間隙340との間に存在するように、リターン電極330上に配置されている。図示するように、外側クラッド361は、リターン電極のスパッタリングを防止するために、リターン電極330の前部の周りを包みうる。
【0083】
低い電界がIDの近傍に現れ高い電界がODの近傍に現れることを観察してきた。電界は、ODの近傍で飽和状態になる。IDの近傍での電源接続のための電力分散の結果として、プラズマ密度及びイオンフラックスが線形的に増大しない。さらに、電力が、より大きな容積室に亘って分散されて、ウエハODの近傍のプラズマ密度がより低くなり、イオンフラックスがより少量になる。このことによって、処理性能に不利な影響を与える端面での低下(edge roll off)が引き起こされる。従って、本開示の幾つかの実施形態は、有利に、成形されたRFホット電極を利用することでODの近傍での電極への電力分散を向上させるための装置を提供する。
【0084】
図15は、U字状のRFホット電極330を備えたプラズマ源アセンブリ300の一実施形チアの底面を示している。電力分散の均一性が上がることで、プラズマ密度が上がり、OD近傍でウエハへのイオンフラックスが増大し、IDからODへとより均一になる。
図15では、RFホット電極320は、RFホット電極320の主要部に対して或る一定の角度で外側クラッド361に向かって延在する脚部421を有している。図示される実施形態において、電極320の脚部421は、外側クラッド361に接触している。幾つかの実施形態では、外側クラッド361から脚部421を隔てる空間又は別の材料が存在する。クラッド360は、RFホット電極320のスパッタリングを防止するために、脚部421が間隙340への視線方向から遮蔽されるように、RFホット電極320の形状を辿っている。ID及びODにおける脚部421は、長さ及び幅が同じであるものとして示されている。しかしながら、当業者は、IDにおける脚部421の長さがODにおける脚部421の長さと異なりうることが分かるであろう。
【0085】
幾つかの実施形態では、クラッド360又は外側クラッド361は石英を含む。クラッド360又は外側クラッド361の厚さは、約0.25mmから約2.5mmの範囲内、又は約0.5mmから約2.0mmの範囲内、又は約0.75mmから約1.5mmの範囲内にありうる。
【0086】
図16に図示される実施形態は、RFホット電極320の脚部421の近傍の三角形部422を含んでいる。三角形部422は、RFホット電極320のOD端部に存在する。しかしながら、三角形部は、電極のID端部上にも存在しうる。三角形部422の近傍のクラッド360は、脚部421の近傍又は電極の中央の近傍のクラッドと厚さが同じでありうる。幾つかの実施形態では、三角形部422の近傍のクラッド360は、電極の中央の近傍又は脚部421の近傍のクラッドよりも薄い。図示される実施形態では、電極の主要部分に対して角度が約45度の三角形部422が示されているが、上記角度は異なりうると理解されたい。更に、三角形部は非線形的でありうると理解されたい。例えば、三角形部422は、電極の主要部分を脚部に接続する湾曲した外見を有しうる。
【0087】
幾つかの実施形態では、堆積が少ない場合に、電力分散プロファイルが、電力供給される電極(RFホット電極320)とグランド(リターン電極330)との間のRF結合を増大させることで改善されうる。幾つかの実施形態では、堆積が大きい場合に、電力分散プロファイルが、電力供給される電極とグランドとの間のRF結合を低減することで改善されうる。RF結合は、様々な技法により変更可能であり、即ち、RFホット電極320とクラッド360との間の間隔を変更すること、リターン電極330と外側クラッド361との間隔を変更すること、クラッド360の厚さを変更すること、及び/又は、外側クラッド361の厚さを変更することにより変更可能であるが、これらに限定されない。
【0088】
図17A及び
図17Bは、RFホット電極320又はリターン電極330からの、クラッド360又は外側クラッド361との間隔が変更される実施形態を図示している。
図17Aでは、RFホット電極320とクラッド360との間の間隙440が変更されている。図示される実施形態では、間隙440が、RFホット電極330の長さの中央で最も大きく、間隙440は、電極のID及びODの近傍へと狭まって又は細くなって消える。幾つかの実施形態では、間隙440は、IDからODへと電極の長さに亘って対称的ではない。間隙440の大きさを増大させることによって、クラッド360の有効な誘電率を変更し又は変えることが可能である。
【0089】
図17Bでは、リターン電極330と外側クラッド361との間の間隙450が変更されている。図示される実施形態では、間隙450は、間隙340の長さの中央で最も大きく、間隙450は、間隙340のID及びODの近傍へと狭まり又は細くなって消える。幾つかの実施形態では、間隙450は、間隙340の長さに亘って対称的ではない。間隙440は、間隙340に対して相対的に測定される。というのは、リターン電極330が非常に大きく、間隙340及びRFホット電極320に対して非対称的でありうるからである。
【0090】
間隙440又は間隙450は、任意の適切な形状及び大きさでありうる。幾つかの実施形態では、間隙440又は間隙450は、間隙340の長さに沿って最も幅が広い点で約0.75mm以下である。幾つかの実施形態では、間隙440又は間隙450は、約0.9mm以下、約0.8mm以下、約0.7mm以下、約0.6mm以下、又は約0.5mmでありうる。間隙440又は間隙450が大きすぎる場合には、プラズマが間隙440又は間隙450内で形成するであろう。
【0091】
図18A及び
図18Bは、クラッド360外側クラッド361の厚さが間隙340の長さに沿って変わり又は可変である本開示の実施形態を示している。
図18Aでは、クラッド360が、間隙340の中央の近傍でより厚い。間隙340の中央の近傍でのRFホット電極320の厚さは、より薄いものとして示されている。しかしながら、当業者は、RFホット電極320の厚さが、間隙340の長さに亘って均一な状態でありえ、クラッド360の厚さが変わることが分かるであろう。
図18Bでは、外側クラッド361は、間隙340の中央の近傍でより厚い。
【0092】
図19A及び
図19Bは、クラッド360又は外側クラッド361の誘電率が間隙340の長さに沿って変わり又は可変である本開示の実施形態を示している。誘電率は、クラッドの長さに亘る材料の組成を変えることで、又は、クラッドの長さに亘る材料の何らか特性(例えば密度)を変えることで、変えられ又は変更されうる。
図19Aでは、クラッド360は、間隙340の中央領域のクラッド460とは異なっている。
図19Bでは、外側クラッド361は、間隙340の中央領域における外側クラッド461とは異なっている。示される実施形は、2つの材料を有する。しかしながら当業者は、間隙340の長さに亘ってクラッド360又は外側クラッド361の特性の動的な変化が存在しうることを認識するであろう。
【0093】
図示される実施形態は、間隙340の中央で、材料の特性(例えば、誘電率、間隔、又は幅)を変える。しかしながら、これは単に可能な一構成を例示したものであり、変更の位置が変わりうることが分かるであろう。
【0094】
本開示の追加の実施形態は、複数の基板を処理する方法を対象とする。複数の基板が、処理チャンバ内の基板支持体にロードされる。複数の基板のそれぞれがガス分配アセンブリを通り、基板上に膜を堆積するために、基板支持体が回転させられる。容量結合されたプラズマ源に隣接するプラズマ領域に基板を移動させるように、基板支持体が回転させられ、プラズマ領域内で実質的に均一なプラズマが生成される。このことが、所定の厚さの膜が形成されるまで繰り返される。
【0095】
カルーセルの回転は、連続的であるか、又は非連続的でありうる。連続処理においては、ウエハは、注入器の各々に順に曝露されるように常に回転している。非連続処理においては、ウエハは、注入領域に移動してから停止し、次に、注入器間の領域に移動してから停止しうる。例えば、カルーセルは、ウエハが注入器間領域から注入器を越えて移動し(又は、注入器に隣接して停止し)、そして次の注入器間領域へと移動し、そこでカルーセルが再度休止しうるように、回転することが可能である。注入器間で休止することにより、各層の堆積と堆積との間に、追加の処理(例えば、プラズマへの曝露)を行うための時間が設けられうる。
【0096】
プラズマの周波数は、使用されている特定の反応性種に従って調整されうる。適切な周波数は、限定されないが、400kHz、2MHz、13.56MHz、27MHz、40MHz、60MHz、及び100MHzを含む。
【0097】
1つ以上の実施形態によれば、基板は、層の形成に先立って及び/又は層の形成の後で処理が施される。上記処理は、同じチャンバ内、又は、1つ以上の別個の処理チャンバ内で実施することが可能である。幾つかの実施形態では、基板が、第1のチャンバから、更なる処理のために別個の第2のチャンバに移動させられる。基板は、第1のチャンバから別個の処理チャンバへと直接的に移動させることが可能であり、又は、第1のチャンバから1つ以上の移送チャンバへと移動させ、次いで別個の処理チャンバへと移動させることが可能である。従って、処理装置は、移送ステーションに通じている複数のチャンバを備えうる。この種の装置は「クラスタツール(cluster tool)」又は「クラスタシステム(clustered system)」等と称されうる。
【0098】
クラスタツールは概して、基板の中心検出及び配向、ガス抜き、アニール処理、堆積、及び/又はエッチングを含む様々な機能を実行する、複数のチャンバを備えたモジュールシステムである。1つ以上の実施形態によれば、クラスタツールは、少なくとも第1のチャンバ及び中央移送チャンバを含む。中央移送チャンバは、処理チャンバとロードロックチャンバの間で基板を往復搬送することが可能なロボットを収容しうる。移送チャンバは典型的に、真空条件で維持されており、基板を、1のチャンバから、他のチャンバ及び/又はクラスタツールの前端に配置されたロードロックチャンバへと往復搬送するための中間ステージを提供する。本開示のために適合されうる二つのよく知られたクラスタツールが、Centura(登録商標)及びEndura(登録商標)であり、両方とも、カリフォルニア州サンタクララのアプライドマテリアルズ社(Applied Materials,Inc.)から入手可能である。しかしながら、チャンバの実際の配置及び組合せは、本明細書に記載のプロセスの特定のステップを実施するために変更されうる。利用可能な他の処理チャンバには、限定されないが、周期的層堆積(CLD:cyclical layer deposition)、原子層堆積(ALD:atomic layer deposition)、化学気相堆積(CVD:chemical vapor deposition)、物理的気相堆積(PVD:physical vapor deposition)、エッチング、予洗浄、化学洗浄、RTPといった熱処理、プラズマ窒化、ガス抜き、配向、ヒドロキシル化、及び他の基板処理が含まれる。クラスタツール上のチャンバ内でプロセスを実行することにより、その次の膜を堆積させる前に酸化することなく、空気中の不純物による基板の表面汚染を回避することが可能である。
【0099】
1つ以上の実施形態によれば、基板は、継続的に真空条件又は「ロードロック」条件の下にあり、1のチャンバから次のチャンバへと移動するときに周囲空気に曝露されない。従って、移送チャンバは、真空下にあり、真空圧力下で「ポンプダウン」される。処理チャンバ又は移送チャンバ内に不活性ガスが存在してよい。幾つかの実施形態では、基板の表面上に層を形成した後、反応物の一部又は全部を除去するために、不活性ガスがパージガスとして使用される。1つ以上の実施形態によれば、パージガスが堆積チャンバの出口で噴射され、反応物質が、堆積チャンバから移送チャンバ及び/又は追加の処理チャンバに移動することが防止される。このようにして、不活性ガスの流れが、チャンバの出口でカーテンを形成する。
【0100】
処理中に、基板は加熱又は冷却されうる。このような加熱又は冷却は、限定されないが、基板支持体(例えば、サセプタ)の温度を変化させることと、加熱又は冷却されたガスを基板表面に流すこととを含む任意の適切な手段によって達成することが可能である。幾つかの実施形態では、基板支持体は、基板温度を導電的に変化させるよう制御することが可能なヒータ/クーラを含む。1つ以上の実施形態において、基板温度を局所的に変えるために、利用されるガス(反応性ガス又は不活性ガス)が加熱又は冷却される。幾つか実施形態では、ヒータ/クーラが、基板温度を対流によって変えるために、チャンバ内部で基板表面に隣接するように配置される。
【0101】
基板はまた、処理中に静止状態であり又は回転させられうる。回転する基板は、連続的に、又は非連続に段階的に、回転しうる。例えば、処理全体を通して基板を回転させてもよく、又は、様々な反応性ガス又はパージガスへの曝露の合間に基板を少しずつ回転させてもよい。処理中に基板を(連続的にまたは段階的に)回転させることは、例えば、ガス流形状の局所的な変動の影響を最小限に抑えることで、より均一な堆積またはエッチングの生成を支援しうる。
【0102】
以上の記述は本開示の実施形態を対象としているが、本開示の基本的な範囲から逸脱することなく本開示の他の実施形態及び更なる実施形態が考案されてよく、本開示の範囲は、下記の特許請求の範囲によって決定される。