IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日産化学工業株式会社の特許一覧

特許7089231液晶配向剤、液晶配向膜、及び液晶表示素子
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-14
(45)【発行日】2022-06-22
(54)【発明の名称】液晶配向剤、液晶配向膜、及び液晶表示素子
(51)【国際特許分類】
   G02F 1/1337 20060101AFI20220615BHJP
   C08G 73/10 20060101ALI20220615BHJP
【FI】
G02F1/1337 525
C08G73/10
【請求項の数】 7
(21)【出願番号】P 2018542893
(86)(22)【出願日】2017-09-28
(86)【国際出願番号】 JP2017035350
(87)【国際公開番号】W WO2018062440
(87)【国際公開日】2018-04-05
【審査請求日】2020-08-24
(31)【優先権主張番号】P 2016191845
(32)【優先日】2016-09-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003986
【氏名又は名称】日産化学株式会社
(74)【代理人】
【識別番号】100101236
【弁理士】
【氏名又は名称】栗原 浩之
(74)【代理人】
【識別番号】100166914
【弁理士】
【氏名又は名称】山▲崎▼ 雄一郎
(72)【発明者】
【氏名】金 アルム
(72)【発明者】
【氏名】中原 翔一朗
(72)【発明者】
【氏名】橋本 淳
【審査官】岩村 貴
(56)【参考文献】
【文献】特開2016-170409(JP,A)
【文献】特開2016-224415(JP,A)
【文献】国際公開第2015/060363(WO,A1)
【文献】国際公開第2015/199149(WO,A1)
【文献】特開2016-080985(JP,A)
【文献】国際公開第2016/125870(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/1337
C08G 73/10
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
(A-1)下記式(1)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体、
(A-2)脂肪族テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体、
(B)ポリイミド前駆体、該ポリイミド前駆体のイミド化重合体及び所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体からなる群から選ばれる少なくとも1種類の重合体、及び有機溶媒を含有し、
前記脂肪族テトラカルボン酸二無水物が、下記式(3)で表されるテトラカルボン酸二無水物から選択される少なくとも1種である
ことを特徴とする液晶配向剤。
【化1】
式(1)で表されるテトラカルボン酸二無水物が3,3’,4,4’-ビフェニルテトラカルボン酸二無水物である。
式(2)において、Y は、下記式(YD-14)及び(YD-18)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類で、式(YD-14)中、jは1から3の整数であり、、Bはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。)
【化2】
【化3】
(式中、X としては下記(X-1)~(X-28)の何れかである。)
【化4】
【化5】
【化6】
(式(X-1)において、R ~R は、それぞれ独立して水素原子、炭素数1~6のアルキル基、又はフェニル基である。)
【請求項2】
前記(A-1)のテトラカルボン酸二無水物成分中の10~100モル%が前記式(1)で表されるテトラカルボン酸二無水物であることを特徴とする請求項1又は2に記載の液晶配向剤。
【請求項3】
前記(A-2)のテトラカルボン酸二無水物成分中の10~100モル%が脂肪族テトラカルボン酸二無水物であることを特徴とする請求項1に記載の液晶配向剤。
【請求項4】
前記(A-1)及び前記(A-2)のジアミン成分中の10~100モル%が、式(2)のジアミンであることを特徴とする請求項1から3のいずれか1項に記載の液晶配向剤。
【請求項5】
前記脂肪族テトラカルボン酸二無水物がビシクロ[3.3.0]オクタン2,4,6,8-テトラカルボン酸2,4:6,8二無水物である請求項1から請求項のいずれか1項に記載の液晶配向剤。
【請求項6】
請求項1から請求項のいずれか1項に記載の液晶配向剤を塗布、焼成して得られる液晶配向膜。
【請求項7】
請求項に記載の液晶配向膜を具備する液晶表示素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、液晶表示素子に用いられる液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子に関する。
【背景技術】
【0002】
従来から液晶装置は、パーソナルコンピュータや携帯電話、テレビジョン受像機等の表示部として幅広く用いられている。液晶装置は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN方式、VA方式等の縦電界方式や、IPS方式、フリンジフィールドスイッチング(以下、FFS)方式等の横電界方式が知られている(例えば、特許文献1)。
【0003】
一方、近年では液晶表示素子や有機EL素子は生産工程での経済性も非常に重要であることから、素子基板の再生利用が求められている。すなわち、液晶配向剤から液晶配向膜を形成後、配向性等の検査を行い欠陥が生じていた場合、基板から液晶配向膜を除去し、基板を回収するリワーク工程が簡便に実施できることが求められている。しかしながら従来提案された液晶配向剤から得られる液晶配向膜は、むしろポストベーク後に有機溶剤等に不溶化させ、膜減りを減少させることを目的とするものであった。また、これまでにリワーク性が検討されてきた液晶配向剤の構成を、そのまま横電界用液晶配向剤の構成に適用しても、必ずしも所期の目的が達成されるものとはいえず、液晶配向剤において改めてリワーク性の良否を実際に評価し、最適な組成物構成を再検討する必要があった。
【0004】
また、液晶表示素子は、表示デバイスとして現在広く使用されている。液晶表示素子の構成部材である液晶配向膜は、液晶を均一に並べるための膜であるが、液晶の配向均一性だけでなく種々の特性が必要とされる。例えば、液晶配向膜の作製工程においては、布で高分子膜の表面を擦るラビングという配向処理を行うのが一般的である。しかし、液晶配向膜のラビング耐性が不十分であると、膜が削れて傷や粉塵を発生させたり、膜そのものが剥離したりして、液晶表示素子の表示品位を低下させてしまう。また、液晶表示素子は液晶に電圧をかけて駆動させている。このため、液晶配向膜の電圧保持率(VHR)が低いと液晶に十分な電圧がかからず、表示のコントラストが低下してしまう。また、液晶を駆動させる電圧によって液晶配向膜に電荷が蓄積したり、蓄積した電荷が抜けるのに時間が掛かると、残像や表示の焼き付きといった現象が発生してしまう。
【0005】
上記のような要求特性のいくつかを同時に満たすものとしては、種々の提案がなされている。例えば、ラビング耐性に優れ、かつ残像や焼き付きが少ない液晶配向膜を得る方法として特許文献2のような提案がなされている。また、液晶配向性、配向規制力、ラビング耐性に優れ、電圧保持率が高く、なおかつ電荷蓄積を低減した、液晶配向膜を得る方法として特許文献3のような提案がなされている。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2013-167782号公報
【文献】国際公開第WO02/33481号パンフレット
【文献】国際公開第WO2004/053583号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、液晶配向膜に必要な各種特性を満たすとともに、リワーク性にも優れた液晶配向膜が得られる液晶配向剤を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、上記課題を解決するために鋭意検討を行った結果、特定の芳香族テトラカルボン酸二無水物と脂肪族テトラカルボン酸二無水物とを含むテトラカルボン酸と特定構造を有するジアミンから得られるポリアミック酸及びポリアミック酸のイミド化重合体を用いることにより、液晶配向膜に必要な各種特性を満たすとともに、リワーク性にも優れた液晶配向膜が得られることを見出し、本発明を完成させた。
【0009】
かくして、本発明は、上記の知見に基づくものであり、下記の要旨を有する。
1.(A-1)下記式(1)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体、
(A-2)脂肪族テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体、
(B)ポリイミド前駆体、該ポリイミド前駆体のイミド化重合体及び所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体からなる群から選ばれる少なくとも1種類の重合体、及び有機溶媒を含有することを特徴とする液晶配向剤。
【0010】
【化1】
【0011】
(式(1)において、iは0又は1であり、Xは単結合、エーテル結合、カルボニル、エステル結合、フェニレン、炭素原子数1乃至20の直鎖アルキレン、炭素原子数2乃至20の分岐アルキレン、炭素原子数3乃至12の環状アルキレン、スルホニル、アミド結合またはそれらの組みあわせからなる基であり、ここで、炭素原子数1乃至20のアルキレンは、エステル結合及びエーテル結合から選ばれる結合によって中断されていてもよく、フェニレン及びアルキレンの炭素原子はハロゲン原子、シアノ基、アルキル基、ハロアルキル基、アルコキシ基及びハロアルコキシ基から選ばれる1又は複数の同一または相異なる置換基で置換されていてもよい。
式(2)において、Yはアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であり、B、Bはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。
【0012】
2.前記(A-1)のテトラカルボン酸二無水物成分中の10~100モル%が式(1)のテトラカルボン酸二無水物であることを特徴とする、1に記載の液晶配向剤。
【0013】
3.前記(A-2)のテトラカルボン酸二無水物成分中の10~100モル%が脂肪族テトラカルボン酸二無水物であることを特徴とする、1又は2に記載の液晶配向剤。
【0014】
4.前記(A-1)及び前記(A-2)のジアミン成分中の10~100モル%が、式(2)のジアミンであることを特徴とする、1から3のいずれか1つに記載の液晶配向剤。
【0015】
5.式(2)中のYが、下記式(YD-1)~(YD-5)の構造から選ばれる少なくとも1種類である、1から4のいずれか1つに記載の液晶配向剤。
【0016】
【化2】
【0017】
(式(YD-1)において、Aは炭素数3~15の窒素原子含有複素環であり、Zは、水素原子、又は置換基を有してよい素数1~20の炭化水素基である。式(YD-2)において、Wは、炭素数1~10の炭化水素基であり、Aは窒素原子含有複素環を有する炭素数3~15の1価の有機基、又は炭素数1から6の脂肪族基で置換されたジ置換アミノ基である。式(YD-3)において、Wは炭素数6~15で、且つベンゼン環を1から2個有する2価の有機基であり、Wは炭素数2~5のアルキレン又はビフェニレンであり、Zは水素原子、炭素数1~5のアルキル基、又はベンゼン環であり、aは0~1の整数である。式(YD-4)において、Aは炭素数3~15の窒素原子含有複素環である。式(YD-5)において、Aは炭素数3~15の窒素原子含有複素環であり、Wは炭素数2~5のアルキレンである。)
【0018】
6.式(YD-1)、(YD-2)、(YD-4)、及び(YD-5)に記載のA、A、A、及びAが、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、イソキノリンからなる群から選ばれる少なくとも1種類である、5に記載の液晶配向剤。
【0019】
7.式(2)におけるYが、下記式(YD-6)~(YD-21)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類である、1から6のいずれか1つに記載の液晶配向剤。
【0020】
【化3】
【0021】
(式(YD-17)中、hは1~3の整数であり、式(YD-14)及び(YD-21)中、jは1から3の整数である。)
【0022】
8.式(2)におけるYが、上記式(YD-14)及び(YD-18)の構造を有する2価の有機基からなる群から選ばれる少なくとも1種類であることを特徴とする、7に記載の液晶配向剤。
【0023】
9.前記式(1)で表されるテトラカルボン酸二無水物が3,3’,4,4’-ビフェニルテトラカルボン酸二無水物である1から8のいずれか1つに記載の液晶配向剤。
【0024】
10.前記脂肪族テトラカルボン酸二無水物がビシクロ[3.3.0]オクタン2,4,6,8-テトラカルボン酸2,4:6,8二無水物である1から9のいずれか1つに記載の液晶配向剤。
【0025】
11.1から10のいずれか1つに記載の液晶配向剤を塗布、焼成して得られる液晶配向膜。
【0026】
12.11に記載の液晶配向膜を具備する液晶表示素子。
【発明の効果】
【0027】
本発明の液晶配向剤から得られる液晶配向膜は、交流駆動の非対称化による電荷蓄積を抑制することができるとともに、リワーク性に優れる。
【発明を実施するための形態】
【0028】
本発明の液晶配向剤は、(A-1)下記式(1)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体、(A-2)脂肪族テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と下記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体、(B)ポリイミド前駆体、該ポリイミド前駆体のイミド化重合体及び所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体からなる群から選ばれる少なくとも1種類の重合体、及び有機溶剤を含有することを特徴とする。
【0029】
【化4】
【0030】
式(1)において、iは0又は1であり、Xは単結合、エーテル結合、カルボニル、エステル結合、フェニレン、炭素原子数1乃至20の直鎖アルキレン、炭素原子数2乃至20の分岐アルキレン、炭素原子数3乃至12の環状アルキレン、スルホニル、アミド結合またはそれらの組みあわせからなる基であり、ここで、炭素原子数1乃至20のアルキレンは、エステル結合及びエーテル結合から選ばれる結合によって中断されていてもよく、フェニレン及びアルキレンの炭素原子はハロゲン原子、シアノ基、アルキル基、ハロアルキル基、アルコキシ基及びハロアルコキシ基から選ばれる1又は複数の同一または相異なる置換基で置換されていてもよい。
【0031】
式(2)において、Yはアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であり、B~Bはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。
【0032】
以下、各構成要件について詳述する。
【0033】
<(A-1)成分および(A-2)成分>
本発明の液晶配向剤に用いられる(A-1)成分は、上記式(1)で表されるテトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と上記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体である。
【0034】
また、本発明の液晶配向剤に用いられる(A-2)成分は、脂肪族テトラカルボン酸二無水物を含むテトラカルボン酸二無水物成分と上記式(2)で表されるジアミンを含むジアミン成分とを用いて得られるポリアミック酸及び該ポリアミック酸のイミド化重合体から選ばれる少なくとも1種類の重合体である。
【0035】
<テトラカルボン酸二無水物成分>
上記式(1)で表されるテトラカルボン酸二無水物としては、次のような化合物が挙げられるが、これらに限定されるものではない。
【0036】
【化5】
【0037】
(式中、qは1乃至20の整数を表す。)
【0038】
これら式(1)で表されるテトラカルボン酸二無水物のうち、リワーク性向上効果が高いという点で、式(1)においてiが1であるテトラカルボン酸二無水物、すなわち、2個以上のベンゼン環を有するテトラカルボン酸二無水物が好ましく、上記具体例の中では(1-2)~(1-11)が好ましく、ビフェニル構造を含有すると共に剛直な構造を有するという点から、式(1-5)で表される3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が特に好ましい。
【0039】
本発明で用いられる特定脂肪族テトラカルボン酸二無水物としては、下記式(3)で表されるテトラカルボン酸二無水物が挙げられる。
【0040】
【化6】
【0041】

式中、Xとしては下記(X-1)~(X-28)の何れかである。
【0042】
【化7】
【0043】
【化8】
【0044】
【化9】
【0045】
式(X-1)において、R~Rは、それぞれ独立して水素原子、炭素数1~6のアルキル基、又はフェニル基であり、水素原子、又はメチル基がより好ましい。
【0046】
上記のうち、(X-1)から(X-20)が芳香族部位を含まないという点から好ましく、(X-10)が特に熱イミド化しにくいという点から最も好ましい。
【0047】
(A-1)成分において、テトラカルボン酸二無水物成分全体に占める式(1)で表されるテトラカルボン酸二無水物の量は、少なすぎると、本発明の効果が得られない。よって、式(1)で表されるテトラカルボン酸二無水物の量は、(A-1)成分の製造に用いられる全テトラカルボン酸二無水物1モルに対して、10~100モル%が好ましく、より好ましくは、50~100モル%、さらに好ましくは、80~100モル%である。
【0048】
(A-2)成分において、テトラカルボン酸二無水物成分全体に占める脂肪族酸二無水物との量は、少なすぎると、本発明の効果が得られない。よって、脂肪族テトラカルボン酸二無水物の量は、(A-2)成分の製造に用いられる全テトラカルボン酸二無水物1モルに対して、10~100モル%が好ましく、より好ましくは、50~100モル%、さらに好ましくは、80~100モル%である。
【0049】
式(1)で表されるテトラカルボン酸二無水物及び脂肪族テトラカルボン酸二無水物は、それぞれ、単独で用いても、複数を併用してもよいが、その場合も、式(1)で表されるテトラカルボン酸二無水物及び脂肪族テトラカルボン酸二無水物は、合計として上記の好ましい量を用いることが好ましい。
【0050】
本発明の液晶配向剤に含有されるポリアミック酸は、式(1)で表されるテトラカルボン酸二無水物と脂肪族テトラカルボン酸二無水物以外に、下記式(4)で表されるテトラカルボン酸二無水物を用いてもよい。
【0051】
【化10】
【0052】
式(4)において、Xは4価の有機基であり、その構造は特に限定されない。具体的例を挙げるならば、下記式(X-31)~(X-36)の構造が挙げられる。
【0053】
【化11】
【0054】
<ジアミン成分>
本発明の(A-1)成分または(A-2)成分の製造に用いられるジアミン成分は、上記式(2)のジアミンを含有する。式(2)において、Yはアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基であり、B~Bはそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、アルケニル基、アルキニル基である。
【0055】
上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、デシル基、シクロペンチル基、シクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、C=C構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。
【0056】
上記のアルキル基、アルケニル基、アルキニル基は、全体として炭素数が1~10であれば置換基を有していてもよく、更には置換基によって環構造を形成してもよい。なお、置換基によって環構造を形成するとは、置換基同士又は置換基と母骨格の一部とが結合して環構造となることを意味する。
【0057】
この置換基の例としてはハロゲン基、水酸基、チオール基、ニトロ基、アリール基、オルガノオキシ基、オルガノチオ基、オルガノシリル基、アシル基、エステル基、チオエステル基、リン酸エステル基、アミド基、アルキル基、アルケニル基、アルキニル基を挙げることができる。
【0058】
置換基であるハロゲン基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
【0059】
置換基であるアリール基としては、フェニル基が挙げられる。このアリール基には前述した他の置換基がさらに置換していてもよい。
【0060】
置換基であるオルガノオキシ基としては、O-Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルオキシ基の具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基などが挙げられる。
【0061】
置換基であるオルガノチオ基としては、-S-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルチオ基の具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、ヘプチルチオ基、オクチルチオ基などが挙げられる。
【0062】
置換基であるオルガノシリル基としては、-Si-(R)で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリブチルシリル基、トリペンチルシリル基、トリヘキシルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基などが挙げられる。
【0063】
置換基であるアシル基としては、-C(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。アシル基の具体例としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ベンゾイル基などが挙げられる。
【0064】
置換基であるエステル基としては、-C(O)O-R、又は-OC(O)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
【0065】
置換基であるチオエステル基としては、-C(S)O-R、又は-OC(S)-Rで表される構造を示すことができる。このRとしては、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
【0066】
置換基であるリン酸エステル基としては、-OP(O)-(OR)2で表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
【0067】
置換基であるアミド基としては、-C(O)NH、又は、-C(O)NHR、-NHC(O)R、-C(O)N(R)、-NRC(O)Rで表される構造を示すことができる。このRは同一でも異なってもよく、前述したアルキル基、アルケニル基、アルキニル基、アリール基などを例示することができる。これらのRには前述した置換基がさらに置換していてもよい。
【0068】
置換基であるアリール基としては、前述したアリール基と同じものを挙げることができる。このアリール基には前述した他の置換基がさらに置換していてもよい。
【0069】
置換基であるアルキル基としては、前述したアルキル基と同じものを挙げることができる。このアルキル基には前述した他の置換基がさらに置換していてもよい。
【0070】
置換基であるアルケニル基としては、前述したアルケニル基と同じものを挙げることができる。このアルケニル基には前述した他の置換基がさらに置換していてもよい。
【0071】
置換基であるアルキニル基としては、前述したアルキニル基と同じものを挙げることができる。このアルキニル基には前述した他の置換基がさらに置換していてもよい。
【0072】
一般に、嵩高い構造を導入すると、アミノ基の反応性や液晶配向性を低下させる可能性があるため、B及びBとしては、水素原子、又は置換基を有してもよい炭素数1~5のアルキル基がより好ましく、水素原子、メチル基又はエチル基が特に好ましい。
【0073】
式(2)におけるYの構造としては、アミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有していれば、その構造は特に限定されるものではない。あえて、その具体例を挙げるとするならば、下記式(YD-1)~(YD-5)で表されるアミノ基、イミノ基、及び含窒素複素環からなる群から選ばれる少なくとも1種類の構造を有する2価の有機基が挙げられる。
【0074】
【化12】
【0075】
式(YD-1)において、Aは炭素数3~15の窒素原子含有複素環であり、Zは、水素原子、又は置換基を有してよい炭素数1~20の炭化水素基である。
【0076】
式(YD-2)において、Wは、炭素数1~10の炭化水素基であり、Aは窒素原子含有複素環を有する炭素数3~15の1価の有機基、又は炭素数1から6の脂肪族基で置換されたジ置換アミノ基である。
【0077】
式(YD-3)において、Wは炭素数6~15で、且つベンゼン環を1から2個有する2価の有機基であり、Wは炭素数2~5のアルキレン又はビフェニレンであり、Zは水素原子、炭素数1~5のアルキル基、又はベンゼン環であり、aは0~1の整数である。
【0078】
式(YD-4)において、Aは炭素数3~15の窒素原子含有複素環である。
【0079】
式(YD-5)において、Aは炭素数3~15の窒素原子含有複素環であり、Wは炭素数2~5のアルキレンである。)
【0080】
式(YD-1)、(YD-2)、(YD-4)、及び(YD-5)のA、A、A、及びAの炭素数3~15の窒素原子含有複素環としては、公知の構造であれば、特に限定されるものではない。中でも、ピロリジン、ピロール、イミダゾール、ピラゾール、オキサゾール、チアゾール、ピペリジン、ピペラジン、ピリジン、ピラジン、インドール、ベンゾイミダゾール、キノリン、イソキノリン、カルバゾールが挙げられ、ピペラジン、ピペリジン、インドール、ベンゾイミダゾール、イミダゾール、カルバゾール、及びピリジンがより好ましい。
【0081】
さらに、式(2)におけるYの具体例としては、下記式(YD-6)~(YD-38)で表される窒素原子を有する2価の有機基が挙がられ、交流駆動による電荷蓄積を抑制できるためから、式(YD-14)~式(YD-21)がより好ましく、(YD-14)及び(YD-18)が特に好ましい。
【0082】
【化13】
【0083】
式(YD-14)及び(YD-21)中、jは0から3の整数である。式(YD-17)中、hは1~3の整数である。
【0084】
【化14】
【0085】
式(YD-24)、(YD-25)、(YD-28)及び(YD-29)中、jは0から3の整数である。
【0086】
【化15】
【0087】
本発明の(A-1)成分または(A-2)成分であるポリアミック酸及びポリアミック酸のイミド化重合体における式(2)で表されるジアミンの割合は、(A-1)成分または(A-2)成分の製造に用いられる全ジアミン1モルに対して、10~100モル%であることが好ましく、より好ましくは30~100モル%、さらに好ましくは50~100モル%である。
【0088】
本発明の(A-1)成分及び(A-2)成分において、ポリアミック酸及びポリアミック酸のイミド化重合体の製造における式(2)で表されるジアミンは、単独で用いても、複数を併用してもよいが、その場合も、式(2)で表されるジアミンは、合計として上記の好ましい量を用いることが好ましい。また、(A-1)成分と(A-2)成分とで、同じジアミンを用いた方が、本願発明の効果をより高める点から好ましい。
【0089】
なお、本発明においては、(A-1)成分及び(A-2)成分において、ポリアミック酸及びポリアミック酸のイミド化重合体を製造する際に用いられるジアミンは、同じものであることが好ましい。
【0090】
本発明の液晶配向剤に含有される(A-1)成分または(A-2)成分であるポリアミック酸は、上記式(2)で表されるジアミン以外に、下記式(5)で表されるジアミンを用いてもよい。下記式(5)におけるYは、2価の有機基であり、その構造は特に限定されるものではなく、2種類以上が混在していてもよい。あえて、その具体例を示すならば、下記の(Y-1)~(Y-49)及び(Y-57)~(Y-75)が挙げられる。
【0091】
【化16】
【0092】
【化17】
【0093】
【化18】
【0094】
【化19】
【0095】
【化20】
【0096】
【化21】
【0097】
【化22】
【0098】
本発明の液晶配向剤に含有される(A-1)成分または(A-2)成分であるポリアミック酸において、式(5)で表されるジアミンの割合が多くなると、本発明の効果を損なう可能性があるため、好ましくない。したがって、式(5)で表されるジアミンの割合は、全ジアミン1モルに対して、0~90モル%が好ましく、より好ましくは0~50モル%、さらに好ましくは0~20モル%である。
【0099】
<ポリアミック酸の製造方法>
本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。
【0100】
具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20~150℃、好ましくは0~70℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
【0101】
上記の反応に用いる有機溶媒は、モノマーおよび重合体の溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
【0102】
重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
【0103】
上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、重合体を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノールなどが好ましい。
【0104】
<ポリイミドの製造方法>
本発明に用いられるポリイミドは、前記ポリアミック酸をイミド化することにより製造することができる。
【0105】
ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
【0106】
化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
【0107】
イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はポリアミック酸基の0.5~30倍モル、好ましくは2~20倍モルであり、酸無水物の量はポリアミック酸基の1~50倍モル、好ましくは3~30倍モルである。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
【0108】
ポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
【0109】
上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製された重合体の粉末を得ることができる。
【0110】
前記貧溶媒は、特に限定されないが、メタノール、2-プロパノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられ、メタノール、エタノール、2-プロパノール、アセトンなどが好ましい。
【0111】
このようにして製造された(A-1)成分及び(A-2)成分の含有比は、上記式(1)で表されるテトラカルボン酸二無水物と脂肪族テトラカルボン酸二無水物との含有比率が10:90乃至90:10となる割合であるが、好ましくは20:80乃至80:20であり、さらに好ましくは40:60乃至60:40となる割合であり、特に好ましくは46:54乃至54:46となる割合であり、実質的に当量となるのが最も好ましい。
【0112】
<(B)成分>
本発明の液晶配向剤に含まれる(B)成分は、ポリイミド前駆体、該ポリイミド前駆体のイミド化重合体及び所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体からなる群から選ばれる少なくとも1種類の重合体である。
【0113】
<ポリイミド前駆体>
ポリイミド前駆体は、下記式(11)で表される構造単位を有するポリイミド前駆体である。
【0114】
【化23】
【0115】
式(11)において、X11は、それぞれ独立して4価の有機基であり、Y11はそれぞれ独立して2価の有機基である。R11は、水素原子、又は炭素数1~5のアルキル基であり、A11~A12はそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、炭素数2~10のアルケニル基、又は炭素数2~10のアルキニル基である。
【0116】
11における上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基などが挙げられる。加熱によるイミド化のしやすさの観点から、R11は、水素原子、又はメチル基が好ましい。
【0117】
式(11)において、X11はテトラカルボン酸誘導体由来の4価の有機基であり、その構造は特に限定されるものではない。ポリイミド前駆体中、X11は2種類以上が混在していてもよい。X11の具体例を示すならば、下記式(X-1)~(X-44)の構造が挙げられる。
【0118】
【化24】
【0119】
【化25】
【0120】
【化26】
【0121】
【化27】
【0122】
上記式(X-1)におけるR~R11は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルキニル基、若しくは、フェニル基である。R~R11が嵩高い構造である場合、液晶配向性を低下させる可能性があるため、水素原子、メチル基、エチル基がより好ましく、水素原子、又は、メチル基が特に好ましい。
【0123】
式(11)において、X11はモノマーの入手性の観点から、(X-1)~(X-14)から選ばれる構造を含有することが好ましい。
【0124】
上記(X-1)~(X-14)から選ばれる構造の好ましい割合としては、X11全体の20モル%以上であり、より好ましくは60モル%以上、さらに好ましくは80モル%以上である。
【0125】
式(11)において、A11及びA12はそれぞれ独立して水素原子、又は置換基を有してもよい炭素数1~10のアルキル基、置換基を有してもよい炭素数2~10のアルケニル基、置換基を有してもよい炭素数2~10のアルキニル基である。
【0126】
これらA11及びA12の具体例や好ましい例は、上記(A-1)成分と(A-2)成分の項におけるB及びBと同様である。
【0127】
式(11)において、Y11はジアミン由来の2価の有機基であり、その構造は特に限定されない。Y11の構造の具体例を示すならば、前記(A)成分の項で記載した上記(Y-1)~(Y-49)及び(Y-57)~(Y-75)や(YD-6)~(YD-38)が挙げられる。また、それに加えて、下記(Y-76)~(Y-97)、および、(YD-39)~(YD-52)が挙げられる。
【0128】
【化28】
【0129】
【化29】
【0130】
【化30】
【0131】
【化31】
【0132】
【化32】
【0133】
【化33】
【0134】
【化34】
(式(YD-50)中、m、nはそれぞれ1から11の整数であり、m+nは2から12の整数である。)
【0135】
11の構造としては、得られる液晶配向膜の液晶配向性やプレチルト角の観点から、下記式(15)および(16)で表される構造から選ばれる少なくとも1種であることがより好ましい。
【0136】
【化35】
【0137】
式(15)中、R12は単結合、又は炭素数1~30の2価の有機基であり、R13は水素原子、ハロゲン原子又は炭素数1~30の1価の有機基、aは1~4の整数であり、aが2以上の場合は、R12、R13は互いに同一でも異なっていてもよく、式(16)中のR14は単結合、-O-、-S-、-NR15-、アミド結合、エステル結合、ウレア結合、又は炭素数1~40の2価の有機基であり、R15は、水素原子、またはメチル基である。
【0138】
式(15)及び式(16)の具体例としては、以下の構造が挙げられる。
直線性の高い構造は、液晶配向膜としたときに液晶の配向性を高めることができるため、Y11としては、前記Y-7、Y-21、Y-22、Y-23、Y-25、Y-43、Y-44、Y-45、Y-46、Y-48、Y-63、Y-71、Y-72、Y-73、Y-74、Y-75がさらに好ましい。液晶配向性を高めることができる上記構造の割合としては、Y11全体の20モル%以上が好ましく、より好ましくは60モル%以上、さらに好ましくは80モル%以上である。
【0139】
液晶配向膜としたときに液晶のプレチルト角を高くしたい場合には、側鎖に長鎖アルキル基、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造をY11に有すると好ましい。そのようなY11としては、Y-76、Y-77、Y-78、Y-79、Y-80、Y-81、Y-82、Y-83、Y-84、Y-85、Y-86、Y-87、Y-88、Y-89、Y-90、Y-91、Y-92、Y-93、Y-94、Y-95、Y-96、Y-97が好ましい。プレチルト角を高くしたい場合の上記構造の割合としては、Y11全体の1~30モル%が好ましく、1~20モル%がより好ましい。
【0140】
また、(B)成分の重合体として光配向性側鎖を有するポリイミド(前駆体)を用いる場合、下記の光反応性側鎖を有するポリイミド(前駆体)を用いることが好ましい。
【0141】
【化36】
【0142】
(R16は-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、-N(CH)CO-のいずれかを表し、R17は環状、非置換またはフッ素原子によって置換されている炭素数1から炭素数20のアルキレンを表し、ここでアルキレンの任意の-CH-は-CF-又は-C=C-で置き換えられていてもよく、次に挙げるいずれかの基が互いに隣り合わない場合において、これらの基に置き換えられていてもよい;-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、炭素環、複素環。R18は-CH-、-O-、-COO-、-OCO-、-NHCO-、-NH-、-N(CH)-、-CON(CH)-、-N(CH)CO-、炭素環、もしくは複素環のいずれかを表し、R19はビニルフェニル基、-CR20=CH基、-CR20(OH)-CH基、炭素環、複素環又は以下の群から選ばれる式で表される構造を表し、R20は水素原子又はフッ素原子で置換されていてもよいメチル基を表す。)
【0143】
【化37】
【0144】
【化38】
【0145】
【化39】
【0146】
【化40】
【0147】
【化41】
【0148】
【化42】
【0149】
【化43】
【0150】
【化44】
【0151】
【化45】
【0152】
【化46】
【0153】
このようなポリイミド前駆体を製造する場合は、ジアミンとして、上記式(b)で表される側鎖が置換したジアミンを用いるのが簡便である。
【0154】
また、主鎖に光配向性基を有するポリイミド前駆体を用いても良い。この場合は、下記式(21)で表されるような、アミンとアミンとの間に光配向性基を含む結合を有するジアミンを用いることが簡便である。
【0155】
【化47】
【0156】
(式(21)中、X21は単結合または炭素数1~5のアルキレン基であり、X22は-OCO-CH=CH-または-CH=CH-COO-であり、X23は単結合、炭素数1~10のアルキレン基または2価のベンゼン環であり、X24は単結合、-OCO-CH=CH-または-CH=CH-COO-であり、X25は単結合または炭素数1~5のアルキレン基である。但し、1つ以上のシンナモイル基を有する。)
【0157】
式(21)で表されるジアミンとしては、下記ジアミンが挙げられる。
【0158】
【化48】
【0159】
(式中、Xは独立して単結合もしくはエーテル(-O-)、エステル(-COO-または-OCO-)及びアミド(-CONH-または-NHCO-)から選択される結合基であり、Yは独立して単結合または炭素数1~5のアルキレン基であり、Zは独立して炭素数1~10のアルキレン基もしくはフェニレン基である。ベンゼン環上のアミノ基の結合位置や、中央のベンゼン環に対する結合基の位置は特に限定されない。)
【0160】
式(21)で表されるジアミンの具体例としては、下記ジアミンが挙げられる。
【0161】
【化49】
【0162】
【化50】
【0163】
このような上記式(21)で表されるジアミンを原料とするポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミドやポリアミドを含有する液晶配向剤を用いて形成される液晶配向膜は、AC(交流)駆動による液晶配向性能の変化、例えば、液晶の配向方位の変化が低減されたものである。したがって、この液晶配向膜を有する液晶表示素子は、AC駆動での液晶配向膜の液晶配向性能が安定なため、AC駆動により残像が生じ難い、すなわち、AC駆動による残像特性が非常に良好であるという効果を奏する。また、上記式(21)で表されるジアミンを用いて形成された液晶配向膜は、液晶配向性能自体にも優れており、配向欠陥が実質的に無いものとすることができる。
【0164】
本発明に用いるポリイミド前駆体は、ジアミン成分とテトラカルボン酸誘導体との反応から得られるものであり、ポリアミック酸やポリアミック酸エステル等が挙げられる。
【0165】
<ポリイミド前駆体-ポリアミック酸の製造>
(A-1)成分及び(A-2)成分の項に記載したポリアミック酸の製造方法の記載に準じる。
【0166】
<ポリイミド前駆体-ポリアミック酸エステルの製造>
本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)、(2)又は(3)の製法で製造することができる。
【0167】
(1)ポリアミック酸から製造する場合
ポリアミック酸エステルは、前記のように製造されたポリアミック酸をエステル化することによって製造できる。具体的には、ポリアミック酸とエステル化剤を有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
【0168】
エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましい。
【0169】
有機溶剤としては、例えば、N-メチル-2-ピロリドン、N-エチル-2-ピロリドンまたはγ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシドまたは1,3-ジメチル-イミダゾリジノンが挙げられる。また、ポリイミド前駆体の溶媒溶解性が高い場合は、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、4-ヒドロキシ-4-メチル-2-ペンタノン、又は後述する式[D-1]~式[D-3]で示される溶媒を用いることができる。
【0170】
これら溶媒は単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、前記溶媒に混合して使用してもよい。また、溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、溶媒は脱水乾燥させたものを用いることが好ましい。
【0171】
上記の反応に用いる溶媒は、ポリマーの溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。
【0172】
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により製造する場合
ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから製造することができる。
【0173】
具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1~4時間反応させることによって製造することができる。
【0174】
前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。
【0175】
上記の反応に用いる溶媒は、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、又はγ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。製造時のポリマー濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの製造に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。
【0176】
(3)テトラカルボン酸ジエステルとジアミンから製造する場合
ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより製造することができる。
【0177】
具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶剤の存在下で0℃~150℃、好ましくは0℃~100℃において、30分~24時間、好ましくは3~15時間反応させることによって製造することができる。
【0178】
前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルが好ましい。
【0179】
前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという点から、ジアミン成分に対して2~4倍モルが好ましい。
【0180】
また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0~1.0倍モルが好ましい。
【0181】
上記3つのポリアミック酸エステルの製造方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は上記(2)の製法が特に好ましい。
【0182】
上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、ポリマーを析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられる。
【0183】
<ポリイミド>
本発明に用いられるポリイミドは、前記したポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。(A-1)成分及び(A-2)成分の項に記載したポリイミドの製造方法の記載に準じる。
【0184】
<所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体>
(B)成分の態様の一つは、所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体である。
【0185】
該側鎖型アクリル重合体は、250nm~400nmの波長範囲の光で反応し、かつ100℃~300℃の温度範囲で液晶性を示すのがよい。
【0186】
該側鎖型アクリル重合体は、250nm~400nmの波長範囲の光に反応する感光性側鎖を有することが好ましい。
【0187】
該側鎖型アクリル重合体は、100℃~300℃の温度範囲で液晶性を示すためメソゲン基を有することが好ましい。
【0188】
該側鎖型アクリル重合体は、主鎖に感光性を有する側鎖が結合しており、光に感応して架橋反応、異性化反応、または光フリース転位を起こすことができる。感光性を有する側鎖の構造は特に限定されないが、光に感応して架橋反応、または光フリース転位を起こす構造が望ましく、架橋反応を起こすものがより望ましい。この場合、熱などの外部ストレスに曝されたとしても、実現された配向制御能を長期間安定に保持することができる。液晶性を発現し得る感光性の側鎖型アクリル重合体膜の構造は、そうした特性を満足するものであれば特に限定されないが、側鎖構造に剛直なメソゲン成分を有することが好ましい。この場合、該側鎖型アクリル重合体を液晶配向膜とした際に、安定な液晶配向を得ることができる。
【0189】
該アクリル重合体の構造は、例えば、主鎖とそれに結合する側鎖を有し、その側鎖が、ビフェニル基、ターフェニル基、フェニルシクロヘキシル基、フェニルベンゾエート基、アゾベンゼン基などのメソゲン成分と、先端部に結合された、光に感応して架橋反応や異性化反応をする感光性基とを有する構造や、主鎖とそれに結合する側鎖を有し、その側鎖がメソゲン成分ともなり、かつ光フリース転位反応をするフェニルベンゾエート基を有する構造とすることができる。
【0190】
所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体の構造のより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基からなる群から選択される少なくとも1種から構成された主鎖と、下記式(31)から(35)の少なくとも1種からなる側鎖を有する構造であることが好ましい。
【0191】
【化51】
【0192】
式中、Arはベンゼン環、ナフタレン環、ピロール環、フラン環、チオフェン環、ピリジン環から2個の水素原子を取り去った2価の置換基を表し、ArとArとは、それぞれ独立にベンゼン環、ナフタレン環、ピロール環、フラン環、チオフェン環、ピリジン環から2個の水素原子を取り去った2価の置換基を表し、qとqは一方が1でもう一方が0であり、ArとArとはそれぞれ独立にベンゼン環、ナフタレン環、ピロール環、フラン環、チオフェン環、ピリジン環から2個の水素原子を取り去った2価の置換基を表し、Y-YはCH=CH、CH=N、N=CHまたはC≡Cを表し、S乃至Sはそれぞれ独立に単結合、炭素原子数1乃至18の直鎖又は分岐状のアルキレン、炭素原子数5乃至8のシクロアルキレン、フェニレンまたはビフェニレンを表すか、単結合、エーテル結合、エステル結合、アミド結合、ウレア結合、ウレタン結合、アミノ結合、カルボニル又はそれらの組み合わせから選ばれる1種又は2種以上の結合を表すか、或いは該1種又は2種以上の結合を介して、炭素原子数1乃至18の直鎖又は分岐状のアルキレン、炭素原子数5乃至8のシクロアルキレン、フェニレン、ビフェニレン又はそれらの組み合わせから選ばれる2以上10以下の部位が結合してなる構造であって、前記置換基は前記結合を介してそれぞれ複数個が連結してなる構造であってもよく、
31は水素原子、ヒドロキシ基、メルカプト基、アミノ基、炭素原子数1乃至10のアルキル基、炭素原子数1乃至10のアルコキシ基、炭素原子数1乃至8のアルキルアミノ基または炭素原子数2乃至16のジアルキルアミノ基を表し、ベンゼン環および/またはナフタレン環はハロゲン原子、シアノ基、ニトロ基、カルボキシル基および炭素原子数2乃至11のアルコキシカルボニル基から選ばれる同一または相異なる1以上の置換基によって置換されていてもよい。その際、炭素原子数1乃至10のアルキル基は直鎖状でも分岐でも環状でも、それらを組み合わせた構造でもよく、ハロゲン原子で置換されていてもよい。
【0193】
本願の(B)成分としての所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体は、液晶性側鎖を含有することが出来る。
【0194】
液晶性側鎖の有するメソゲン基として、ビフェニルやフェニルベンゾエートなどの単独でメソゲン構造となる基であっても、安息香酸などのように側鎖同士が水素結合することでメソゲン構造となる基であってもよい。側鎖の有するメソゲン基としては下記の構造が好ましい。
【0195】
【化52】
【0196】
<<感光性の側鎖型高分子の製法>>
上記の所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体は、上記の感光性側鎖を有する光反応性側鎖モノマーおよび液晶性側鎖モノマーを重合することによって得ることができる。
【0197】
[光反応性側鎖モノマー]
光反応性側鎖モノマーとは、高分子を形成した場合に、高分子の側鎖部位に感光性側鎖を有する高分子を形成することができるモノマーのことである。
【0198】
側鎖の有する光反応性基としては上記式(31)乃至(35)で表される構造が好ましい。
【0199】
光反応性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基からなる群から選択される少なくとも1種から構成された重合性基と、上記式(31)~(35)の少なくとも1種からなる感光性側鎖を有する構造であることが好ましい。
【0200】
[液晶性側鎖モノマー]
液晶性側鎖モノマーとは、該モノマー由来の高分子が液晶性を発現し、該高分子が側鎖部位にメソゲン基を形成することができるモノマーのことである。
【0201】
液晶性側鎖モノマーのより具体的な例としては、炭化水素、(メタ)アクリレート、イタコネート、フマレート、マレエート、α-メチレン-γ-ブチロラクトン、スチレン、ビニル、マレイミド、ノルボルネン等のラジカル重合性基からなる群から選択される少なくとも1種から構成された重合性基と、前記「液晶性側鎖の有するメソゲン基」の少なくとも1種を有する側鎖を有する構造であることが好ましい。
【0202】
(B)成分の一態様である側鎖型アクリル重合体は、上述した液晶性を発現する光反応性側鎖モノマーの重合反応により得ることができる。また、液晶性を発現しない光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合や、液晶性を発現する光反応性側鎖モノマーと液晶性側鎖モノマーとの共重合によって得ることができる。さらに、液晶性の発現能を損なわない範囲でその他のモノマーと共重合することができる。
【0203】
その他のモノマーとしては、例えば工業的に入手できるラジカル重合反応可能なモノマーが挙げられる。
【0204】
その他のモノマーの具体例としては、不飽和カルボン酸、アクリル酸エステル化合物、メタクリル酸エステル化合物、マレイミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物及びビニル化合物等が挙げられる。
【0205】
不飽和カルボン酸の具体例としてはアクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などが挙げられる。
【0206】
アクリル酸エステル化合物としては、例えば、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、2,2,2-トリフルオロエチルアクリレート、tert-ブチルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、2-メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、2-メチル-2-アダマンチルアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、及び、8-エチル-8-トリシクロデシルアクリレート等が挙げられる。
【0207】
メタクリル酸エステル化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、tert-ブチルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、2-メトキシエチルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、2-メチル-2-アダマンチルメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、及び、8-エチル-8-トリシクロデシルメタクリレート等が挙げられる。 グリシジル(メタ)アクリレート、(3-メチル-3-オキセタニル)メチル(メタ)アクリレート、および(3-エチル-3-オキセタニル)メチル(メタ)アクリレートなどの環状エーテル基を有する(メタ)アクリレート化合物も用いることができる。
【0208】
ビニル化合物としては、例えば、ビニルエーテル、メチルビニルエーテル、ベンジルビニルエーテル、2-ヒドロキシエチルビニルエーテル、フェニルビニルエーテル、及び、プロピルビニルエーテル等が挙げられる。
【0209】
スチレン化合物としては、例えば、スチレン、メチルスチレン、クロロスチレン、ブロモスチレン等が挙げられる。
【0210】
マレイミド化合物としては、例えば、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等が挙げられる。
【0211】
本実施形態の側鎖型高分子の製造方法については、特に限定されるものではなく、工業的に扱われている汎用な方法が利用できる。具体的には、液晶性側鎖モノマーや光反応性側鎖モノマーのビニル基を利用したカチオン重合やラジカル重合、アニオン重合により製造することができる。これらの中では反応制御のしやすさなどの観点からラジカル重合が特に好ましい。
【0212】
ラジカル重合の重合開始剤としては、AIBN(アゾビスイソブチロニトリル)等の公知のラジカル重合開始剤や、可逆的付加-開裂型連鎖移動(RAFT)重合試薬等の公知の化合物を使用することができる。
【0213】
ラジカル重合法は、特に制限されるものでなく、乳化重合法、懸濁重合法、分散重合法、沈殿重合法、塊状重合法、溶液重合法等を用いることができる。
【0214】
所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体の重合反応に用いる有機溶媒としては、生成した重合体が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
【0215】
N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド等が挙げられる。
【0216】
これら有機溶媒は単独で使用しても、混合して使用してもよい。さらに、生成する高分子を溶解させない溶媒であっても、生成した高分子が析出しない範囲で、上述の有機溶媒に混合して使用してもよい。
【0217】
また、ラジカル重合において有機溶媒中の酸素は重合反応を阻害する原因となるので、有機溶媒は可能な程度に脱気されたものを用いることが好ましい。
【0218】
ラジカル重合の際の重合温度は30℃~150℃の任意の温度を選択することができるが、好ましくは50℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な撹拌が困難となるので、モノマー濃度が、好ましくは1質量%~50質量%、より好ましくは5質量%~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
【0219】
上述のラジカル重合反応においては、ラジカル重合開始剤の比率がモノマーに対して多いと得られる高分子の分子量が小さくなり、少ないと得られる高分子の分子量が大きくなるので、ラジカル開始剤の比率は重合させるモノマーに対して0.1モル%~10モル%であることが好ましい。また重合時には各種モノマー成分や溶媒、開始剤などを追加することもできる。
【0220】
[所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体の回収]
上述の反応により得られた、液晶性を発現し得る感光性の側鎖型高分子の反応溶液から、生成した高分子を回収する場合には、反応溶液を貧溶媒に投入して、それら重合体を沈殿させれば良い。沈殿に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ヘプタン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、ジエチルエーテル、メチルエチルエーテル、水等を挙げることができる。貧溶媒に投入して沈殿させた重合体は、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2回~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これらの中から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
【0221】
本発明の(B)成分の一態様である、所定の温度範囲で液晶性を発現する感光性の側鎖型アクリル重合体の分子量は、得られる塗膜の強度、塗膜形成時の作業性、および塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量が、2,000~1,000,000が好ましく、より好ましくは、5,000~100,000である。
【0222】
本発明の液晶配向剤における(A-1)成分と(A-2)成分と(B)成分の含有量は、(A-1)成分と(A-2)成分の合計量と(B)成分との質量比が5:95~95:5であり、10:90~90:10となるのがさらに好ましい。
【0223】
本発明の液晶配向剤における(A-1)成分と(A-2)成分と(B)成分のイミド化率は用途や目的に応じて任意に調整できるが、溶解性や電荷蓄積特性の観点から、特定重合体(A-1)成分と(A-2)成分のイミド化率は0~55%が好ましく、より好ましくは0~20%である。また、液晶の配向性や配向規制力、電圧保持率の観点から特定重合体(B)のイミド化率は高い方が好ましく、好ましくは40%~95%であり、より好ましくは55~90%である。
【0224】
<液晶配向剤>
本発明に用いられる液晶配向剤は、重合体成分が有機溶媒中に溶解された溶液の形態を有する。重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
【0225】
本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上であることが好ましく、溶液の保存安定性の点からは10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。
【0226】
本発明に用いられる液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。
【0227】
また、液晶配向剤に含有される有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を併用した混合溶媒を使用することが一般的であり、本発明の液晶配向剤においてもこのような混合溶媒は好適に用いられる。併用する有機溶媒の具体例を下記に挙げるが、これらの例に限定されるものではない。
【0228】
例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、2,6-ジメチル-4-ヘプタノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジイソプロピルエーテル、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、2,6-ジメチル-4-ヘプタノン、4,6-ジメチル-2-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、下記式[D-1]~[D-3]で表される溶媒などを挙げることができる。
【0229】
【化53】
【0230】
式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。
【0231】
なかでも好ましい溶媒の組み合わせとしては、N-メチル-2-ピロリドンとγ-ブチロラクトンとエチレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテル、N-エチル-2-ピロリドンとプロピレングリコールモノブチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンと4-ヒドロキシ-4-メチル-2-ペンタノンとジエチレングリコールジエチルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノン、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルとジイソプロピルエーテル、N-メチル-2-ピロリドンとγ-ブチロラクトンとプロピレングリコールモノブチルエーテルと2,6-ジメチル-4-ヘプタノール、N-メチル-2-ピロリドンとγ-ブチロラクトンとジプロピレングリコールジメチルエーテル、などを挙げることができる。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。
【0232】
また、本発明の液晶配向剤には、膜の機械的強度を上げるために以下のような添加物を添加してもよい。
【0233】
【化54】
【0234】
【化55】
【0235】
これらの添加剤は、液晶配向剤に含有される重合体成分の100質量部に対して0.1~30質量部であることが好ましい。0.1質量部未満であると効果が期待できず、30質量部を超えると液晶の配向性を低下させるため、より好ましくは0.5~20質量部である。
【0236】
本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
【0237】
<液晶配向膜>
<液晶配向膜の製造方法>
本発明の液晶配向膜は、上記液晶配向剤を基板に塗布し、乾燥、焼成して得られる膜である。本発明の液晶配向剤を塗布する基板としては透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板、ポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミニウム等の光を反射する材料も使用できる。
【0238】
本発明の液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。本発明の液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために50℃~120℃で1分~10分間乾燥させ、その後150℃~300℃で5分~120分間焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
【0239】
得られた液晶配向膜を配向処理する方法としては、ラビング法、光配向処理法などが挙げられる。
【0240】
ラビング処理は既存のラビング装置を利用して行うことができる。この際のラビング布の材質としては、コットン、ナイロン、レーヨンなどが挙げられる。ラビング処理の条件としては一般に、回転速度300~2000rpm、送り速度5~100mm/s、押し込み量0.1~1.0mmという条件が用いられる。その後、純水やアルコールなどを用いて超音波洗浄によりラビングにより生じた残渣が除去される。
【0241】
光配向処理法の具体例としては、前記塗膜表面に、一定方向に偏向した放射線を照射し、場合によってはさらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線としては、100nm~800nmの波長を有する紫外線および可視光線を用いることができる。このうち、100nm~400nmの波長を有する紫外線が好ましく、200nm~400nmの波長を有するものが特に好ましい。また、液晶配向性を改善するために、塗膜基板を50~250℃で加熱しつつ、放射線を照射してもよい。前記放射線の照射量は、1~10,000mJ/cmが好ましく、100~5,000mJ/cmが特に好ましい。上記のようにして作製した液晶配向膜は、液晶分子を一定の方向に安定して配向させることができる。
【0242】
偏光された紫外線の消光比が高いほど、より高い異方性が付与できるため、好ましい。具体的には、直線に偏光された紫外線の消光比は、10:1以上が好ましく、20:1以上がより好ましい。
【0243】
上記で、偏光された放射線を照射した膜は、次いで水及び有機溶媒から選ばれる少なくとも1種を含む溶媒で接触処理してもよい。
【0244】
接触処理に使用する溶媒としては、光照射によって生成した分解物を溶解する溶媒であれば、特に限定されるものではない。具体例としては、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトン、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルなどが挙げられる。これらの溶媒は2種以上を併用してもよい。
【0245】
汎用性や安全性の点から、水、2-プロパノール、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種がより好ましい。水、2-プロパノール、及び水と2-プロパノールの混合溶媒が特に好ましい。
【0246】
本発明において、偏光された放射線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒~1時間、より好ましくは1~30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。
【0247】
上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。
【0248】
さらに、上記で溶媒による接触処理をした膜は、溶媒の乾燥及び膜中の分子鎖の再配向を目的に150℃以上で加熱してもよい。
【0249】
加熱の温度としては、150~300℃が好ましい。温度が高いほど、分子鎖の再配向が促進されるが、温度が高すぎると分子鎖の分解を伴う恐れがある。そのため、加熱温度としては、180~250℃がより好ましく、200~230℃が特に好ましい。
【0250】
加熱する時間は、短すぎると分子鎖の再配向の効果が得られない可能性があり、長すぎると分子鎖が分解してしまう可能性があるため、10秒~30分が好ましく、1分~10分がより好ましい。
【0251】
また、得られた液晶配向膜は、リワーク材に容易に溶解でき、リワーク性に優れた膜となる。
【0252】
リワークに使用される溶剤としては以下のものが挙げられる:エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート等のグリコールエステル類;ジエチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール等のグリコール類;メタノール、エタノール、2-プロパノール、ブタノール等のアルコール類;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、2-ヘプタノン、γ-ブチロラクトン等のケトン類;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル等のエステル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチル-2-ピロリドン等のアミド類。
【0253】
リワーク材としては、上記溶剤にエタノールアミン等の塩基性成分を含むとともに、このアルカリ性が電極等のその他の部材にダメージを与えないように錆止めが含まれているものが好ましい。このようなリワーク材を提供するメーカーとしては、韓国の会明産業株式会社、KPXケミカルなどが挙げられる。
【0254】
リワークは、上記に挙げたリワーク材を室温で、または30℃~100℃に加熱した後、その中に液晶配向膜つき基板を1秒~1000秒、好ましくは30秒~500秒浸漬す、もしくはリワーク材をシャワー式で噴射した後、液を除去しアルコール系溶媒または純水で洗浄することにより行われる。なお、リワークする際のリワーク液の温度は、作業効率等の観点から低温であるほうが好ましく、通常室温乃至60℃であり、より好ましくは室温乃至40℃である。
【0255】
<液晶表示素子>
本発明の液晶表示素子は、本発明の液晶配向剤から前記液晶配向膜の製造方法によって液晶配向膜付きの基板を得た後、公知の方法で液晶セルを作製し、それを使用して液晶表示素子としたものである。
【0256】
液晶セル作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
【0257】
まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。
【0258】
次に、各基板の上に、本発明の液晶配向膜を上記の方法で形成する。
【0259】
次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール剤で接着する。シール剤には、基板間隙を制御するために、通常、スペーサーを混入しておく。また、シール剤を設けない面内部分にも、基板間隙制御用のスペーサーを散布しておくことが好ましい。シール剤の一部には、外部から液晶を充填可能な開口部を設けておく。
【0260】
次に、シール剤に設けた開口部を通じて、2枚の基板とシール剤で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。
【0261】
本発明において、シール剤としては、例えば、エポキシ基、アクリロイル基、メタアクリロイル基、ヒドロキシル基、アリル基、アセチル基などの反応性基を有する紫外線照射や加熱によって硬化する樹脂が用いられる。特に、エポキシ基と(メタ)アクリロイル基の両方の反応性基を有する硬化樹脂系を用いるのが好ましい。
【0262】
本発明のシール剤には接着性、耐湿性の向上を目的として無機充填剤を配合してもよい。使用しうる無機充填剤としては特に限定されないが、具体的には球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、シリコンカーバイド、窒化珪素、窒化ホウ素、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、酸化マグネシウム、酸化ジルコニウム、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウム、珪酸リチウムアルミニウム、珪酸ジルコニウム、チタン酸バリウム、硝子繊維、炭素繊維、二硫化モリブデン、アスベスト等が挙げられ、好ましくは球状シリカ、溶融シリカ、結晶シリカ、酸化チタン、チタンブラック、窒化珪素、窒化ホウ素、炭酸カルシウム、硫酸バリウム、硫酸カルシウム、マイカ、タルク、クレー、アルミナ、水酸化アルミニウム、珪酸カルシウム、珪酸アルミニウムである。前記の無機充填剤は2種以上を混合して用いても良い。
【0263】
この液晶表示素子は、液晶配向膜として本発明の液晶配向膜の製造方法により得られた液晶配向膜を使用していることから、リワーク性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用可能である。
【実施例
【0264】
以下に本発明の製造方法の詳細について、原料の組成や配合比率を検討した実験方法及びその結果並びに典型的な製造方法である実施例等を挙げて説明する。なお、本発明はこれらの実施例に限定されるものではない。
本実施例で使用する略号の説明
(有機溶媒)
NMP: N-メチル-2-ピロリドン
GBL: γ-ブチロラクトン
BCS: ブチルセロソルブ
酸二無水物(A):下記式(A)
酸二無水物(B):下記式(B)
酸二無水物(C):下記式(C)
酸二無水物(D):下記式(D)
酸二無水物(E):下記式(E)
DA-1:下記式(DA-1)
DA-2:下記式(DA-2)
DA-3:下記式(DA-3)
DA-4:下記式(DA-4)
DA-5:下記式(DA-5)
DA-6:下記式(DA-6)
DA-7:下記式(DA-7)
DA-8:下記式(DA-8)
DA-9:下記式(DA-9)
DA-10:下記式(DA-10)
AD-1:下記式(AD-1)
AD-2:下記式(AD-2)
【0265】
【化56】
【0266】
【化57】
【0267】
以下に粘度の測定、イミド化率の測定、リワーク性の評価、液晶セルの作製、および電荷緩和特性評価の方法について記入する
【0268】
[粘度の測定]
合成例において、ポリアミック酸エステル及びポリアミック酸溶液の粘度は、E型粘度計TV-25H(東機産業社製)を用い、サンプル量1.1mL、CORD-1(1°34’、R24)、温度25℃で測定した。
【0269】
[イミド化率の測定]
ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d6、0.05%TMS(テトラメチルシラン)混合品)0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液を日本電子データム社製NMR測定器(JNW-ECA500)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5から10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
【0270】
イミド化率(%)=(1-α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
【0271】
[リワーク性の評価]
本発明の液晶配向剤をITO基板にスピンコート塗布にて塗布した。60℃のホットプレート上で1分30秒間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。その後、加熱したリワーク材に作製した基板を300秒間浸漬させて現像した後、超純水で20秒間流水洗浄を行った。その後、エアーブローし、以下の基準にて評価を行い、 得られた結果を表4に示す。
○:35℃5分にて残膜なし
△:40℃5分にて残膜なし
×:40℃5分にて残膜あり
【0272】
[液晶セルの作製]
フリンジフィールドスィッチング(Fringe Field Switching:以下、FFSという)モード液晶表示素子の構成を備えた液晶セルを作製する。
【0273】
初めに電極付きの基板を準備した。基板は、30mm×50mmの大きさで、厚さが0.7mmのガラス基板である。基板上には第1層目として対向電極を構成する、ベタ状のパターンを備えたITO電極が形成されている。第1層目の対向電極の上には第2層目として、CVD法により成膜されたSiN(窒化珪素)膜が形成されている。第2層目のSiN膜の膜厚は500nmであり、層間絶縁膜として機能する。第2層目のSiN膜の上には、第3層目としてITO膜をパターニングして形成された櫛歯状の画素電極が配置され、第1画素および第2画素の2つの画素を形成している。各画素のサイズは、縦10mmで横約5mmである。このとき、第1層目の対向電極と第3層目の画素電極とは、第2層目のSiN膜の作用により電気的に絶縁されている。
【0274】
第3層目の画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極が、中央部分の屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。
【0275】
各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜のラビング方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
【0276】
次に、得られた液晶配向剤を1.0μmのフィルターで濾過した後、準備された上記電極付き基板と裏面にITO膜が成膜されている高さ4μmの柱状スペーサーを有するガラス基板に、スピンコート塗布にて塗布した。80℃のホットプレート上で5分間乾燥させた後、230℃の熱風循環式オーブンで20分間焼成を行い、膜厚100nmの塗膜を形成させた。この塗膜面にラビングや偏光紫外線照射などの配向処理を施し、液晶配向膜付き基板を得た。上記、2枚の基板を一組とし、基板上にシール剤を印刷し、もう1枚の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク株式会社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを110℃で1時間加熱し、一晩放置してから各評価に使用した。
【0277】
[電荷緩和特性評価]
上記液晶セルを光源上に置き、室温でのV-T特性(電圧-透過率特性)を測定した後、±1.5V/60Hzの矩形波を印加した状態での液晶セルの透過率(Ta)を測定した。その後、 直流1Vを重畳し30分間駆動させながら液晶セルの透過率(Tb)を測定し、直流電圧を切り、再び±1.5V/60Hzの矩形波のみで20分駆動させた時の液晶セルの透過率(Tc)を測定し、各時間での透過率(Tb、Tc)と初期の透過率(Ta)の差(ΔT)から液晶表示素子内に残留した電圧により生じた透過率の差を算出した。この残留した電圧がより早く緩和するほど、焼きつきが発生しにくいと考えられる。(Tb-Ta)が直流電圧印加開始5分で2%以下を○、以上を×、(Tc-Ta)が直流電圧を切ってから5分で2%以下を○、以上を×とする。得られた結果を表4に示す。
【0278】
(重合例1)
撹拌装置付きの1L四つ口フラスコを窒素雰囲気とし、(DA-4)を86.0g、(DA-7)を53.4g、(DA-10)を76.5g取り、NMPを1580g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(E)93.2g添加し、更にNMPを168g加え、窒素雰囲気下、40℃で3時間撹拌した。さらに酸二無水物(D)を28.2g 添加し、さらにNMPを160g加え、窒素雰囲気下23℃で4時間撹拌し、ポリアミック酸の溶液(PAA-1)を得た。このポリアミック酸の溶液の温度25℃における粘度は200mPa・sであった。
撹拌子の入った300mL三角フラスコに、このポリイミドの粉末を20.4g分取し、NMPを150g加えて、50℃にて20時間撹拌して溶解させ、ポリイミド溶液(SPI-1)を得た。
【0279】
撹拌子の入った300mL三角フラスコに、このポリイミドの粉末を20.4g分取し、NMPを150g加えて、50℃にて20時間撹拌して溶解させた。さらに、この溶液を撹拌子の入った100mL三角フラスコに16.3g分取し、NMPを3.46g、GBLを13.0g、3-グリシドキシプロピルトリエトキシシランを1質量%含むNMP溶液を1.95g、およびBCSを8.69g加え、マグネチックスターラーで2時間撹拌して、ポリイミド溶液(SPI-1)を得た。
【0280】
(重合例2)
撹拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、(DA-6)を0.58g、(DA-4)を1.32g、( DA-5)を0.93g、(DA-7)を3.01g取り、NMPを42.8g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(E)を3.91g添加し、更にNMPを12.4g加え、窒素雰囲気下、40℃で16時間撹拌し、ポリアミック酸溶液(PAA-2)を得た。このポリアミック酸溶液の温度25℃における粘度は450cpsであった。
【0281】
(重合例3)
撹拌装置付きの100mL四つ口フラスコを窒素雰囲気とし、(DA-9)を6.19g、(DA-8)を2.14g取り、NMPを61.1g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(B)5.71g添加し、更にNMPを18.5g加え、窒素雰囲気下、50℃で16時間撹拌し、ポリアミック酸溶液(PAA-3)を得た。このポリアミック酸溶液の温度25℃における粘度は351cpsであった。
【0282】
(重合例4)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-4)を0.78g取り、NMPを24.4g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(B)を1.75g添加し、更にNMPを4.3g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(D)を1.41g添加し、更にNMPを8.0g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、50℃で16時間撹拌し、ポリアミック酸溶液(PAA-4)を得た。このポリアミック酸溶液の温度25℃における粘度は240cpsであった。
【0283】
(重合例5)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-3)を0.96g取り、NMPを25.7g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を3.00g添加し、更にNMPを11.2g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(D)を0.77g添加し、更にNMPを4.4g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、50℃で16時間撹拌し、ポリアミック酸溶液(PAA-5)を得た。このポリアミック酸溶液の温度25℃における粘度は358cpsであった。
【0284】
(重合例6)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-2)を0.46g取り、NMPを22.3g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を2.00g添加し、更にNMPを6.3g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(D)を1.51g添加し、更にNMPを8.5g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、50℃で16時間撹拌し、ポリアミック酸溶液(PAA-6)を得た。このポリアミック酸溶液の温度25℃における粘度は333cpsであった。
【0285】
(重合例7)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-2)を0.46g取り、NMPを22.3g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(A)を4.5g添加し、更にNMPを20.5g加え、窒素雰囲気下、23℃で2時間撹拌した後、50℃で16時間撹拌し、ポリアミック酸溶液(PAA-7)を得た。このポリアミック酸溶液の温度25℃における粘度は350cpsであった。
【0286】
(重合例8)
撹拌装置付きの50mL四つ口フラスコを窒素雰囲気とし、(DA-1)を2.55g、(DA-2)を0.49g取り、NMPを22.3g加え、窒素を送りながら撹拌して23℃で溶解させた。このジアミン溶液を撹拌しながら、酸二無水物(C)を3.00g添加し、更にNMPを12.0g加え、窒素雰囲気下、23℃で2時間撹拌した後、酸二無水物(D)を0.72g添加し、更にNMPを4.1g加え、窒素雰囲気下、23℃で2時間撹拌した。その後、50℃で16時間撹拌し、ポリアミック酸溶液(PAA-8)を得た。このポリアミック酸溶液の温度25℃における粘度は333cpsであった。
【0287】
(比較例1)
撹拌子の入った50mL三角フラスコに、上記で得られたポリイミド溶液(SPI-1)を7.00g、(PAA-4)を10.40g、(AD-1)を1wt%含むNMP溶液を2.40g、(AD-2)を10wt%含むNMP溶液を0.72gを分取し、NMPを7.48g、BCSを12.00g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-1)を得た。
【0288】
(比較例2)
撹拌子の入った50mL三角フラスコに、比較合成例で得られたポリアミック酸溶液(PAA-2)を6.73g、(PAA-5)を15.27g、(AD-1)を1wt%含むNMP溶液を2.40g、(AD-2)を10wt%含むNMP溶液を0.72gを分取し、NMPを2.88g、BCSを12.00g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-2)を得た。
【0289】
(比較例3)
撹拌子の入った50mL三角フラスコに、比較合成例で得られたポリアミック酸溶液(PAA-3)を4.00g、(PAA-6)を12.80g、(AD-1)を1wt%含むNMP溶液を2.40gを分取し、NMPを8.80g、BCSを12.00g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-3)を得た。
【0290】
(実施例1~2)
撹拌子の入った50mL三角フラスコに、ポリイミド溶液(SPI-1)を7.00g、重合例から得られた(PAA-6)と(PAA-7)を表1に示すように加えた後、(AD-1)を1wt%含むNMP溶液を2.40g、(AD-2)を10wt%含むNMP溶液を0.72gを分取し、NMPを7.48g、BCSを12.00g加え、マグネチックスターラーで2時間撹拌して、表1に示すように液晶配向剤(B-1~2)を得た。
【0291】
【表1】
【0292】
(実施例3~6)
撹拌子の入った50mL三角フラスコに、ポリアミック酸溶液(PAA-3)を4.00g、重合例から得られたポリアミック酸溶液(PAA-6~8)を表2に示すように加えた後、(AD-1)を1wt%含むNMP溶液を2.40gを分取し、NMPを4.80g、BCSを12.00g加え、マグネチックスターラーで2時間撹拌して、表2に示すように液晶配向剤(B-3~6)を得た。
【0293】
【表2】
【0294】
(実施例7~8)
撹拌子の入った50mL三角フラスコに、比較合成例で得られたポリアミック酸溶液(PAA-2)を6.73g、 重合例から得られたポリアミック酸溶液(PAA-5)と(PAA-7)を表3に示すように加えた後 、(AD-1)を1wt%含むNMP溶液を2.40g、(AD-2)を10wt%含むNMP溶液を0.72gを分取し、NMPを2.88g、BCSを12.00g加え、マグネチックスターラーで2時間撹拌して、液晶配向剤(A-2)を得た。
【0295】
【表3】
【0296】
【表4】
【産業上の利用可能性】
【0297】
本発明の液晶配向剤から得られる液晶配向膜は、IPS駆動方式やFFS駆動方式の液晶表示素子において交流駆動の非対称化による電荷蓄積を低減し、且つ直流電圧により蓄積した残留電荷の緩和が早いため、残像特性に優れたIPS駆動方式やFFS駆動方式の液晶表示素子が得られる。よって、IPS駆動方式やFFS駆動方式の液晶表示素子や液晶テレビの液晶配向膜として特に有用である。