(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-01
(45)【発行日】2022-06-09
(54)【発明の名称】超解像処理装置、方法及びプログラム
(51)【国際特許分類】
H04N 7/01 20060101AFI20220602BHJP
G06T 3/40 20060101ALI20220602BHJP
【FI】
H04N7/01 170
H04N7/01 350
H04N7/01 270
G06T3/40 730
(21)【出願番号】P 2020502911
(86)(22)【出願日】2019-02-12
(86)【国際出願番号】 JP2019004773
(87)【国際公開番号】W WO2019167597
(87)【国際公開日】2019-09-06
【審査請求日】2020-07-31
(31)【優先権主張番号】P 2018035353
(32)【優先日】2018-02-28
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】100083116
【氏名又は名称】松浦 憲三
(74)【代理人】
【識別番号】100170069
【氏名又は名称】大原 一樹
(74)【代理人】
【識別番号】100128635
【氏名又は名称】松村 潔
(74)【代理人】
【識別番号】100140992
【氏名又は名称】松浦 憲政
(72)【発明者】
【氏名】大関 誠
【審査官】益戸 宏
(56)【参考文献】
【文献】特開2010-278898(JP,A)
【文献】特開2014-222442(JP,A)
【文献】特開2005-115598(JP,A)
【文献】特開2010-206273(JP,A)
【文献】岸本大輝 他1名,時空間自己回帰モデルのスパース推定に基づく時間的超解像,2016年電子情報通信学会総合大会 情報・システム講演論文集1,2016年03月,p.12
(58)【調査した分野】(Int.Cl.,DB名)
H04N 7/01
G06T 3/40
H04N 1/387
G09G 3/00-5/00
(57)【特許請求の範囲】
【請求項1】
入力されるデータに対して超解像処理を施すことにより、前記入力されるデータよりも解像度が高いデータを出力する変換部であって、前記変換部から出力されるデータと前記変換部に入力されるデータの解像度の比が固定された変換部と、
前記変換部に入力されるデータ又は前記変換部から出力されるデータに対してダウンサンプリング処理を施すダウンサンプリング部と、
前記解像度の比に基づいて前記ダウンサンプリング処理におけるサンプリングレートを調整することにより、出力データの解像度を調整する処理部と
を備え、
前記変換部は、前記解像度の比が相互に異なる複数の変換部からなり、
前記処理部は、各変換部から出力されるデータを合成することにより前記出力データを生成する、超解像処理装置。
【請求項2】
前記処理部は、あらかじめ学習された第1解像度のデータと前記第1解像度のデータよりも高い解像度の第2解像度のデータとの対応関係に基づいて各変換部から出力されるデータを合成する方法を決定する、請求項
1記載の超解像処理装置。
【請求項3】
入力されるデータに対して超解像処理を施すことにより、前記入力されるデータよりも解像度が高いデータを出力する変換部であって、前記変換部から出力されるデータと前記変換部に入力されるデータの解像度の比が固定された変換部と、
前記変換部に入力されるデータ又は前記変換部から出力されるデータに対してダウンサンプリング処理を施すダウンサンプリング部と、
前記解像度の比に基づいて前記ダウンサンプリング処理におけるサンプリングレートを調整することにより、出力データの解像度を調整する処理部であって、あらかじめ学習された第1解像度のデータと前記第1解像度のデータよりも高い解像度の第2解像度のデータとの対応関係に基づいて前記サンプリングレートを調整する処理部と、
を備える超解像処理装置。
【請求項4】
前記出力データの要求解像度を設定する設定部を更に備え、
前記処理部は、前記解像度の比に基づいて前記サンプリングレートを調整することにより、前記出力データの解像度を前記要求解像度に一致させる、請求項1
から3のいずれか1項記載の超解像処理装置。
【請求項5】
前記変換部は、あらかじめ学習された第1解像度のデータと前記第1解像度のデータよりも高い解像度の第2解像度のデータとの対応関係に基づいて前記超解像処理を行う、請求項1から
4のいずれか1項記載の超解像処理装置。
【請求項6】
前記変換部は、前記変換部に入力されるデータの空間解像度を上げる処理を行う、請求項1から
5のいずれか1項記載の超解像処理装置。
【請求項7】
前記変換部は、前記変換部に入力されるデータが2次元又は3次元の画像データの場合に、前記画像データの少なくとも一方向に沿う解像度を上げる処理を行う、請求項
6記載の超解像処理装置。
【請求項8】
前記変換部は、前記変換部に入力されるデータが動画データの場合に、前記動画データのフレームレートを上げる処理を行う、請求項1から
7のいずれか1項記載の超解像処理装置。
【請求項9】
変換部により、入力されるデータに対して超解像処理を施すことにより、前記入力されるデータよりも解像度が高いデータであって、前記変換部から出力されるデータと前記変換部に入力されるデータの解像度の比が固定されたデータを出力する変換ステップと、
前記変換部に入力されるデータ又は前記変換部から出力されるデータに対してダウンサンプリング処理を施すダウンサンプリングステップと、
前記解像度の比に基づいて前記ダウンサンプリング処理におけるサンプリングレートを調整することにより、出力データの解像度を調整する処理ステップと
を備え、
前記変換部は、前記解像度の比が相互に異なる複数の変換部からなり、
前記処理ステップでは、各変換部から出力されるデータを合成することにより前記出力データを生成する、超解像処理方法。
【請求項10】
変換部により、入力されるデータに対して超解像処理を施すことにより、前記入力されるデータよりも解像度が高いデータであって、前記変換部から出力されるデータと前記変換部に入力されるデータの解像度の比が固定されたデータを出力する変換ステップと、
前記変換部に入力されるデータ又は前記変換部から出力されるデータに対してダウンサンプリング処理を施すダウンサンプリングステップと、
前記解像度の比に基づいて前記ダウンサンプリング処理におけるサンプリングレートを調整することにより、出力データの解像度を調整する処理ステップであって、あらかじめ学習された第1解像度のデータと前記第1解像度のデータよりも高い解像度の第2解像度のデータとの対応関係に基づいて前記サンプリングレートを調整する処理ステップと、
を備える超解像処理方法。
【請求項11】
入力されるデータに対して超解像処理を施すことにより、前記入力されるデータよりも解像度が高いデータを出力する変換機能であって、出力されるデータと入力されるデータの解像度の比が固定された変換機能であって、前記解像度の比が相互に異なる複数の変換機能からなる変換機能と、
前記変換機能による変換の前のデータ又は前記変換機能による変換の後のデータに対してダウンサンプリング処理を施すダウンサンプリング機能と、
前記解像度の比に基づいて前記ダウンサンプリング処理におけるサンプリングレートを調整することにより、出力データの解像度を調整する処理機能であって、
前記複数の変換
機能それぞれから出力されるデータを合成することにより前記出力データを生成する処理機能と、
をコンピュータに実現させる超解像処理プログラム。
【請求項12】
入力されるデータに対して超解像処理を施すことにより、前記入力されるデータよりも解像度が高いデータを出力する変換機能であって、出力されるデータと入力されるデータの解像度の比が固定された変換機能と、
前記変換機能による変換の前のデータ又は前記変換機能による変換の後のデータに対してダウンサンプリング処理を施すダウンサンプリング機能と、
前記解像度の比に基づいて前記ダウンサンプリング処理におけるサンプリングレートを調整することにより、出力データの解像度を調整する処理機能であって、あらかじめ学習された第1解像度のデータと前記第1解像度のデータよりも高い解像度の第2解像度のデータとの対応関係に基づいて前記サンプリングレートを調整する処理機能と、
をコンピュータに実現させる超解像処理プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は超解像処理装置、方法及びプログラムに係り、特に時空間における画像データの解像度を上げる超解像処理装置、方法及びプログラムに関する。
【背景技術】
【0002】
画像データの解像度を上げる超解像処理を行う超解像処理方法には、深層学習を用いるものがある(非特許文献1から非特許文献4)。深層学習を用いる超解像処理方法では、複数の解像度の入力画像又は中間特徴量を利用することで、超解像の性能を上げることが提案されている(非特許文献2から非特許文献4)。
【先行技術文献】
【非特許文献】
【0003】
【文献】Dong, C. et al., “Image Super-Resolution Using Deep Convolutional Networks”, 2014, European Conference on Computer Vision (ECCV)
【文献】Jia, X. et al., “Single Image Super-Resolution Using Multi-Scale Convolutional Neural Network”, [online], 2017, arXiv,[平成30年2月19日検索],インターネット<URL:https://arxiv.org/abs/1705.05084>
【文献】Ren, H. et al., “Image Super Resolution Based on Fusing Multiple Convolution Neural Networks”, 2017, IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop
【文献】Shi, W. et al., “Single Image Super-Resolution with Dilated Convolution based Multi-Scale Information Learning Inception Module”, 2017, IEEE International Conference on Image Processing (ICIP)
【発明の概要】
【発明が解決しようとする課題】
【0004】
超解像処理を行う場合、超解像処理の前後における画像データの解像度の比が固定の場合が多い。以下の説明では、超解像処理前の画像データの解像度に対する超解像処理後の画像データの解像度の比を超解像処理の倍率という。超解像処理の倍率が固定の場合、超解像処理によって、ある解像度の画像データから生成可能な画像データの解像度はこの倍率によって一意に定まる。このため、超解像処理によって、ある解像度の画像データから解像度が異なる複数の画像データを生成するためには、互いに倍率が異なる超解像処理エンジンを複数設ける必要がある。この場合、複数の超解像処理エンジンのそれぞれについて、学習用のデータセットを用意して学習を行う必要があるため、超解像処理エンジンの作成に要するコストが大きくなるという問題がある。
【0005】
非特許文献2には、複数の倍率(up-scale factors)に対応するモデル(general model)の学習を行うことが開示されている。非特許文献2に開示の技術では、あらかじめ学習した倍率に対応する解像度の画像データを生成することはできるものの、あらかじめ学習した倍率以外の任意の倍率に対応する解像度の画像データを生成することはできなかった。また、非特許文献2に記載の技術では、複数の倍率に対応する低解像度(LR)と高解像度(HR)の画像の組みを1つに結合するようになっており、複数の倍率ごとに学習用のデータセットを用意して学習を行う必要があった。
【0006】
本発明はこのような事情に鑑みてなされたもので、超解像処理においてあらかじめ定められた倍率以外の任意の倍率に対応する解像度の画像データを生成することが可能な超解像処理装置、方法及びプログラムを提供することを目的とする。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明の第1の態様に係る超解像処理装置は、入力されるデータに対して超解像処理を施すことにより、入力されるデータよりも解像度が高いデータを出力する変換部であって、変換部から出力されるデータと変換部に入力されるデータの解像度の比が固定された変換部と、変換部に入力されるデータ又は変換部から出力されるデータに対してダウンサンプリング処理を施すダウンサンプリング部と、解像度の比に基づいてダウンサンプリング処理におけるサンプリングレートを調整することにより、出力データの解像度を調整する処理部とを備える。
【0008】
第1の態様によれば、超解像処理の前又はあとにダウンサンプリングを行うことにより、あらかじめ学習した倍率以外の任意の倍率に対応する解像度の画像データを生成することが可能になる。
【0009】
本発明の第2の態様に係る超解像処理装置は、第1の態様において、出力データの要求解像度を設定する設定部を更に備え、処理部は、解像度の比に基づいてサンプリングレートを調整することにより、出力データの解像度を要求解像度に一致させるようにしたものである。
【0010】
本発明の第3の態様に係る超解像処理装置は、第1又は第2の態様において、変換部は、解像度の比が相互に異なる複数の変換部からなり、処理部は、各変換部から出力されるデータを合成することにより出力データを生成するようにしたものである。
【0011】
本発明の第4の態様に係る超解像処理装置は、第3の態様において、処理部は、あらかじめ学習された第1解像度のデータと第1解像度のデータよりも高い解像度の第2の解像度のデータとの対応関係に基づいて各変換部から出力されるデータを合成する方法を決定するようにしたものである。
【0012】
本発明の第5の態様に係る超解像処理装置は、第1から第4のいずれかの態様において、処理部は、あらかじめ学習された第1解像度のデータと第1解像度のデータよりも高い解像度の第2の解像度のデータとの対応関係に基づいてサンプリングレートを調整するようにしたものである。
【0013】
本発明の第6の態様に係る超解像処理装置は、第1から第5のいずれかの態様において、変換部は、あらかじめ学習された第1解像度のデータと第1解像度のデータよりも高い解像度の第2の解像度のデータとの対応関係に基づいて超解像処理を行うようにしたものである。
【0014】
本発明の第7の態様に係る超解像処理装置は、第1から第6のいずれかの態様において、変換部は、変換部に入力されるデータの空間解像度を上げる処理を行うようにしたものである。
【0015】
本発明の第8の態様に係る超解像処理装置は、第7の態様において、変換部は、変換部に入力されるデータが2次元又は3次元の画像データの場合に、画像データの少なくとも一方向に沿う解像度を上げる処理を行うようにしたものである。
【0016】
本発明の第9の態様に係る超解像処理装置は、第1から第8のいずれかの態様において、変換部は、変換部に入力されるデータが動画データの場合に、動画データのフレームレートを上げる処理を行うようにしたものである。
【0017】
本発明の第10の態様に係る超解像処理方法は、変換部により、入力されるデータに対して超解像処理を施すことにより、入力されるデータよりも解像度が高いデータであって、変換部から出力されるデータと変換部に入力されるデータの解像度の比が固定されたデータを出力する変換ステップと、変換部に入力されるデータ又は変換部から出力されるデータに対してダウンサンプリング処理を施すダウンサンプリングステップと、解像度の比に基づいてダウンサンプリング処理におけるサンプリングレートを調整することにより、出力データの解像度を調整する処理ステップとを備える。
【0018】
本発明の第11の態様に係る超解像処理プログラムは、入力されるデータに対して超解像処理を施すことにより、入力されるデータよりも解像度が高いデータを出力する変換機能であって、出力されるデータと入力されるデータの解像度の比が固定された変換機能と、変換機能による変換の前のデータ又は変換部による変換の後のデータに対してダウンサンプリング処理を施すダウンサンプリング機能と、解像度の比に基づいてダウンサンプリング処理におけるサンプリングレートを調整することにより、出力データの解像度を調整する処理機能とをコンピュータに実現させる。
【発明の効果】
【0019】
本発明によれば、超解像処理の前又はあとにダウンサンプリングを行うことにより、変換部において固定された超解像処理の倍率以外の任意の倍率に対応する解像度の画像データを生成することが可能になる。
【図面の簡単な説明】
【0020】
【
図1】
図1は、本発明の第1の実施形態に係る超解像処理装置を示すブロック図である。
【
図2】
図2は、本発明の第1の実施形態に係る超解像処理装置における学習に係る構成を抽出して示すブロック図である。
【
図3】
図3は、本発明の第1の実施形態に係る超解像処理方法を示すフローチャートである。
【
図4】
図4は、超解像処理工程を示すフローチャートである。
【
図5】
図5は、断層画像データの撮像方法を説明するための図である。
【
図6】
図6は、本発明の第2の実施形態に係る超解像処理装置を示すブロック図である。
【
図7】
図7は、本発明の第2の実施形態に係る超解像処理装置における学習に係る構成を抽出して示すブロック図である。
【
図8】
図8は、本発明の第2の実施形態に係る超解像処理方法を示すフローチャートである。
【発明を実施するための形態】
【0021】
以下、添付図面に従って本発明に係る超解像処理装置、方法及びプログラムの実施の形態について説明する。
【0022】
[第1の実施形態]
図1は、本発明の第1の実施形態に係る超解像処理装置を示すブロック図である。
【0023】
本実施形態に係る超解像処理装置10は、撮像装置100によって撮像された画像データを含む入力データP1を取得し、この入力データP1に対して超解像処理を行う。撮像装置100は、静止画又は動画を撮像する装置であり、例えば、医療機関に設置された検査装置を含む。
【0024】
以下の説明では、超解像処理とは、時空間における画像データの解像度を上げる処理をいう。超解像処理は、入力データP1に含まれる画像データの画素数を増加させて空間解像度を上げる処理を含む。例えば、入力データP1に含まれる画像データが3次元の画像データの場合には、超解像処理は、3次元の画像データ中の少なくとも一方向の画素数を増加させて、その方向に沿う解像度を上げる処理を含む。具体的には、入力データP1に含まれる画像データがCT(Computed Tomography)又はMRI(Magnetic Resonance Imaging)等の断層画像データの場合には、超解像処理は、断層画像の断面に垂直な方向、すなわち、スライス厚方向の画素数を増加させて、その方向に沿う解像度を上げる処理を含む。また、入力データP1に含まれる画像データが動画データの場合には、超解像処理は、動画データのフレームレートを上げる処理を含む。
【0025】
図1に示すように、本実施形態に係る超解像処理装置10は、制御部12、操作部14、メモリ16、記録部18、表示部20、データ取得部22、超解像処理部24、通信インターフェース(通信I/F:interface)26及び学習部28を含んでいる。
【0026】
制御部12は、超解像処理装置10の各部の動作を制御するCPU(Central Processing Unit)を含んでいる。制御部12は、バスを介して、超解像処理装置10の各部との間で制御信号及びデータの送受信が可能となっている。制御部12は、操作部14を介してオペレータからの操作入力を受け付け、バスを介してこの操作入力に応じた制御信号を超解像処理装置10の各部に送信して各部の動作を制御する。
【0027】
操作部14は、オペレータからの操作入力を受け付ける入力装置であり、文字入力等のためのキーボード、表示部20に表示されるポインタ及びアイコン等を操作するためのポインティングデバイス(例えば、マウス、トラックボール等)を含んでいる。なお、操作部14としては、キーボード及びポインティングデバイスに代えて、又は、キーボード及びポインティングデバイスに加えて、表示部20の表面にタッチパネルを設けてもよい。
【0028】
メモリ16は、制御部12等により行われる各種演算のための作業領域として使用されるRAM(Random Access Memory)、及び表示部20に出力される画像データを一時記憶するため領域として使用されるVRAM(Video Random Access Memory)を含んでいる。
【0029】
記録部18は、制御部12が使用する制御プログラム、及び超解像処理装置10から受信したデータ等を格納するストレージデバイスである。記録部18としては、例えば、HDD(Hard Disk Drive)等の磁気ディスクを含む装置、eMMC(embedded Multi Media Card)、SSD(Solid State Drive)等のフラッシュメモリを含む装置等を用いることができる。
【0030】
表示部20は、画像を表示するための装置である。表示部20としては、例えば、液晶モニタを用いることができる。
【0031】
通信I/F26は、ネットワークを介して、ほかの装置との間で通信を行うための手段であり、通信の方法に応じて送受信するデータの変換処理を行う。超解像処理装置10とほかの装置との間のデータの送受信方法としては、有線通信又は無線通信(例えば、LAN(Local Area Network)、WAN(Wide Area Network)、インターネット接続等)を用いることができる。
【0032】
データ取得部22は、通信I/F26を介して、撮像装置100によって撮像された画像データを含む入力データP1を取得する。
【0033】
超解像処理部24は、データ取得部22により取得した入力データP1に含まれる画像データに対して超解像処理を行う。超解像処理部24は、変換部30、ダウンサンプリング部32及び処理部34を含んでいる。
【0034】
変換部30は、入力された画像データに超解像処理を施し、より解像度が高い画像データに変換する超解像処理エンジンである。変換部30としては、例えば、深層学習(Deep Learning)及びニューラルネットワークを利用するものを用いることができる。
【0035】
ダウンサンプリング部32は、入力された画像データにダウンサンプリング処理を施し、より解像度が低い画像データに変換する。
【0036】
空間解像度を上げる超解像処理を行う場合には、変換部30は、入力された画像データの画素数を増加させる処理を行い、ダウンサンプリング部32は、入力された画像データの画素数を減少させる処理を行う。入力された画像データが2次元又は3次元の画像データの場合には、変換部30は、画像データ中の少なくとも一方向の画素数を増加させる処理を行い、ダウンサンプリング部32は、画像データ中の少なくとも一方向の画素数を減少させる処理を行う。入力された画像データが断層画像データの場合には、変換部30は、断層画像の断面に垂直なスライス厚方向の画素数を増加させる処理を行い、ダウンサンプリング部32は、断層画像の断面に垂直なスライス厚方向の画素数を減少させる処理を行う。また、動画データにおける時間の解像度を上げる超解像処理を行う場合には、変換部30は、動画データのフレームレートを増加させる処理を行い、ダウンサンプリング部32は、動画データのフレームレートを減少させる処理を行う。
【0037】
本実施形態では、変換部30に入力された画像データに対する変換の後の画像データの解像度の比、すなわち、超解像処理の倍率は固定である。ここで、超解像処理の倍率は、空間解像度を上げる超解像処理の場合、入力された画像データの画素数に対する変換の後の画像データの画素数の比、すなわち、(変換の後の画像データの画素数)÷(入力された画像データの画素数)である。超解像処理の倍率は、動画データにおける時間の解像度を上げる超解像処理の場合、入力された動画データのフレームレートに対する変換の後の動画データのフレームレートの比、すなわち、(変換の後の動画データのフレームレート)÷(入力された動画データのフレームレート)である。
【0038】
超解像処理の倍率が固定の場合、変換の後の画像データの解像度は、変換部30に入力された画像データの解像度によって一意に定まるので、任意の解像度の画像データを生成することができない。このため、本実施形態では、変換部30による変換の前又は後に、ダウンサンプリング部32を用いてダウンサンプリング処理を行うことにより、出力される画像データの解像度の調整を行う。
【0039】
処理部34は、操作部14を介して、超解像処理部24から出力される出力データの要求出力の設定の入力を受け付ける。ここで、要求出力とは、超解像処理後の出力データの解像度である。具体的には、要求出力は、2次元又は3次元データの場合には、空間解像度又は画素数であり、断層画像データの場合には、断層画像の断面に平行な方向における空間解像度又は画素数、あるいは断層画像の断面に垂直な方向におけるスライス厚であり、動画データの場合には、フレームレートである。これらの要求出力の値は、オペレータが操作部14を介して設定可能となっている。そして、処理部34は、変換部30による変換の前又は後の画像データに対して、ダウンサンプリング部32を用いてダウンサンプリング処理を行うことにより、出力される画像データの解像度を設定された要求出力に一致させる。具体的には、処理部34は、入力データの解像度、要求出力、変換部30の倍率に基づいて、ダウンサンプリング処理の実行タイミング及びサンプリングレートを決定する。
【0040】
ここで、2次元の画像データに対して超解像処理を行う場合を例にとって説明する。入力データP1に含まれる画像データの空間解像度を1200ppi(pixel per inch)、要求出力を2400ppi、変換部30における倍率を4倍とする。この場合、1200ppiの画像データを変換部30により変換すると、4800ppiの画像データが生成される。このため、ダウンサンプリングレートを1/2として、変換部30による変換の後の画像データをダウンサンプリングすることにより、2400ppiの画像データを生成することができる。
【0041】
なお、この場合、超解像処理部24に入力された画像データを、変換部30による変換の前に、ダウンサンプリングレートを1/2としてダウンサンプリングして600ppiの画像データを生成し、この600ppiの画像データを変換部30に入力して2400ppiの画像データに変換することも可能である。
【0042】
次に、動画データのフレームレートを上げる超解像処理を行う場合について説明する。入力データP1に含まれる動画データのフレームレートを30fps(frames per second)、要求フレームレートを40fps、変換部30における倍率を4倍とする。この場合、30fpsの動画データを変換部30により変換すると、120fpsの動画データが生成される。このため、ダウンサンプリングレートを1/3として、変換部30による変換の後の動画データをダウンサンプリングしてフレームを間引くことにより、40fpsの動画データを生成することができる。
【0043】
なお、この場合、超解像処理部24に入力された動画データを、変換部30による変換の前に、ダウンサンプリングレートを1/3としてダウンサンプリングして10fpsの動画データを生成し、この10fpsの画像データを変換部30に入力して40fpsの動画データに変換することも可能である。
【0044】
これにより、あらかじめ学習した倍率以外の倍率に対応する超解像処理を行うことが可能になる。
【0045】
なお、本実施形態に係る超解像処理部24は、空間解像度(画素数)と時間解像度(フレームレート)に関する超解像処理を行うための変換部及びダウンサンプリング部を両方備えるようにしてもよい。これにより、動画データについて、画素の補間とフレームレートの補間とを両方行うことが可能になる。
【0046】
また、本実施形態では、2次元の画像データにおいて、x軸方向と、x軸に直交するy軸方向において、各軸方向におけるダウンサンプリングレートを変えることにより、軸方向ごとの超解像処理の倍率を変えることが可能になる。3次元の画像データにおいても、xyz直交座標系の各軸方向におけるダウンサンプリングレートを変えることにより、軸方向ごとの超解像処理の倍率を変えることが可能になる。
【0047】
学習部28は、学習用のデータセットを用いて変換部30に学習を行わせる。学習部28は、学習後の変換部30を超解像処理部24に転送することにより、超解像処理エンジンである変換部30を更新する。
【0048】
図2に示すように、学習部28は、変換部30の学習を行う場合には、第1解像度の画像データPLと第1解像度よりも高い第2解像度の画像データPHの組みを含む学習用のデータセットTD1を取得する。ここで、第1解像度の画像データPL及び第2解像度の画像データPHは、変換部30における超解像処理の倍率に対応する解像度の画像データの組みである。第1解像度の画像データPLは、例えば、第2解像度の画像データPHを、超解像処理の倍率の逆数のダウンサンプリングレートでダウンサンプリングしたものであってもよい。また、第1解像度の画像データPL及び第2解像度の画像データPHが断層画像データの場合には、第1解像度の画像データPLは、例えば、第1解像度の画像データPLよりもスライス厚が小さい第2解像度の画像データPHを、超解像処理の倍率の逆数のダウンサンプリングレートで間引いたものであってもよい。
【0049】
学習部28は、第1解像度の画像データPLを入力とし、第2解像度の画像データPHを出力、すなわち、正解データとして変換部30に学習を行わせる。例えば、学習部28は、第1解像度の画像データPLを変換部30に入力したときの出力と、正解データである第2解像度の画像データPHとを比較して、変換部30の出力の特徴量と正解データの特徴量が実質的に同じ、又は両特徴量の差が許容しきい値以下になるように変換部30の学習を行う。これにより、超解像処理の倍率が固定の変換部30を生成及び更新することが可能になる。
【0050】
なお、学習部28は、超解像処理装置10とは別の外部装置に設けられていてもよい。この場合、外部装置における学習結果を用いて、超解像処理装置10の超解像処理エンジンである超解像処理部24の更新を行うようにしてもよい。
【0051】
また、学習部28は、あらかじめ学習された第1解像度の画像データと第1解像度よりも高い第2解像度の画像データとの対応関係に基づいて、ダウンサンプリングレートに関する学習を行う。学習部28は、ダウンサンプリングレートを変えた場合に、第1解像度の画像データPLから超解像処理部24によって生成される画像データと、第2解像度の画像データPHとを比較して、変換部30の出力の特徴量と正解データの特徴量が実質的に同じ、又は両特徴量の差が許容しきい値以下になるように処理部34の学習を行う。これにより、より適切なダウンサンプリングレートを設定することが可能になる。
【0052】
次に、本発明の第1の実施形態に係る超解像処理方法について、
図3及び
図4を参照して説明する。
図3は、本発明の第1の実施形態に係る超解像処理方法を示すフローチャートである。
図4は、超解像処理工程を示すフローチャートである。
【0053】
データ取得部22は、撮像装置によって撮像された画像データを含む入力データP1を取得して記録部18に格納する。
【0054】
操作部14を介して超解像処理の開始指示が入力されると、データ取得部22は、超解像処理対象の画像データを記録部18から取得して超解像処理部24に入力する(ステップS10)。
【0055】
次に、操作部14を介して、超解像処理後の出力データの要求出力の設定の入力を受け付けると、処理部34は、出力データの要求出力を設定する(ステップS12)。そして、処理部34は、入力データの解像度、要求出力及び変換部30の倍率に基づいて、ダウンサンプリング処理の実行タイミング及びサンプリングレートを決定し(ステップS14:処理ステップ)、変換部30及びダウンサンプリング部32を用いて超解像処理を行う(ステップS16)。
【0056】
図4に示すように、ダウンサンプリング処理の実行タイミングが変換前の場合(ステップS160)、処理部34は、ダウンサンプリング部32により、超解像処理部24に入力された変換前の入力データに対してダウンサンプリング処理を行う(ステップS162:ダウンサンプリングステップ)。そして、処理部34は、ダウンサンプリング処理済みのデータに対して、変換部30により超解像処理を行い、要求出力の画像データに変換する(ステップS164:変換ステップ)。
【0057】
一方、ダウンサンプリング処理の実行タイミングが変換後の場合(ステップS160)、処理部34は、変換部30により、超解像処理部24に入力された入力データに対して超解像処理を行う(ステップS166:変換ステップ)。そして、処理部は、変換部30により変換済みのデータに対して、ダウンサンプリング部32によりダウンサンプリング処理を行い、要求出力の画像データを生成する(ステップS168:ダウンサンプリングステップ)。
【0058】
次に、
図3に示すように、超解像処理により生成された要求出力の画像データは、超解像処理部24から表示部20に出力されて表示される(ステップS18)。
【0059】
[断層画像データの超解像処理への第1の実施形態の適用例]
以下、断層画像データ(CT画像データ)の断面に垂直な方向に関する超解像処理について説明する。
図5は、断層画像データの撮像方法を説明するための図である。以下の説明では、z軸を断層画像データの断面に垂直な方向とする3次元直交座標系を用いて説明する。
【0060】
図5に示すように、断層画像データを撮像する際には、撮像装置100に対して、被検者OBJが横臥した寝台STを+z方向に相対的に移動させながら、一定の間隔W1ごとに断層画像の撮像を行う。以下の説明では、この撮像の間隔W1をスライス厚という。
【0061】
本実施形態では、この変換部30と、ダウンサンプリング部32とを組み合わせて用いることにより、入力された断層画像データのスライス厚に関わらず、所望のスライス厚の断層画像データを生成することができる。
【0062】
表1に、変換部30の倍率が4倍、すなわち、変換部30が、スライス厚4mmの断層画像からスライス厚1mmの断層画像を生成することが可能な場合の処理の例を示す。
【0063】
【0064】
表1の例Aでは、超解像処理部24に入力される断層画像データのスライス厚が4mmであるのに対して、要求出力のスライス厚が1mmに設定されている。本例では、変換部30における超解像処理の倍率が4倍であり、入力されたスライス厚4mmの断層画像データに対して、変換部30により超解像処理を施すことにより、要求出力であるスライス厚1mmの断層画像データが生成される。このため、変換部30による変換の前後に、ダウンサンプリング部32によるダウンサンプリングは行われないか、又はダウンサンプリング部32による処理を恒等変換とする。
【0065】
表1の例B及び例Cでは、超解像処理部24に入力される断層画像データのスライス厚が4mmであるのに対して、要求出力のスライス厚が2mmに設定されている。
【0066】
例Bでは、変換部30による変換の前処理として、入力されたスライス厚4mmの断層画像データに対して、ダウンサンプリング部32によりダウンサンプリングレート1/2のダウンサンプリング処理が行われ、スライス厚8mmの断層画像データが生成される。次に、このスライス厚8mmの断層画像データに対して、変換部30により超解像処理を施すことにより、要求出力であるスライス厚2mmの断層画像データが生成される。
【0067】
例Cでは、入力されたスライス厚4mmの断層画像データに対して、変換部30により超解像処理を施すことにより、スライス厚1mmの断層画像データが生成される。次に、変換部30による変換の後処理として、このスライス厚1mmの断層画像データに対して、ダウンサンプリング部32によりダウンサンプリングレート1/2のダウンサンプリング処理が行われ、要求出力であるスライス厚2mmの断層画像データが生成される。
【0068】
表1の例D及び例Eでは、超解像処理部24に入力される断層画像データのスライス厚が3mmであるのに対して、要求出力のスライス厚が1mmに設定されている。
【0069】
例Dでは、変換部30による変換の前処理として、入力されたスライス厚3mmの断層画像データに対して、ダウンサンプリング部32によりダウンサンプリングレート3/4のダウンサンプリング処理が行われ、スライス厚4mmの断層画像データが生成される。そして、このスライス厚4mmの断層画像データに対して、変換部30により超解像処理を施すことにより、要求出力であるスライス厚1mmの断層画像データが生成される。
【0070】
例Eでは、入力されたスライス厚3mmの断層画像データに対して、変換部30により超解像処理を施すことにより、スライス厚0.75mmの断層画像データが生成される。次に、変換部30による変換の後処理として、このスライス厚0.75mmの断層画像データに対して、ダウンサンプリング部32によりダウンサンプリングレート3/4のダウンサンプリング処理が行われ、要求出力であるスライス厚1mmの断層画像データが生成される。
【0071】
なお、超解像処理の後処理としてダウンサンプリングを行う方が、変換部30における超解像処理に使用する画像データの解像度が高く、かつ情報量が多くなるためより好ましい。
【0072】
CT画像のスライス厚は多様であり、そのスライス厚によってCT画像を表示したときの見え方が異なる。一般に、スライス厚が厚い場合は凹凸が目立ち、スライス厚が薄い場合は臓器などを詳細に把握することが可能になる。本実施形態によれば、入力された断層画像データのスライス厚に関わらず、あらかじめ学習した倍率以外の倍率に対応する任意のスライス厚の断層画像データに変換することが可能になる。その結果、画像診断の目的及び対象に応じて、スライス厚が異なる断層画像データを用いた可視化が可能になり、断層画像データを用いて画像診断を行う医師の利便性が向上する。
【0073】
また、一般に、断層画像データを撮像する場合には、スライス厚を薄くするほど、断層画像データのノイズが増加する。このため、放射線の照射量を増加させて、断層画像データのノイズを減少させることが行われている。本実施形態によれば、入力された断層画像データのスライス厚から任意のスライス厚の断層画像データを生成することができるので、撮像時の放射線の照射量を減らすことができる。
【0074】
[第2の実施形態]
次に、本発明の第2の実施形態について説明する。
【0075】
図6は、本発明の第2の実施形態に係る超解像処理装置を示すブロック図である。なお、以下の説明において、第1の実施形態と同様の構成については、同一の符号を付して説明を省略する。
【0076】
本実施形態に係る超解像処理装置10Aの超解像処理部24は、第1変換部30A及び第2変換部30Bを備えている。第1変換部30A及び第2変換部30Bは、それぞれ、超解像処理の倍率が固定となっており、第1変換部30A及び第2変換部30Bの倍率は互いに異なっている。
【0077】
本実施形態では、超解像処理の倍率が異なる第1変換部30A及び第2変換部30Bを組み合わせて使用する。具体的には、処理部34は、入力データの解像度、要求出力、変換部30の倍率に基づいて、ダウンサンプリング処理の実行タイミング及びサンプリングレートに加えて、超解像処理に使用する変換部及びデータ処理方法を決定する。そして、第1変換部30A及び第2変換部30Bによる超解像処理の前後にダウンサンプリング処理を行い、第1変換部30A及び第2変換部30Bを用いて生成された画像データを連結することにより、任意の解像度の画像データを生成する。ここで、画像データの連結方法としては、画像データの画素値の加算値又は平均値を計算する方法もしくは各画像データの解像度に応じた重み付け加算を行う方法がある。重み付け加算を行う場合、合成対象の画像データのうち、解像度がより高い画像データの重みの値をより大きくすることが好ましい。
【0078】
また、画像データの連結方法は、あらかじめ学習された第1解像度の画像データと第1解像度よりも高い第2解像度の画像データとの対応関係に基づいて決定されるようにしてもよい。
【0079】
次に、画像データの連結方法の学習について説明する。
図7は、本発明の第2の実施形態に係る超解像処理装置における学習に係る構成を抽出して示すブロック図である。
【0080】
図7に示すように、学習部28は、変換部30の学習を行う場合には、第1解像度の画像データPLと第1解像度よりも高い第2解像度の画像データPHの組みを含む学習用のデータセットTD1を取得する。
【0081】
学習部28は、第1解像度の画像データPL、ダウンサンプリングのタイミング、ダウンサンプリングレート、及び第1変換部30A及び第2変換部30Bによって生成された画像データを連結するときのデータ処理方法を変えた場合に生成される画像データと、第2解像度の画像データPHとを比較して、変換部30の出力の特徴量と正解データの特徴量が実質的に同じ、又は両特徴量の差が許容しきい値以下になるように変換部30の学習を行う。
【0082】
次に、本発明の第2の実施形態に係る超解像処理方法について、
図8を参照して説明する。
図8は、本発明の第2の実施形態に係る超解像処理方法を示すフローチャートである。
【0083】
データ取得部22は、撮像装置によって撮像された画像データを含む入力データP1を取得して記録部18に格納する。
【0084】
操作部14を介して超解像処理の開始指示が入力されると、データ取得部22は、超解像処理対象の画像データを記録部18から取得して超解像処理部24に入力する(ステップS20)。
【0085】
次に、操作部14を介して、超解像処理後の出力データの要求出力の設定の入力を受け付けると、処理部34は、出力データの要求出力を設定する(ステップS22)。そして、処理部34は、入力データの解像度、要求出力並びに第1変換部30A及び第2変換部30Bの倍率に基づいて、超解像処理に使用する変換部、ダウンサンプリング処理の実行タイミング、サンプリングレート及びデータ処理方法を決定し(ステップS24:処理ステップ)、変換部30及びダウンサンプリング部32を用いて超解像処理を行う(ステップS26)。そして、超解像処理により生成された要求出力の画像データは、超解像処理部24から表示部20に出力されて表示される(ステップS28:変換ステップ及びダウンサンプリングステップ)。
【0086】
[断層画像データの超解像処理への第2の実施形態の適用例]
以下、断層画像データ(CT画像データ)の断面に垂直な方向に関する超解像処理について説明する。
【0087】
表2に、第1変換部30A及び第2変換部30Bの倍率がそれぞれ4倍及び2倍の場合の処理の例を示す。表2では、第1変換部30A及び第2変換部30Bをそれぞれモデル1及び2と記載する。
【0088】
【0089】
表2の例F及び例Gでは、超解像処理部24に入力される断層画像データのスライス厚が2mmであるのに対して、要求出力のスライス厚が1mmに設定されている。
【0090】
例Fでは、第2変換部30Bにおける超解像処理の倍率が2倍である。このため、処理部34は、入力されたスライス厚2mmの断層画像データに対して、第2変換部30Bにより超解像処理を施すことにより、要求出力であるスライス厚1mmの断層画像データを生成する。このため、変換の前後に、ダウンサンプリング部32によるダウンサンプリングを行わないか、又はダウンサンプリング部32による処理を恒等変換とする。
【0091】
これに対して、例Gでは、処理部34は、入力されたスライス厚2mmの断層画像データに対して、第1変換部30A及び第2変換部30Bにより超解像処理を施すことにより、スライス厚0.5mmの断層画像データとスライス厚1mmの断層画像データをそれぞれ生成する。そして、処理部34は、第1変換部30Aにより生成されたスライス厚0.5mmの断層画像データに対して、ダウンサンプリングレート1/2のダウンサンプリング処理を施して、スライス厚1mmの断層画像データを生成する。次に、処理部34は、第1変換部30Aによる変換後にダウンサンプリング処理を行って生成した断層画像データと、第2変換部30Bにより生成された断層画像データの平均画像を作成する。ここで、平均画像は、例えば、第1変換部30Aによる変換後にダウンサンプリング処理を行って生成した断層画像データと、第2変換部30Bにより生成された断層画像データの画素値の平均値を計算することにより生成してもよいし、又は重み付け平均を計算するようにしてもよい。例Gによっても、要求出力であるスライス厚1mmの断層画像データを生成することができる。
【0092】
表2の例H及び例Iでは、超解像処理部24に入力される断層画像データのスライス厚が3mmであるのに対して、要求出力のスライス厚が1mmに設定されている。
【0093】
例H及び例Iでは、処理部34は、入力されたスライス厚3mmの断層画像データに対して、第1変換部30A及び第2変換部30Bにより超解像処理を施すことにより、スライス厚0.75mmの断層画像データとスライス厚1.5mmの断層画像データをそれぞれ生成する。
【0094】
次に、例Hでは、処理部34は、第1変換部30Aにより生成されたスライス厚0.5mmの断層画像データに対して、ダウンサンプリングレート1/2のダウンサンプリング処理を施して、スライス厚1mmの断層画像データを生成する。次に、処理部34は、第1変換部30Aによる変換後にダウンサンプリング処理を行って生成した断層画像データと、第2変換部30Bにより生成された断層画像データについて、それぞれのスライス厚に応じた重み付け加算を行って合成画像を作成する。合成画像は、第1変換部30Aによる変換後にダウンサンプリング処理を行って生成した断層画像データと、第2変換部30Bにより生成された断層画像データの画素値の重み付け加算値又は重み付け平均値を計算することにより生成することができる。
【0095】
なお、例Hでは、第1変換部30A及び第2変換部30Bによりそれぞれ生成されたスライス厚0.75mmの断層画像データとスライス厚1.5mmの断層画像データに対して、ダウンサンプリング処理を行わずに、それぞれのスライス厚に応じた重み付け加算を行って合成画像を作成するようにしてもよい。
【0096】
一方、例Iでは、第1変換部30A及び第2変換部30Bによりそれぞれ生成されたスライス厚0.75mmの断層画像データとスライス厚1.5mmの断層画像データを用いて、学習により決定された連結方法にしたがって合成画像を作成する。
【0097】
これらの例によれば、2つの変換部と、ダウンサンプリング部32とを組み合わせて用いることにより、入力された断層画像データのスライス厚に関わらず、所望のスライス厚の断層画像データを生成することができる。
【0098】
なお、第2の実施形態では、変換部の数を2としたが、変換部の数はこれに限定されず、3以上であってもよい。また、第2の実施形態では、例えば、第1変換部30Aと第2の変換部30Bとを直列に接続して、第1変換部30Aにより変換した画像データを第2の変換部30Bにより更に変換することも可能である。
【0099】
また、第2の実施形態では、2次元の画像データにおいて、x軸方向と、x軸に直交するy軸方向において、各軸方向の超解像処理に使用する変換部及びダウンサンプリングレートのうちの少なくとも一方を変えることにより、軸方向ごとの超解像処理の倍率を変えることが可能になる。3次元の画像データにおいても、xyz直交座標系の各軸方向の超解像処理に使用する変換部及びダウンサンプリングレートのうちの少なくとも一方を変えることにより、軸方向ごとの超解像処理の倍率を変えることが可能になる。
【0100】
[プログラムの発明について]
本発明は、コンピュータに上記の処理(変換機能、ダウンサンプリング機能及び処理機能)を実現させるプログラム(超解像処理プログラム)、又は、このようなプログラムを格納した非一時的な記録媒体又はプログラムプロダクトとして実現することも可能である。このようなプログラムをコンピュータに適用することにより、コンピュータの演算手段、記録手段等に、本実施形態に係る超解像処理方法の各ステップに対応する機能を実現させることが可能になる。
【0101】
各実施形態において、各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)として実現することが可能である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(PLD:Programmable Logic Device)、ASIC(Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
【0102】
1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種または異種の2つ以上のプロセッサ(例えば、複数のFPGA、あるいはCPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(SoC:System On Chip)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
【0103】
さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(circuitry)である。本発明の他の態様はプロセッサが、入力されるデータに対して超解像処理を施すことにより、前記入力されるデータよりも解像度が高いデータであって、前記プロセッサから出力されるデータと前記プロセッサに入力されるデータの解像度の比が固定されたデータを出力し、前記プロセッサに入力されるデータ又は前記プロセッサから出力されるデータに対してダウンサンプリング処理を施し、前記解像度の比に基づいて前記ダウンサンプリング処理におけるサンプリングレートを調整することにより、出力データの解像度を調整する、超解像処理装置である。
【符号の説明】
【0104】
10、10A 超解像処理装置
12 制御部
14 操作部
16 メモリ
18 記録部
20 表示部
22 データ取得部
24 超解像処理部
26 通信インターフェース
28 学習部
30 変換部
30A 第1変換部
30B 第2変換部
32 ダウンサンプリング部
34 処理部
100 撮像装置
S10~S28、S160~S168 超解像処理方法の各工程