(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-10
(45)【発行日】2022-05-18
(54)【発明の名称】光通信モジュール及びそれに用いる光変調器
(51)【国際特許分類】
G02F 1/03 20060101AFI20220511BHJP
【FI】
G02F1/03 505
(21)【出願番号】P 2017072909
(22)【出願日】2017-03-31
【審査請求日】2019-08-07
(73)【特許権者】
【識別番号】000183266
【氏名又は名称】住友大阪セメント株式会社
(74)【代理人】
【識別番号】100116687
【氏名又は名称】田村 爾
(74)【代理人】
【識別番号】100098383
【氏名又は名称】杉村 純子
(74)【代理人】
【識別番号】100155860
【氏名又は名称】藤松 正雄
(72)【発明者】
【氏名】宮崎 徳一
(72)【発明者】
【氏名】加藤 圭
【審査官】井部 紗代子
(56)【参考文献】
【文献】特開2012-048121(JP,A)
【文献】特開2015-079092(JP,A)
【文献】特開2016-208025(JP,A)
【文献】特開2012-244146(JP,A)
【文献】特開2005-316291(JP,A)
【文献】特開平06-130338(JP,A)
【文献】特開2014-067835(JP,A)
【文献】特開2014-112219(JP,A)
【文献】米国特許出願公開第2011/0142457(US,A1)
【文献】特開2004-198690(JP,A)
【文献】特開2003-258363(JP,A)
【文献】特開2019-148748(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 6/26 - 6/27
G02B 6/30 - 6/34
G02B 6/42 - 6/43
G02F 1/00 - 1/125
G02F 1/21 - 7/00
H04B10/00 -10/90
H04J14/00 -14/08
IEEE Xplore
(57)【特許請求の範囲】
【請求項1】
平面視した形状が長方形の基板に光導波路と変調電極を組み込んだ光変調素子を、直方体の容器内に収容した光変調器と、
該変調電極に高周波信号を入力するドライバ回路とを筐体内に収容した光通信モジュールにおいて、
該筐体の1つの側面に設けられた電気インターフェースと、
該筐体の前記側面に対向する他の側面に設けられた光インターフェースと、
該光変調器には、該変調電極に該高周波信号を導入するためのフレキシブルな配線基板の一端が、該直方体の1つの短辺側から導出され、該配線基板の他端が該直方体の底面に沿って延びており、
該容器内には、該光変調素子の片方又は両方の長辺側の側面に沿って配置されると共に、該高周波信号が該光導波路に印加される作用部の開始部分の近傍に配置される中継基板を備え、該配線基板から該変調電極への該高周波信号の導入は、該中継基板を介して行われており、
該配線基板と該中継基板との電気的接続は、該直方体の該容器の底面を貫通する複数のリードピンを用いており、かつ前記複数のリードピンは、
一つの中継基板の異なる側面に分けて配置されており、
該光変調器の前記短辺側と該電気インターフェースとの間に、該ドライバ回路が配置されていることを特徴とする光通信モジュール。
【請求項2】
請求項1に記載の光通信モジュールにおいて、
該筐体内には、光受信器を有することを特徴とする光通信モジュール。
【請求項3】
請求項1又は2に記載の光通信モジュールにおいて、
該筐体内には、デジタル信号処理回路を有することを特徴とする光通信モジュール。
【請求項4】
請求項1乃至3のいずれかに記載の光通信モジュールにおいて、該電気インターフェース、該ドライバ回路、及び該配線基板は一直線上に配置されていることを特徴とする光通信モジュール。
【請求項5】
請求項1乃至4のいずれかに記載の光通信モジュールに使用される光変調器において、
該光変調器の光入力部と光出力部とを配置する面が、前記直方体の同じ面、又は互いに直交する面のいずれかであることを特徴とする光変調器。
【請求項6】
請求項5に記載の光変調器において、
該光変調素子に対する光の入射側又は出射側には、光路変換手段が配置されていることを特徴とする光変調器。
【請求項7】
請求項5又は6に記載の光変調器において、
該光変調素子を構成する基板は、ニオブ酸リチウム基板であることを特徴とする光変調器。
【請求項8】
請求項5乃至7のいずれかに記載の光変調器において、該光変調素子にDCバイアスを印加するためのDC入力端子、又は、該光変調素子内を伝搬する光波をモニタするためのモニタ信号出力端子は、該直方体の1つの長辺側に配置されていることを特徴とする光変調器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光通信モジュール及びそれに用いる光変調器に関し、特に、筐体内に光変調器とドライバ回路とを配置した光通信モジュールと、それに用いる光変調器に関する。
【背景技術】
【0002】
光通信分野において、光変調器とドライバ回路を筐体内に組み込んだ光送信用のモジュールや、光変調器と光受信器とを同じ筐体内に組み込んだ光送受信用のモジュールが実用化されている。これらの光通信モジュールは、光通信システム装置のボードに搭載され使用されるが、システムの伝送容量の増大に対応するため、より集積度を高めることが可能な小型なモジュールが求められている。さらにシステムの拡張やメンテナンスが容易になるように、活線挿抜可能なプラガブルモジュールと呼ばれる、光送受信モジュールが用いられるようになっている。
【0003】
通常プラガブルモジュールでは、光通信モジュールを構成する筐体の1つの側面には、電気インターフェースが設けられ、該側面に対向する他の側面には、光インターフェースが設けられている。光通信モジュールは、光通信システム装置のパネルに対して水平方向から挿入され、装置の内面奥側に設けられた電気接続端子に該モジュールの電気インターフェースを差し込む状態で、装置内に着脱自在に固定される。
【0004】
近年、光通信で処理されるデータ量が急激に増加しており、1つの光通信モジュールに100Gbpsや100Gbpsを超えるコヒーレント通信機能を付与したり、一つのボードに差し込むモジュールの数を増やすことなどが必要となっている。このため、高周波信号においても性能の劣化を抑制するため、高周波信号の伝搬損失を抑制することが不可欠であり、さらに、光通信モジュール自体も小型化することが求められている。
【0005】
しかしながら、光変調器などの光学部品やドライバ回路などの電気部品を狭い空間に集積して配置すると、光学部品間の接続だけでなく、高周波信号を伝搬する配線の取り回しも複雑化し、逆に光通信モジュールの性能劣化の原因となる。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2012-48121号公報
【文献】特開2014-195061号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明が解決しようとする課題は、上述したような問題を解決し、光通信モジュールの小型化を図りながら、高周波信号の伝搬損失を抑制することが可能な光通信モジュール及びそれに用いる光変調器を提供することである。
【課題を解決するための手段】
【0008】
上記課題を解決するため、本発明の光通信モジュール及びそれに用いる光変調器は、次のような技術的特徴を備えている。
(1) 平面視した形状が長方形の基板に光導波路と変調電極を組み込んだ光変調素子を、直方体の容器内に収容した光変調器と、該変調電極に高周波信号を入力するドライバ回路とを筐体内に収容した光通信モジュールにおいて、該筐体の1つの側面に設けられた電気インターフェースと、該筐体の前記側面に対向する他の側面に設けられた光インターフェースと、該光変調器には、該変調電極に該高周波信号を導入するためのフレキシブルな配線基板の一端が、該直方体の1つの短辺側から導出され、該配線基板の他端が該直方体の底面に沿って延びており、該容器内には、該光変調素子の片方又は両方の長辺側の側面に沿って配置されると共に、該高周波信号が該光導波路に印加される作用部の開始部分の近傍に配置される中継基板を備え、該配線基板から該変調電極への該高周波信号の導入は、該中継基板を介して行われており、該配線基板と該中継基板との電気的接続は、該直方体の該容器の底面を貫通する複数のリードピンを用いており、かつ前記複数のリードピンは、一つの中継基板の異なる側面に分けて配置されており、該光変調器の前記短辺側と該電気インターフェースとの間に、該ドライバ回路が配置されていることを特徴とする。
【0009】
(2) 上記(1)に記載の光通信モジュールにおいて、該筐体内には、光受信器を有することを特徴とする。
【0010】
(3) 上記(1)又は(2)に記載の光通信モジュールにおいて、該筐体内には、デジタル信号処理回路を有することを特徴とする。
(4) 上記(1)乃至(3)のいずれかに記載の光通信モジュールにおいて、該電気インターフェース、該ドライバ回路、及び該配線基板は一直線上に配置されていることを特徴とする。
【0011】
(5) 上記(1)乃至(4)のいずれかに記載の光通信モジュールに使用される光変調器において、該光変調器の光入力部と光出力部とを配置する面が、前記直方体の同じ面、又は互いに直交する面のいずれかであることを特徴とする。
【0013】
(6) 上記(5)に記載の光変調器において、該光変調素子に対する光の入射側又は出射側には、光路変換手段が配置されていることを特徴とする。
【0014】
(7) 上記(5)又は(6)に記載の光変調器において、該光変調素子を構成する基板は、ニオブ酸リチウム基板であることを特徴とする。
【0015】
(8) 上記(5)乃至(7)のいずれかに記載の光変調器において、該光変調素子にDCバイアスを印加するためのDC入力端子、又は、該光変調素子内を伝搬する光波をモニタするためのモニタ信号出力端子は、該直方体の1つの長辺側に配置されていることを特徴とする。
【発明の効果】
【0016】
本発明は、光変調素子を直方体の容器内に収容した光変調器と、該光変調素子に高周波信号を入力するドライバ回路とを筐体内に収容した光通信モジュールにおいて、該筐体の1つの側面に設けられた電気インターフェースと、該筐体の前記側面に対向する他の側面に設けられた光インターフェースと、該光変調器は、該光変調素子に該高周波信号を導入するための配線基板の一端が、該直方体の1つの短辺側から導出されており、該光変調器の前記短辺側と該電気インターフェースとの間に、該ドライバ回路が配置されているため、光通信モジュールの小型化を図りながら、高周波信号の伝搬損失を抑制することが可能となる。
【図面の簡単な説明】
【0017】
【
図1】本発明の光通信モジュールに係る第1の実施例を説明する図である。
【
図2】本発明の光通信モジュールに係る第2の実施例を説明する図である。
【
図3】本発明の光通信モジュールに係る第3の実施例を説明する図である。
【
図4】本発明の光通信モジュールに係る第4の実施例を説明する図である。
【
図5】本発明の光変調器に係る第1の実施例を説明する図である。
【
図7】本発明の光変調器に係る第1の実施例の応用例を説明する図である。
【
図8】本発明の光変調器に係る第2の実施例を説明する図である。
【
図10】本発明の光変調器に係る第2の実施例の応用例を説明する図である。
【発明を実施するための形態】
【0018】
以下、本発明の光通信モジュール及びそれに用いる光変調器について、好適例を用いて詳細に説明する。
本発明の光通信モジュールは、
図1乃至4に示すように、光変調素子を直方体の容器内に収容した光変調器(OM)と、該光変調素子に高周波信号を入力するドライバ回路(Drv)とを筐体(1)内に収容した光通信モジュールにおいて、該筐体の1つの側面に設けられた電気インターフェース(EI)と、該筐体の前記側面に対向する他の側面に設けられた光インターフェース(OI)と、該光変調器(OM)は、該光変調素子に該高周波信号を導入するための配線基板(FPC)の一端が、該直方体の1つの短辺側から導出されており、該光変調器の前記短辺側と該電気インターフェースとの間に、該ドライバ回路(Drv)が配置されていることを特徴とする。
【0019】
図1は、本発明の光通信モジュールに関する第1の実施例を説明する図である。
1は光通信モジュールを構成する筐体であり、該筐体内には、光変調器(OM)、ドライバ回路(Drv)、半導体レーザ光源(LD)、光受信器(ICR)が配置されている。また、筐体1の左側(図面の左側)の側面には、電気インターフェース(EI)が設けられており、Txは送信側端子であり、Rxは受信側端子を構成している。
【0020】
ドライバ回路、光変調器、半導体レーザ光源、及び光受信器は、板状の回路基板(不図示)上に配置固定される。各部品の配置は、任意であるが、本発明においては、特に、光変調器の短辺側に電気インターフェースやドライバ回路を配置している。電気インターフェース(EI)の送信側端子(Tx)、ドライバ回路(Drv)、及び光変調器の配線基板(FPC)をほぼ一直線上に配置することで、高周波配線を短くすることができる。これにより、高周波配線における伝搬損失を抑制することが可能となる。その結果、光通信モジュールの性能劣化も防ぐことが可能となる。
【0021】
本発明では、光変調器の配線基板には、特許文献1及び2に開示されているように、フレキシブル印刷回路(FPC)が利用されている。特許文献1及び2に示すように、従来の光変調器では、光変調器を構成する直方体の容器において、長辺側から配線基板(FPC)の一端が導出されている。しかしながら、本発明では、送信側端子(Tx)、ドライバ回路(Drv)、及び光変調器の配線基板(FPC)をほぼ一直線上に配置するため、光変調器の短辺側に配線基板(FPC)の一端を導出している。
【0022】
図1には、送信側端子(Tx)からドライバ回路(Drv)へ、ドライバ回路(Drv)から配線基板(FPC)へと矢印が出ているが、これは高周波信号の流れを示している。また、半導体レーザ光源(LD)から光変調器(OM)の光入力部(Lin)に入る矢印は、光変調器への入射光を示している。光変調器の光出力部(Lout)から光インターフェース(OI)に至る矢印は、光変調器からの出射光を示している。
【0023】
光インターフェース(OI)から光受信器(ICR)への矢印は、光受信器に入る受信光を示しており、半導体レーザ光源(LD)から光受信器に入る矢印は、コヒーレント通信などで用いられる参照光を示している。そして、光受信器(ICR)から受信側端子(Rx)に至る矢印は、光受信器から出力される受信信号である。
【0024】
光変調器(OM)の長辺側に設けられる符号IFは、光変調素子にDCバイアスを印加するためのDC入力端子、又は光変調素子内を伝搬する光波をモニタするためのモニタ信号出力端子である。DC入力端子及び/又はモニタ信号出力端子を備えたインターフェースを、以下では「DC/モニタ用インターフェース」という。DC/モニタ用インターフェースは、
図1の直方体の容器の上側に配置されているが、これに限らず、当該容器の下側の長辺側に設けることも可能である。DC/モニタ用インターフェースは、コネクタピンが並列に配置された構造をしており、各コネクタピンが別々のものや、複数のコネクタピンを一体化したものなどを用いることが可能である。
【0025】
図2に示す光通信モジュールの第2の実施例では、光通信モジュールの筐体1内に、デジタル信号処理回路(DSP)が組み込まれている。デジタル信号処理回路では、多値符号化やFEC付与、高周波信号の位相調整などの信号処理を行なう。デジタル信号処理回路(DSP)を筐体内に配置する場合には、
図2に示すように、送信用端子(Tx)、デジタル信号処理回路(DSP)、ドライバ回路(Drv)、及び光変調器(OM)の配線基板(FPC)が一直線上に配置される。また、光受信器(ICR)の信号をデジタル信号処理回路(DSP)に入力し、偏波分離や分散処理、光源の位相ゆらぎ補償などの信号処理を行ない、送信された信号の復調やエラー訂正などが行なわれる。
【0026】
図1又は
図2において、光変調器の光入力部(Lin)と光出力部(Lout)は、光変調器の直方体の容器に対して、長辺側側面と、短辺側側面に各々設けられている。通常は、直方体の容器の互いに対向する2つの短辺側側面の各々に光入力部と光出力部とを設けている。本発明では、直方体の短辺側には配線基板(FPC)を配置しているため、同じ短辺側の側面に配線基板と光入力部(Lin)を共に配置することを避けるため、光入力部(Lin)を直方体の長辺側側面に配置変更している。
【0027】
本発明においては、同じ短辺側に配線基板と光入力部を共に配置すること否定しているわけではない。例えば、
図1又は2のように異なる面にこれらを配置する方が、配線基板(FPC)の回路基板への接続がし易く、また、光入力部に導入される光ファイバを、ドライバ回路(Drv)や電気インターフェース(EI)が配置されている狭い空間で取り回す作業も不要となり、光通信モジュールの組み立て作業を容易にすることが可能となる。
【0028】
図3の第3の実施例は、光変調器(OM)の光入力部(Lin)と光出力部(Lout)を、直方体容器の同じ短辺側側面に設けたものである。
また、
図4の第4の実施例は、光変調器(OM)の光入力部(Lin)と光出力部(Lout)を、直方体容器の同じ長辺側側面に設けたものである。
いずれの実施例も、それ以外は、
図1と同様の構成をしている。
このように、光変調器(OM)の光入力部(Lin)と光出力部(Lout)の配置を工夫することで、光通信モジュール内の部品のレイアウトを多様化することが可能となる。
【0029】
図3の第3の実施例のように、同じ短辺側側面に光入力部と光出力部を配置するには、例えば、2の光変調素子を並列に配置し、一方の光変調素子から出射した光波を、180度反転させて、他の光変調素子に入射するよう構成することが必要となる。また、一つの基板に往路用と復路用の光導波路を並べて形成する場合には、基板端面を反射面として利用したり、基板端面にGRINレンズの反射光学系を配置したり、PLC(平面型光回路)などの平面導波路基板で導波路を折り返したり、種々の構成を採用することが可能である。
【0030】
図5及び6は、光通信モジュールに組み込まれる光変調器(OM)の第1の実施例である。光変調器の直方体容器2内には、光変調素子(OME)が収容されている。光変調素子については、公知の技術が採用でき、例えば、ニオブ酸リチウムなどの電気光学効果を有する基板や半導体基板に、光導波路や変調電極等を組み込むことによって構成される。
【0031】
光変調素子(OME)への高周波信号の導入には、配線基板(FPC)、中継基板(RS1)が利用される。中継基板には、入力用の端子部分(丸印部分)と配線(長方形内の実線)が設けられている。配線基板(FPC)から中継基板への電気的接続は、容器の底面を貫通するリードピンが利用される。例えば、
図6の配線基板(FPC)の小さな4つの丸印部分の端子から、中継基板(RS1)に設けられた4つの丸印部分の端子に、リードピンで接続が行なわれている。
【0032】
中継基板(RS1)は、光変調素子(OME)の片側のみに配置されている。また、中継基板(RS1)は、入力用の端子部分(丸印部分)を全て、光変調素子(OME)に対向する中継基板の側面とは反対側となる中継基板の側面に配置している。これにより、中継基板の構造がシンプルとなり、端子間の接続もし易く、製造プロセスの効率化を図ることが可能となる。
【0033】
図5又は
図6に示すように、配線基板(FPC)は、光変調器の直方体容器2の短辺側から導出されている。この場合、配線基板(FPC)の他端は、
図6のように直方体の底面に沿って内側に延びて配置されている。配線基板(FPC)を高周波インターフェースとしてみた場合には、配線基板(FPC)の図面の横方向の長さは、短い方が好ましい。
【0034】
しかしながら、ニオブ酸リチウム基板(LN基板)を用いた光変調素子の場合、光導波路の分岐導波路や曲げ部分の長さは、LN基板の長手方向に長くなり、LN基板自体も細長い形状となる。そして、LN基板の短辺側と光導波路の作用部までの距離(数mmから十数mm)をLN基板上の高周波配線で繋ぐ場合は、配線基板(FPC)に同じ長さの高周波配線を設ける場合と比較し、配線の断面寸法が小さいことから高周波の伝搬損失が大きくなり、光変調器の広帯域化が困難となる。
【0035】
このため、
図5及び
図6に示すように、中継基板(RS1)は、光変調素子(OME)の作用部(高周波信号が光導波路に印加される部分)の開始部分の近傍に配置し、中継基板(RS1)の下側まで、配線基板(FPC)を延伸させている。
【0036】
DC/モニタ用インターフェース(IF)を介して、光変調素子(OME)にDCバイアスの印加や、光変調素子の基板上や周辺に配置された受光素子からの信号出力を行なっている。DC/モニタ用インターフェースと光変調素子との間には、必要に応じて中継基板(DMS)が利用される。
【0037】
図5及び
図6に示した光変調器の第1の実施例では、中継基板(RS1)は、リードピンと接続される端子部分(丸印部分)が、光変調素子(OME)に対向する中継基板の側面とは反対側となる中継基板の側面に形成されていた。これに対し、電気配線をより短く設定するには、
図7に示す応用例のように、光変調素子(OME)の長辺側側面に対して垂直な中継基板(RS2)の側面(
図7の中継基板(RS2)の左右の側面)に端子部分(丸印部分)を設けることも可能である。また、高周波信号間のクロストークを防止するため、
図7のように、中継基板の異なる側面に入力用の端子部分を配置することも可能である。このような配置にすることで、
図5、
図6の場合と比較して、ポート間の配線の長さの差を小さくすることができ、電気損失やポート間のスキュー(Skew)増大などのポート間の高周波特性差の発生を抑えることができる。
【0038】
光変調器(OM)の光が伝搬する経路について説明する。OS1は、光入力部(Lin)から入った光波を光変調素子(OME)の方向に約90度変更する光路変換手段であり、空間光学系や、平面光回路(PLC)、曲率半径を小さくして曲げた光ファイバ、さらにはプリズム等の反射手段やレンズ等の集光手段を組み合わせたマイクロオプティクスが利用される。
【0039】
半導体レーザ光は、光入力部(Lin)から入射し、光路変換手段OS1で伝搬方向を変更し、光変調素子(OME)に入射する。光変調素子内で、光変調を受けた光波は、光変調素子の
図5の右側端部から出射し、波長板や偏光ビームスプリッタ等を組み合わせた偏波合成手段(OS2)で合波され、光出力部(Lout)より出射する。当然、偏波合成を行なわない場合は、偏波合成手段(OS2)は省略することができる。
【0040】
また、
図4で示すように、光変調器の直方体の容器の長辺側に光出力部(Lout)を配置する場合には、符号OS2は、光路変換手段の機能を付与することが必要となる。なお、その場合は、偏波合成手段の機能は必ずしも必須ではない。
【0041】
このような光路変換手段(OS1等)が必要となる理由は、ニオブ酸リチウムなどの基板を用いた光変調素子では、光路を90度曲げるには、基板自体が大型化することになり、光変調器を小型化することが困難となる。このため、光変調素子の基板における光入力部や光出力部を基板の短辺側に設け、光路変換手段(OS1等)を使用して、光路を90度変更している。
【0042】
また、LN基板の短辺側に光学端面を設けることで、光学研磨面を得ることが容易となる。仮に、LN基板の長辺側に設けると、LN基板の長さは数cm程度であり、この長さにわたって光学研磨面を形成することは難しい。
【0043】
図8及び9は、光通信モジュールに組み込まれる光変調器(OM)の第2の実施例である。
図5及び6の実施例との違いは、2つの中継基板(RS3,RS4)は、光変調素子(OME)を挟むように、容器2内に配置されている。それ以外は、
図5及び6と同様である。
【0044】
図8の実施例では、一つの配線基板(FPC)から入力された配線を、2つの中継基板に分け、光変調素子の両方の長辺側の側面から高周波信号を導入することで、配線基板や中継基板を含む電気配線が長くなるのを抑制でき、高周波信号の伝搬損失を抑制することが可能となる。
【0045】
図8及び
図9に示した光変調器の第2の実施例では、中継基板(RS3,RS4)は、リードピンと接続される端子部分が、光変調素子(OME)に対向する中継基板の側面とは反対側となる中継基板の側面に形成されていた。これに対し、電気配線をより短く設定するには、
図10に示す応用例のように、光変調素子(OME)の長辺側の側面に対して垂直な中継基板(RS5,RS6)の側面(
図7の左側の側面)に端子部分(丸印部分)を設けることも可能である。また、高周波信号のクロストークを防止するため、
図10のように、中継基板の異なる側面に入力用の端子部分を配置することも可能である。
【産業上の利用可能性】
【0046】
以上説明したように、本発明によれば、光通信モジュールの小型化を図りながら、高周波信号の伝搬損失を抑制することが可能な光通信モジュール及びそれに用いる光変調器を提供することができる。
【符号の説明】
【0047】
EI 電気インターフェース
OI 光インターフェース
LD レーザ光源
OM 光変調器
Drv ドライバ回路
ICR 光受信器
DSP デジタル信号処理回路
IF DC/モニタ用インターフェース
FPC 配線基板
Lin 光入力部
Lout 光出力部
1 筐体
2 直方体容器
RS1~RS6 中継基板
OS1 光路変換手段
OS2 偏波合成手段及び/又は光路変換手段
OME 光変調素子
DMS 中継基板
Tx 送信側端子
Rx 受信側端子