(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-07
(45)【発行日】2022-06-15
(54)【発明の名称】研磨装置および研磨方法
(51)【国際特許分類】
B24B 37/013 20120101AFI20220608BHJP
B24B 49/04 20060101ALI20220608BHJP
B24B 49/10 20060101ALI20220608BHJP
B24B 49/14 20060101ALI20220608BHJP
H01L 21/304 20060101ALI20220608BHJP
G01B 7/06 20060101ALI20220608BHJP
【FI】
B24B37/013
B24B49/04 Z
B24B49/10
B24B49/14
H01L21/304 622S
G01B7/06 M
(21)【出願番号】P 2018133606
(22)【出願日】2018-07-13
【審査請求日】2021-07-07
(73)【特許権者】
【識別番号】000000239
【氏名又は名称】株式会社荏原製作所
(74)【代理人】
【識別番号】100106208
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100140109
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100146710
【氏名又は名称】鐘ヶ江 幸男
(74)【代理人】
【識別番号】100117411
【氏名又は名称】串田 幸一
(74)【代理人】
【識別番号】100186613
【氏名又は名称】渡邊 誠
(72)【発明者】
【氏名】中村 顕
【審査官】城野 祐希
(56)【参考文献】
【文献】特開2018-9861(JP,A)
【文献】特開2018-1310(JP,A)
【文献】特表2017-506438(JP,A)
【文献】特開2005-121616(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B24B 37/013
B24B 49/04
B24B 49/10
B24B 49/14
H01L 21/304
G01B 7/06
(57)【特許請求の範囲】
【請求項1】
研磨面を有し回転可能な研磨テーブルと、
研磨対象の基板を前記研磨面に押圧して前記基板上の導電膜を研磨可能なトップリングと、
前記研磨テーブルに設置された渦電流センサと、
前記渦電流センサの出力に基づいて前記導電膜の膜厚を監視可能なモニタリング装置とを備え、
前記渦電流センサの出力はインピーダンス成分を含み、
2つの直交座標軸を有する座標系の各軸に、前記インピーダンス成分の抵抗成分とリアクタンス成分をそれぞれ対応させたときに、前記インピーダンス成分に対応する前記座標系上の点の少なくとも一部は、円の少なくとも一部を形成し、
前記モニタリング装置は、前記座標系上の点と前記円の中心との第1の距離を求め、前記インピーダンス成分から膜厚を求め、得られた前記膜厚を、得られた前記第1の距離を用いて補正可能であることを特徴とする研磨装置。
【請求項2】
前記モニタリング装置は、前記第1の距離に応じた所定の補正係数を用いて前記補正を行うことを特徴とする請求項1記載の研磨装置。
【請求項3】
前記モニタリング装置は、前記基板の周辺部において得られた前記膜厚に対して前記補正を行うことを特徴とする請求項1または2記載の研磨装置。
【請求項4】
前記モニタリング装置は、前記円の半径に相当する第2の距離を求め、前記第1の距離と前記第2の距離とを用いて、前記補正を行うことを特徴とする請求項1ないし3のいずれか1項に記載の研磨装置。
【請求項5】
前記研磨装置は、研磨中の前記基板の温度を直接または間接に測定可能な温度センサと、
補正された前記膜厚を、測定された前記温度を用いて、さらに補正可能な温度補正部とを有することを特徴とする請求項1ないし4のいずれか1項に記載の研磨装置。
【請求項6】
研磨対象の基板を研磨する研磨方法において、
研磨対象の基板を研磨面に押圧して前記基板上の導電膜を研磨するステップと、
前記導電膜の膜厚を測定するために、前記導電膜に渦電流を形成するとともに、形成された前記渦電流を検出するステップと、
前記検出された渦電流をインピーダンス成分として出力するステップと、
前記インピーダンス成分を入力されて、入力された前記インピーダンス成分から前記導電膜の膜厚を監視する、モニタリングステップとを有し、
2つの直交座標軸を有する座標系の各軸に、前記インピーダンス成分の抵抗成分とリアクタンス成分をそれぞれ対応させたときに、前記インピーダンス成分に対応する前記座標系上の点の少なくとも一部は、円の少なくとも一部を形成し、
前記モニタリングステップは、
前記座標系上の点と前記円の中心との第1の距離を求め、前記インピーダンス成分から膜厚を求め、得られた前記膜厚を、得られた前記第1の距離を用いて補正するステップを有することを特徴とする研磨方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、研磨装置および研磨方法に関するものである。
【背景技術】
【0002】
近年、半導体デバイスの高集積化・高密度化に伴い、回路の配線がますます微細化し、多層配線の層数も増加している。回路の微細化を図りながら多層配線を実現するためには、半導体デバイス表面を精度よく平坦化処理する必要がある。
【0003】
半導体デバイス表面の平坦化技術として、化学的機械研磨(CMP(Chemical
Mechanical Polishing))が知られている。CMPを行うための研磨装置は、研磨パッドが貼り付けられた研磨テーブルと、研磨対象物(例えば半導体ウェハなどの基板、又は基板の表面に形成された各種の膜)を保持するためのトップリングとを備えている。研磨装置は、研磨テーブルを回転させながら、トップリングに保持された研磨対象物を研磨パッドに押圧することによって研磨対象物を研磨する。
【0004】
研磨装置は、研磨対象物の膜厚に基づいて研磨工程の終点検知を行うために、導電膜の膜厚を監視するモニタリング装置を備えている。モニタリング装置は、研磨対象物の膜厚を検出する膜厚センサを備えている。膜厚センサは代表的には、渦電流センサが挙げられる。
【0005】
渦電流センサは、研磨テーブルに形成された穴等に配置され、研磨テーブルの回転とともに回転しながら、研磨対象物と対向している時に膜厚を検出する。渦電流センサは、導電膜などの研磨対象物に渦電流を誘起させ、研磨対象物に誘起された渦電流によって発生する磁界の変化から研磨対象物の厚さの変化を検出する。
【0006】
特開2005-121616号公報は、渦電流センサに関する技術を開示する。この渦電流センサは、導電膜の近傍に配置されるセンサコイルと、センサコイルに交流信号を供給して導電膜に渦電流を形成する信号源と、導電膜に形成された渦電流をセンサコイルから見たインピーダンスとして検出する検出回路とを備える。そして、インピーダンスの抵抗成分とリアクタンス成分とを直交座標軸上に表示する。インピーダンスの座標と、指定された中心点の座標とを結ぶ直線が、公報の
図13に示す水平線と成す角度から導電膜の膜厚を検出する。
【0007】
角度から膜厚を求める方法は、公報の
図13に示すような角度と膜厚の関係を事前に測定しておき、この関係を利用して、角度を膜厚に直接変換する。具体的には、導電膜の膜質に応じた中心点(基準点)P、およびその導電膜の多数の膜厚に関する多数の仰角θを求めて、メモリ内に記憶する。仰角θごとに1本の予備測定直線が得られる。多数の仰角θに応じて、多数の予備測定直線が得られる。この後に、基板研磨装置の稼動時には、その測定毎のインピーダンスの抵抗成分とリアクタンス成分の出力値とメモリ内の中心点Pとを結んだ本番測定直線rnの仰角θと、予備測定直線に基づいて導電膜の膜厚を演算する。
【0008】
従来から、基板の中心部等などでは、基板のエッジ部などと比較して精度よく膜厚が測定できることが知られている。これは、渦電流センサが基板のエッジ部などの近傍では、渦電流センサが生成する磁束の一部が基板の外部に存在して、渦電流センサが生成する磁束の全体が有効に利用されていないためである。特開2005-121616号公報では、基板のエッジ部などで得られた測定値の精度が低下していることについて考慮されていない。
【先行技術文献】
【特許文献】
【0009】
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明の一形態は、このような問題点を解消すべくなされたもので、その目的は、基板のエッジ部などで得られた測定値の精度を改善できる研磨装置、及び、研磨方法を提供することである。
【課題を解決するための手段】
【0011】
上記課題を解決するために、形態1では、研磨面を有し回転可能な研磨テーブルと、研磨対象の基板を前記研磨面に押圧して前記基板上の導電膜を研磨可能なトップリングと、前記研磨テーブルに設置された渦電流センサと、前記渦電流センサの出力に基づいて前記導電膜の膜厚を監視可能なモニタリング装置とを備え、前記渦電流センサの出力はインピーダンス成分を含み、2つの直交座標軸を有する座標系の各軸に、前記インピーダンス成分の抵抗成分とリアクタンス成分をそれぞれ対応させたときに、前記インピーダンス成分に対応する前記座標系上の点の少なくとも一部は、円の少なくとも一部を形成し、前記モニタリング装置は、前記座標系上の点と前記円の中心との第1の距離を求め、前記インピーダンス成分から膜厚を求め、得られた前記膜厚を、得られた前記第1の距離を用いて補正可能であることを特徴とする研磨装置という構成を採っている。ここで、インピーダンス成分とは、インピーダンスの抵抗成分およびまたはリアクタンス成分を意味する。
【0012】
本実施形態では、前記モニタリング装置は、前記座標系上の点と前記円の中心との第1の距離を求め、前記インピーダンス成分から膜厚を求め、得られた前記膜厚を、得られた前記第1の距離を用いて補正可能である。基板の中心部等などの、基板のエッジ部などと比較して精度よく膜厚が測定できる場所で得られた測定値は、円(インピーダンスカーブ)上にある。しかし、基板のエッジ部などの、基板の中心部等などと比較して精度よく膜厚が従来から測定できない場所で得られた測定値は、この円上にないという点に、本実施形態は着目している。
【0013】
基板のエッジ部などの、精度よく膜厚が測定できない場所で得られた測定値について、どのぐらい精度が低下しているかの指標として、円の中心から測定値までの第1の距離を利用する。この結果、基板のエッジ部などで得られた測定値の精度を従来より改善できる。補正方法としては、例えば、得られた膜厚に、基板の中心部で得られた測定値と円(インピーダンスカーブ)の中心との後述する第2の距離を第1の距離で除算した比をかける。
【0014】
形態2では、前記モニタリング装置は、前記第1の距離に応じた所定の補正係数を用いて前記補正を行うことを特徴とする形態1記載の研磨装置という構成を採っている。得られた前記膜厚に乗算等すべき所定の補正係数は例えば、基板を用いて複数の異なる第1の距離について事前に測定しておく。補正係数は、関数、テーブル等の形式で記憶部に保存してもよい。
【0015】
形態3では、前記モニタリング装置は、前記基板の周辺部において得られた前記膜厚に対して前記補正を行うことを特徴とする形態1または2記載の研磨装置という構成を採っている。補正は、基板の全体について行うことができるが、基板の周辺部(エッジ部)において得られた膜厚に対して補正を行うことが好ましい。
【0016】
形態4では、前記モニタリング装置は、前記円の半径に相当する第2の距離を求め、前記第1の距離と前記第2の距離とを用いて、前記補正を行うことを特徴とする請求項1ないし3のいずれか1項に記載の研磨装置という構成を採っている。ここで、円の半径に相当する第2の距離とは、円の半径もしくは、円の半径と実質的に等しい距離を意味する。円の半径と実質的に等しい距離とは、例えば、前記基板の前記周辺部以外の前記基板の部分において得られた前記インピーダンス成分に関する前記座標系上の点と前記円の中心との距離である。なぜならば、基板の周辺部以外の基板の部分において得られたインピーダンス成分に関する座標系上の点は、実質的に円上にあるからである。
【0017】
形態4の一実施形態では、例えば、第1の距離と、基板の中心部等などの比較的精度よく膜厚が従来から測定できる場所で得られた測定値と円の中心との第2の距離との比率から精度の低下の程度を算出し、補正係数を算出する。補正係数を用いて、膜厚を補正する、例えば、膜厚に補正係数を乗算、加算、除算、およびまたは減算する。
【0018】
形態4の一実施形態では、前記モニタリング装置は、前記基板の前記周辺部以外の前記基板の部分において得られた前記インピーダンス成分に関する前記座標系上の点と前記円の中心との第2の距離を求め、前記第1の距離と前記第2の距離とを用いて、前記基板の前記周辺部において得られた前記膜厚に対して前記補正を行うことができる。
【0019】
形態5では、前記研磨装置は、研磨中の前記基板の温度を直接または間接に測定可能な温度センサと、補正された前記膜厚を、測定された前記温度を用いて、さらに補正可能な温度補正部とを有することを特徴とする形態1ないし4のいずれか1項に記載の研磨装置という構成を採っている。
【0020】
本実施形態では、温度補正を行っている。温度補正を行う理由は、以下のとおりである。モニタリング装置がインピーダンス成分から膜厚を求めるときは、インピーダンス成分と膜厚との対応情報を利用している。金属膜では研磨により温度が上昇すると電気伝導率が低下する。対応情報は研磨前に、事前に求められている場合がある。対応情報を求める時の金属膜の温度は、その後に研磨を行い対応情報を利用して膜厚を求めるときの金属膜の温度とは異なる。そのため対応情報を利用した膜厚の測定時の温度は、対応情報を事前に求めたときの温度よりも高い場合や低い場合がある。温度が高い場合は、実際の膜厚よりも薄く測定されてしまう。膜厚の測定値を、基板の温度を直接または間接に測定可能な温度センサにより得られた温度を用いて補正することで、より正確な膜厚値を算出できる。
【0021】
形態6では、研磨対象の基板を研磨する研磨方法において、研磨対象の基板を研磨面に押圧して前記基板上の導電膜を研磨するステップと、前記導電膜の膜厚を測定するために、前記導電膜に渦電流を形成するとともに、形成された前記渦電流を検出するステップと、前記検出された渦電流をインピーダンス成分として出力するステップと、前記インピーダンス成分を入力されて、入力された前記インピーダンス成分から前記導電膜の膜厚を監視する、モニタリングステップとを有し、2つの直交座標軸を有する座標系の各軸に、前記インピーダンス成分の抵抗成分とリアクタンス成分をそれぞれ対応させたときに、前記インピーダンス成分に対応する前記座標系上の点の少なくとも一部は、円の少なくとも一部を形成し、前記モニタリングステップは、前記座標系上の点と前記円の中心との第1の距離を求め、前記インピーダンス成分から膜厚を求め、得られた前記膜厚を、得られた前記第1の距離を用いて補正するステップを有することを特徴とする研磨方法という構成を採っている。
【図面の簡単な説明】
【0022】
【
図1】本発明の一実施形態に係る基板処理装置の全体構成を示す平面図である。
【
図2】
図1は、研磨装置の全体構成を模式的に示す図である。
【
図4】
図4は、インピーダンスを測定可能な渦電流センサの構成例を示すブロック図である。
【
図6】
図6は、渦電流センサのセンサコイルの構成例を示す斜視図である。
【
図7】
図6のセンサコイルの接続例を示す回路図である。
【
図8】
図8は、センサコイル出力の同期検波回路を示すブロック図である。
【
図9】
図9は、導電膜の厚さ変化に伴う、インピーダンス座標面における抵抗成分(X)とリアクタンス成分(Y)の円軌跡を示すグラフである。
【
図10】
図9のグラフ図形を反時計回りに90度回転させ、さらに平行移動させたグラフである。
【
図11】
図11は、使用する研磨パッドの厚さに相当する距離に応じて、座標X,Yの円弧軌跡が変化する様子を示したグラフである。
【
図12】
図12は、研磨パッドの厚さの違いにかかわらず、角度αは同じであることを説明する図である。
【
図13】
図13は、基板Wの中心部とエッジ部での測定値と、円軌跡との関係を示すグラフである。
【
図14】
図14は、基板のエッジ部における渦電流センサが生成する磁束を示す。
【
図16】
図16は、インピーダンス座標面における円の中心と測定点との距離の一例を示す。
【
図20】
図20は、AIを用いた第1研磨ユニットの制御を示すブロック図である。
【
図21】
図21は、AIを用いた第1研磨ユニットの制御を示すブロック図である。
【
図22】
図22は、AIを用いた第1研磨ユニットの制御を示すブロック図である。
【発明を実施するための形態】
【0023】
以下、本発明の実施形態について図面を参照して説明する。なお、以下の各実施形態において、同一または相当する部材には同一符号を付して重複した説明を省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。
<基板処理装置>
図1は、基板処理装置の平面図である。
図1に示すように、基板処理装置1000は、ロード/アンロードユニット200と、研磨ユニット300と、洗浄ユニット400と、を備える。また、基板処理装置1000は、ロード/アンロードユニット200、研磨ユニット300、及び、洗浄ユニット400、の各種動作を制御するための制御ユニット500を備える。以下、ロード/アンロードユニット200、研磨ユニット300、及び、洗浄ユニット400、について説明する。
【0024】
<ロード/アンロードユニット>
ロード/アンロードユニット200は、研磨及び洗浄などの処理が行われる前の基板を研磨ユニット300へ渡すとともに、研磨及び洗浄などの処理が行われた後の基板を洗浄
ユニット400から受け取るためのユニットである。ロード/アンロードユニット200は、複数(本実施形態では4台)のフロントロード部220を備える。フロントロード部220にはそれぞれ、基板をストックするためのカセット222が搭載される。
【0025】
ロード/アンロードユニット200は、筐体100の内部に設置されたレール230と、レール230上に配置された複数(本実施形態では2台)の搬送ロボット240と、を備える。搬送ロボット240は、研磨及び洗浄などの処理が行われる前の基板をカセット222から取り出して研磨ユニット300へ渡す。また、搬送ロボット240は、研磨及び洗浄などの処理が行われた後の基板を洗浄ユニット400から受け取ってカセット222へ戻す。
【0026】
<研磨ユニット>
研磨ユニット300は、基板の研磨を行うためのユニットである。研磨ユニット300は、第1研磨ユニット300A、第2研磨ユニット300B、第3研磨ユニット300C、及び、第4研磨ユニット300D、を備える。第1研磨ユニット300A、第2研磨ユニット300B、第3研磨ユニット300C、及び、第4研磨ユニット300D、は、互いに同一の構成を有する。したがって、以下、第1研磨ユニット300Aについてのみ説明する。
【0027】
第1研磨ユニット300A(研磨装置)は、研磨テーブル320Aと、トップリング330Aと、を備える。研磨テーブル320Aは、図示していない駆動源によって回転駆動される。研磨テーブル320Aには、研磨パッド310Aが貼り付けられる。トップリング330Aは、基板を保持して研磨パッド310Aに押圧する。トップリング330Aは、図示していない駆動源によって回転駆動される。基板は、トップリング330Aに保持されて研磨パッド310Aに押圧されることによって研磨される。
【0028】
次に、基板を搬送するための搬送機構について説明する。搬送機構は、リフタ370と、第1リニアトランスポータ372と、スイングトランスポータ374と、第2リニアトランスポータ376と、仮置き台378と、を備える。
【0029】
リフタ370は、搬送ロボット240から基板を受け取る。第1リニアトランスポータ372は、リフタ370から受け取った基板を、第1搬送位置TP1、第2搬送位置TP2、第3搬送位置TP3、及び、第4搬送位置TP4、の間で搬送する。第1研磨ユニット300A及び第2研磨ユニット300Bは、第1リニアトランスポータ372から基板を受け取って研磨する。第1研磨ユニット300A及び第2研磨ユニット300Bは、研磨した基板を第1リニアトランスポータ372へ渡す。
【0030】
スイングトランスポータ374は、第1リニアトランスポータ372と第2リニアトランスポータ376との間で基板の受け渡しを行う。第2リニアトランスポータ376は、スイングトランスポータ374から受け取った基板を、第5搬送位置TP5、第6搬送位置TP6、及び、第7搬送位置TP7、の間で搬送する。第3研磨ユニット300C及び第4研磨ユニット300Dは、第2リニアトランスポータ372から基板を受け取って研磨する。第3研磨ユニット300C及び第4研磨ユニット300Dは、研磨した基板を第2リニアトランスポータ372へ渡す。研磨ユニット300によって研磨処理が行われた基板は、スイングトランスポータ374によって仮置き台378へ置かれる。
【0031】
<洗浄ユニット>
洗浄ユニット400は、研磨ユニット300によって研磨処理が行われた基板の洗浄処理及び乾燥処理を行うためのユニットである。洗浄ユニット400は、第1洗浄室410と、第1搬送室420と、第2洗浄室430と、第2搬送室440と、乾燥室450と、
を備える。
【0032】
仮置き台378へ置かれた基板は、第1搬送室420を介して第1洗浄室410又は第2洗浄室430へ搬送される。基板は、第1洗浄室410又は第2洗浄室430において洗浄処理される。第1洗浄室410又は第2洗浄室430において洗浄処理された基板は、第2搬送室440を介して乾燥室450へ搬送される。基板は、乾燥室450において乾燥処理される。乾燥処理された基板は、搬送ロボット240によって乾燥室450から取り出されてカセット222へ戻される。
【0033】
<第1研磨ユニットの詳細構成>
次に、第1研磨ユニット300Aの詳細について説明する。
図2は、第1研磨ユニット300Aの斜視図である。第1研磨ユニット300Aは、研磨パッド310Aに研磨液又はドレッシング液を供給するための研磨液供給ノズル340Aを備える。研磨液は、例えば、スラリである。ドレッシング液は、例えば、純水である。また、第1研磨ユニット300Aは、研磨パッド310Aのコンディショニングを行うためのドレッサ350Aを備える。また、第1研磨ユニット300Aは、液体、又は、液体と気体との混合流体、を研磨パッド310Aに向けて噴射するためのアトマイザ360Aを備える。液体は、例えば、純水である。気体は、例えば、窒素ガスである。
【0034】
第1研磨ユニット300Aは、研磨対象物(例えば、半導体ウェハなどの基板、又は基板の表面に形成された各種の導電膜)102を研磨するための研磨部150を有する。研磨部150は、研磨対象物102を研磨するための研磨パッド310Aを上面に取付け可能な研磨テーブル320Aと、研磨テーブル320Aを回転駆動する第1の電動モータ112と、研磨対象物102を保持可能なトップリング330Aと、トップリング330Aを回転駆動する第2の電動モータ118とを備える。
【0035】
また、研磨部150は、研磨パッド310Aの上面に研磨材を含む研磨砥液を供給する研磨液供給ノズル340Aを備える。第1研磨ユニット300Aは、研磨部150に関する各種制御信号を出力する研磨装置制御部140を備える。
【0036】
第1研磨ユニット300Aは、研磨テーブル320Aに形成された穴に配置され、研磨テーブル320Aの回転に伴い研磨対象物102の膜厚を研磨面104に沿って検出する渦電流センサ210を備える。
【0037】
第1研磨ユニット300Aは、研磨対象物102を研磨するときは、研磨砥粒を含む研磨スラリを研磨液供給ノズル340Aから研磨パッド310Aの上面に供給し、第1の電動モータ112によって研磨テーブル320Aを回転駆動する。そして、第1研磨ユニット300Aは、トップリング330Aを、研磨テーブル320Aの回転軸とは偏心した回転軸回りで回転させた状態で、トップリング330Aに保持された研磨対象物102を研磨パッド310Aに押圧する。これにより、研磨対象物102は研磨スラリを保持した研磨パッド310Aによって研磨され、平坦化される。
【0038】
受信部232は、ロータリージョイント・コネクタ160,170を介して渦電流センサ210と接続されている。受信部232は、渦電流センサ210から出力された信号を受信して、インピーダンスとして出力する。後述する温度センサ56は、ロータリージョイント・コネクタ160,170を介して研磨装置制御部140と接続されている。
【0039】
図2に示すように、膜厚測定装置231は、受信部232から出力されたインピーダンスに所定の信号処理を行って終点検出器241へ出力する。
【0040】
終点検出器241は、膜厚測定装置231から出力される信号に基づいて研磨対象物102の膜厚の変化を監視する。膜厚測定装置231と終点検出器241はモニタリング装置を構成する。終点検出器241は、第1研磨ユニット300Aに関する各種制御を行う研磨装置制御部140と接続されている。終点検出器241は、研磨対象物102の研磨終点を検出すると、その旨を示す信号を研磨装置制御部140へ出力する。研磨装置制御部140は、終点検出器241から研磨終点を示す信号を受信すると、第1研磨ユニット300Aによる研磨を終了させる。研磨装置制御部140は、研磨中は、膜厚に基づいて、研磨対象物102の押圧力を制御する。
【0041】
本実施形態では、渦電流センサ210の出力はインピーダンス成分を含む。2つの直交座標軸を有する座標系の各軸に、インピーダンス成分の抵抗成分とリアクタンス成分をそれぞれ対応させたときに、インピーダンス成分に対応する座標系上の点の少なくとも一部は、円の少なくとも一部を形成する。モニタリング装置は、座標系上の点と円の中心との第1の距離を求め、インピーダンス成分から膜厚を求め、得られた膜厚を、得られた第1の距離を用いて補正する。
【0042】
モニタリング装置がインピーダンス成分から膜厚を求めるときは、渦電流センサ210の出力から得られるデータと膜厚との対応関係を事前に求めておく必要がある。本実施形態では、渦電流センサ210の出力から角度αを求める。角度αの定義および求め方の詳細は、後述する。
【0043】
角度αから算出される1/tanαと、膜厚tは、後述するように、膜厚が厚い時は比例する。すなわち、1/tanα=Taとしたときに、膜厚t=A_th×Taという関係がある。ここで、A_thは、比例係数である。膜厚の実際の測定において、渦電流センサ210の測定値からTaを得ることができる。
【0044】
従って、膜厚が厚い時は、事前の渦電流センサ210のキャリブレーションにおいて、膜厚t=A_th×Taという渦電流センサ210の出力と膜厚との対応関係における比例係数A_thを求めておけばよい。比例係数A_thが求まれば、キャリブレーション後の本測定において、渦電流センサ210の出力から角度αを求めると、膜厚が算出できる。膜厚が薄い時は、渦電流センサ210の出力と膜厚との対応関係は非線形な関係である。なお、渦電流センサ210の出力は、後述するインピーダンス(X,Y)、又は、上述の角度α、tanα、1/tanα、Ta等を含んでもよい。
【0045】
モニタリング装置は、第1の距離に応じた所定の後述する補正係数を用いて補正を行う。モニタリング装置は、基板Wの周辺部において得られた膜厚に対して補正を行う。モニタリング装置は第2の距離を求める、すなわち、円の半径または、基板Wの周辺部以外の基板Wの部分において得られたインピーダンス成分に関する座標系上の点と円の中心との距離を求める。モニタリング装置は、第1の距離と第2の距離とを用いて、補正係数を算出して、基板Wの周辺部において得られた膜厚に対して補正を行う。これらの処理は、後述する膜厚算出部238において行われる。
【0046】
図4は、第1研磨ユニット300Aが備える渦電流センサ210を示す。渦電流センサは、そのセンサコイルから導電膜側を見たインピーダンスが変化し、このインピーダンス変化から膜厚を検出する。渦電流センサ210は、検出対象の研磨対象物102の近傍にセンサコイルを配置し、そのコイルに交流信号源124が接続されている。ここで、検出対象の研磨対象物102は、例えば半導体ウェハW上に形成された厚さが0~2μm程度の銅めっき膜(Au,Cr,Wなどのメタル材料の蒸着膜でもよい)である。センサコイルは、検出対象の導電膜に対して例えば0.5~5mm程度の近傍に配置される。同期検波回路126は、センサコイル側から見た検出対象の研磨対象物102を含むインピーダ
ンスZ(その成分がX,Yである。)を検出する(詳細は後述する)。
【0047】
図5に示す等価回路において、交流信号源124の発振周波数は一定であり、研磨対象物102の膜厚が変化すると、交流信号源124からセンサコイル側を見たインピーダンスZが変化する。すなわち、
図5に示す等価回路において、研磨対象物102に流れる渦電流I
2は、研磨対象物102の等価的な抵抗R
2および自己インダクタンスL
2によって決まる。膜厚が変化すると渦電流I
2が変化し、センサコイル側との相互インダクタンスMを介して、交流信号源124側からみたインピーダンスZの変化として捉えられる。ここで、L
1はセンサコイルの自己インダクタンス分であり、R
1はセンサコイルの抵抗分である。
【0048】
以下に、渦電流センサについて具体的に説明する。交流信号源124は、1~50MHz程度の固定周波数の発振器であり、例えば水晶発振器が用いられる。そして、交流信号源124により供給される交流電圧により、センサコイルに電流I1が流れる。研磨対象物102の近傍に配置されたコイルに電流が流れることで、この磁束が研磨対象物102と鎖交することで、その間に相互インダクタンスMが形成され、研磨対象物102中に渦電流I2が流れる。ここでR1はセンサコイルを含む一次側の等価抵抗であり、L1は同様にセンサコイルを含む一次側の自己インダクタンスである。研磨対象物102側では、R2は渦電流損に相当する等価抵抗であり、L2はその自己インダクタンスである。交流信号源124の端子128,130からセンサコイル側を見たインピーダンスZは、研磨対象物102中に形成される渦電流損の大きさによって変化する。
【0049】
図6は、本実施形態の渦電流センサにおけるセンサコイルの構成例を示す。センサコイルは、導電膜に渦電流を形成するためのコイルと、導電膜の渦電流を検出するためのコイルとを分離したもので、ボビン311に巻回された3層のコイルにより構成されている。ここで中央の励磁コイル312は、交流信号源124に接続される励磁コイルである。この励磁コイル312は、交流信号源124より供給される電圧の形成する磁界により、近傍に配置される半導体ウェハW上の研磨対象物102に渦電流を形成する。ボビン311の上側(導電膜側)には、検出コイル313が配置され、導電膜に形成される渦電流により発生する磁界を検出する。そして、励磁コイル312の検出コイル313と反対側にはバランスコイル314が配置されている。
【0050】
図7は、各コイルの接続例を示す。検出コイル313とバランスコイル314とは、上述したように逆相の直列回路を構成し、その両端は可変抵抗316を含む抵抗ブリッジ回路317に接続されている。コイル312は交流信号源203に接続され、交番磁束を生成することで、近傍に配置される導電膜である研磨対象物102に渦電流を形成する。可変抵抗VR
1,VR
2の抵抗値を調整することで、コイル313,314からなる直列回路の出力電圧が、導電膜が存在しないときにはゼロとなるように調整可能としている。
【0051】
図8は、交流信号源203側からセンサコイル202側を見たインピーダンスZの計測回路例を示す。この
図8に示すインピーダンスZの計測回路においては、膜厚の変化に伴うインピーダンス平面座標値(X,Y)、(すなわち、リアクタンス成分(X)、抵抗成分(Y))、インピーダンス(Z = X + iY)、および位相出力(θ = tan
-1R/X)を取り出すことができる。従って、これらの信号出力を用いることで、例えばインピーダンスの各種成分の大きさにより膜厚を計測するなど、より多面的な処理の進行状況の検出が可能となる。
【0052】
上述したように、検出対象の研磨対象物102が成膜された半導体ウェハW近傍に配置されたセンサコイルに、交流信号を供給する信号源203は、水晶発振器からなる固定周波数の発振器である。交流信号源203は、例えば、1~50MHzの固定周波数の電圧
を供給する。信号源203で形成される交流電圧は、バンドパスフィルタ302を介して励磁コイル312に供給される。センサコイルの端子128,130で検出された信号は、高周波アンプ303および位相シフト回路304を経て、cos同期検波回路305およびsin同期検波回路306からなる同期検波部に入力される。同期検波部により検出信号のcos成分(X成分)とsin成分(Y成分)とが取り出される。ここで、信号源203で形成される発振信号から、位相シフト回路304により、信号源203の同相成分(0゜)と直交成分(90゜)の2つの信号が形成される。これらの信号は、それぞれcos同期検波回路305とsin同期検波回路306とに導入され、上述の同期検波が行われる。
【0053】
同期検波された信号は、ローパスフィルタ307,308により、信号成分以上の不要な例えば5KHz以上の高周波成分が除去される。同期検波された信号は、cos同期検波出力であるX成分出力と、sin同期検波出力であるY成分出力である。また、ベクトル演算回路309により、X成分出力とY成分出力とから、インピーダンスZの大きさ、(X2+ Y2)1/2、が得られる。また、ベクトル演算回路(θ処理回路)310により、同様にX成分出力とY成分出力とから、位相出力(θ = tan-1Y/X)、が得られる。ここで、これらフィルタは、センサ信号の雑音成分を除去するために設けられ、各種フィルタに応じたカットオフ周波数が設定されている。
【0054】
次に、
図9により、研磨対象物102と渦電流センサ210との間の距離が異なるときに得られたインピーダンスに対応するインピーダンス平面座標系上の点(座標値(X,Y))は、異なる円を形成することを説明する。異なる円のそれぞれの中心は、同一の直線(第2の直線)上にある。異なる円に対して共通な1つの点がある。これを第1の点と呼ぶ。これらについて説明する。
【0055】
図5に示すセンサ側回路と導電膜側回路には、それぞれ次の式が成り立つ。
R
1I
1+ L
1dI
1/dt + MdI
2/dt = E (1)
R
2I
2+ L
2dI
2/dt + MdI
1/dt = 0 (2)
ここで、Mは相互インダクタンスであり、R
1は、センサ側回路の等価抵抗であり、L
1は、センサ側回路の自己インダクタンスである。R
2は渦電流が誘起される導電膜の等価抵抗であり、L
2は渦電流が流れる導電膜の自己インダクタンスである。
【0056】
ここで、In= Anejωt(正弦波)とおくと、上記式(1),(2)は次のように表される。
(R1+ jωL1)I1 + jωMI2= E (3)
(R2+ jωL2)I2 + jωMI1= 0 (4)
これら式(3),(4)から、次の式(5)が導かれる。
I1= E(R2 + jωL2)/{(R1+ jωL1)(R2 + jωL2) + ω2M2}
= E/{(R1 + jωL1) + ω2M2/(R2+ jωL2)} (5)
【0057】
したがって,センサ側回路のインピーダンスZは、次の式(6)で表される。
Z = E/I
1 = {R
1 + ω
2M
2R
2/(R
2
2+ ω
2L
2
2)}
+ jω{L
1 - ω
2L
2M
2/(R
2
2+ ω
2L
2
2)} (6)
ここで、Zの実部(インピーダンス成分の抵抗成分)、虚部(インピーダンス成分の誘導リアクタンス成分)をそれぞれX,Yとおくと、上記式(6)は、次のようになる。
Z = X + jωY (7)
ここで、Rx = ω
2L
2M
2/(R
2
2+ ω
2L
2
2)とすると、(7)式は、
X + jωY = [R
1+ R
2Rx] + Jω[L
1- L
2Rx]となる。
従って、X = R
1 + R
2Rx Y = ω[L
1- L
2Rx]となる。
これをR
2,L
2について解くと、
R
2= ω
2(X - R
1)M
2/((ωL
1- Y)
2 + (X - R
1)
2) (8)
L
2= ω(ωL
1 - Y)M
2/((ωL
1- Y)
2 + (X - R
1)
2) (9)
図9に示す記号kは結合係数であり、次の関係式(10)が成り立つ。
M = k(L
1L
2)
1/2 (10)
これを(9)に適用すると、
(X - R
1)
2 + (Y - ω(1 - (k
2/2))L
1)
2= (ωL
1k
2/2
)
2 (11)
これは、円の方程式であり、X、Yが円を形成すること、すなわち、インピーダンスZは円を形成することを示す。
【0058】
渦電流センサ210は、渦電流センサ210のコイルを含む電気回路のインピーダンスの抵抗成分Xおよび誘導リアクタンス成分Yを出力する。これらの抵抗成分Xおよび誘導リアクタンス成分Yは、膜厚を反映した膜厚信号であり、基板上の導電膜の厚さに従って変化する。
【0059】
図9は、導電膜の厚さとともに変化するX,Yを、XY座標系上にプロットすることで描かれるグラフを示す図である。点T∞の座標は、膜厚が無限大であるとき、すなわち、R
2が0のときのX,Yである。点T0の座標は、基板の導電率が無視できるものとすれば、膜厚が0であるとき、すなわち、R
2が無限大のときのX,Yである。X,Yの値から位置決めされる点Tnは、導電膜の厚さが減少するに従って、円弧状の軌跡を描きながら点T0に向かって進む。
【0060】
図10は、
図9のグラフ図形を反時計回りに90度回転させ、さらに平行移動させたグラフを示す図である。
図10に示すように、膜厚が減少するに従って、X,Yの値から位置決めされる点Tnは円弧状の軌跡を描きながら点T0に向かって進む。 結合係数kは、片方のコイルにより発生した磁場が、もう片方のコイルに伝達する割合である。k = 1が最大であり、コイル間の距離が離れると、すなわち研磨パッド310Aが厚くなると、kは小さくなる。
【0061】
渦電流センサ210のコイルと基板Wとの間の距離Gは、これらの間に介在する研磨パッド310Aの厚さに応じて変化する。この結果、
図11に示すように、使用する研磨パッド310Aの厚さに相当する距離G(G1~G3)に応じて、座標X,Yの円弧軌跡が変化する。
図11から分かるように、コイルと研磨対象物102との間の距離Gにかかわらず、同じ膜厚である座標X,Yを直線(以下、等膜厚直線)という)で結ぶと、その等膜厚直線が交点Pで交差する。点Pが、第1の点T0である。この等膜厚直線rn(n:1,2,3…)は、
図11において、第1の点を通る円の直径)Hに対して、導電膜(研磨対象物102)の厚さに応じた角度α(インピーダンス角度)で傾斜する。第1の点を通る円の直径は、距離Gによらず同一である。
【0062】
角度αは、膜厚がゼロであるときのインピーダンスに対応する第1の点(T0)と、膜厚がゼロでないときのインピーダンスに対応する第2の点(Tn)とを結ぶ第1の直線と、第1の点(T0)を通る円の直径とのなす角の角度である。導電膜の厚さが同じであるとき、研磨パッド310Aの厚さの違いにかかわらず、角度αは同じである。この点について、
図12により説明する。所定の直線とは、第1の点(T0)と点T∞とを結ぶ直線でもある。
点Tnの座標(X、Y)を
図12に示す角度αを使って表す。
図12より、
X = R
1 + ω(k
2/2)L
1sinα (12)
Y = ω(1 - (k
2/2)L
1 - ω(k
2/2)L
1coaα (13)
既述の(8)、(9)から、
R
2/L
2= ω(X - R
1)/(ωL
1- Y)
この式に(12)、(13)を代入すると、
R
2/L
2= ωsin2α/(1 + cos2α) = ωtanα (14)
R
2/L
2は、膜厚のみに依存し、また、結合係数kに依存しないため、渦電流センサ210と研磨対象物102との間の距離、すなわち研磨パッド310Aの厚さに依存しない。R
2/L
2は、膜厚のみに依存し、従って、角度αも膜厚のみに依存する。膜厚算出部238は、角度αの正接を算出し、(14)の関係を利用して、正接から膜厚を求める。
【0063】
角度αの算出方法及び膜厚の算出方法について、さらに具体的に説明する。
図2の膜厚測定装置231は、研磨対象物の膜厚を測定するために、渦電流センサ210により研磨対象物102に形成可能な渦電流をインピーダンスとして検出するときに、インピーダンスを受信部232から入力される。入力されたインピーダンスから膜厚を求める。膜厚測定装置231は、角算出部234、及び膜厚算出部238を備える。
【0064】
角算出部234は例えば最初に、測定された第1の点T0を含む円上の3個のインピーダンス成分の測定点(異なる膜厚に対応する3点)から、円の中心を求める。角算出部234は第1の点T0と円の中心から、円の中心を通る直径12を求める。角算出部234は、膜厚がゼロであるときのインピーダンスに対応する第1の点T0と、膜厚がゼロでないときのインピーダンスに対応する第2の点Tnとを結ぶ第1の直線10と、第1の点T0を通る円の直径12とのなす角の角度αを算出する。膜厚算出部238は、角度αの正接を算出し、正接から膜厚を求める。
【0065】
次に、正接から膜厚を求める膜厚算出部238について説明する。本実施形態では、正接の逆数と膜厚の関係を利用する。最初に、正接の逆数と膜厚の関係を説明する。
膜厚が厚い場合、正接と、金属膜の抵抗値との間には、既述の(14)の関係、すなわち、
R2/L2= ωtanα (14)
がある。ここでR2は、金属膜の抵抗値である。従って、R2とtanαは比例する。さらに、膜厚が厚い時は、R2は膜厚と以下の関係がある。
R2= ρL/tW (15)
ここで、ρ:抵抗率 L,W:金属膜の長さおよび幅 t:膜厚
(14)、(15)から、膜厚tと角度αは以下の関係にあることがわかる。
R2∝(1/t)∝ωtanα
すなわち、1/tanα∝t
これより、1/tanαと膜厚tは比例する。既述の比例係数を事前に求めておけば、1/tanαから膜厚tを求めることができる。膜厚が薄い場合は、(15)が成立しないため、1/tanαと膜厚tとの関係は非線形な関係で表される。
【0066】
次に、上記のようにして得られた膜厚tに対して膜厚算出部238が行う、第1の距離に応じた所定の後述する補正係数を用いた補正について説明する。最初に、補正が必要な理由について
図13,14により説明する。基板の中心部等などでは、基板のエッジ部などと比較して精度よく膜厚が測定できることが知られている。
図9~12に示す円は、基板Wの中心部等などの精度よく膜厚が測定できる基板W上の場所での測定により得られたものである。精度よく膜厚が測定できる基板W上の場所では、膜厚の大小にかかわらず、インピーダンスに対応する点は円上にある。
【0067】
一方、基板のエッジ部などでは、精度よく膜厚が測定できない。
図13はこれを示す。本図は、基板Wの中心部とエッジ部での測定値と、円軌跡との関係を示すグラフである。本図において、測定点60は、基板Wの中心部等での測定により得られたものであり、円62上にある。一方、楕円72で囲った範囲にある測定点64は、基板のエッジ部などでの測定により得られたものであり、円62上にない。軌跡66と軌跡74は、異なる基板Wについて基板のエッジ部などでの測定により得られた測定値から作成した軌跡である。
【0068】
基板Wのエッジ部などでの測定点64が、円62上にない理由を、
図14により説明する。
図14は、基板Wのエッジ部70における渦電流センサ210が生成する磁束68を示す。本図に示すように、渦電流センサ210が基板Wのエッジ部70などの近傍では、渦電流センサ210が生成する磁束68の一部が基板Wの外部に存在している。このため、渦電流センサ210が生成する磁束68の全体が有効に、すなわち完全に利用されていないためである。結果として、渦電流センサ210の出力が低下する。
【0069】
本実施形態では、以下のようにして補正を行う。基板Wのエッジ部などでの測定点64が、測定点60と比較して、どのぐらい不完全であるかの指標として、円62の中心76から測定点64までの距離78(第1の距離)を利用する。距離78を
図15に示す。
図15は、
図13において、第1の距離を図示したものである。距離78と、インピーダンスの円62の半径80(第2の距離)との比率を不完全な度合とする。不完全な度合から、補正係数を算出する。
【0070】
円62の中心76から、磁束68の全体が有効に利用されている、すなわち完全な値と考えられる測定点60までの
図17に示す距離88との比率を不完全な度合としてもよい。距離88と、インピーダンスの円62の半径80は理論上一致する。しかし、
図15に示すように、測定上の誤差が若干ある。
【0071】
図16に距離78の測定例を示す。本図は、渦電流センサ210によって得られたインピーダンス平面座標系上の測定点について距離78を求めて、距離78を図示したものである。本図の横軸は、測定点の基板Wの中心90(
図2参照)からの距離(mm)を示す。基板Wの半径をLとする。±Lが基板Wの端部である。縦軸は、距離78を示す。縦軸は単位無し、すなわち無次元量である。縦軸の高さ82は、インピーダンスの円62の半径80を示す。本図より、距離78は、基板Wのエッジ部70において半径80と相違しており、エッジ部70で得られる測定点64は、円62上にないことがわかる。
【0072】
次に、不完全な度合から、補正量を算出する方法について
図17により説明する。この方法は種々可能である。例えば、測定点64から既述のようにして本図に示す角度αを求めて、角度αの正接の逆数から膜厚tを求める。得られた膜厚tに、半径80を距離78で除算した比をかける。別の方法としては、得られた膜厚tに乗算等すべき補正係数を、基板Wを用いて距離78に応じて事前に測定しておく。補正係数は、関数、テーブル等の形式で記憶部に保存してもよい。
【0073】
さらに別の方法について、
図17により説明する。エッジ部70の測定値は、主に基板Wの中心近傍での膜厚による出力と、基板Wの導電膜が全く存在しないときの出力が混在して出力されると考える。渦電流センサ210の出力は基板Wの中心近傍での測定点60と点T0を結んだ直線84上にあると仮定する。
図17に示すように実際は、測定点64は直線84上にないが、直線84上にあると仮定する。そして、直線84と中心76との距離86、すなわち距離78のうちの最小の距離86を基準として補正量を考える。
【0074】
具体的な計算手順は以下のとおりである。以下の計算手順は例えば、膜厚算出部238
が実行する。点T0の座標、円弧中心である中心76の座標、円弧の半径は、角度αを算出して膜厚に換算する過程で得られている。エッジ部70の影響を受けていない基板Wの中心近傍での測定点60のインピーダンス座標面での座標の平均を平均出力AveragePtとして計算する。平均出力AveragePtを算出する方法は、例えば複数の測定点60のインピーダンス座標面での複数個のX座標と、複数個のY座標をそれぞれ平均する。平均出力AveragePtを求める時に、基板Wの中心からどこまでを中心範囲とするかは、ユーザが指定する。例えば基板Wの中心から-100mm~100mmの範囲の円領域で得られた測定点60を対象とする。
【0075】
次に、点T0の座標、円弧の中心76の座標、測定点60の座標の平均である平均出力AveragePtから、最小の距離86を計算する。具体的は、点T0の座標と、平均出力AveragePtの座標から直線84の方程式を求める。次に、円弧の中心76と直線84との距離を求める。
【0076】
次に、エッジ部70の各々の測定点64において円62の中心76からの距離78を用いて、以下の補正係数Coeff(補正量)を計算する。
Coeff=1-A×(R_idle-R)/(R_idle-R_idle_min)
ここで、A:調整係数
R_idle: 半径80
R: 距離78
R_idle_min: 距離86である。
この補正係数Coeffは、エッジ部70ではないインピーダンス円弧上に存在する点、例えば測定点60では、R=R_idleとなるため、補正係数は1となる。従って、補正係数Coeffは、エッジ部70の近傍以外の測定点64に対してのみ影響するため、妥当な補正であると考える。
【0077】
補正係数Coeffは、補正前の膜厚tに乗算する。すなわち、次式によって補正する。
Adjusted Thickness(r)=Thickness(r)×Coeff (16)
ここで、r: 測定点60,64の基板Wの中心76からの距離
Adjusted Thickness(r): 距離rの関数としての補正後の膜厚
Thickness(r): 距離rの関数としての補正前の膜厚t
Coeff(r): 補正係数Coeff。
この式においては、Adjusted Thickness(r)、Thickness(r)を距離rの関数としている。距離rの関数とした理由は、
図16に示すように、距離rに依存するからである。
なお、距離86を考慮した補正を適用する基板W上の範囲は、エッジ部70に限定しても良いし、基板Wの全体であっても良い。
【0078】
(16)式を適用して補正した結果を
図18,19に示す。
図18は補正前の膜厚t((16)式のThickness(r))を示す。
図19は、
図18に示す膜厚tを(16)式により補正した後の膜厚((16)式のAdjusted Thickness(r))を示す。
図18,19の横軸は、測定点60,64の基板Wの中心90(
図2参照)からの距離(mm)を示す。基板Wの半径をLとする。±Lが基板Wの端部である。縦軸は、膜厚t(nm)を示す。
図19から、基板Wのエッジ部70において補正により、膜厚が大きくなっており、(16)式の補正が妥当であることがわかる。
【0079】
なお、研磨終了後に基板Wの膜厚を、第1研磨ユニット300Aまたは基板処理装置1000の外部に設置した膜厚測定機によって測定し、得られたエッジ部70の膜厚に関する情報を膜厚算出部238等に入力して、調整係数Aの逐次最適化を行っても良い。また、その逐次最適化をクラウド/フォグ上のコンピュータで実施しても良い。さらに、そのデータを同種のウェハを使用している他のセンサ(他の半導体製造装置用処理チャンバ内
の他のセンサ)に適用しても良い。膜厚測定機としては、膜厚tを測ることができれば、公知の任意の方式の測定機を用いることができる。例えば、電磁式膜厚計、渦電流式膜厚計、光学式膜厚計、電気抵抗式膜厚計、渦電流位相式膜厚計等である。断面を電子顕微鏡で観察することにより膜厚tを測ることも可能である。
【0080】
研磨対象の基板を研磨する研磨方法は、次のように実施される。研磨対象の基板Wを研磨面104に押圧して基板W上の導電膜を研磨する。導電膜の膜厚を測定するために、渦電流センサ210により導電膜に渦電流を形成するとともに、形成された渦電流を検出する。渦電流センサ210は、検出された渦電流をインピーダンス成分として出力する。膜厚測定装置231は、インピーダンス成分を入力されて、入力されたインピーダンス成分から導電膜の膜厚を監視する。2つの直交座標軸を有する座標系の各軸に、インピーダンス成分の抵抗成分とリアクタンス成分をそれぞれ対応させたときに、インピーダンス成分に対応する座標系上の点の少なくとも一部は、円62の少なくとも一部を形成する。膜厚測定装置231は、座標系上の測定点64と円62の中心76との第1の距離78を求め、インピーダンス成分から膜厚tを求め、得られた膜厚tを、得られた第1の距離78を用いて補正する。
【0081】
次に、第1研磨ユニット300Aが、研磨中の基板Wの温度を直接または間接に測定可能な温度センサ56と、求められた膜厚を、測定された温度を用いて補正可能な終点検出器241(温度補正部)とを有する実施例について説明する。第1研磨ユニット300Aは、第1研磨ユニット300A内の温度をモニタするための温度センサ56を含む。
図2では、研磨パッド310A又は研磨パッド310A上の基板Wの温度をモニタするように配置されている。温度センサ56は、基板Wの温度を測定するために、トップリング330Aの内部に配置してもよい。温度センサ56は、研磨パッド310A又は基板Wの表面の温度をモニタするために、研磨パッド310A又は基板Wの表面と直接接触してもよい。温度センサ56は、非接触センサ(例えば、赤外線センサ)でもよい。温度は、膜厚測定する際に用いられる。
【0082】
研磨パッド310Aの温度を利用して膜厚計算を補正する理由は以下のとおりである。基板W上の金属膜では、基板Wの温度が上昇すると、電気伝導率が低下する。そのため渦電流センサ210の本測定時には一般に、キャリブレーションした時の温度より基板Wの温度が上昇して、実際の膜厚よりも薄いと誤測定されてしまう。
【0083】
誤測定を、研磨パッド310Aの温度を用いて補正することで、正しい膜厚を算出できる。終点検出器241は、以下の式で補正を行う。
Thickness_adj=Thickness×(1+k×[(T-Tcal)×α+T])/(1+k×Tcal) (A1)
ここで、Thickness_adj:補正後の膜厚t
Thickness:補正前の膜厚t
T: 研磨中のテーブル温度
Tcal: 渦電流センサ210をキャリブレーションした時の研磨パッド310Aの温度
k: 抵抗率の温度係数(金属固有の値)
α: 第1研磨ユニット300Aに依存した係数
例えば、バルク状態(すなわち、ある程度の大きな体積を有する状態)のCuの場合 k=0.0044であり、キャリブレーションした時の温度が20℃である場合、金属膜が50℃の環境下で、膜厚を測定すると膜厚は1/1.121倍になる。すなわち、10℃上昇で約4%薄く測定される。
【0084】
上記の(A1)式による膜厚計算の補正の根拠は以下のとおりである。
金属の温度がTであるときの膜厚をThickness1とすると、Thickness1は以下の式であらわ
される。
Thickness1 =ρ(T)/Rs
ここで、ρ(T)は、金属の温度がTであるときの金属の導電率であり、
ρ(T)= ρ0(1+kT) (A2)
ρ0は、キャリブレーションした時の温度における金属の導電率
Rsはシート抵抗
温度補正を行わない場合は、第1研磨ユニット300Aはキャリブレーション時の温度における近似式を有するため、膜厚計算はρ(Tcal)で行っていることになる。ここで、Tcalは、キャリブレーションした時の金属の温度である。
【0085】
しかし、研磨中に基板Wの温度がTとなった場合は、ρ(T)を使って膜厚を算出するべきである。よって、以下の式で補正できる。
Adjusted Thickness=Calculated Thickness×ρ(T)÷ρ(Tcal)
ここで、Adjusted Thickness:ρ(T)を使って補正した膜厚
Calculated Thickness:近似式で得られた補正前の膜厚
これを、(A2)式を用いて、Tを使って表すと、
Adjusted Thickness1=Calculated Thickness ×(1+k×T)/(1+k×Tcal)
さらに研磨パッド310Aの温度は、基板Wの温度よりも基本的には温度が低い。基板Wの温度に補正するために、Tcal時に、補正係数が1となるように、システムに依存する係数αを追加する。この結果、既述の(A1)式のようになる。
Thickness_adj=Thickness×(1+k×[(T-Tcal)×α+T])/(1+k×Tcal) (A1)
【0086】
次に、
図20~
図22を用いて、上記した第1研磨ユニット300Aにおける情報を取り扱うための構成の一例を説明する。ただし、
図20~
図22では第1研磨ユニット300Aは簡易的に描かれており、具体的な構成(トップリング330A、研磨パッド310A等)は省略されている。
【0087】
図20は、データ処理部94を有する制御部140Aを備える第1研磨ユニット300Aの一例を示す図である。データ処理部94にはAI(Artificial Intelligence、人工知能)機能が搭載されてもよい。データ処理部94は何らかのハードウェアであってもよく、たとえば記憶媒体に記憶されたプログラムであってもよい。
図20ではデータ処理部94は制御部140Aの他の要素と独立した要素であるように描かれているが、データ処理部94は、たとえば制御部140Aが備えるストレージデバイス(図示せず)に記憶されて制御部140Aのプロセッサ(図示せず)よって制御されてもよい。データ処理部94は、たとえば研磨プロファイルの生成及び取得、制御パラメータの更新、及び実主力信号を学習データとしたフィードバックなど、画像処理および大規模な計算が必要な処理を行うよう構成される。
図20の構成は、第1研磨ユニット300Aを単独で(スタンドアロンで)動作させ得るという利点がある。
【0088】
図21は、ルータ96を介してクラウド(またはフォグ)97に接続された第1研磨ユニット300Aの一例を示す図である。ルータ96は、制御部140Bとクラウド97とを接続するための装置である。ルータ96は「ゲートウェイ機能を有する装置」と呼ぶこともできる。クラウド97はインターネットなどのコンピュータネットワークを通じて提供されるコンピュータ資源を指す。なお、ルータ96とクラウド97間の接続がローカルエリアネットワークである場合、クラウドはフォグ97と呼ばれる場合もある。たとえば地球上に点在する複数の工場を接続する際はクラウド97が用いられ、ある特定の工場内でネットワークを構築する場合はフォグ97が用いられるとよい。フォグ97はさらに外部のフォグまたはクラウドへ接続されてもよい。
図21では制御部140とルータ96とが有線接続され、ルータ96とクラウド(またはフォグ)97とが有線接続されている。しかし、各接続は無線接続であってもよい。クラウド97には複数の第1研磨ユニット3
00Aが接続されている(図示せず)。複数の第1研磨ユニット300Aのそれぞれは、ルータ96を介してクラウド97と接続されている。各第1研磨ユニット300Aが得たデータ(渦電流センサ210からの膜厚データ、又はその他任意の情報)はクラウド96の中に集積される。また、
図21のクラウド96はAI機能を有してもよく、データの処理はクラウド96において行われる。ただし、処理が部分的に制御部140Bで行われてもよい。
図21の構成は、集積された大量のデータに基づいて第1研磨ユニット300Aを制御することができるという利点がある。
【0089】
図22は、エッジコンピューティング機能を有するルータ96Aを介してクラウド(またはフォグ)97に接続された第1研磨ユニット300Aの一例を示す図である。
図22のクラウド97も複数の第1研磨ユニット300Aに接続されている(図示せず)。
図22の複数の第1研磨ユニット300Aのそれぞれは、ルータ96Aを介してクラウド97に接続されている。ただし、ルータのうちのいくつかはエッジコンピューティング機能を有していなくともよい(ルータのうちいくつかは
図21のルータ96であってもよい)。ルータ96Aには制御部96Bが設けられている。ただし、
図22では代表してひとつのルータ96Aのみに制御部96Bが図示されている。さらに、ルータ96AにはAI機能が搭載されてもよい。制御部96Bおよびルータ96AのAI機能は、第1研磨ユニット300Aの制御部140Cから得たデータを第1研磨ユニット300Aの近くで処理することができる。なお、ここでいう近さとは、物理的な距離を意味する用語ではなく、ネットワーク上の距離を指す用語である。ただし、ネットワーク上の距離が近ければ物理的な距離も近いことが多い。したがって、ルータ96Aにおける演算速度とクラウド97における演算速度が同程度ならば、ルータ96Aにおける処理は、クラウド97における処理よりも高速となる。両者の演算速度に差がある場合であっても、制御部140Cから送信された情報がルータ96Aに到達する速度は、制御部140Cから送信された情報がクラウド97に到達する速度より早い。
【0090】
図22のルータ96A、より具体的にはルータ96Aの制御部96Bは、処理すべきデータのうち高速処理が必要なデータのみを処理する。ルータ96Aの制御部96Bは、高速処理が不要なデータをクラウド97に送信する。
図22の構成は、第1研磨ユニット300Aの近くでの高速処理と、集積されたデータに基づく制御との両立が可能になるという利点がある。
【0091】
以上、本発明の実施形態の例について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明には、その均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
【符号の説明】
【0092】
56…温度センサ
60…測定点
62…円
64…測定点
70…エッジ部
76…中心
78…距離
80…半径
102…研磨対象物
104…研磨面
140…制御部
150…研磨部
231…膜厚測定装置
234…角算出部
238…膜厚算出部
241…終点検出器
1000…基板処理装置
300A…第1研磨ユニット
310A…研磨パッド
320A…研磨テーブル
330A…トップリング