IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東京精密の特許一覧

特許7080692測定ヘッド及びその温度特性を調整する方法
<>
  • 特許-測定ヘッド及びその温度特性を調整する方法 図1
  • 特許-測定ヘッド及びその温度特性を調整する方法 図2
  • 特許-測定ヘッド及びその温度特性を調整する方法 図3
  • 特許-測定ヘッド及びその温度特性を調整する方法 図4
  • 特許-測定ヘッド及びその温度特性を調整する方法 図5
  • 特許-測定ヘッド及びその温度特性を調整する方法 図6
  • 特許-測定ヘッド及びその温度特性を調整する方法 図7
  • 特許-測定ヘッド及びその温度特性を調整する方法 図8
  • 特許-測定ヘッド及びその温度特性を調整する方法 図9
  • 特許-測定ヘッド及びその温度特性を調整する方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-27
(45)【発行日】2022-06-06
(54)【発明の名称】測定ヘッド及びその温度特性を調整する方法
(51)【国際特許分類】
   G01B 5/20 20060101AFI20220530BHJP
   B24B 49/04 20060101ALI20220530BHJP
   B23Q 17/20 20060101ALI20220530BHJP
【FI】
G01B5/20 C
B24B49/04 A
B23Q17/20 A
【請求項の数】 9
(21)【出願番号】P 2018062230
(22)【出願日】2018-03-28
(65)【公開番号】P2019174261
(43)【公開日】2019-10-10
【審査請求日】2021-02-12
(73)【特許権者】
【識別番号】000151494
【氏名又は名称】株式会社東京精密
(74)【代理人】
【識別番号】100163533
【弁理士】
【氏名又は名称】金山 義信
(72)【発明者】
【氏名】工藤 大輔
【審査官】飯村 悠斗
(56)【参考文献】
【文献】特開2017-198554(JP,A)
【文献】特開2002-287068(JP,A)
【文献】特開平06-160016(JP,A)
【文献】特開2002-039799(JP,A)
【文献】特開2017-181923(JP,A)
【文献】特開2017-167071(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 5/00- 5/30
G01B 21/00-21/32
B23Q 17/00-23/00
B24B 41/00-51/00
(57)【特許請求の範囲】
【請求項1】
ワークの外径を測定する接触式の測定ヘッドにおいて、
一端が前記ワークに当接する接触子を有する先端部とされ、他端は前記接触子の移動距離を検出するセンサ部のリニアスケールに接続されたセンサロッドと、該センサロッドを保持している測定ヘッド本体と、を有し、
前記センサ部は、
一端が前記測定ヘッド本体の基準位置に固定されている板状部材の第1プレートと、
前記第1プレートにスペーサを介して固定される第2プレートと、
前記リニアスケールの移動距離を検出することで前記接触子の移動距離を検出するセンサが設けられ、前記第2プレートに固定された基板と、
を備えたことを特徴とする測定ヘッド。
【請求項2】
前記第1プレートと前記第2プレートは板状部材とされ、少なくともいずれか一方に長穴が設けられ、その範囲で固定位置を任意に変えることを可能としたことを特徴とする請求項1に記載の測定ヘッド。
【請求項3】
前記第1プレートと前記第2プレートとで熱膨張率が異なることを特徴とする請求項1又は2に記載の測定ヘッド。
【請求項4】
前記第2プレートを前記第1プレートに比べて低熱膨張材としたことを特徴とする請求項1から3のいずれか1項に記載の測定ヘッド。
【請求項5】
前記センサロッドと前記第1プレートを鉄、前記リニアスケールを石英、前記第2プレートをNi系合金、前記測定ヘッド本体をアルミニウムとしたことを特徴とする請求項1から4のいずれか1項に記載の測定ヘッド。
【請求項6】
ワークの外径を測定する接触式の測定ヘッドにおいて、
一端が前記ワークに当接する接触子を有する先端部とされ、他端は前記接触子の移動距離を検出するセンサ部のリニアスケールに接続されたセンサロッドと、該センサロッドを保持している測定ヘッド本体と、を有し、
前記センサ部は、
一端が前記測定ヘッド本体の基準位置に固定されている板状部材の第1プレートと、
前記第1プレートにスペーサを介して固定される第2プレートと、
前記第2プレートに固定される取付板と、
前記リニアスケールの移動距離を検出することで前記接触子の移動距離を検出するセンサが設けられ、前記取付板に固定された基板と、
を備えたことを特徴とする測定ヘッド。
【請求項7】
前記第2プレートの材質は前記取付板に対して、より低熱膨張材としたことを特徴とする請求項6に記載の測定ヘッド。
【請求項8】
前記取付板は、取付穴の中央部にV字状の切込みが設けられていることを特徴とする請求項6又は7に記載の測定ヘッド。
【請求項9】
一端がワークに当接する接触子を有する先端部とされ、他端は前記接触子の移動距離を検出するセンサ部のリニアスケールに接続されたセンサロッドと、を有し、前記ワークの外径を測定する接触式の測定ヘッドの温度特性を調整する方法であって、
前記センサ部は、一端が前記測定ヘッドの本体の基準位置に固定されている板状部材の第1プレートと、前記第1プレートにスペーサを介して固定される第2プレートと、前記リニアスケールの移動距離を検出することで前記接触子の移動距離を検出するセンサが設けられ、前記第2プレートに固定された基板と、を有し、前記第1プレートと前記第2プレートとの固定位置を可変することを特徴とする測定ヘッドの温度特性を調整する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば円柱状のワークの外径等を高精度に測定する接触式の測定ヘッド及びその温度特性を調整する方法に関し、特に工作機械、研削装置等に測定ヘッドを取り付けて自動測定するのに好適である。
【背景技術】
【0002】
従来、製品の多様化、商品寿命の短期化といった市場の流れに対応する生産設備の手段として加工機のフレキシブル化、自動化については、小中量、大量生産に係らず、加工品質の維持、監視など、インプロセス計測が必要となる。インプロセス計測は、加工現場での環境下で信頼性の高い、高精度かつ高能率な測定が必要とされる。また、切粉、切削液、温度変動、機械振動などの影響を十分回避するために、接触子をワークに当接させる接触式の外径測定装置が広く用いられている。
【0003】
また、スリムでコンパクトなゲージで、隣接した多点計測を得意とし様々な形状の測定を正確に行うことができる高精度な接触式の小型デジタル測長器が知られている。小型デジタル測長器は、センサ部として直径10mm程度の中に小型光学スケールが内蔵され、隣接した多点測定を可能としたペンシル型高精度デジタル測長器、あるいはインプロセス用のマシンコントロールゲージ測定ヘッドとして用いられている。また、現場での外径測定、段差測定、厚さ測定、多点測定等のため、高精度のみならず、小型省スペース、防水性、一般的なクーラント・油に対する耐性等の高い耐環境性、繰り返し測定のための耐久性、メンテナンス不要で長寿命などが強く要望されている。
【0004】
さらに、自動車のエンジン等に用いられるクランクシャフト研削盤等のクランクシャフト加工機において、ジャーナルの軸線を中心に回転するクランクピンの外径寸法をクランクピンの研削加工中に外径測定用ゲージで測定することでインプロセス計測が行われ、例えば、特許文献1に記載されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2017-67512号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
ペンシル型高精度デジタル測長器、あるいはインプロセス用のマシンコントロールゲージ測定ヘッドとして用いられる小型デジタル測長器は、センサ部を小型省スペース、防水、油に対する耐性等の高い耐環境性とするため、センサ部の筐体内部の気密性を高める必要があり、その分回路の発熱により、熱がこもる。そして、センサ先端の光学スケールや光学式エンコーダを取り付ける部位が熱をもつことにより熱膨張し、光学スケールと光学式エンコーダとの相対位置関係が変化し、測定値に影響する恐れがあった。
【0007】
特許文献1に記載の外径測定用ゲージは、インプロセス用のマシンコントロールゲージ測定ヘッドであり、クランクピンの外径寸法をクランクピンの研削加工中に測定する。したがって、機械振動ばかりでなく、加工現場の環境下での大きな温度変動、加工中のワークからの伝熱の精度への影響を大きく受ける。したがって、クランクピンの測定のように複数個所を測定する場合、特に、測定ヘッドの温度特性を調整する必要があった。また、測定ヘッドの温度特性は、同じ形状の異なる熱膨張係数の部品を組み付けて調整を行う方法を取っている。
【0008】
上記のため、温度特性を調整するための部品は、複数の材料で同一形状の部品を事前に複数用意して交換しなければならず、在庫を管理することが困難であった。さらに、複数の材料で同一形状の部品を用意することは少量生産となること、調整時の部品交換の度に工数が掛かること、より、コスト高となっていた。
【0009】
本発明の目的は、上記従来技術の課題を解決し、少ない種類の材料、形状の部品で幅広く測定ヘッドの温度特性を調整することにある。また、それによって、在庫管理を容易とし、簡単で簡素化した調整、工数の削減、コスト低減を行うことにある。さらに、他の目的としては、加工現場の環境条件、特に温度条件に係らず、高精度で、安定した測定精度、繰り返し精度を確保することにある。
【課題を解決するための手段】
【0010】
上記目的を達成する本発明は、ワークの外径を測定する接触式の測定ヘッドにおいて、
一端が前記ワークに当接する接触子を有する先端部とされ、他端は前記接触子の移動距離を検出するセンサ部のリニアスケールに接続されたセンサロッドと、該センサロッドを保持している測定ヘッド本体と、を有し、前記センサ部は、一端が前記測定ヘッド本体の基準位置に固定されている板状部材の第1プレートと、前記第1プレートにスペーサを介して固定される第2プレートと、前記リニアスケールの移動距離を検出することで前記接触子の移動距離を検出するセンサが設けられ、前記第2プレートに固定された基板と、を備えたものである。
【0011】
また、上記のものにおいて、前記第1プレートと第2プレートは板状部材とされ、少なくともいずれか一方に長穴が設けられ、その範囲で固定位置を任意に変えることを可能としたことが望ましい。
【0012】
さらに、前記第1プレート前記第2プレートとで熱膨張率が異なることが望ましい。
【0013】
さらに、前記第2プレートを第1プレートに比べて低熱膨張材としたことが望ましい。
【0014】
さらに、前記センサロッドと前記第1プレートを鉄、前記リニアスケールを石英、前記第2プレートをNi系合金、前記測定ヘッド本体をアルミニウムとしたことが望ましい。
【0015】
また、本発明は、ワークの外径を測定する接触式の測定ヘッドにおいて、一端が前記ワークに当接する接触子を有する先端部とされ、他端は前記接触子の移動距離を検出するセンサ部のリニアスケールに接続されたセンサロッドと、該センサロッドを保持している測定ヘッド本体と、を有し、前記センサ部は、一端が前記測定ヘッド本体の基準位置に固定されている板状部材の第1プレートと、前記第1プレートにスペーサを介して固定される第2プレートと、前記第2プレートに固定される取付板と、前記リニアスケールの移動距離を検出することで前記接触子の移動距離を検出するセンサが設けられ、前記取付板に固定された基板と、を備えたものである。
【0016】
さらに、上記のものにおいて、前記第2プレートの材質は前記取付板に対して、より低熱膨張材としたことが望ましい。
【0017】
さらに、上記のものにおいて、前記取付板は、左右の前記取付穴の中央部に左右対称のV字状の切込みが設けられていることが望ましい。
【0018】
また、本発明は、一端がワークに当接する接触子を有する先端部とされ、他端は前記接触子の移動距離を検出するセンサ部のリニアスケールに接続されたセンサロッドと、を有し、前記ワークの外径を測定する接触式の測定ヘッドの温度特性を調整する方法であって、前記センサ部は、一端が前記測定ヘッド本体の基準位置に固定されている板状部材の第1プレートと、前記第1プレートにスペーサを介して固定される第2プレートと、前記リニアスケールの移動距離を検出することで前記接触子の移動距離を検出するセンサが設けられ、前記第2プレートに固定された基板と、を有し、前記第1プレートと第2プレートとの固定位置を可変することを特徴とする。
【発明の効果】
【0019】
本発明によれば、先端部に接触子を有するセンサロッドで接触子の移動距離を検出する測定ヘッドにおいて、一端が測定ヘッド本体の基準位置に固定されている板状部材の第1プレートにスペーサを介して第2プレートを固定し、センサが設けられた基板を第2プレートに固定するので、第1プレートと第2プレートの固定位置を可変するだけで、幅広く測定ヘッドの温度特性を調整することができる。
【0020】
したがって、在庫管理を容易とし、簡単で簡素化した調整、工数の削減を可能とできる。また、加工現場の環境条件、特に温度条件に係らず、高精度で、安定した測定精度、繰り返し精度を確保できる。
【図面の簡単な説明】
【0021】
図1】本発明の一実施形態に係る測定ヘッドの断面図
図2】本発明の一実施形態に係る測定ヘッド要部を矢印P方向から見た上面図
図3】本発明による一実施形態に係る測定ヘッド要部を矢印Q方向から見た下面図
図4】本発明による他の実施形態に係る外径測定器を備える研削装置の正面図
図5】本発明による他の実施形態に係る外径測定器を備える研削装置の側面図
図6】他の実施形態に係る外径測定器の先端部Sを一部断面とした平面図
図7】他の実施形態に係る外径測定器におけるセンサ部Gの断面図
図8】他の実施形態に係る測定ヘッド要部を矢印P方向から見た上面図
図9】他の実施形態に係る外径測定器の取付板の変位を説明する図
図10】他の実施形態に係わる取付板の詳細な形状を示す平面図
【発明を実施するための形態】
【0022】
以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の一実施例に係る測定ヘッド11の断面図であり、図2は測定ヘッド要部を矢印P方向から見た上面図、図3は測定ヘッド要部を矢印Q方向から見た下面図である。測定ヘッドは、例えばペンシル型高精度デジタル測長器、あるいはインプロセス用のマシンコントロールゲージ測定ヘッドとして用いられる小型デジタル測長器である。
【0023】
測定ヘッド11は、直径10mm程度の測定ヘッド本体11-1の中にセンサ部として小型光学スケールであるリニアスケール6が内蔵されている。測定ヘッド11-1の一端には、中央部にセンサロッド20が保持される。センサロッド20先端に設けられた接触子21は、測定対象であるワーク55に当接し、測定対象を押圧するようにバネ36によって付勢される。また、センサロッド20は、先端から測定ヘッド本体11-1を貫通してセンサ部Gまで伸びて接続されている。測定対象であるワーク55のサイズの変動は、センサロッド20の接触子21の移動距離として捉えられ、測定ヘッド本体11-1の他端側に設けられたセンサ部Gで検出するタイプである。
【0024】
センサロッド20はセンサ部Gでリニアスケール6と接続され、センサ4と共に、リニアセンサを構成する。センサ部Gでは、長方形の板状部材である第1プレート8aの一端が測定ヘッド本体11-1の基準位置11-2に固定されている。第1プレート8aには、スペーサ32を介して板状部材である第2プレート8bがねじ9によって固定される。ここで、第1プレート8aと第2プレート8bは、長手方向に長穴34-1、34-2がそれぞれ設けられ、その範囲で取付位置を任意に変えることができる。なお、長穴34-1、34-2はどちらか一方だけとしても同様である。
【0025】
基板3は第2プレート8bにねじ35-1、35-2で取り付けられ、基板3の中央部にはセンサ4が設けられる。リニアスケール6は、センサロッド20の移動と共に移動する。リニアスケール6には、例えば白黒の細かいパターンが描かれる。そして、センサ4はリニアスケール6のパターンへ発光してパターンの反射光を受光し、その移動量を検出する。
【0026】
温度上昇によるリニアスケール6側の伸びは、ワーク55の伸び、センサロッド20の伸び、リニアスケール6の伸びの和となる。センサ4側は、測定ヘッド本体11-1の伸び、第1プレート8aと第2プレート8bとによる伸びの和となる。リニアスケール6側の伸びに対してのセンサ4側の伸びを等しくすれば、リニアスケール6側の伸び量、移動量を補償できる。したがって、センサ4による検出誤差が少なくなり、温度上昇があっても高精度化を図ることができる。
【0027】
第1プレート8aと第2プレート8bとによる伸びは、長穴34-1、34-2を利用して固定位置を変えて、第1プレート8aの固定位置から測定ヘッド本体11-1の基準位置11-2までの距離、第2プレート8bの固定位置からセンサ4までの距離を可変すれば、温度上昇による伸びはそれぞれの差となり、温度上昇によるセンサ4側の伸びを調整できる。また、第1プレート8aと第2プレート8bとで熱膨張率が異なるようにしても、温度上昇によるセンサ4側の伸びを変えることができる。なお、第2プレート8bを第1プレート8aに比べて低熱膨張材とした方が調整範囲を広くすることができ、調整が容易となる。
【0028】
例えば、ワーク55、センサロッド20と、第1プレート8aを鉄とすると線膨張係数は、11.7×10-6となる。リニアスケール6を石英とすると線膨張係数は、10.3×10-6となる。第2プレート8bは低熱膨張材であるNi系合金とすると0.7×10-6となる。測定ヘッド本体11-1はアルミニウムとすると線膨張係数23.4×10-6となる。さらに、ワーク55の直径を25mm、温度変化を15℃とすると、リニアスケール6側の伸び量=ワーク55の伸び(11.7×10-6×(25/2)×15)+センサロッド20の伸び(長さを100mmとして、11.7×10-6×100×15)+リニアスケール6の伸び(長さを20mmとして、10.3×10-6×20×15)となる。
【0029】
センサ4側の伸び量は、第1プレート8aの固定位置から測定ヘッド本体11-1の基準となる位置までの距離をL、第2プレート8bの固定位置からセンサ4までの距離をL-5として、センサ4側の伸び量=測定ヘッド本体11-1の伸び(測定ヘッドの保持位置から測定ヘッド本体11-1の基準となる位置までの長さを30mmとして、23.4×10-6×30×15)+第1プレート8aの伸び(11.7×10-6×L×15)-第2プレート8bの伸び(0.7×10-6×(L-5)×15)となる。
【0030】
リニアスケール6側の伸び量=センサ4側の伸び量とすれば、L=74となる。したがって、ワーク55の直径を25mm、温度変化を15℃のとき、第1プレート8aと第2プレート8bとの固定位置Lを74mmとすれば温度変化を15℃によるリニアスケール6側の伸び量を相殺でき、温度変化による測定値の変化を無くすことができる。同様に、ワーク55の直径を45mmとするとL=85となり、ワーク55の直径、測定径に合わせて第1プレート8aと第2プレート8bとの固定位置Lを変えれば、温度変化による測定値の変化を無くして高精度化を図ることができる。
【0031】
次に、他の実施形態として、本発明をクランクピンの外径寸法をクランクピンの研削加工中に測定する研削装置へ適用した例として説明する。図4及び図5は、外径測定器10及びそれを備える研削装置80の概略図であり、図4は研削装置80の正面図、図5は研削装置80の側面図である。研削対象であるワーク55は、内燃機関のクランク軸が有するクランクピン55である。
【0032】
図4において、研削装置80では、回転運動(図1では反時計回りの回転)する砥石84が砥石支持部材83に回転可能に支持されている。なお、砥石84は図5示すように、回転駆動機構(モータ)88により回転駆動される。砥石支持部材83は、砥石84の回転軸に直角な方向に進退(B/F)可能に設けられた砥石ベース82に固定されている。
【0033】
砥石ベース82の下面には、間隔を置いてガイドレール81に係合する直動ガイド85が設けられている。直動ガイド85は、基礎に固定されたレール上を滑動する。砥石ベース82を進退させる直動機構86が砥石ベース82上に配置されている。
【0034】
砥石支持部材83の上部には、アーム12の一端が、回転中心12aで回転可能に取り付けられている。アーム12の他端には、外径測定器10が回転中心12bで回転可能に取り付けられている。砥石84にはワークであるクランクピン55が当接しており、外径測定器10の先端部はクランクピン55と砥石84との当接部とは異なる周方向位置で、クランクピン55に当接する。砥石84とクランクピン55とが安定して当接する。クランクピン55が旋回運動すると、それに応じて砥石84が進退(F/B)するが、外径測定器10はクランクピン55に追従して移動する。
【0035】
図5において、紙面の前側にはクランクシャフト50を駆動するクランクシャフト駆動部が、後側には砥石部がそれぞれ配置されている。クランクシャフト駆動部は、クランクシャフト50の両端部を回転支持する回転支持部62を有し、クランクシャフト50の一方端に取り付けた回転駆動機構(モータ)64により、クランクシャフト50は回転駆動される。
【0036】
クランクシャフト50の回転を図示しないセンサで検出して、制御装置100に入力信号94として入力する。一方、制御装置100からはモータ64を制御する制御出力信号96が指令される。同様に、砥石84と砥石ベース82を駆動する直動機構86から回転信号93や位置信号92が制御装置100に入力され、制御装置100からそれぞれ指令信号97,98が出力される。この時、外径測定器10からワークであるクランクピン55の外径が制御装置100に入力信号91として入力される。
【0037】
制御装置100は、これらの各入力信号92~94に基づいて各駆動装置64、88、86を駆動し、外径測定器10の入力信号91に基づいて、研削装置80がクランクピン55を所定値まで研削したか否かを判断する。そして、クランクピン55の外径が所定の許容範囲に入ったら、研削を終了する。
【0038】
図6から図8に、外径測定器10の詳細を示す。図6は、外径測定器10の先端部Sを一部断面とした平面図、図7は、本発明の他の実施例に係る外径測定器10におけるセンサ部Gの断面図である。図8は、測定ヘッド要部を矢印P方向から見た上面図である。図7で示す他の実施例は、クランクピンの外径寸法をクランクピンの研削加工中に測定する測定ヘッドである。図1、2で示した実施例との主な違いは、第2プレート8bに取付られていた基板3及びセンサ4が取付板1を介して第2プレート8bに固定される点にある。
【0039】
図4に示したように外径測定器10は、一端側をアーム12に回転可能に取り付けられた細長い概略矩形で箱状の測定ヘッド本体10-1と、それに固定されたセンサ部本体10-2を有している。測定ヘッド本体10-1の先端部Sには、中央部に外径測定センサであるセンサロッド20が保持されるように断面矩形状または台形状または円形の穴が貫通したVベース19が固定されている。
【0040】
Vベース19の先端部Sに設けられた接触子21は、測定対象であるワーク55に当接し、測定対象を押圧するように付勢される。また、センサロッド20は、先端部Sから測定ヘッド本体10-1を貫通してセンサ部Gまで伸びて接続されている。測定対象のサイズの変動は、センサロッド20の接触子21の移動距離として捉えられ、測定ヘッド本体10-1の他端側に設けられたセンサ部Gで検出するタイプである。
【0041】
Vベース19のワーク55に当接する側は、矩形断面をV字型にカットした形状であり、さらに、研削装置80に取り付けられた場合に上側になる部分は、砥石84との干渉を避けるため、上下方向をカットされた形状となっている。Vベース19の中央部を貫通して配置されるセンサロッド20はセンサ部Gでリニアスケール6と接続され、センサ4と共に、リニアセンサを構成する。先端部にルビー等の球で形成された接触子21を有する。
【0042】
Vベース19のV字を構成する斜面には、断面が台形状の上側取付板44と下側取付板45が取り付けられており、各取付板44、45にはワーク55に点接触するように配置された上側保持部材41と下側保持部材42が固定されている。ここで、上側保持部材41と下側保持部材42には、ワーク55を傷つける恐れが無いようまた研削加工中変形しないよう、金属製の丸棒または丸チューブを用いている。
【0043】
センサ部Gでは、第2プレート8bに取付板1が取付穴2を介して、ねじ5で固定される。取付穴2は複数、図8で長手方向Aに垂直にセンサロッド20を挟んで3か所ずつ取付板1の先端部S側に設けられ、固定はそのいずれか二箇所で行われる。いずれか二箇所を選択することにより、取付板1の固定される間隔を可変することができる。
【0044】
基板3の中央部にはセンサ4が設けられ、基板3は取付板1の基板取付穴7を介して固定される。リニアスケール6は、センサロッド20の移動と共に移動する。リニアスケール6には、例えば白黒の細かいパターンが描かれ、センサ4はリニアスケール6のパターンへ発光してパターンの反射光を受光し、その移動量を検出する。
【0045】
センサロッド20はセンサ部Gでリニアスケール6と接続され、センサ4と共に、リニアセンサを構成する。センサ部Gでは、長方形の板状部材である第1プレート8aがセンサ部本体10-2の基準位置10-3に固定されている。第1プレート8aには、スペーサ32を介して第2プレート8bがねじ9によって固定される。ここで、第1プレート8aと第2プレート8bは、長穴34-1、34-2(図2、3と同様)がそれぞれ設けられ、その範囲で取付位置を任意に変えることができる。
【0046】
温度上昇によるリニアスケール6側の伸びは、ワーク55の伸び、センサロッド20の伸び、リニアスケール6の伸びの和となる。センサ4側は、Vベース19から測定ヘッド本体10-1、センサ部本体10-2に至るまでの伸び、第1プレート8aと第2プレート8bとによる伸び、取付板1の伸びとなる。ただし、図8のように取付板1を取り付けた場合は、第1プレート8aと第2プレート8bとによる伸びと逆方向となる。リニアスケール6側の伸びに対してセンサ4側の伸びを等しくすれば、リニアスケール6側の伸び量、移動量を補償できる。したがって、センサ4による検出誤差が少なくなり、温度上昇があっても高精度化を図ることができる。
【0047】
第1プレート8aと第2プレート8bとによる伸びは、長穴34-1、34-2(図2、3)を利用して固定位置を変えて、第1プレート8aの固定位置から基準位置10-3までの距離、第2プレート8bの固定位置から取付板1の固定位置となる取付穴2までの距離を可変すれば、温度上昇による伸びはそれぞれの差となり、温度上昇によるセンサ4側の伸びを調整できる。また、本実施例では、第2プレート8bに取付板1が取付穴2を介して固定されるので、取付板1の伸びを可変することでセンサ4側の伸びをさらに調整できる。
【0048】
図9は他の実施例による外径測定器10に熱が加わったときの取付板1の変位を説明する図である。取付板1の材質はステンレスであり、第2プレート8bの材質は取付板1に対して、より低熱膨張材であるNi系合金を用いる。熱膨張率の大きい取付板1が低熱膨張材である第2プレート8bに二箇所、ねじ5(図8)で拘束される。
【0049】
したがって、取付板1はポアソン効果によって、拘束された部分の伸び(左右方向Bの歪)が拘束されていない方向(長手方向A)への変形(歪み)に変換される。つまり、拘束した部分の伸び量に応じて拘束されていない方向へ伸び量を変えることができる。
【0050】
図9の(a)では、3か所ずつ設けられた取付穴2のうち一番外側の位置で取付板1が第2プレート8bへ固定されている。(b)では一番内側の位置で取付板1が固定される。したがって、(a)の方が矢印方向の伸び量が(b)よりも大きくなる。
【0051】
図7で示した他の実施例によれば、センサ4側によるリニアスケール6側への移動量の補償は、第1プレート8aと第2プレート8bの固定位置を変えることに加えて、取付板1の伸び量を図9で示したように変えることで、さらに調整できる。したがって、温度上昇に対してより細密に調整が可能となり高精度化を図ることができる。
【0052】
図10は、取付板1の詳細な形状を示す平面図である。この形状は、熱膨張で左右方向Bの伸びを長手方向Aに効率良く変換するように定められる。固定部であるE部は、既に述べたように、取付穴2を複数設け、固定個所の間隔を変えることでセンサロッド20の伸び量などに応じて長手方向Aの伸び量を変えることができる。
【0053】
F部は、V字状の切込みFが左右の取付穴2の中央部に設けている。このV字状の切込みFによって、取付板1は切込みが無い場合に比べて、左右方向Bから力が加わった場合、長手方向Aへの伸びに変換される。さらに、取付穴2で低熱膨張材である第2プレート8bに固定されるので、取付板1には第2プレート8bが取付板1に相等する熱膨張材の場合と比較してより大きく逆方向へ圧縮応力が掛かる。そして、横方向に大きくなった伸びは長手方向Aに効率良く変換される。つまり、温度に対する長手方向Aの補償量を大きく、感度を高くする効果がある。
【0054】
また、V字状の切込みFの各角部は応力集中を避けるため、丸味を持たせるためRが付けられている。V字状の切込みFが無い形状、四角の切込み形状では、中央部で圧縮応力が相殺され縦方向への歪み(伸び)は大きく得られない。V字状の深さは、取付穴2の位置より深くすること、左右対称のV字とすること、が望ましい。
【0055】
H部は、図10で左右の略取付穴2の長手方向A(図9)に設けた貫通穴Hであり、V字状の切込みFと同様の作用がある。I部は、貫通穴Hのさらに長手方向Aに位置し、略取付穴2の中央部が長手方向Aに膨んだ円弧Iaとされている。つまり、貫通穴Hはセンサ部方向において切込みFと円弧Iaとの間に設けられている。
【0056】
円弧Iaの左右端Ibは、図10のように取付穴2から長手方向Aの距離が、中央部に比べて小さくなっている。したがって、温度上昇による伸び量は、中央部に比べて円弧Iaの左右端では小さくなり、基板取付穴7の間隔が広がることを防いでいる。これにより、基板3に加わる温度上昇による左右方向Bの応力を低減している。
【符号の説明】
【0057】
A…長手方向、B…左右方向、F…V字状の切込み、H…貫通穴、Ia…円弧、Ib…左右端、1…取付板、2…取付穴、3…基板、4…センサ、5、9、35-1、35-2…ねじ、6…リニアスケール、7…基板取付穴、8a…第1プレート、8b…第2プレート、10…外径測定器、10-1…ゲージ本体、10-2センサ部本体、10-3、11-2…基準位置、S…先端部、G…センサ部、11…測定ヘッド、11-1…測定ヘッド本体、12…アーム、12a、12b…回転中心、19…Vベース、20…センサロッド、21…接触子、30…測定機構、32…スペーサ、34-1、34-2…長穴、36…バネ、41…上側保持部材、42…下側保持部材、44…上側取付板、45…下側取付板、50…クランクシャフト、52…リアフランジ、53…ジャーナル、54…クランクウェブ、55…ワーク(クランクピン)、61…クランクシャフト・ベース、62、63…回転支持部、64…回転駆動機構(モータ)、80…研削装置、81…ガイドレール、82…砥石ベース、83…砥石支持部材、84…砥石、85…直動ガイド、86…直動機構、88…回転駆動機構(モータ)、91~94…入力信号、96~98…出力信号、100…制御装置
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10