IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ミツトヨの特許一覧

<>
  • 特許-表面性状測定装置の制御方法 図1
  • 特許-表面性状測定装置の制御方法 図2
  • 特許-表面性状測定装置の制御方法 図3
  • 特許-表面性状測定装置の制御方法 図4
  • 特許-表面性状測定装置の制御方法 図5
  • 特許-表面性状測定装置の制御方法 図6
  • 特許-表面性状測定装置の制御方法 図7
  • 特許-表面性状測定装置の制御方法 図8
  • 特許-表面性状測定装置の制御方法 図9
  • 特許-表面性状測定装置の制御方法 図10
  • 特許-表面性状測定装置の制御方法 図11
  • 特許-表面性状測定装置の制御方法 図12
  • 特許-表面性状測定装置の制御方法 図13
  • 特許-表面性状測定装置の制御方法 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-13
(45)【発行日】2022-05-23
(54)【発明の名称】表面性状測定装置の制御方法
(51)【国際特許分類】
   G01B 5/28 20060101AFI20220516BHJP
   G01B 5/20 20060101ALI20220516BHJP
【FI】
G01B5/28 102
G01B5/20 C
【請求項の数】 4
(21)【出願番号】P 2018125664
(22)【出願日】2018-06-30
(65)【公開番号】P2020003436
(43)【公開日】2020-01-09
【審査請求日】2021-05-12
(73)【特許権者】
【識別番号】000137694
【氏名又は名称】株式会社ミツトヨ
(74)【代理人】
【識別番号】100143720
【弁理士】
【氏名又は名称】米田 耕一郎
(74)【代理人】
【識別番号】100080252
【氏名又は名称】鈴木 征四郎
(72)【発明者】
【氏名】石岡 鷹幸
(72)【発明者】
【氏名】片山 実
【審査官】國田 正久
(56)【参考文献】
【文献】特開平9-229607(JP,A)
【文献】特開2007-198791(JP,A)
【文献】特開2018-25507(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 5/20
G01B 5/28
(57)【特許請求の範囲】
【請求項1】
表面性状測定装置の制御方法であって、
前記表面性状測定装置は、
測定対象物の測定対象面に接触しながら前記測定対象面を倣い走査することによって前記測定対象面の表面性状を測定する測定器と、
前記測定器が前記測定対象面に沿って倣い移動するように前記測定器と前記測定対象物とを三次元的に相対移動させる相対移動機構と、を具備し、
前記測定器は、
回転軸を支点として円弧運動可能に支持された測定アームと、
前記測定アームの先端に設けられたスタイラスと、
前記測定アームの円弧運動による変位を検出する変位検出器と、を備えており、
鉛直方向をZ軸方向とし、Z軸方向に直交する一方向をX軸方向とし、
当該表面性状測定装置の制御方法は、
前記相対移動機構によって前記測定器と前記測定対象面とが接近するようにZ軸方向において相対移動させ、
前記スタイラスの先端が前記測定対象面に接触したことを検知し、
前記スタイラスの先端が前記測定対象面に接触してから前記測定アームが水平になるまでに必要な前記測定器と前記測定対象物とのZ軸方向の相対変位量ΔZ0を算出し、
前記測定器と前記測定対象物とが前記ΔZ0分だけZ軸方向に相対移動したときに前記スタイラスの先端に生じるX軸方向の変位量ΔX0を算出し、
前記相対移動機構によって前記測定器と前記測定対象物とをZ軸方向に前記ΔZ0だけ相対移動させて前記測定アームを水平にすると同時に、前記相対移動機構によって前記測定器と前記測定対象物とをX軸方向に前記ΔX0だけ相対変位させる
ことを特徴とする表面性状測定装置の制御方法。
【請求項2】
請求項1に記載の表面性状測定装置の制御方法において、
X軸に平行で前記回転軸を通る軸をU軸とし、
Z軸に平行であって前記測定アームが水平であるときの前記スタイラスの先端を通る軸をW軸とし、
U軸とW軸との交点を第1主点Qとし、
前記スタイラスの先端を第2主点Dとし、
前記第1主点Qから前記第2主点Dまでの長さHを先端突出し長Hとし、
前記回転軸から前記第1主点Qまでの長さLをアーム長Lとし、
前記第2主点Dが前記測定対象面に接触したときの前記第1主点QのW座標値をQw0とし、かつ、前記第2主点DのW座標値をDw0とするとき、
前記ΔZ0は、Dw0+Hであり、
前記ΔX0は次の式で与えられる
ことを特徴とする表面性状測定装置の制御方法。
【数4】
【請求項3】
請求項1または請求項2に記載の表面性状測定装置の制御方法において、
前記スタイラスの先端が前記測定対象面に接触したことを検知した時点で、前記測定器と前記測定対象面との相対移動を一時停止させる
ことを特徴とする表面性状測定装置の制御方法。
【請求項4】
表面性状測定装置の制御方法であって、
前記表面性状測定装置は、
測定対象物の測定対象面に接触しながら前記測定対象面を倣い走査することによって前記測定対象面の表面性状を測定する測定器と、
前記測定器が前記測定対象面に沿って倣い移動するように前記測定器と前記測定対象物とを三次元的に相対移動させる相対移動機構と、を具備し、
前記測定器は、
回転軸を支点として円弧運動可能に支持された測定アームと、
前記測定アームの先端に設けられたスタイラスと、
前記測定アームの円弧運動による変位を検出する変位検出器と、を備えており、
鉛直方向をZ軸方向とし、Z軸方向に直交する一方向をX軸方向とし、
当該表面性状測定装置の制御方法は、
前記相対移動機構によって前記測定器と前記測定対象面とが接近するようにZ軸方向において相対移動させ、
前記スタイラスの先端が前記測定対象面に接触したことを検知し、
前記スタイラスの先端が前記測定対象面に接触した後、前記測定器と前記測定対象面とのZ軸方向の相対移動を所定時間継続し、
前記所定時間の間に前記スタイラスの先端に生じるX軸方向の変位量ΔXGを算出し、
前記相対移動機構によって前記測定器と前記測定対象物とをZ軸方向に相対移動させながら、前記相対移動機構によって前記測定器と前記測定対象物とをX軸方向に前記ΔXGだけ相対変位させる
ことを特徴とする表面性状測定装置の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表面性状測定装置の制御方法に関する。
【背景技術】
【0002】
測定対象物の表面をスタイラスで倣い走査することで測定対象物の表面の性状(輪郭、粗さ、うねりなど)を測定する表面性状測定装置が知られている(例えば特許文献1(特開2012-225742号公報))。
【0003】
図1は、表面性状測定装置100を示す図である。
表面性状測定装置100は、表面性状測定機200と、制御装置300と、を備える。
【0004】
表面性状測定機200は、ベース210と、ステージ220と、相対移動機構230と、測定器270と、を備える。
【0005】
ステージ220は、ベース210上に配置されており、ステージ220の上面に測定対象物Wが載置される。
【0006】
相対移動機構230は、測定器270とステージ220とを相対移動させる。相対移動機構230としては、Y軸駆動機構240と、Z軸駆動機構250と、X軸駆動機構260と、がある。Y軸駆動機構240は、ベース210とステージ220との間に設けられ、ステージ220を水平方向の一方向(Y軸方向)へ移動させる。
ここでは、Y軸方向は、図1の紙面に垂直な方向とした。
【0007】
Z軸駆動機構250は、ベース210の上面に立設されたZコラム251と、Zコラム251に上下方向(Z軸方向)へ昇降移動可能に設けられたZスライダ252と、を備える。Y軸駆動機構240およびZ軸駆動機構250の詳しい図示は省略するが、例えばボールねじ軸とこのボールねじ軸に螺合されたナット部材とを有する送りねじ機構で構成されていてもよい。
なお、Y軸駆動機構240にはベース210とステージ220との相対変位を検出するためのY方向位置検出器241(図5参照)が付設され、Z軸駆動機構250にはZスライダ252の昇降量を検出するためのZ方向位置検出器253(図5参照)が付設されている。
【0008】
X軸駆動機構260は、Zスライダ252の内部に設けられており、測定器270をX軸方向に移動させるものである。なお、X軸方向は、図1では紙面左右方向であり、すなわち、ステージ220の移動方向(Y軸方向)およびZスライダ252の移動方向(Z軸方向)に対して直交する方向である。
【0009】
図2は、X軸駆動機構260および測定器270の構成を示す図である。なお、図2では一例として、輪郭を測定する測定器270を示している。
図2においては、Zスライダ252の内部と、測定器270のケーシング276の内部を示している。X軸駆動機構260は、ガイドレール261と、Xスライダ262と、X方向位置検出器263と、送り機構264と、を備える。
【0010】
ガイドレール261がX方向に沿って固定的に設けられ、ガイドレール261を摺動可能にXスライダ262が設けられている。
X方向位置検出器263は、Xスライダ262のX軸方向位置を検出する。
送り機構264は、送りねじ軸265と、モータ266と、動力伝達機構267と、を有する。
送りねじ軸265とXスライダ262とは螺合している。モータ266の回転動力は動力伝達機構267を介して送りねじ軸265に伝達される。送りねじ軸265の回転によりXスライダ262がX軸方向に沿って移動する。
【0011】
さて次に測定器270の構成を説明する。
測定器270は、ステージ220に載置された測定対象物Wの測定対象面S(図1)に当接するスタイラス273を有し、スタイラス273の微小上下動を検出する。
測定器270は、ブラケット271と、測定アーム272と、スタイラス273と、バランスウェイト272Bと、W方向変位検出器274と、測定力付与手段275と、ケーシング276と、を備える。
【0012】
Xスライダ262にブラケット271が吊り下げ支持され、ブラケット271には、回転軸272Aを支点として上下方向へ揺動(円弧運動)できるように測定アーム272が支持されている。
スタイラス273は、測定アーム272の先端(図2中の左端)において測定アーム272の長手方向に対して垂直に突設されている。
ここでは、スタイラス273は下向きに設けられているとする。バランスウエイト272Bは、測定アーム272の基端側(図2中の右端)に位置調整可能に設けられている。
【0013】
W方向変位検出器274は、測定アーム272の円弧運動による回転角θを検出する。W方向変位検出器274は、測定アーム272の円弧運動の方向に沿って湾曲したスケール目盛り(不図示)を有するスケール274Aと、スケール274Aに対向して設けられた検出ヘッド274Bと、を有する。スケール274Aは、測定アーム272の基端側において、測定アーム272と一体的に変位するように測定アーム272に固定されている。
また、検出ヘッド274Bは、図示しない支持部材により、ブラケット271に固定的に設けられている。測定アーム272の円弧運動は検出ヘッド274Bにより検出され、検出ヘッド274Bは、測定アーム272の円弧運動量に対応した数のパルス信号(変位検出パルス信号)を出力する。
【0014】
いま、測定アーム272およびスタイラス273の変位を表わすための座標軸を図2図3のようにとる。水平のときの測定アーム272を基準姿勢(初期位置)とする。
X軸に平行で回転軸272Aを通る軸をU軸とする。そして、Z軸に平行であって、測定アーム272が水平であるときのスタイラス273の先端Dを通る軸をW軸とする。また、スタイラス273と測定アーム272との接合部をスタイラス273の基端Qとする。
【0015】
W方向変位検出器274が直接に検出するのは測定アーム272の傾きθである。
測定アーム272の長さ(L)およびスタイラス273の長さ(H)は既知である。(Lは、測定アーム272の回転軸272Aからスタイラス273の基端Qまでの長さである。)そこで、測定アーム272の長さ(L)と検出された測定アーム272の傾斜角(θ)とを含めた換算式により、W方向変位検出器274の検出値θからスタイラス273の基端QのW座標値(Qw)が求められる。
また、測定アーム272の長さ(L)とスタイラス273の長さ(H)と検出された測定アームの傾斜角(θ)とを含めた換算式により、W方向変位検出器274の検出値θからスタイラス273の先端DのW座標値(Dw)が求められる。
【0016】
Qw=-Lsinθ
Dw=-(Lsinθ+Hcosθ)
【0017】
念のため付言しておく。
図1から図3では直線状の測定アーム272と、この直線状の測定アーム272の先端に直角に突設されたスタイラス273と、を例示している。ただし、測定アーム272やスタイラス273にはその他の形状も有り得る。例えば、図4に例示するように測定アームの一部をコ字状に屈曲させることがある。
【0018】
この場合でも、水平のときの測定アーム272を基準姿勢(初期位置)として、X軸に平行で回転軸272Aを通る軸をU軸とする。そして、Z軸に平行であって、測定アーム272が水平であるときのスタイラス273の先端Dを通る軸をW軸とする。
このとき、計測にとって必要な点は、U軸とW軸との交点であるから、U軸とW軸との交点を点Qとする。
図4(A)の場合、点Qからスタイラス273の先端Dまでの長さがHとなる。
図4(B)は、測定アーム272を基準姿勢(初期位置、水平)にしたときにスタイラス273の先端DがU軸上にのるようにしている。この場合、スタイラス273の先端Dが点Qに一致しており、すなわち、Hはゼロである。
【0019】
図4のように異形の測定アームを用いた場合、スタイラス273の基端Qという呼称は適当ではないので、U軸とW軸との交点を第1主点Qと称する。
また、スタイラス273の先端Dを第2主点Dと称することにする。
また、スタイラス273の長さHという定義も適当ではないので、第1主点Qから第2主点D(スタイラス273の先端D)までの長さHを先端突出し長Hと称することにする。
また、回転軸272Aから第1主点Qまでの長さLをアーム長Lと称することにする。
【0020】
また、W方向変位検出器274は測定アーム272の傾きθを検出するとしたが、測定アーム272の傾きθではなく、QwあるいはDwを直接的あるいは間接的に検出するようにしてもよい。
Qw、Dwおよびθのうちのどれか一つを直接的あるいは間接的に検出できれば、残りの二つは関係式から求められる。
【0021】
測定力付与手段275は、測定アーム272の基端寄りに配置されたボイスコイルモータであり、測定アーム272の先端が下方向に付勢されるように測定アーム272に力を掛ける。
測定力付与手段275は、磁石275Aとボイスコイル275Bとで構成されている。磁石275Aは円筒形状であって、測定アーム272の途中に設けられている。ボイスコイル275Bは磁石275Aを貫通するように配置されている。ボイスコイル275Bは固定的に設けられており、例えば、ブラケット271に固定されていてもよい。
この構成により、スタイラス273と測定対象面Sとの接触力すなわち測定力を付与しかつその力を調整する測定力付与手段としての機能を果たす。
【0022】
以上の構成において、相対移動機構230(Y軸駆動機構240、Z軸駆動機構250、X軸駆動機構260)により、測定器270を測定対象物Wに対して三次元的に相対移動させることができる。そして、スタイラス273を測定対象面Sに接触させながら測定器270を測定対象面Sに沿って倣い移動させる。
このときのスタイラス273の微小上下動は測定アーム272の揺動量としてW方向変位検出器274で検出される。これにより、測定対象面の表面性状(輪郭、微小凹凸、粗さ、うねりなど)が得られる。
【0023】
ここで、測定器270の測定アーム272は測定対象面Sの微小な凹凸に応じて鋭敏に揺動することが求められる。したがって、測定アーム272を固定的に支持することはできない。測定アーム272は回転軸272Aによって揺動可能に軸支された状態で、バランスウェイト272B、測定力付与手段275からの付勢力および測定対象面Sからの反力によって微妙にバランスを取りながら支持される。スタイラス273が測定対象面Sに接触していないとき、測定力付与手段275からの付勢力により、測定アーム272の先端が下がった状態に測定アーム272は傾斜する。
【0024】
次に図5に制御装置300の機能ブロック図を示す。
制御装置300は、インターフェース部310と、中央制御部320と、メモリ330と、検出回路部340と、動作制御部350と、測定力制御部360と、を備える。
【0025】
制御装置300は、インターフェース部310を介して外部の入力手段311および出力手段312に接続されている。
入力手段311としては、キーボード、マウスの他、各種のデータ読み取り手段であってもよい。
出力手段312は、表示装置やプリンタの他、データ演算によって測定対象面の形状を求める各種演算装置であってもよい。
【0026】
中央制御部320は、いわゆるCPU(中央処理装置)であり、制御装置300全体の動作を統合的に管理する。メモリ330はROMまたはRAMであり、各種の動作制御プログラムが格納されているとともに、データ入出力時のバッファともなる。
【0027】
検出回路部340は、Y方向位置検出器241、Z方向位置検出器253、X方向位置検出器263およびW方向変位検出器274からの信号(例えばパルス信号)を検出し、測定データとしてインターフェース部310を介して外部出力する。
【0028】
動作制御部350は、Y軸駆動機構240、Z軸駆動機構250およびX軸駆動機構260に駆動信号を印加し、測定器270を測定対象面Sに沿って倣い移動させる。すなわち、動作制御部350は、中央制御部320からの指令を受けて、Y軸駆動機構240、Z軸駆動機構250およびX軸駆動機構260のそれぞれに駆動パルスを出力する。
【0029】
ところで、表面性状測定装置100には、自動的にZ軸駆動機構250を駆動させて、スタイラス273を測定対象物Wの測定開始点に自動的にセットする機能が予め組み込まれている(プログラムされている)(図6参照)。
本明細書では、この機能をオートセット機能と称することとし、オートセット機能を実行させるプログラムをオートセットプログラムと称することとする。
オートセット機能の実行の際、まず、スタイラス273が測定開始点の直上にくるようにする。すなわち、Z軸駆動機構250によりZスライダ252を上に引き上げた状態でX軸駆動機構260およびY軸駆動機構240の駆動によりスタイラス273が測定開始点の直上にくるようにする。それから、オートセット機能の実行を開始し、Z軸駆動機構250によりZスライダ252をゆっくりと下げていって、測定アーム272が水平になるようにする。このようにして、スタイラス273が測定開始点に自動的にセットされる。
【先行技術文献】
【特許文献】
【0030】
【文献】特開2012-225742号公報
【発明の概要】
【発明が解決しようとする課題】
【0031】
オートセット機能は便利であるが、次のような問題がある。
図7に図解する。
Z軸駆動機構250によりZスライダ252をゆっくりと下げていっていくと、スタイラス273の先端Dが測定対象面Sに接触する(図7中のPs0)。
スタイラス273の先端Dが測定対象面Sに接触したあと、さらにZ軸駆動機構250でZスライダ252を下げていくとき、測定アーム272が下がっていくと同時に測定アーム272には回転軸272Aを回転中心とする回転が生じる。
この測定アーム272の回転運動によりスタイラス273の先端Dが測定対象面Sに接触した状態で変位することになる(図7中の矢印A)。
オートセット時にスタイラス273が測定対象面S上を変位することをオペレータが予め考慮に入れていないことが多く、このため、予期しない不都合が生じる場合がある。
例えば、図8に例示するように、測定開始点の直ぐ横に段差があると、スタイラス273がこの段差にぶつかってしまう恐れがある。このままZスライダ252が下降を続けると、スタイラス273か測定対象物かのいずれかが破損することになる。
【0032】
あるいは、例えば図9に例示のように、測定対象面Sの粗さが大きいと、スタイラス273に大きなストレスが掛かることになる。
【0033】
スタイラス273の先端Dが測定対象面Sに接触した後に測定アーム272の回転運動によってスタイラス273の先端Dが変位してしまうと、その分、測定開始点がずれてしまうという問題がある。
【0034】
そこで、本発明の目的は、オートセット時にスタイラスの先端が変位しないようにする表面性状測定装置の制御方法を提供することにある。
【課題を解決するための手段】
【0035】
本発明の表面性状測定装置の制御方法は、
表面性状測定装置の制御方法であって、
前記表面性状測定装置は、
測定対象物の測定対象面に接触しながら前記測定対象面を倣い走査することによって前記測定対象面の表面性状を測定する測定器と、
前記測定器が前記測定対象面に沿って倣い移動するように前記測定器と前記測定対象物とを三次元的に相対移動させる相対移動機構と、を具備し、
前記測定器は、
回転軸を支点として円弧運動可能に支持された測定アームと、
前記測定アームの先端に設けられたスタイラスと、
前記測定アームの円弧運動による変位を検出する変位検出器と、を備えており、
鉛直方向をZ軸方向とし、Z軸方向に直交する一方向をX軸方向とし、
当該表面性状測定装置の制御方法は、
前記相対移動機構によって前記測定器と前記測定対象面とが接近するようにZ軸方向において相対移動させ、
前記スタイラスの先端が前記測定対象面に接触したことを検知し、
前記スタイラスの先端が前記測定対象面に接触してから前記測定アームが水平になるまでに必要な前記測定器と前記測定対象物とのZ軸方向の相対変位量ΔZ0を算出し、
前記測定器と前記測定対象物とが前記ΔZ0分だけZ軸方向に相対移動したときに前記スタイラスの先端に生じるX軸方向の変位量ΔX0を算出し、
前記相対移動機構によって前記測定器と前記測定対象物とをZ軸方向に前記ΔZ0だけ相対移動させて前記測定アームを水平にすると同時に、前記相対移動機構によって前記測定器と前記測定対象物とをX軸方向に前記ΔX0だけ相対変位させる
ことを特徴とする。
【0036】
また、本発明の表面性状測定装置の制御方法は、
表面性状測定装置の制御方法であって、
前記表面性状測定装置は、
測定対象物の測定対象面に接触しながら前記測定対象面を倣い走査することによって前記測定対象面の表面性状を測定する測定器と、
前記測定器が前記測定対象面に沿って倣い移動するように前記測定器と前記測定対象物とを三次元的に相対移動させる相対移動機構と、を具備し、
前記測定器は、
回転軸を支点として円弧運動可能に支持された測定アームと、
前記測定アームの先端に設けられたスタイラスと、
前記測定アームの円弧運動による変位を検出する変位検出器と、を備えており、
鉛直方向をZ軸方向とし、Z軸方向に直交する一方向をX軸方向とし、
当該表面性状測定装置の制御方法は、
前記相対移動機構によって前記測定器と前記測定対象面とが接近するようにZ軸方向において相対移動させ、
前記スタイラスの先端が前記測定対象面に接触したことを検知し、
前記スタイラスの先端が前記測定対象面に接触した後、前記測定器と前記測定対象面とのZ軸方向の相対移動を所定時間継続し、
前記所定時間の間に前記スタイラスの先端に生じるX軸方向の変位量ΔXGを算出し、
前記相対移動機構によって前記測定器と前記測定対象物とをZ軸方向に相対移動させながら、前記相対移動機構によって前記測定器と前記測定対象物とをX軸方向に前記ΔXGだけ相対変位させる
ことを特徴とする。
【図面の簡単な説明】
【0037】
図1】表面性状測定装置を示す図である。
図2】X軸駆動機構および測定器の構成を示す図である。
図3】測定アームを示す図である。
図4】測定アームの変形例を例示する図である。
図5】制御装置の機能ブロック図である。
図6】オートセット機能を説明するための図である。
図7】オートセット時の測定アームの動きを例示する図である。
図8】オートセット時の課題を説明するための図である。
図9】オートセット時の課題を説明するための図である。
図10】本発明の概要を説明するための図である。
図11】本発明の概要を説明するための図である。
図12】第1実施形態を説明するためのフローチャートである。
図13】第2実施形態を説明するためのフローチャートである。
図14】第3実施形態を説明するためのフローチャートである。
【発明を実施するための形態】
【0038】
(本発明の概要説明)
具体的な実施例の説明の前にまず本発明の概要を説明しておく。
まず図10を参照されたい。
スタイラス273が測定対象面Sに接触してから測定アーム272を水平にするまでに必要なZ軸駆動機構250の駆動量をΔZ0で表わすとする。
ΔZ0は、スタイラス273と測定対象面Sとの接触を検知した瞬間にスタイラス273の先端Dが初期位置から下がっている降下量に等しい(図10および図11参照)。
スタイラス273の先端Dの位置DwはW方向変位検出器274で検出した測定アームの傾斜角θから求められる。
いま、スタイラス273が測定対象面Sに接触した瞬間のスタイラス先端Dの位置をDw0で表わす。(ここでは、Dw0は負の数である。)すると、測定アーム272を水平にするまでに必要なZ軸駆動機構250の駆動量ΔZ0は、
ΔZ0=Dw0+H
となる。
ここで、Hは、スタイラス273の長さである。
【0039】
Dw0は、スタイラス273が測定対象面Sに接触した瞬間の測定アーム272の傾斜角θ0と、測定アーム272の回転軸272Aから第1主点Q(スタイラス273の基端Q)までの長さLと、を用いた換算式によって得られる。
Dw0=-(Lsinθ0+Hcosθ0)
なお、ΔZ0が負の数であるとは、Z軸駆動機構250が下向きに駆動することを表わすとする。
【0040】
次に、X軸駆動機構260の駆動を考える。
スタイラス273が測定対象面Sに接触してから測定アーム272が水平になるまでに測定アーム272およびスタイラス273が回転することによって第2主点D(スタイラス273の先端D)にX軸方向の変位が生じる。
まず、測定アーム272の回転によって第1主点Q(スタイラス273の基端Q)に生じるX軸方向の変位をΔQx0とする。
また、スタイラス273の回転によって第2主点D(スタイラス273の先端D)に生じるX軸方向の変位をΔDx0とする。
図11の関係からΔQx0とΔDx0とがそれぞれ求められ、両者を合算するとΔX0が求められる。
【0041】
【数1】
【0042】
ここで、スタイラス273が測定対象面Sに接触した瞬間の第1主点Q(スタイラス273の基端Q)の位置Qw0は、スタイラス273が測定対象面Sに接触した瞬間の測定アーム272の傾斜角θ0と、測定アーム272の回転軸272Aから第1主点Q(スタイラス273の基端Q)までの長さL(アーム長Q)と、を用いて
Qw0=-Lsinθ0
となる。
したがって、前式のΔX0は次のように変形できる。
【0043】
【数2】

【0044】
いま、Qw0は負の数であるから、ΔX0が正になるようにQw0の前の符号を調整している。
【0045】
スタイラス273が測定対象面Sに接触してから測定アーム272を水平にするまでにZ軸駆動機構250によりZスライダ252がΔZ0だけ下方に移動する。
この間に同時にX軸駆動機構により測定器をX方向にΔX0だけ移動させる。すなわちZ軸方向だけでなくX軸方向にも測定器を移動させてオートセットが行われる。すると、図10に例示のように、スタイラス273が測定対象面Sに接触してから第2主点D(スタイラス273の先端D)が変位することなくオートセットが完了する。
【0046】
本発明の実施形態を図示するとともに図中の各要素に付した符号を参照して説明する。
(第1実施形態)
図12は、本発明の第1実施形態を説明するためのフローチャートである。
この制御動作は、例えばメモリ330に格納されたオートセットプログラムを中央制御部320で実行することにより実現される。
オートセット機能において、スタイラス273が測定開始点の直上にきた後、Z軸駆動機構250によりZスライダ252がゆっくりと下がっていき、スタイラス273と測定対象物Wとが接触する。スタイラス273と測定対象物Wとの接触は、W方向変位検出器274によって検知される(ST110)。
【0047】
スタイラス273と測定対象物Wとの接触が検知されると(ST110)、ここでZスライダ252の下降を一時停止させる(ST120)。そして、このときのW方向変位検出器274の検出値θ0を取得する(ST130)。さらに、検出値θ0を用いて、第1主点Q(スタイラス273の基端Q)のW座標値Qw0と、第2主点D(スタイラス273の先端D)のW座標値Dw0を算出する(ST130)。
【0048】
さて、測定アーム272が水平から傾斜している場合、Zスライダ252を下げていって測定アーム272を水平にする必要がある。
測定アーム272が傾斜しているかどうかを判定する。
ここでは、測定アーム272の傾斜判定を第2主点D(スタイラス273の先端D)のW座標値Dw0を用いて行うこととする。すなわち、測定アーム272が水平であるときの第2主点D(スタイラス273の先端D)のW座標値をDwIと表し、第2主点D(スタイラス273の先端D)のW座標値Dw0とこのDwIとの差を傾斜指標値ΔDwとする。
ΔDw=DwI-Dw0
傾斜指標値ΔDwの値は、すなわち、測定アーム272の傾きに相当する。
傾斜指標値ΔDwが±1マイクロメートルを超えている場合(ST140:NO)、測定アーム272は傾斜していると判定できる。
したがって、さらにZスライダ252を下げていって測定アーム272を水平にする必要がある。
【0049】
測定アーム272を水平にするまでに必要なZスライダ252の降下量をΔZ0とする。すると、前述の通り、測定アーム272を水平にするまでに必要なZスライダ252の降下量ΔZ0は「Dw0+H」であるので、ΔZ0=Dw0+Hとする(ST150)。
【0050】
測定アーム272が水平になるまでZスライダ252をΔZ0だけ降下させたとき、第2主点D(スタイラス273の先端D)に生じるX軸方向の変位をΔX0とする。
前述の通り、ΔX0は、ΔQx0+ΔDx0=(L-Lcosθ0+Hsinθ0)である。
Qw0を使って表現すると、ΔX0は次のようになる(ST160)。
【0051】
【数3】

【0052】
このようにしてΔZ0およびΔX0が求まるので、測定アーム272が水平になるようにZスライダ252を降下させつつ、Xスライダ262を移動させる(ST170)。すなわち、Zスライダ252をΔZ0だけ降下させつつ、Xスライダ262をΔX0だけ移動させる。すると、図10に例示のように、スタイラス273が測定対象面Sに接触してから第2主点D(スタイラス273の先端D)が変位することなくオートセットが完了する。
【0053】
(第2実施形態)
次に第2実施形態を説明する。
第2実施形態の基本的構成は第1実施形態と共通しているが、第2実施形態ではZスライダを降下させながら、Zスライダが実際に降下した分に応じてXスライダの移動を補うようにする。
図13は、第2実施形態を説明するためのフローチャートである。
オートセット機能において、スタイラス273が測定開始点の直上にきた後、Z軸駆動機構250によりZスライダ252がゆっくりと下がっていき、スタイラス273と測定対象物Wとが接触する。スタイラス273と測定対象物Wとの接触は、W方向変位検出器274によって検知される(ST210)。
【0054】
スタイラス273と測定対象物Wとの接触が検知されても(ST210)、第2実施形態ではZスライダ252の下降をそのまま継続する(ST220)。
同時に、スタイラス273と測定対象物Wとの接触を検知したら(ST210)、このときのW方向変位検出器274の検出値θ0を取得する(ST230)。そして、第1主点Q(スタイラス273の基端Q)のW座標値Qw0と、第2主点D(スタイラス273の先端D)のW座標値Dw0を算出する。
さらに、第2実施形態では、検出値θ0を用いてΔX0を算出する(ST230)。すなわち、仮に現時点から測定アーム272が水平になるまでZスライダ252を(ΔZ0だけ)降下させたときに第2主点D(スタイラス273の先端D)に生じるX軸方向の変位ΔX0を求めておく。
【0055】
傾斜指標値ΔDw±1マイクロメートルを超えているか判定し、傾斜指標値ΔDwが±1マイクロメートルを超えている場合(ST240:NO)、測定アーム272は傾斜していると判定する。
この場合、さらにZスライダ252を下げていって測定アーム272を水平にする必要がある。そこで、所定時間(例えば1秒)をカウントする(ST250)。この間、Zスライダ252は降下を継続する。
【0056】
所定時間経過後、再度、W方向変位検出器274の検出値θ1を取得する(ST260)。そして、この時点での第1主点Q(スタイラス273の基端Q)のW座標値Qw1と、第2主点D(スタイラス273の先端D)のW座標値Dw1を算出する。
さらに、検出値θ1を用いてこの時点でのΔX1を算出する(ST260)。すなわち、仮に現時点から測定アーム272が水平になるまでZスライダ252を(ΔZ1だけ)降下させたときに第2主点D(スタイラス273の先端D)に生じるX軸方向の変位ΔX1を求める。
【0057】
さて、前回のΔX0と、それから所定時間経過後の今回のΔX1との差をΔXGとする(ST270)。
ΔXG=ΔX0-ΔX1
このΔXGは、Zスライダが所定時間降下したことによって生じる第2主点D(スタイラス273の先端D)の変位を意味する。そこで、ST280において、Xスライダ262をΔXGだけ変位させる。
【0058】
すると、Zスライダ252が降下したことによって生じる第2主点D(スタイラス273の先端D)の変位をXスライダの移動でキャンセルするので、第2主点D(スタイラス273の先端D)はほぼ動かないことになる。
【0059】
このあと、フローチャートのループを戻って、傾斜指標値ΔDwが±1マイクロメートルの範囲に入るまで(ST240:YES)、制御ループ(ST230-ST280)を繰り返す。
傾斜指標値ΔDwが±1マイクロメートルの範囲に入ったら(ST240:YES)、Zスライダ252の降下を停止して(ST290)、オートセットは完了である。すると、図10に例示のように、スタイラス273が測定対象面Sに接触してから第2主点D(スタイラス273の先端D)が変位することなくオートセットが完了する。
【0060】
Z軸駆動機構250とX軸駆動機構260とでは駆動速度に違いがあるし、互いの動きを同期させることは単純には難しい。したがって、第1実施形態の場合、Z軸駆動機構250の速度がX軸駆動機構260の速度よりも速かったり遅かったりすると、第2主点D(スタイラス273の先端D)の変位が大きくなる場合がある。この点、本第2実施形態によれば、所定時間ごとに調整サイクルを繰り返すので(ST230-ST280)、第2主点D(スタイラス273の先端D)の変位が大きくなることはない。
【0061】
(第3実施形態)
次に第3実施形態を説明する。
第3実施形態の基本的構成は第2実施形態と共通しているが、第3実施形態では、X軸駆動機構の駆動制御にあたって目標位置の座標値を与えるものとする。
図14は、第3実施形態を説明するためのフローチャートである。
図14のフローチャートにおいて、図13(第2実施形態)のフローチャートと同じ処理をするステップには対応するステップ番号を付し(下二桁は同じで200番代を300番代にした)、冗長な説明は割愛する。
第2実施形態(図13)と異なる点を説明する。
【0062】
図14のフローチャートにおいて、Zスライダ252を降下させてスタイラス273と測定対象物Wとの接触を検知したら(ST310)、このときのW方向変位検出器274の検出値θ0を取得する(ST330)。それと同時に、このときのX方向位置検出器263の検出値PX0を取得しておく(ST331)。このあとも、Zスライダの下降を継続し、所定時間ごとに、前回のΔX0とそれから所定時間経過後のΔX1との差をΔXGとして求める(ST370)。
【0063】
XスライダをΔXGだけ駆動させるにあたり、X軸駆動機構の目標位置Xcpを求める。この目標位置XcpはST331で取得済みのPX0と前記ΔXGとの和である(ST371)。X軸駆動機構に目標位置Xcpを与え、Xスライダを目標位置Xcpに移動させる(ST381)。
【0064】
このあと、フローチャートのループを戻って、傾斜指標値ΔDwが±1マイクロメートルの範囲に入るまで(ST340:YES)、制御ループ(ST330-ST381)を繰り返す。
傾斜指標値ΔDwが±1マイクロメートルの範囲に入ったら(ST340:YES)、Zスライダ252の降下を停止して(ST390)、オートセットは完了である。すると、図10に例示のように、スタイラス273が測定対象面Sに接触してから第2主点D(スタイラス273の先端D)が変位することなくオートセットが完了する。
【0065】
前記の第2実施形態ではXスライダの駆動制御にあたって、必要な移動量ΔXGの分の駆動パルスを与える相対移動を行っている。この場合、制御ループ(ST230-ST280)を繰り返すと累積誤差が大きくなってくる場合がある。この点、第3実施形態では、X軸駆動機構260の駆動制御にあたって目標位置Xcpを与えているので、Xスライダの位置決めの精度が高まる。
【0066】
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
上記実施形態では、スタイラスが下向きに設けられていて、オートセット時には測定器が上から下に降下する場合を説明した。これとは逆に、スタイラスを上向きに設け、オートセット時には測定器が下から上に上昇する場合もある。(例えば、下向きの面を測定する場合がある。)この場合でも本発明は同じように適用できる。
【符号の説明】
【0067】
100…表面性状測定装置、
200…表面性状測定機、210…ベース、220…ステージ、
230…相対移動機構、
240…Y軸駆動機構、241…Y方向位置検出器、
250…Z軸駆動機構、251…Zコラム、252…Zスライダ、253…Z方向位置検出器、
260…X軸駆動機構、261…ガイドレール、262…Xスライダ、263…X方向位置検出器、264…送り機構、265…送りねじ軸、266…モータ、267…動力伝達機構、
270…測定器、
271…ブラケット、272…測定アーム、272A…回転軸、272B…バランスウェイト、273…スタイラス、
274…W方向変位検出器、274A…スケール、274B…検出ヘッド、
275…測定力付与手段、275A…磁石、275B…ボイスコイル、
276…ケーシング、
300…制御装置、310…インターフェース部、311…入力手段、312…出力手段、320…中央制御部、330…メモリ、340…検出回路部、350…動作制御部、360…測定力制御部。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14