(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-14
(45)【発行日】2022-06-22
(54)【発明の名称】液晶配向剤、液晶配向膜、及び液晶表示素子
(51)【国際特許分類】
G02F 1/1337 20060101AFI20220615BHJP
C08G 73/10 20060101ALI20220615BHJP
【FI】
G02F1/1337 525
C08G73/10
(21)【出願番号】P 2018542890
(86)(22)【出願日】2017-09-28
(86)【国際出願番号】 JP2017035347
(87)【国際公開番号】W WO2018062437
(87)【国際公開日】2018-04-05
【審査請求日】2020-08-24
(31)【優先権主張番号】P 2016191842
(32)【優先日】2016-09-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003986
【氏名又は名称】日産化学株式会社
(74)【代理人】
【識別番号】100101236
【氏名又は名称】栗原 浩之
(74)【代理人】
【識別番号】100166914
【氏名又は名称】山▲崎▼ 雄一郎
(72)【発明者】
【氏名】金 アルム
【審査官】岩村 貴
(56)【参考文献】
【文献】特開2016-080985(JP,A)
【文献】特開2016-170409(JP,A)
【文献】国際公開第2016/125870(WO,A1)
【文献】国際公開第2015/060363(WO,A1)
【文献】国際公開第2015/199149(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/1337
C08G 73/10
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(1)で表されるテトラカルボン酸二無水物と脂肪族テトラカルボン酸二無水物とを10:90乃至90:10の
モル比率で含むテトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体と有機溶媒とを含有
し、
前記脂肪族テトラカルボン酸二無水物が、下記式(3)で表されるテトラカルボン酸二無水物から選択される少なくとも1種である
ことを特徴とする液晶配向剤。
【化1】
(式(1)で表されるテトラカルボン酸二無水物が3,3’,4,4’-ビフェニルテトラカルボン酸二無水物である。
式(2)において、Y
1
は、下記式(YD-14)及び(YD-18)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類で、式(YD-14)中、jは1から3の整数であり、B
1、B
2はそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。)
【化2】
【化3】
(式中、X
1
としては下記(X-1)~(X-28)の何れかである。)
【化4】
【化5】
【化6】
式(X-1)において、R
3
~R
6
は、それぞれ独立して水素原子、炭素数1~6のアルキル基、又はフェニル基である。)
【請求項2】
前記テトラカルボン酸二無水物成分中の10~100モル%が前記式(1)で表されるテトラカルボン酸二無水物と
前記脂肪族テトラカルボン酸二無水物とであることを特徴とする請求項1に記載の液晶配向剤。
【請求項3】
前記ジアミン成分中の10~100モル%が、
前記式(2)のジアミンであることを特徴とする請求項1又は2に記載の液晶配向剤。
【請求項4】
前記脂肪族テトラカルボン酸二無水物がビシクロ[3.3.0]オクタン2,4,6,8-テトラカルボン酸2,4:6,8二無水物である請求項1から請求項
3のいずれか1項に記載の液晶配向剤。
【請求項5】
請求項1から請求項
4のいずれか1項に記載の液晶配向剤を塗布、焼成して得られる液晶配向膜。
【請求項6】
請求項
5に記載の液晶配向膜を具備する液晶表示素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶表示素子に用いられる液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子に関する。
【背景技術】
【0002】
従来から液晶装置は、パーソナルコンピュータや携帯電話、テレビジョン受像機等の表示部として幅広く用いられている。液晶装置は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN方式、VA方式等の縦電界方式や、IPS方式、フリンジフィールドスイッチング(以下、FFS)方式等の横電界方式が知られている(例えば、特許文献1)。
【0003】
一方、近年では液晶表示素子や有機EL素子は生産工程での経済性も非常に重要であることから、素子基板の再生利用が求められている。すなわち、液晶配向剤から液晶配向膜を形成後、配向性等の検査を行い欠陥が生じていた場合、基板から液晶配向膜を除去し、基板を回収するリワーク工程が簡便に実施できることが求められている。しかしながら従来提案された液晶配向剤から得られる液晶配向膜は、むしろポストベーク後に有機溶剤等に不溶化させ、膜減りを減少させることを目的とするものであった。また、これまでにリワーク性が検討されてきた液晶配向剤の構成を、そのまま横電界用液晶配向剤の構成に適用しても、必ずしも所期の目的が達成されるものとはいえず、液晶配向剤において改めてリワーク性の良否を実際に評価し、最適な組成物構成を再検討する必要があった。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、リワーク性に優れた液晶配向膜が得られる液晶配向剤を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明者らは、上記課題を解決するために鋭意検討を行った結果、特定の芳香族テトラカルボン酸二無水物と脂肪族テトラカルボン酸二無水物とを含むテトラカルボン酸と特定構造を有するジアミンから得られるポリアミック酸及びポリアミック酸のイミド化重合体を用いることにより、リワーク性に優れた液晶配向膜が得られることを見出し、本発明を完成させた。
【0007】
かくして、本発明は、上記の知見に基づくものであり、下記の要旨を有する。
1.下記式(1)で表されるテトラカルボン酸二無水物と脂肪族テトラカルボン酸二無水物とを10:90乃至90:10の比率で含むテトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体と有機溶媒とを含有することを特徴とする液晶配向剤。
【0008】
【0009】
(式(1)において、iは0又は1であり、Xは単結合、エーテル結合、カルボニル、エステル結合、フェニレン、炭素原子数1乃至20の直鎖アルキレン、炭素原子数2乃至20の分岐アルキレン、炭素原子数3乃至12の環状アルキレン、スルホニル、アミド結合またはそれらの組みあわせからなる基であり、ここで、炭素原子数1乃至20のアルキレンは、エステル結合及びエーテル結合から選ばれる結合によって中断されていてもよく、フェニレン及びアルキレンの炭素原子はハロゲン原子、シアノ基、アルキル基、ハロアルキル基、アルコキシ基及びハロアルコキシ基から選ばれる1又は複数の同一または相異なる置換基で置換されていてもよい。
式(2)において、Y1はアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であるか、窒素原子上に熱脱離性基が置換したアミノ基、イミノ基及び含窒素複素環から選ばれる2価の有機基であり、B1、B2はそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。)
【0010】
2.前記テトラカルボン酸二無水物成分中の10~100モル%が前記式(1)で表されるテトラカルボン酸二無水物と脂肪族テトラカルボン酸二無水物とであることを特徴とする、1に記載の液晶配向剤。
【0011】
3.前記ジアミン成分中の10~100モル%が、式(2)のジアミンであることを特徴とする、1又は2に記載の液晶配向剤。
【0012】
4.式(2)中のY1が、下記式(YD-1)~(YD-5)の構造から選ばれる少なくとも1種類である、1から3のいずれか1つに記載の液晶配向剤。
【0013】
【0014】
(式(YD-1)において、A1は炭素数3~15の窒素原子含有複素環であり、Z1は、水素原子、又は置換基を有してよい素数1~20の炭化水素基である。式(YD-2)において、W1は、炭素数1~10の炭化水素基であり、A2は窒素原子含有複素環を有する炭素数3~15の1価の有機基、又は炭素数1から6の脂肪族基で置換されたジ置換アミノ基である。式(YD-3)において、W2は炭素数6~15で、且つベンゼン環を1から2個有する2価の有機基であり、W3は炭素数2~5のアルキレン又はビフェニレンであり、Z2は水素原子、炭素数1~5のアルキル基、ベンゼン環、又は熱脱離性基であり、aは0~1の整数である。式(YD-4)において、A3は炭素数3~15の窒素原子含有複素環である。式(YD-5)において、A4は炭素数3~15の窒素原子含有複素環であり、W5は炭素数2~5のアルキレンである。)
【0015】
5.式(YD-1)、(YD-2)、(YD-4)、及び(YD-5)に記載のA1、A2、A3、及びA4が、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、イソキノリンからなる群から選ばれる少なくとも1種類である、4に記載の液晶配向剤。
【0016】
6.式(2)におけるY1が、下記式(YD-6)~(YD-21)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類である、1から5のいずれか1つに記載の液晶配向剤。
【0017】
【0018】
(式(YD-17)中、hは1~3の整数であり、式(YD-14)及び(YD-21)中、jは1から3の整数である。)
【0019】
7.式(2)におけるY1が、上記式(YD-14)及び(YD-18)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類であることを特徴とする、6に記載の液晶配向剤。
【0020】
8.前記式(1)で表されるテトラカルボン酸二無水物が3,3’,4,4’-ビフェニルテトラカルボン酸二無水物である1から7のいずれか1つに記載の液晶配向剤。
【0021】
9.前記脂肪族テトラカルボン酸二無水物がビシクロ[3.3.0]オクタン2,4,6,8-テトラカルボン酸2,4:6,8二無水物である1から8のいずれか1つに記載の液晶配向剤。
【0022】
10.1から9のいずれか1つに記載の液晶配向剤を塗布、焼成して得られる液晶配向膜。
【0023】
11.10に記載の液晶配向膜を具備する液晶表示素子。
【発明の効果】
【0024】
本発明の液晶配向剤から得られる液晶配向膜はリワーク性に優れる。
【発明を実施するための形態】
【0025】
本発明の液晶配向剤は、下記式(1)で表されるテトラカルボン酸二無水物と肪族テトラカルボン酸二無水物とを含むテトラカルボン酸成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体と有機溶媒とを含有することを特徴とする。
【0026】
【0027】
式(1)において、iは0又は1であり、Xは単結合、エーテル結合、カルボニル、エステル結合、フェニレン、炭素原子数1乃至20の直鎖アルキレン、炭素原子数2乃至20の分岐アルキレン、炭素原子数3乃至12の環状アルキレン、スルホニル、アミド結合またはそれらの組みあわせからなる基であり、ここで、炭素原子数1乃至20のアルキレンは、エステル結合及びエーテル結合から選ばれる結合によって中断されていてもよく、フェニレン及びアルキレンの炭素原子はハロゲン原子、シアノ基、アルキル基、ハロアルキル基、アルコキシ基及びハロアルコキシ基から選ばれる1又は複数の同一または相異なる置換基で置換されていてもよい。
式(2)において、Y1はアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であるか、窒素原子上に熱脱離性基が置換したアミノ基、イミノ基及び含窒素複素環から選ばれる2価の有機基であり、B1、B2はそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。
以下、各構成要件について詳述する。
【0028】
<テトラカルボン酸二無水物成分>
上記式(1)で表されるテトラカルボン酸二無水物としては、次のような化合物が挙げられるが、これらに限定されるものではない。
【0029】
【0030】
(式中、qは1乃至20の整数を表す。)
【0031】
これら式(1)で表されるテトラカルボン酸二無水物のうち、リワーク性向上効果が高いという点で、式(1)においてiが1であるテトラカルボン酸二無水物、すなわち、2個以上のベンゼン環を有するテトラカルボン酸二無水物が好ましく、上記具体例の中では(1-2)~(1-11)が好ましく、ビフェニル構造を含有すると共に剛直な構造を有するという点から、式(1-5)で表される3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が特に好ましい。
【0032】
本発明で用いられる特定脂肪族テトラカルボン酸二無水物としては、下記式(3)で表されるテトラカルボン酸二無水物が挙げられる。
【0033】
【0034】
式中、X1としては下記(X-1)~(X-28)の何れかである。
【0035】
【0036】
【0037】
【0038】
式(X-1)において、R3~R6は、それぞれ独立して水素原子、炭素数1~6のアルキル基、又はフェニル基であり、水素原子、又はメチル基がより好ましい。
【0039】
上記のうち、(X-1)から(X-20)が芳香族部位を含まないという点から好ましく、(X-10)が特に熱イミド化しにくいという点から最も好ましい。
【0040】
本発明の(A)成分の製造に用いられるテトラカルボン酸二無水物成分全体に占める式(1)で表されるテトラカルボン酸二無水物と脂肪族酸二無水物との合計量は、少なすぎると、本発明の効果が得られない。よって、式(1)で表されるテトラカルボン酸二無水物と脂肪族酸二無水物と合計量は、全テトラカルボン酸二無水物1モルに対して、10~100モル%が好ましく、より好ましくは、50~100モル%、さらに好ましくは、80~100モル%である。
【0041】
式(1)で表されるテトラカルボン酸二無水物と脂肪族酸二無水物との含有比率は10:90乃至90:10となる割合であるが、好ましくは20:80乃至80:20であり、さらに好ましくは40:60乃至60:40となる割合であり、特に好ましくは46:54乃至54:46であり、実質的に当量であるのが最も好ましい。
【0042】
式(1)で表されるテトラカルボン酸二無水物及び脂肪族テトラカルボン酸二無水物は、それぞれ、単独で用いても、複数を併用してもよいが、その場合も、式(1)で表されるテトラカルボン酸二無水物及び脂肪族テトラカルボン酸二無水物は、合計として上記の好ましい量を用いることが好ましい。
【0043】
本発明の液晶配向剤に含有されるポリアミック酸は、式(1)で表されるテトラカルボン酸二無水物と脂肪族テトラカルボン酸二無水物以外に、下記式(4)で表されるテトラカルボン酸二無水物を用いてもよい。
【0044】
【0045】
式(4)において、Xは4価の有機基であり、その構造は特に限定されない。具体的例を挙げるならば、下記式(X-31)~(X-36)の構造が挙げられる。
【0046】
【0047】
<ジアミン成分>
本発明の液晶配向剤の製造に用いられるジアミン成分は、上記式(2)のジアミンを含有する。式(2)において、Y1はアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であるか、窒素原子上に熱脱離性基が置換したアミノ基、イミノ基及び含窒素複素環から選ばれる2価の有機基であり、B1、B2はそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。
【0048】
上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH2-CH2構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
【0049】
上記のアルキル基、アルケニル基、アルキニル基は、全体として炭素数が1~10であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
【0050】
この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
【0051】
置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0052】
置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
【0053】
置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
【0054】
置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。
【0055】
置換基であるオルガノシリル基としては、-Si-(R)3で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。
【0056】
置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
【0057】
置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
【0058】
置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
【0059】
置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
【0060】
置換基であるアミド基としては、-C(O)NH2、又は、-C(O)NHR、-NHC(O)R、-C(O)N(R)2、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
【0061】
置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
【0062】
置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
【0063】
置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
【0064】
置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
【0065】
一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、B1及びB2としては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
【0066】
式(2)におけるY1の構造としては、アミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有しているか、窒素原子上に熱脱離性基が置換したアミノ基、イミノ基及び含窒素複素環から選ばれる少なくとも1種類の構造を有していれば、その構造は特に限定されるものではない。あえて、その具体例を挙げるとするならば、下記式(YD-1)~(YD-5)で表されるアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基が挙げられる。
【0067】
【0068】
式(YD-1)において、A1は炭素数3~15の窒素原子含有複素環であり、Z1は、水素原子、又は置換基を有してよい炭素数1~20の炭化水素基である。
式(YD-2)において、W1は、炭素数1~10の炭化水素基であり、A2は窒素原子含有複素環を有する炭素数3~15の1価の有機基、又は炭素数1から6の脂肪族基で置換されたジ置換アミノ基である。
式(YD-3)において、W2は炭素数6~15で、且つベンゼン環を1から2個有する2価の有機基であり、W3は炭素数2~5のアルキレン又はビフェニレンであり、Z2は水素原子、炭素数1~5のアルキル基、ベンゼン環、又は熱脱離性基であり、aは0~1の整数である。
式(YD-4)において、A3は炭素数3~15の窒素原子含有複素環である。
式(YD-5)において、A4は炭素数3~15の窒素原子含有複素環であり、W5は炭素数2~5のアルキレンである。)
【0069】
式(YD-1)、(YD-2)、(YD-4)、及び(YD-5)のA1、A2、A3、及びA4の炭素数3~15の窒素原子含有複素環としては、公知の構造であれば、特に限定されるものではない。中でも、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、イソキノリン、カルバゾールが挙げられ、ピペラジン、ピペリジン、インドール、ベンゾイミダゾール、イミダゾール、カルバゾール、及びピリジンがより好ましい。
【0070】
また、熱脱離性基は、室温では脱離せず、配向膜を焼成した際に脱離して水素原子に置き換わる置換基であればよく、具体的には、tert-ブトキシカルボニル基及び9-フルオレニルメトキシカルボニル基が挙げられる。
【0071】
さらに、式(2)におけるY2の具体例としては、下記式(YD-6)~(YD-52)で表される窒素原子を有する2価の有機基が挙がられ、交流駆動による電荷蓄積を抑制できるためから、式(YD-14)~式(YD-21)がより好ましく、(YD-14)及び(YD-18)が特に好ましい。
【0072】
【0073】
式(YD-14)及び(YD-21)中、jは0から3の整数である。
【0074】
【0075】
式(YD-24)、(YD-25)、(YD-28)及び(YD-29)中、jは0から3の整数である。式(YD-17)中、hは1~3の整数である。
【0076】
【0077】
【0078】
【0079】
【0080】
(式(YD-50)中、m、nはそれぞれ1から11の整数であり、m+nは2から12の整数である。)
【0081】
本発明のポリアミック酸及びポリアミック酸のイミド化重合体における式(2)で表されるジアミンの割合は、全ジアミン1モルに対して、10~100モル%であることが好ましく、より好ましくは30~100モル%、さらに好ましくは50~100モル%である。
【0082】
本発明の(A)成分であるポリアミック酸及びポリアミック酸のイミド化重合体における式(2)で表されるジアミンは、単独で用いても、複数を併用してもよいが、その場合も、式(2)で表されるジアミンは、合計として上記の好ましい量を用いることが好ましい。
【0083】
本発明の液晶配向剤に含有されるポリアミック酸は、上記式(2)で表されるジアミン以外に、下記式(5)で表されるジアミンを用いてもよい。下記式(5)におけるY2は、2価の有機基であり、その構造は特に限定されるものではなく、2種類以上が混在していてもよい。あえて、その具体例を示すならば、下記の(Y-1)~(Y-49)及び(Y-57)~(Y-97)が挙げられる。
【0084】
【0085】
【0086】
【0087】
【0088】
【0089】
【0090】
【0091】
【0092】
【0093】
【0094】
【0095】
本発明の液晶配向剤に含有される(A)成分であるポリアミック酸及びポリアミック酸のイミド化重合体において、式(5)で表されるジアミンの割合が多くなると、本発明の効果を損なう可能性があるため、好ましくない。したがって、式(5)で表されるジアミンの割合は、全ジアミン1モルに対して、0~90モル%が好ましく、より好ましくは0~50モル%、さらに好ましくは0~20モル%である。
【0096】
<ポリアミック酸の製造方法>
本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。
【0097】
具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20~150℃、好ましくは0~70℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
【0098】
上記の反応に用いる有機溶媒は、モノマーおよび重合体の溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
【0099】
重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
【0100】
上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、重合体を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノールなどが好ましい。
【0101】
<ポリイミドの製造方法>
本発明に用いられるポリイミドは、前記ポリアミック酸をイミド化することにより製造することができる。
【0102】
ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
【0103】
化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
【0104】
イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はポリアミック酸基の0.5~30倍モル、好ましくは2~20倍モルであり、酸無水物の量はポリアミック酸基の1~50倍モル、好ましくは3~30倍モルである。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
【0105】
ポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
【0106】
上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製された重合体の粉末を得ることができる。
【0107】
前記貧溶媒は、特に限定されないが、メタノール、2-プロパノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられ、メタノール、エタノール、2-プロパノール、アセトンなどが好ましい。
【0108】
<液晶配向剤>
本発明に用いられる液晶配向剤は、重合体成分が有機溶媒中に溶解された溶液の形態を有する。重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
【0109】
本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上であることが好ましく、溶液の保存安定性の点からは10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。
【0110】
本発明に用いられる液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。
【0111】
また、液晶配向剤に含有される有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を併用した混合溶媒を使用することが一般的であり、本発明の液晶配向剤においてもこのような混合溶媒は好適に用いられる。併用する有機溶媒の具体例を下記に挙げるが、これらの例に限定されるものではない。
【0112】
例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、2,6-ジメチル-4-ヘプタノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジイソプロピルエーテル、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、2,6-ジメチル-4-ヘプタノン、4,6-ジメチル-2-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、下記式[D-1]~[D-3]で表される溶媒などを挙げることができる。
【0113】
【0114】
式[D-1]中、D1は炭素数1~3のアルキル基を示し、式[D-2]中、D2は炭素数1~3のアルキル基を示し、式[D-3]中、D3は炭素数1~4のアルキル基を示す。
【0115】
なかでも好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、などを挙げることができる。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。
【0116】
また、本発明の液晶配向剤には、膜の機械的強度を上げるために以下のような添加物を添加してもよい。
【0117】
【0118】
【0119】
これらの添加剤は、液晶配向剤に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましい。0.1質量部未満であると効果が期待できず、30質量部を超えると液晶の配向性を低下させるため、より好ましくは0.5~20質量部である。
【0120】
本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
【0121】
<液晶配向膜>
<液晶配向膜の製造方法>
本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
【0122】
本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分間乾燥させ、その後150℃~300℃で5分~120分間焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
【0123】
得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。ラビング処理は既存のラビング装置を利用して行うことができる。この際のラビング布の材質としては、コットン、ナイロン、レーヨンなどが挙げられる。ラビング処理の条件としては一般に、回転速度300~2000rpm、送り速度5~100mm/s、押し込み量0.1~1.0mmという条件が用いられる。その後、純水やアルコールなどを用いて超音波洗浄によりラビングにより生じた残渣が除去される。
【0124】
光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100nm~800nmの波長を有する紫外線および可視光線を用いることができる。このうち、100nm~400nmの波長を有する紫外線が好ましく、200nm~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cm2が好ましく、100~5,000mJ/cm2が特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
【0125】
偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
【0126】
上記で、偏光された放射線を照射した膜は、次いで水及び有機溶媒から選ばれる少なくとも1種を含む溶媒で接触処理してもよい。
【0127】
接触処理に使用する溶媒としては、光照射によって生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルなどが挙げられる。これらの溶媒は2種以上を併用してもよい。
【0128】
汎用性や安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種がより好ましい。水、2-プロパノール、及び水と2-プロパノールの混合溶媒が特に好ましい。
【0129】
本発明において、偏光された放射線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒~1時間、より好ましくは1~30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。
【0130】
上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。
【0131】
さらに、上記で溶媒による接触処理をした膜は、溶媒の乾燥及び膜中の分子鎖の再配向を目的に150℃以上で加熱してもよい。
【0132】
加熱の温度としては、150~300℃が好ましい。温度が高いほど、分子鎖の再配向が促進されるが、温度が高すぎると分子鎖の分解を伴う恐れがある。そのため、加熱温度としては、180~250℃がより好ましく、200~230℃が特に好ましい。
【0133】
加熱する時間は、短すぎると分子鎖の再配向の効果が得られない可能性があり、長すぎると分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1分~10分がより好ましい。
【0134】
また、得られた液晶配向膜は、リワーク材に容易に溶解でき、リワーク性に優れた膜となる。
【0135】
リワークに使用される溶剤としては以下のものが挙げられる:エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート等のグリコールエステル類;ジエチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール等のグリコール類;メタノール、エタノール、2-プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、γ-ブチロラクトン等のケトン類;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチル-2-ピロリドン等のアミド類。
【0136】
リワーク材としては、上記溶剤にエタノールアミン等の塩基性成分を含むとともに、このアルカリ性が電極等のその他の部材にダメージを与えないように錆止めが含まれているものが好ましい。このようなリワーク材を提供するメーカーとしては、韓国の会明産業株式会社、KPXケミカルなどが挙げられる。
【0137】
リワークは、上記に挙げたリワーク材を室温で、または30℃~100℃に加熱した後、その中に液晶配向膜つき基板を1秒~1000秒、好ましくは30秒~500秒浸漬す、もしくはリワーク材をシャワー式で噴射した後、液を除去しアルコール系溶媒または純水で洗浄することにより行われる。なお、リワークする際のリワーク液の温度は、作業効率等の観点から低温であるほうが好ましく、通常室温乃至60℃であり、より好ましくは室温乃至40℃である。
【0138】
<液晶表示素子>
本発明の液晶表示素子は、本発明の液晶配向剤から前記液晶配向膜の製造方法によって液晶配向膜付きの基板を得た後、公知の方法で液晶セルを作製し、それを使用して液晶表示素子としたものである。
【0139】
液晶セル作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
【0140】
まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO2-TiO2からなる膜とすることができる。
【0141】
次に、各基板の上に、本発明の液晶配向膜を上記の方法で形成する。
【0142】
次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておく。また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。
【0143】
次に、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。
【0144】
本発明において、シール剤としては、例えば、エポキシ基、アクリロイル基、メタアクリロイル基、ヒドロキシル基、アリル基、アセチル基などの反応性基を有する紫外線照射や加熱によって硬化する樹脂が用いられる。特に、エポキシ基と(メタ)アクリロイル基の両方の反応性基を有する硬化樹脂系を用いるのが好ましい。
【0145】
本発明のシール剤には接着性、耐湿性の向上を目的として無機充填剤を配合してもよい。使用しうる無機充填剤としては特に限定されないが、具体的には球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムである。前記の無機充填剤は2種以上を混合して用いても良い。
【0146】
この液晶表示素子は、液晶配向膜として本発明の液晶配向膜の製造方法により得られた液晶配向膜を使用していることから、リワーク性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用可能である。
【実施例】
【0147】
以下に本発明の製造方法の詳細について、原料の組成や配合比率を検討した実験方法及びその結果並びに典型的な製造方法である実施例等を挙げて説明する。なお、本発明はこれらの実施例に限定されるものではない。
本実施例で使用する略号の説明
(有機溶媒)
NMP: N-メチル-2-ピロリドン
GBL: γ-ブチロラクトン
BCS: ブチルセロソルブ
酸二無水物(A):下記式(A)
酸二無水物(B):下記式(B)
酸二無水物(C):下記式(C)
酸二無水物(D):下記式(D)
DA-1:下記式(DA-1)
DA-2:下記式(DA-2)
DA-3:下記式(DA-3)
DA-4:下記式(DA-4)
DA-5:下記式(DA-5)
【0148】
【0149】
以下に粘度の測定、イミド化率の測定、リワーク性の評価、液晶セルの作製、および電荷緩和特性評価の方法について記入する。
【0150】
[粘度の測定]
合成例において、ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TV-25H(東機産業社製)を用い、サンプル量1.1mL、CORD-1(1°34’、R24)、温度25℃で測定した。
【0151】
[リワーク性の評価]
本発明の液晶配向剤をITO基板にスピンコート塗布にて塗布した。60℃のホットプレート上で1分30秒間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。その後、55℃に加熱したリワーク材(HM-R20)に作製した基板を300秒間浸漬させて現像した後、超純水で20秒間流水洗浄を行った。その後、エアーブローし、液晶配向膜が完全に消失したものを○、残存しているものを×とした。得られた結果を、リワーク液の所定の温度が35℃と55℃の場合について表3に示す。
【0152】
(比較重合例1)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-4)を0.96g取り、NMPを25.7g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を3.00g添加し、更にNMPを11.2g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(D)を0.77g添加し、更にNMPを4.4g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、50℃で16時間撹拌し、ポリアミック酸溶液(PAA-1)を得た。このポリアミック酸溶液の温度25℃における粘度は358cpsであった。
【0153】
(比較重合例2)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-2)を0.46g取り、NMPを22.3g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を2.00g添加し、更にNMPを6.3g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(D)を1.51g添加し、更にNMPを8.5g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、50℃で16時間撹拌し、ポリアミック酸溶液(PAA-2)を得た。このポリアミック酸溶液の温度25℃における粘度は333cpsであった。
【0154】
(比較重合例3)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-2)を0.46g取り、NMPを22.3g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を4.5g添加し、更にNMPを20.5g加え、窒素雰囲気下、23℃で2時間撹拌した後、50℃で16時間撹拌し、ポリアミック酸溶液(PAA-3)を得た。このポリアミック酸溶液の温度25℃における粘度は350cpsであった。
【0155】
(比較重合例4)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-2)を0.49g取り、NMPを22.3g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を3.00g添加し、更にNMPを12.0g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(D)を0.72g添加し、更にNMPを4.1g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、50℃で16時間撹拌し、ポリアミック酸溶液(PAA-4)を得た。このポリアミック酸溶液の温度25℃における粘度は333cpsであった。
【0156】
(重合例1)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-5)を0.78g取り、NMPを24.4g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(B)を1.75g添加し、更にNMPを4.3g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(D)を1.41g添加し、更にNMPを8.0g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、50℃で16時間撹拌し、ポリアミック酸溶液(PAA-5)を得た。このポリアミック酸溶液の温度25℃における粘度は240cpsであった。
【0157】
(重合例2)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-2)を0.49g取り、NMPを22.3g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を2.35g添加し、更にNMPを8.3g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(C)を1.80g添加し、更にNMPを10.2g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、70℃で16時間撹拌し、ポリアミック酸溶液(PAA-6)を得た。このポリアミック酸溶液の温度25℃における粘度は380cpsであった。
【0158】
(重合例3)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-3)を0.63g取り、NMPを23.4g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を2.35g添加し、更にNMPを8.0g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(C)を1.80g添加し、更にNMPを10.2g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、70℃で16時間撹拌し、ポリアミック酸溶液(PAA-7)を得た。このポリアミック酸溶液の温度25℃における粘度は350cpsであった。
【0159】
(重合例4)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-4)を0.95g取り、NMPを25.7g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を2.35g添加し、更にNMPを7.5g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(C)を1.80g添加し、更にNMPを10.2g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、70℃で16時間撹拌し、ポリアミック酸溶液(PAA-8)を得た。このポリアミック酸溶液の温度25℃における粘度は365cpsであった。
【0160】
(重合例5)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-5)を0.78g取り、NMPを24.4g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を2.35g添加し、更にNMPを7.8g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(C)を1.80g添加し、更にNMPを10.2g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、70℃で16時間撹拌し、ポリアミック酸溶液(PAA-9)を得た。このポリアミック酸溶液の温度25℃における粘度は389cpsであった。
【0161】
(重合例6)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-2)を0.49g取り、NMPを22.3g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を2.35g添加し、更にNMPを8.3g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(D)を1.41g添加し、更にNMPを8.0g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、70℃で16時間撹拌し、ポリアミック酸溶液(PAA-10)を得た。このポリアミック酸溶液の温度25℃における粘度は321cpsであった。
【0162】
(重合例7)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-2)を0.49g取り、NMPを22.3g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を1.41g添加し、更にNMPを2.9g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(B)を1.41g添加し、更にNMPを7.9g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、 酸二無水物(C)を1.00g添加し、更にNMPを5.7g加え、窒素雰囲気下、23℃で2時間撹拌した 。その後、70℃で16時間撹拌し、ポリアミック酸溶液(PAA-11)を得た。このポリアミック酸溶液の温度25℃における粘度は365cpsであった。
【0163】
(比較例1~4)
撹拌子の入った50mL三角フラスコに、比較合成例で得られたポリアミック酸溶液を15.0g分取し、NMPを11.25g、BCSを11.25g加え、マグネチックスターラーで2時間撹拌して、表1の液晶配向剤(A-1)~(A-4)を得た。
【0164】
【0165】
(実施例1~7)
撹拌子の入った50mL三角フラスコに、合成例で得られたポリアミック酸溶液を15.0g分取し、NMPを11.25g、BCSを11.25g加え、マグネチックスターラーで2時間撹拌して、表2の液晶配向剤(B-1)~(B-7)を得た。
【0166】
【0167】
【産業上の利用可能性】
【0168】
本発明の液晶配向剤から得られる液晶配向膜は、IPS駆動方式やFFS駆動方式の液晶表示素子において交流駆動の非対称化による電荷蓄積を低減し、且つ直流電圧により蓄積した残留電荷の緩和が早いため、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。よって、IPS駆動方式やFFS駆動方式の液晶表示素子や液晶テレビの液晶配向膜として特に有用である。