(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-11
(45)【発行日】2022-07-20
(54)【発明の名称】有機膜形成用組成物、パターン形成方法及び重合体
(51)【国際特許分類】
C08L 65/00 20060101AFI20220712BHJP
G03F 7/11 20060101ALI20220712BHJP
G03F 7/26 20060101ALI20220712BHJP
G03F 7/40 20060101ALI20220712BHJP
H01L 21/027 20060101ALI20220712BHJP
C08G 61/00 20060101ALI20220712BHJP
【FI】
C08L65/00
G03F7/11 503
G03F7/26 511
G03F7/40 521
H01L21/30 574
H01L21/30 578
C08G61/00
(21)【出願番号】P 2019093187
(22)【出願日】2019-05-16
【審査請求日】2021-04-21
(73)【特許権者】
【識別番号】000002060
【氏名又は名称】信越化学工業株式会社
(74)【代理人】
【識別番号】100102532
【氏名又は名称】好宮 幹夫
(74)【代理人】
【識別番号】100194881
【氏名又は名称】小林 俊弘
(72)【発明者】
【氏名】郡 大佑
(72)【発明者】
【氏名】中原 貴佳
(72)【発明者】
【氏名】澤村 昂志
(72)【発明者】
【氏名】佐藤 裕典
(72)【発明者】
【氏名】山本 靖之
【審査官】西山 義之
(56)【参考文献】
【文献】特開2010-271654(JP,A)
【文献】国際公開第2020/031733(WO,A1)
【文献】国際公開第2013/047106(WO,A1)
【文献】特開2013-253227(JP,A)
【文献】特開2019-044022(JP,A)
【文献】特表2007-528916(JP,A)
【文献】特開2002-114909(JP,A)
【文献】特開昭62-160279(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 1/00-101/14
C08G 61/00- 61/12
G03F 7/00- 7/42
H01L 21/027
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記一般式(1A)で示される部分構造を有する重合体および有機溶剤を含有するものであることを特徴とする有機膜形成用組成物。
【化1】
(上記一般式(1A)中、Ar1、Ar2は置換基を有してもよいベンゼン環またはナフタレン環、Xは単結合またはメチレン基であり、Lは下記のいずれかである。)
【化2】
(上記式中の破線は結合手を表し、Rは水素原子又は炭素数1~20の1価の有機基である。)
【請求項2】
下記一般式(1B)で示される部分構造を有する重合体および有機溶剤を含有するものであることを特徴とする有機膜形成用組成物。
【化3】
(上記一般式(1B)中、W
1は水酸基、炭素数1~10のアルキルオキシ基または置換基を有していてもよい少なくとも1つ以上の芳香環を有する有機基であり、Ar1、Ar2は置換基を有してもよいベンゼン環またはナフタレン環、Xは単結合またはメチレン基であり、Lは下記のいずれかである。)
【化4】
(上記式中の破線は結合手を表し、Rは水素原子又は炭素数1~20の1価の有機基である。)
【請求項3】
前記重合体が更に下記一般式(1B)で示される部分構造を有するものであることを特徴とする請求項1に記載の有機膜形成用組成物。
【化5】
(上記一般式(1B)中、W
1は水酸基、炭素数1~10のアルキルオキシ基または置換基を有していてもよい少なくとも1つ以上の芳香環を有する有機基である。)
【請求項4】
前記重合体が更に下記一般式(1C)で示される部分構造を有するものであることを特徴とする請求項1又は3に記載の有機膜形成用組成物。
【化6】
(前記一般式(1C)中、W
2は水素原子または炭素数1~50の1価の有機基を表し、Ar1、Ar2は前記されるとおりである。)
【請求項5】
前記重合体が重量平均分子量500~5000のものであることを特徴とする請求項1~4のいずれか1項に記載の有機膜形成用組成物。
【請求項6】
前記有機溶剤が、沸点が180℃未満の有機溶剤1種以上と、沸点が180℃以上の有機溶剤1種以上との混合物であることを特徴とする請求項1~5のいずれか1項に記載の有機膜形成用組成物。
【請求項7】
前記有機膜形成用組成物が更に界面活性剤および可塑剤のうち1種以上を含有するものであることを特徴とする請求項1~6のいずれか1項に記載の有機膜形成用組成物。
【請求項8】
被加工体上に請求項1~7のいずれか1項に記載の有機膜形成用組成物を用いて有機膜を形成する工程、
前記有機膜の上にケイ素含有レジスト下層膜材料を用いてケイ素含有レジスト下層膜を形成する工程、
前記ケイ素含有レジスト下層膜の上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、
前記レジスト上層膜に回路パターンを形成する工程、
前記回路パターンが形成されたレジスト上層膜をマスクにして前記ケイ素含有レジスト下層膜にエッチングでパターン転写する工程、
前記パターンが転写されたケイ素含有レジスト下層膜をマスクにして前記有機膜にエッチングでパターン転写する工程、
前記パターンが転写された有機膜をマスクにして前記被加工体にエッチングでパターンを形成する工程
を含むことを特徴とするパターン形成方法。
【請求項9】
被加工体上に請求項1~7のいずれか1項に記載の有機膜形成用組成物を用いて有機膜を形成する工程、
前記有機膜の上にケイ素含有レジスト下層膜材料を用いてケイ素含有レジスト下層膜を形成する工程、
前記ケイ素含有レジスト下層膜の上に有機反射防止膜(BARC)を形成する工程、
前記BARC上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、
前記レジスト上層膜に回路パターンを形成する工程、
前記回路パターンが形成されたレジスト上層膜をマスクにして前記BARCと前記ケイ素含有レジスト下層膜に順次エッチングでパターン転写する工程、
前記パターンが転写されたケイ素含有レジスト下層膜をマスクにして前記有機膜にエッチングでパターン転写する工程、
前記パターンが転写された有機膜をマスクにして前記被加工体をエッチングして前記被加工体にパターンを形成する工程
を含むことを特徴とするパターン形成方法。
【請求項10】
被加工体上に請求項1~7のいずれか1項に記載の有機膜形成用組成物を用いて有機膜を形成する工程、
前記有機膜の上にケイ素酸化膜、ケイ素窒化膜、ケイ素酸化窒化膜から選ばれる無機ハードマスクを形成する工程、
前記無機ハードマスクの上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、
前記レジスト上層膜に回路パターンを形成する工程、
前記回路パターンが形成されたレジスト上層膜をマスクにして前記無機ハードマスクをエッチングでパターン転写する工程、
前記パターンが形成された無機ハードマスクをマスクにして前記有機膜をエッチングでパターン転写する工程、
前記パターンが形成された有機膜をマスクにして前記被加工体をエッチングして前記被加工体にパターンを形成する工程
を含むことを特徴とするパターン形成方法。
【請求項11】
被加工体上に請求項1~7のいずれか1項に記載の有機膜形成用組成物を用いて有機膜を形成する工程、
前記有機膜の上にケイ素酸化膜、ケイ素窒化膜、ケイ素酸化窒化膜から選ばれる無機ハードマスクを形成する工程、
前記無機ハードマスクの上に
有機反射防止膜(BARC
)を形成する工程、
前記BARC上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、
前記レジスト上層膜に回路パターンを形成する工程、
前記回路パターンが形成されたレジスト上層膜をマスクにして前記BARCと前記無機ハードマスクに順次エッチングでパターン転写する工程、
前記パターンが形成された無機ハードマスクをマスクにして前記有機膜にエッチングでパターン転写する工程、
前記パターンが形成された有機膜をマスクにして前記被加工体をエッチングして前記被加工体にパターンを形成する工程
を含むことを特徴とするパターン形成方法。
【請求項12】
前記無機ハードマスクをCVD法あるいはALD法によって形成することを特徴とする請求項10又は11に記載のパターン形成方法。
【請求項13】
前記レジスト上層膜に回路パターンを形成する方法として、波長が10nm以上300nm以下の光リソグラフィー、電子線による直接描画、ナノインプリンティングまたはこれらの組み合わせを用いることを特徴とする請求項8~12のいずれか1項に記載のパターン形成方法。
【請求項14】
現像方法として、アルカリ現像または有機溶剤による現像を用いることを特徴とする請求項8~13のいずれか1項に記載のパターン形成方法。
【請求項15】
前記被加工体として、半導体装置基板、金属膜、金属炭化膜、金属酸化膜、金属窒化膜、金属酸化炭化膜または金属酸化窒化膜を用いることを特徴とする請求項8~14のいずれか1項に記載のパターン形成方法。
【請求項16】
前記金属として、ケイ素、チタン、タングステン、ハフニウム、ジルコニウム、クロム、ゲルマニウム、銅、銀、金、アルミニウム、インジウム、ガリウム、ヒ素、パラジウム、鉄、タンタル、イリジウム、モリブデンまたはこれらの合金を用いることを特徴とする請求項15に記載のパターン形成方法。
【請求項17】
下記一般式(1A)で示される部分構造を有するものであることを特徴とする重合体。
【化7】
(上記一般式(1A)中、Ar1、Ar2は置換基を有してもよいベンゼン環またはナフタレン環、Xは単結合またはメチレン基であり、Lは下記のいずれかである。)
【化8】
(上記式中の破線は結合手を表し、Rは水素原子又は炭素数1~20の1価の有機基である。)
【請求項18】
下記一般式(1B)で示される部分構造を有するものであることを特徴とする重合体。
【化9】
(上記一般式(1B)中、W
1は水酸基、炭素数1~10のアルキルオキシ基または置換基を有していてもよい少なくとも1つ以上の芳香環を有する有機基であり、Ar1、Ar2は置換基を有してもよいベンゼン環またはナフタレン環、Xは単結合またはメチレン基であり、Lは下記のいずれかである。)
【化10】
(上記式中の破線は結合手を表し、Rは水素原子又は炭素数1~20の1価の有機基である。)
【請求項19】
前記重合体が更に下記一般式(1B)で示される部分構造を有するものであることを特徴とする請求項17に記載の重合体。
【化11】
(上記一般式(1B)中、W
1は水酸基、炭素数1~10のアルキルオキシ基または置換基を有していてもよい少なくとも1つ以上の芳香環を有する有機基である。)
【請求項20】
前記重合体が更に下記一般式(1C)で示される部分構造を有するものであることを特徴とする請求項17又は19に記載の重合体。
【化12】
(前記一般式(1C)中、W
2は水素原子または炭素数1~50の1価の有機基を表し、Ar1、Ar2は前記されるとおりである。)
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機膜形成用組成物、この組成物を用いるパターン形成方法、及びこの組成物に含まれる重合体に関する。
【背景技術】
【0002】
近年、半導体素子の高集積化と高速度化に伴い、パターンルールの微細化が求められている中、現在汎用技術として用いられている光露光を用いたリソグラフィーにおいては、用いられる光源に対して如何により微細かつ高精度なパターン加工を行うかについて種々の技術開発が行われている。
【0003】
レジストパターン形成の際に使用するリソグラフィー用の光源として、集積度の低い部分では水銀灯のg線(436nm)もしくはi線(365nm)を光源とする光露光が広く用いられている。一方、集積度が高く微細化が必要な部分ではより短波長のKrFエキシマレーザー(248nm)やArFエキシマレーザー(193nm)を用いたリソグラフィーも実用化されており、更に微細化が必要な最先端世代では極端紫外線(EUV、13.5nm)によるリソグラフィーも実用化が近づいている。
【0004】
このようにレジストパターンの細線化が進むと、典型的なレジストパターン形成方法として用いられる単層レジスト法では、パターン線幅に対するパターンの高さの比(アスペクト比)が大きくなり、現像時に現像液の表面張力によりパターン倒れを起こすことは良く知られている。そこで、段差基板上に高アスペクト比のパターンを形成するにはドライエッチング特性の異なる膜を積層させてパターンを形成する多層レジスト法が優れることが知られており、ケイ素含有感光性ポリマーによるフォトレジスト層と、炭素と水素および酸素を主構成元素とする有機系ポリマー、例えばノボラック系ポリマーによる下層を組み合わせた2層レジスト法(特許文献1等)や、単層レジスト法に用いられる有機系感光性ポリマーによるフォトレジスト層とケイ素系ポリマーあるいはケイ素系CVD膜による中間層と有機系ポリマーによる下層を組み合わせた3層レジスト法(特許文献2等)が開発されてきている。
【0005】
この3層レジスト法では、まず、フルオロカーボン系のドライエッチングガスを用いてフォトレジスト層のパターンをケイ素含有の中間層にパターン転写した後、そのパターンをマスクとして、酸素含有ガスによるによって炭素及び水素を主構成元素とする有機下層膜にドライエッチングでパターン転写して、これをマスクとして被加工基板上にドライエッチングでパターン形成を行う。しかしながら、20nm世代以降の半導体素子製造プロセスでは、この有機下層膜パターンをハードマスクとして被加工基板にドライエッチングでパターン転写すると、当該下層膜パターンでよれたり曲がったりする現象が見られている。
【0006】
被加工基板直上に形成されるカーボンハードマスクとしては、メタンガス、エタンガス、アセチレンガスなどを原料としてCVD法で作成したアモルファスカーボン(以後CVD-C)膜が一般である。このCVD-C膜では、膜中の水素原子を極めて少なくすることが出来、上記のようなパターンのよれや曲りに対して非常に有効であることが知られているが、下地の被加工基板に段差がある場合、CVDプロセスの特性上このような段差をフラットに埋め込むことが困難であることも知られている。そのため、段差のある被加工基板をCVD-C膜で埋め込んだ後、フォトレジストでパターニングすると、被加工基板の段差の影響でフォトレジストの塗布面に段差が発生し、そのためフォトレジストの膜厚が不均一になり、結果としてリソグラフィー時の焦点裕度やパターン形状が劣化する。
【0007】
一方、被加工基板直上に形成されるカーボンハードマスクとしての下層膜を回転塗布法によって形成した場合、段差基板の段差を平坦に埋め込むことができる長所があることが知られている。この下層膜材料で当該基板を平坦化すると、その上に成膜するケイ素含有中間層やフォトレジストの膜厚変動が抑えられ、リソグラフィーの焦点裕度を拡大することができ、正常なパターンを形成できる。
【0008】
そこで、被加工基板のドライエッチング加工を行う際にエッチング耐性が高く、被加工基板上に高い平坦性を持つ膜の形成が可能な有機下層膜を回転塗布法によって形成できる有機下層膜材料および有機下層膜を形成するための方法が求められている。
【0009】
従来、このような下層膜材料にはフェノール系やナフトール系化合物に対して縮合剤としてケトン類やアルデヒド類などのカルボニル化合物や芳香族アルコール類を用いた縮合樹脂類が多層レジスト法用の有機膜形成用材料として知られている。例えば、特許文献2に記載のフルオレンビスフェノールノボラック樹脂、特許文献3に記載のビスフェノール化合物及びこのノボラック樹脂、特許文献4に記載のアダマンタンフェノール化合物のノボラック樹脂、特許文献5に記載のビスナフトール化合物及びこのノボラック樹脂などが例示できる。このような材料に用いられる樹脂は炭素密度の高いナフタレン、フルオレン、アダマンタン等を主骨格として構成しているがフェノール性水酸基に起因する酸素原子によるエッチング耐性劣化は回避することができなかった。
【0010】
更にエッチング耐性を損なわないため酸素のようなヘテロ原子を含まない下層膜材料用の樹脂として、特許文献6に記載のフルオレン構造を有する樹脂が例示されるが、硬化膜を形成するためメチロール化合物などの架橋剤を添加した組成物を用いることで硬化膜を形成しているため、樹脂の炭素含量を上げたとしても炭素含量の低い架橋剤が含まれるためエッチング耐性が損なわれる問題があった。
【先行技術文献】
【特許文献】
【0011】
【文献】特開平6-118651号公報等
【文献】特開2005-128509号公報
【文献】特開2006-293298号公報
【文献】特開2006-285095号公報
【文献】特開2010-122656号公報
【文献】国際公開第2013/047106号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明は、上記事情に鑑みなされたもので、炭素含量が高く、熱硬化性のある重合体を有機膜形成用組成物に用いることにより、樹脂本来の炭素含量を損なうことなく高いエッチング耐性、優れたよれ耐性を発現できる有機膜形成用組成物、これを用いたパターン形成方法、ならびにこのような有機膜形成用組成物に好適な重合体を提供することを目的とする。
【課題を解決するための手段】
【0013】
上記課題を達成するために、本発明では、下記一般式(1A)で示される部分構造を有する重合体および有機溶剤を含有する有機膜形成用組成物を提供する。
【化1】
(上記一般式(1A)中、Ar1、Ar2は置換基を有してもよいベンゼン環またはナフタレン環、Xは単結合またはメチレン基であり、Lは下記のいずれかである。)
【化2】
(上記式中の破線は結合手を表し、Rは水素原子又は炭素数1~20の1価の有機基である。)
【0014】
前記一般式(1A)で示される部分構造を有する重合体を含む有機膜形成用組成物から形成される有機膜を加熱すると、フルオレン環上の不飽和結合を有する置換基による熱重合の作用により硬化膜を形成できる。そのため本発明の重合体を用いた有機膜形成用組成物は架橋剤等の添加による炭素含量の低下がなく熱硬化膜が形成可能である。本発明の重合体は炭素含量が高い縮合芳香環により主骨格を形成しているため、本発明の重合体を用いた有機膜形成用組成物であればよれ耐性が高くドライエッチング耐性も高い有機膜を形成することができる。
【0015】
また、本発明では、下記一般式(1B)で示される部分構造を有する重合体および有機溶剤を含有する有機膜形成用組成物を提供する。
【化3】
(上記一般式(1B)中、W
1は水酸基、炭素数1~10のアルキルオキシ基または置換基を有していてもよい少なくとも1つ以上の芳香環を有する有機基であり、Ar1、Ar2、X、Lは前記されるとおりである。)
【0016】
前記一般式(1B)で示される部分構造を有する重合体を含む有機膜形成用組成物から形成される有機膜を加熱すると、フルオレン環上の不飽和結合を有する置換基による熱重合の作用により硬化膜を形成できる。そのため本発明の重合体を用いた有機膜形成用組成物は架橋剤等の添加による炭素含量の低下がなく熱硬化膜が形成可能である。本発明の重合体は炭素含量が高い縮合芳香環により主骨格を形成しているため、本発明の重合体を用いた有機膜形成用組成物であればよれ耐性が高くドライエッチング耐性も高い有機膜を形成することができる。
【0017】
前記一般式(1A)で示される部分構造を有する重合体が更に下記一般式(1B)で示される部分構造を有するものであることが好ましい。
【化4】
【0018】
このような部分構造を主骨格に導入することで、この有機膜形成用組成物のエッチング耐性、溶剤溶解性、埋め込み/平坦化特性などの要求性能をよりきめ細かく調整することができる。
【0019】
前記一般式(1A)で示される部分構造を有する重合体が更に下記一般式(1C)で示される部分構造を有するものであることが好ましい。
【化5】
(前記一般式(1C)中、W
2は水素原子または炭素数1~50の1価の有機基を表し、Ar1、Ar2は前記されるとおりである。)
【0020】
このような部分構造を主骨格に導入することで、この有機膜形成用組成物のエッチング耐性、溶剤溶解性、埋め込み/平坦化特性などの要求性能をよりきめ細かく調整することができる。
【0021】
前記重合体は重量平均分子量500~5000のものであることが好ましい。
このような範囲の重量平均分子量を有する重合体を含む有機膜形成用組成物であれば、有機溶剤への溶解性を損なわず、ベーク時のアウトガスを抑制できるものとなる。
【0022】
前記有機溶剤が、沸点が180℃未満の有機溶剤1種以上と、沸点が180℃以上の有機溶剤1種以上との混合物であることが好ましい。
前記有機溶剤が前記混合物であれば、前記重合体に高沸点溶剤の添加による有機膜の熱流動性が付与されることで、有機膜形成用組成物は高度な埋め込み/平坦化特性を併せ持つものとなる。
【0023】
前記有機膜形成用組成物は更に界面活性剤および可塑剤のうち1種以上を含有するものであることが好ましい。
前記添加剤を含む有機膜形成用組成物であれば、塗布性、埋め込み/平坦化特性のより優れたものとなる。
【0024】
本発明では、被加工体上に前記有機膜形成用組成物を用いて有機膜を形成する工程、前記有機膜の上にケイ素含有レジスト下層膜材料を用いてケイ素含有レジスト下層膜を形成する工程、前記ケイ素含有レジスト下層膜の上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、前記レジスト上層膜に回路パターンを形成する工程、前記回路パターンが形成されたレジスト上層膜をマスクにして前記ケイ素含有レジスト下層膜にエッチングでパターン転写する工程、前記パターンが転写されたケイ素含有レジスト下層膜をマスクにして前記有機膜にエッチングでパターン転写する工程、前記パターンが転写された有機膜をマスクにして前記被加工体にエッチングでパターンを形成する工程を含むパターン形成方法を提供する。
【0025】
前記3層レジストプロセスによるパターン形成方法により、被加工基板に微細なパターンを高精度で形成することができる。
【0026】
本発明では、被加工体上に前記有機膜形成用組成物を用いて有機膜を形成する工程、前記有機膜の上にケイ素含有レジスト下層膜材料を用いてケイ素含有レジスト下層膜を形成する工程、前記ケイ素含有レジスト下層膜の上に有機反射防止膜(BARC)を形成する工程、前記BARC上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、前記レジスト上層膜に回路パターンを形成する工程、前記回路パターンが形成されたレジスト上層膜をマスクにして前記BARCと前記ケイ素含有レジスト下層膜に順次エッチングでパターン転写する工程、前記パターンが転写されたケイ素含有レジスト下層膜をマスクにして前記有機膜にエッチングでパターン転写する工程、前記パターンが転写された有機膜をマスクにして前記被加工体をエッチングして前記被加工体にパターンを形成する工程を含むパターン形成方法を提供する。
【0027】
前記4層レジストプロセスによるパターン形成方法により、被加工基板に微細なパターンをより一層高精度で形成することができる。
【0028】
本発明では、被加工体上に前記有機膜形成用組成物を用いて有機膜を形成する工程、前記有機膜の上にケイ素酸化膜、ケイ素窒化膜、ケイ素酸化窒化膜から選ばれる無機ハードマスクを形成する工程、前記無機ハードマスクの上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、前記レジスト上層膜に回路パターンを形成する工程、前記回路パターンが形成されたレジスト上層膜をマスクにして前記無機ハードマスクをエッチングでパターン転写する工程、前記パターンが形成された無機ハードマスクをマスクにして前記有機膜をエッチングでパターン転写する工程、前記パターンが形成された有機膜をマスクにして前記被加工体をエッチングして前記被加工体にパターンを形成する工程を含むパターン形成方法を提供する。
【0029】
この3層レジストプロセスによるパターン形成方法により、被加工基板に微細なパターンを高精度で形成することができる。
【0030】
さらに、本発明では、被加工体上に前記有機膜形成用組成物を用いて有機膜を形成する工程、前記有機膜の上にケイ素酸化膜、ケイ素窒化膜、ケイ素酸化窒化膜から選ばれる無機ハードマスクを形成する工程、前記無機ハードマスクの上にBARCを形成する工程、前記BARC上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、前記レジスト上層膜に回路パターンを形成する工程、前記回路パターンが形成されたレジスト上層膜をマスクにして前記BARCと前記無機ハードマスクに順次エッチングでパターン転写する工程、前記パターンが形成された無機ハードマスクをマスクにして前記有機膜にエッチングでパターン転写する工程、前記パターンが形成された有機膜をマスクにして前記被加工体をエッチングして前記被加工体にパターンを形成する工程を含むパターン形成方法を提供する。
【0031】
この4層レジストプロセスによるパターン形成方法により、被加工基板に微細なパターンをより高精度で形成することができる。
【0032】
前記無機ハードマスクをCVD法あるいはALD法によって形成することが好ましい。
前記無機ハードマスクをCVD法あるいはALD法によって形成すると、被加工基板に微細なパターンをより高精度で形成することができる。
【0033】
前記レジスト上層膜に回路パターンを形成する方法として、波長が10nm以上300nm以下の光リソグラフィー、電子線による直接描画、ナノインプリンティングまたはこれらの組み合わせを用いることが好ましい。
前記レジスト上層膜に回路パターンを形成する方法として前記方法を用いると、被加工基板に微細なパターンをより高精度で形成することができる。
【0034】
現像方法として、アルカリ現像または有機溶剤による現像を用いることが好ましい。
現像方法として、アルカリ現像または有機溶剤による現像を用いると、被加工基板に微細なパターンをより高精度で形成することができる。
【0035】
前記被加工体として、半導体装置基板、金属膜、金属炭化膜、金属酸化膜、金属窒化膜、金属酸化炭化膜または金属酸化窒化膜を用いることが好ましい。
本発明では、前記被加工体として、例えば、前記のものを用いることができる。
【0036】
前記金属として、ケイ素、チタン、タングステン、ハフニウム、ジルコニウム、クロム、ゲルマニウム、銅、銀、金、アルミニウム、インジウム、ガリウム、ヒ素、パラジウム、鉄、タンタル、イリジウム、モリブデンまたはこれらの合金を用いることが好ましい。
前記金属としてこれらのものを用いることができる。
【0037】
本発明は、下記一般式(1A)で示される部分構造を有する重合体を提供する。
【化6】
(上記一般式(1A)中、Ar1、Ar2は置換基を有してもよいベンゼン環またはナフタレン環、Xは単結合またはメチレン基であり、Lは下記のいずれかである。)
【化7】
(上記式中の破線は結合手を表し、Rは水素原子又は炭素数1~20の1価の有機基である。)
【0038】
この重合体は、酸素原子のようなヘテロ原子を含有しない縮合芳香環構造および不飽和結合を有する置換基を熱架橋基とする部分構造が構成されているものであるため、よれ耐性が高くドライエッチング耐性も高い有機膜を形成することができる有機膜形成用組成物を与える成分である。
【0039】
さらに、本発明では、下記一般式(1B)で示される部分構造を有する重合体を提供する。
【化8】
(上記一般式(1B)中、W
1は水酸基、炭素数1~10のアルキルオキシ基または置換基を有していてもよい少なくとも1つ以上の芳香環を有する有機基であり、Ar1、Ar2、X、Lは前記されるとおりである。)
【0040】
この重合体は、酸素原子のようなヘテロ原子を含有しない縮合芳香環構造および不飽和結合を有する置換基を熱架橋基とする部分構造が構成されているものであるため、よれ耐性が高くドライエッチング耐性も高い有機膜を形成することができる有機膜形成用組成物を与える成分である。
【0041】
前記一般式(1A)で示される部分構造を有する重合体は更に下記一般式(1B)で示される部分構造を有するものであることが好ましい。
【化9】
【0042】
前記重合体が更に前記部分構造を有するものであると、よれ耐性が高くドライエッチング耐性も高い有機膜を形成することができる有機膜形成用組成物を与える成分となる。
【0043】
前記一般式(1A)で示される部分構造を有する重合体は更に下記一般式(1C)で示される部分構造を有するものであることが好ましい。
【化10】
(前記一般式(1C)中、W
2は水素原子または炭素数1~50の1価の有機基を表し、Ar1、Ar2は前記されるとおりである。)
【0044】
前記重合体が更に前記部分構造を有するものであると、エッチング耐性、溶剤溶解性、埋め込み/平坦化特性などを要求性能に合せて調整することができる有機膜形成用組成物を与える成分となる。
【発明の効果】
【0045】
以上説明したように、本発明の重合体は熱硬化性を有し、かつ、エッチング耐性を損なう酸素原子のようなヘテロ原子を含有しない縮合芳香環で主骨格が構成されているものであるため、エッチング耐性とよれ耐性に優れた有機膜を形成するために有用な重合体となる。また、この重合体を含む本発明の有機膜形成用組成物は、優れたエッチング耐性、よれ耐性を有するとともに耐熱性、埋め込み、平坦化特性などの諸特性を兼ね備えた有機膜を形成するのに有用な材料となる。そのため、例えば、2層レジストプロセス、ケイ素含有レジスト下層膜を用いた3層レジストプロセス、又はケイ素含有レジスト下層膜及び有機反射防止膜を用いた4層レジストプロセスといった多層レジストプロセスにおけるレジスト下層膜材料として極めて有用である。また、本発明のパターン形成方法であれば、多層レジストプロセスにおいて、被加工基板に微細なパターンを高精度で形成することができる。
【図面の簡単な説明】
【0046】
【
図1】本発明のパターン形成方法の一例を示すプロセス図である。
【
図2】本発明の有機膜形成用組成物をトレンチパターンを有するSiO
2ウエハー基板上に塗布して形成された有機膜の一例を示す断面図である。
【発明を実施するための形態】
【0047】
上述のように、炭素含量が高く、熱硬化性のある重合体を有機膜形成用組成物に用いることにより、樹脂本来の炭素含量を損なうことなく高いエッチング耐性、優れたよれ耐性を発現できる有機膜形成用組成物、これを用いたパターン形成方法、ならびにこのような有機膜形成用組成物に好適な重合体の開発が求められていた。
【0048】
本発明者らは、上記課題について鋭意検討を重ねた結果、酸素原子のようなヘテロ原子を含有しない縮合芳香環構造および不飽和結合を有する置換基を熱架橋基とする部分構造を有する重合体は熱処理により架橋反応が起きるものであるから、前記重合体および有機溶剤を含有する有機膜形成用組成物が、優れたエッチング耐性、よれ耐性を有するとともに耐熱性、埋め込み、平坦化特性などの諸特性を兼ね備えた有機膜を形成するものであることを見出し、本発明を完成させた。
【0049】
即ち、本発明は、下記一般式(1A)で示される部分構造を有する重合体および有機溶剤を含有する有機膜形成用組成物である。
【化11】
(上記一般式(1A)中、Ar1、Ar2は置換基を有してもよいベンゼン環またはナフタレン環、Xは単結合またはメチレン基であり、Lは下記のいずれかである。)
【化12】
(上記式中の破線は結合手を表し、Rは水素原子又は炭素数1~20の1価の有機基である。)
【0050】
また、本発明は、下記一般式(1B)で示される部分構造を有する重合体および有機溶剤を含有する有機膜形成用組成物である。
【化13】
(上記一般式(1B)中、W
1は水酸基、炭素数1~10のアルキルオキシ基または置換基を有していてもよい少なくとも1つ以上の芳香環を有する有機基であり、Ar1、Ar2、X、Lは前記されるとおりである。)
さらに、本発明は、前記一般式(1A)で示される部分構造を有する重合体である。
くわえて、本発明は、前記一般式(1B)で示される部分構造を有する重合体である。
【0051】
以下、本発明の実施の形態について詳細に説明するが、本発明はこれらに限定されるものではない。
【0052】
本発明の有機膜形成用組成物は、下記一般式(1A)で示される部分構造を有する重合体を含有するものである。
【化14】
(上記一般式(1A)中、Ar1、Ar2は置換基を有してもよいベンゼン環またはナフタレン環、Xは単結合またはメチレン基であり、Lは下記のいずれかである。)
【化15】
(上記式中の破線は結合手を表し、Rは水素原子又は炭素数1~20の1価の有機基である。)
【0053】
前記一般式中(1A)中の重合体のAr1、Ar2で構成される部分構造としては下記のものを例示することができる。これらの芳香環上にはビニル基、エチニル基、エチニルフェニル基、アリル基、プロパルギル基、アリール基、アリルオキシ基、プロパルギルオキシ基などの置換基を有してもよい。下記のもののうちフルオレン、ベンゾフルオレン構造が原料入手の容易さから好ましい。
【化16】
【0054】
前記一般式中(1A)中のXおよびLで構成される置換基としては下記に示される構造を例示することができる。破線部はフルオレン環との結合手を示す。また、Rが芳香環を有するとき、アルキル基、ハロゲン基、アルキルオキシ基、トリフルオロメチル基などを芳香環上の置換基として有してもよい。下記のうちエチニル基、プロパルギル基、ビニル基、アリル基が重合体製造の容易さから好ましい。
【化17】
【0055】
本発明の有機膜形成用組成物は、下記一般式(1B)で示される部分構造を有する単独重合体を含有するものでもよいし、前記一般式(1A)で示される部分構造と下記一般式(1B)で示される部分構造を有する共重合体を含有するものでもよい。
【化18】
(上記一般式(1B)中、W
1は水酸基、炭素数1~10のアルキルオキシ基または置換基を有していてもよい少なくとも1つ以上の芳香環を有する有機基であり、Ar1、Ar2、X、Lは前記されるとおりである。)
【0056】
炭素数1~10のアルキルオキシ基として、メトキシ基、エトキシ基、プロピルオキシ基、iso-プロピルオキシ基、ブトキシ基、iso-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基等を例示できる。
前記一般式(1B)中のW
1における1つ以上の芳香環を有する有機基としては、下記のものを例示することができ、これらの芳香環上にはビニル基、エチニル基、エチニルフェニル基、アリル基、プロパルギル基、アリール基、アリルオキシ基、プロパルギルオキシ基などの置換基を有していてもよい。エッチング耐性、溶剤溶解性付与の観点から、前記有機基はナフタレン環、フルオレン構造、カルバゾール構造を有するものであることが好ましい。
【化19】
【0057】
【0058】
【0059】
【0060】
本発明の重合体の前記一般式(1B)で示される部分構造のW1の種類と当該部分構造の重合割合を変更することにより、本発明の重合体の要求性能に合わせて、物性を調整でき、本発明の重合体を含有する本発明の有機膜形成用組成物とそれから得られる有機膜の物性も変更できる。
【0061】
本発明では、前記重合体が更に下記一般式(1C)で示される部分構造を有するものであることが好ましい。
【化23】
(前記一般式(1C)中、W
2は水素原子または炭素数1~50の1価の有機基を表し、Ar1、Ar2は前記されるとおりである。)
【0062】
上記一般式(1C)中のW2が水素原子以外の一価の有機基の場合、炭素数1~10のアルキル基、または下記の構造などを例示できる。W2が芳香環を有するとき芳香環上に置換基を有しても良く、水酸基、炭素数1~10のアルキル基、炭素数1~10のアルキルオキシ基、ビニル基、エチニル基、エチニルフェニル基、アリル基、プロパルギル基、アリール基などを例示できる。これらの中でもW2は水素原子またはナフチル基であることがエッチング耐性、溶剤溶解性付与の観点から好ましい。
【0063】
【0064】
さらに前記重合体のMw(重量平均分子量)が500~5000であることが好ましく、600~4000であることが更に好ましい。
このような分子量であれば、有機溶剤への溶解性を確保でき、ベーク時に生じる昇華物を抑制することができる。また有機膜形成用組成物の熱流動性が良好なものとなるため、基板上に形成されている微細構造を前記有機膜形成用組成物で良好に埋め込むことが可能になるだけでなく、基板全体が平坦となる有機膜を形成することができる。なお、本発明において、重量平均分子量は、THF(テトラヒドロフラン)を展開溶媒としたGPC(ゲル浸透クロマトグラフィー)測定により求めたポリスチレン換算値である。
【0065】
[重合体の製造方法]
本発明の一般式(1A)で示される重合体の製造方法の一例として、下記に示すXとLで構成される置換基を有するフルオレノール類をモノマーとして用いた、脱水を伴うフルオレン環への親電子置換反応などによって合成できる。下記式中のAr1、Ar2、X、Lは前記と同じである。
【化25】
【0066】
前記重合体は、通常、有機溶媒中で酸触媒の存在下、室温または必要に応じて冷却または加熱下で得ることが出来る。用いられる酸触媒として、塩酸、臭化水素酸、硫酸、硝酸、リン酸、ヘテロポリ酸等の無機酸類、シュウ酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等の有機酸類、三塩化アルミニウム、アルミニウムエトキシド、アルミニウムイソプロポキシド、三フッ化ホウ素、三塩化ホウ素、三臭化ホウ素、四塩化錫、四臭化錫、二塩化ジブチル錫、ジブチル錫ジメトキシド、ジブチル錫オキシド、四塩化チタン、四臭化チタン、チタン(IV)メトキシド、チタン(IV)エトキシド、チタン(IV)イソプロポキシド、酸化チタン(IV)等のルイス酸類を用いることができる。
【0067】
用いられる溶媒としては、特に制限はないが、メタノール、エタノール、イソプロピルアルコール、ブタノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、グリセロール、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール類、ジエチルエーテル、ジブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、塩化メチレン、クロロホルム、ジクロロエタン、トリクロロエチレン等の塩素系溶剤類、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、クメン等の炭化水素類、アセトニトリル等のニトリル類、アセトン、エチルメチルケトン、イソブチルメチルケトンなどのケトン類、酢酸エチル、酢酸n-ブチル、プロピレングリコールメチルエーテルアセテートなどのエステル類、ジメチルスルホキシド、N,N-ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド等の非プロトン性極性溶媒類が例示でき、これらを単独あるいは2種類以上を混合して用いることができる。
【0068】
反応方法としては、フルオレノール類と触媒である酸触媒を一括で仕込む方法、フルオレノール類を分散または溶解後、触媒を一括または分割により添加する方法や触媒を溶剤で希釈し滴下する方法、触媒を分散後または溶解後、フルオレノール類を一括または分割により添加する方法や、フルオレノール類を溶剤で希釈し滴下する方法がある。反応終了後、反応に使用した触媒を除去するために反応物を有機溶剤で希釈後、分液洗浄を行い目的物を回収できる。
【0069】
この時使用する有機溶剤としては、目的物を溶解でき、水と混合しても2層分離するものであれば特に制限はないが、例えばヘキサン、ヘプタン、ベンゼン、トルエン、キシレン等の炭化水素類、酢酸エチル、酢酸n-ブチル、プロピレングリコールメチルエーテルアセテート等のエステル類、メチルエチルケトン、メチルアミルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン類、ジエチルエーテル、ジイソプロピルエーテル、メチル-t-ブチルエーテル、エチルシクロペンチルメチルエーテル等のエーテル類、塩化メチレン、クロロホルム、ジクロロエタン、トリクロロエチレン等の塩素系溶剤類、及びこれらの混合物などを挙げることが出来る。この際に使用する洗浄水は、通常、脱イオン水や超純水と呼ばれているものを使用すればよい。洗浄回数は1回以上あればよいが、10回以上洗浄しても洗浄しただけの効果は得られないため、好ましくは1~5回程度である。
【0070】
分液洗浄の際に系内の酸性成分を除去するため、塩基性水溶液で洗浄を行ってもよい。塩基としては、具体的には、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アルカリ土類金属の水酸化物、アルカリ土類金属の炭酸塩、アンモニア、及び有機アンモニウム等が挙げられる。
【0071】
更に、分液洗浄の際に系内の金属不純物または塩基成分を除去するため、酸性水溶液で洗浄を行ってもよい。酸としては、具体的には、塩酸、臭化水素酸、硫酸、硝酸、リン酸、ヘテロポリ酸等の無機酸類、シュウ酸、フマル酸、マレイン酸、トリフルオロ酢酸、メタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等の有機酸類等が挙げられる。
【0072】
前記塩基性水溶液、酸性水溶液による分液洗浄はいずれか一方のみでもよいが、組み合わせて行うこともできる。分液洗浄は、塩基性水溶液、酸性水溶液の順に行うのが金属不純物除去の観点から好ましい。
【0073】
前記塩基性水溶液、酸性水溶液による分液洗浄後、続けて中性の水で洗浄してもよい。洗浄回数は1回以上行えばよいが、好ましくは1~5回程度である。中性水としては、上記で述べた脱イオン水や超純水等を使用すればよい。洗浄回数は1回以上であればよいが、回数が少なくては塩基成分、酸性成分を除去できないことがある。10回以上洗浄しても洗浄しただけの効果は得られるとは限らないため、好ましくは1~5回程度である。
【0074】
更に、分液操作後の反応生成物は減圧又は常圧で溶剤を濃縮乾固又は晶出操作を行い粉体として回収することもできるが、有機膜形成用組成物を調製する際の操作性改善のため、適度な濃度の溶液状態にしておくことも可能である。このときの濃度としては、0.1~50質量%が好ましく、より好ましくは0.5~30質量%である。このような濃度であれば、粘度が高くなりにくいことから操作性を損なうことを防止することができ、また、溶剤の量が過大となることがないことから経済的になる。
【0075】
このときの溶剤としては、重合体を溶解できるものであれば特に制限はないが、具体例を挙げると、シクロヘキサノン、メチル-2-アミルケトン等のケトン類;3-メトキシブタノール、3-メチル-3-メトキシブタノール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類;プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸tert-ブチル、プロピオン酸tert-ブチル、プロピレングリコールモノtert-ブチルエーテルアセテート等のエステル類が挙げられ、これらを単独あるいは2種類以上を混合して用いることができる。
【0076】
本発明の一般式(1B)で示される部分構造を有する重合体は一般式(1A)で示される部分構造を有する重合体を製造する原料であるフルオレノール類とW1の部分構造を有する化合物とを共重合する方法、または一般式(1A)で示される部分構造を有する重合体の反応中にW1の部分構造を有する化合物を添加し末端封止する方法などにより製造することができる。W1が水酸基またはアルキルオキシ基の場合、反応系内に水またはアルコールを予め添加、または反応中に水またはアルコールを添加することで製造することができる。下記式中のAr1、Ar2、X、L、W1は前記と同じである。
【0077】
(共重合法)
【化26】
(末端封止法)
【化27】
【0078】
少なくとも1つ以上の芳香環を有するW
1を用いて上記の反応を行う場合、W
1の部分構造を有する化合物は重合途中のフルオレノール類の末端停止剤として作用し、反応時には下記のように、W
1の部分構造を有する化合物の芳香環と鎖長の異なるフルオレノールの重合体が複数反応する可能性があるが、本発明では便宜上、化学式(1B)のように表記を行っている。Ar1、Ar2、X、Rは前記と同じであり、n1、n2、n3は1以上の整数である。
【化28】
【0079】
前記重合体の反応、回収方法は、一般式(1A)で示される部分構造を有する重合体の反応、回収方法と同様である。
【0080】
本発明の一般式(1C)で示される部分構造を有する重合体は一般式(1A)で示される部分構造を有する重合体を製造する原料であるフルオレノール類とW
2の部分構造を有するフルオレノール類とを一括で仕込み共重合する方法、または一般式(1A)で示される部分構造を有する重合体の原料であるフルオレノール類、または、W
2の部分構造を有するフルオレノール類を1段階目に重合後、1段階目とは別のフルオレノール類を2段階目に追加して重合する方法などが挙げられる。また2段階で重合を行う場合、1段階目または2段階目の重合には複数のフルオレノール類を混合して用いることも可能であり、さらに3段階目、4段階目と同一または他のフルオレノール類をさらに追加して重合することもできる。さらにこれらの重合には、前記W
1の部分構造を持つ化合物を用いて共重合または末端封止することでW
1の部分構造を導入することもできる。
(共重合法)
【化29】
(多段階重合法)
【化30】
【0081】
前記重合はフレオノール類とW
1として1つ以上の芳香環を有する有機基をもつ化合物との反応時と同様に、例えば下記式のようにW
2を部分構造としてもつフルオレノール類のAr1、Ar2の芳香環上には複数の重合中に生成したフルオレノール重合体が反応する可能性があるが、本発明では便宜上、化学式(1C)のように表記を行っている。Ar1、Ar2は前記と同じであり、n1、n2、n3は1以上の整数である。
【化31】
【0082】
前記重合体の反応、回収方法は、一般式(1A)で示される部分構造を有する重合体の反応、回収方法と同様である。
【0083】
本発明の有機膜形成用組成物に含まれる重合体の重合にはXとLで構成される熱架橋基を有するフルオレノール類に加えて、W1またはW2を部分構造に有するフルオレノール類を要求性能に合わせて組み合わせて用いることが可能である。具体的には平坦化特性の向上に寄与する側鎖構造、エッチング耐性および耐熱性改善に寄与する剛直な芳香環構造をW1やW2の構造に導入したものを用いることが可能であり、要求性能に合せて任意の割合で組み合わせて用いることができる。また、重合体の製造方法も要求性能にあわせて選択することも可能であり、共重合、多段階重合、末端封止方法を適宜選択することにより、ランダム、交互重合など重合体の組成の制御をすることができる。これらの重合体を用いた有機膜形成用組成物は埋め込み/平坦化特性、耐熱性、よれ耐性、エッチング耐性を高い次元で両立することが可能である。
【0084】
さらに、本発明の有機膜形成用組成物に用いられる重合体を得る別法として、下記に示す水素原子を置換基としてもつフルオレノール類の重合により中間体を得た後(STEP1)、さらにこの水素原子を三重結合を有する置換基に変換する方法(STEP2)でも得ることも可能である。これらの水素原子を置換基として持つフルオレノールはW1やW2を部分構造にもつフルオレノールとも反応を行うことができる。Ar1、Ar2、Rは前記と同じである。
【0085】
【0086】
XとLで構成される置換基を導入できる反応であれば特に限定は無いが、下記のようなハロゲン化物またはトシレート、メシレートと塩基触媒を用いた置換反応等が例示できる。下記式中のYはハロゲン、トシル基またはメシル基である。
【化33】
【0087】
置換反応に用いられる塩基触媒としては炭酸水素ナトリウム、炭酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸セシウム、水酸化ナトリウム、水酸化カリウム、水素化ナトリウム、リン酸カリウム等の無機塩基化合物、トリエチルアミン、ピリジン、N-メチルモルホリン等の有機アミン化合等が挙げられ、これらを単独でも2種以上を組み合わせて用いてもよい。
【0088】
このときに用いられる溶媒としては、上記反応に不活性な溶剤であれば特に制限はないが、例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ベンゼン、トルエン、キシレン等の芳香族系溶媒、アセトニトリル、ジメチルスルホキシド、N,N-ジメチルホルムアミド、N-メチルピロリドン、水等、これらを単独または混合して用いることができる。
【0089】
前記重合体の重合方法における反応、回収方法は、XとLで構成される置換基を有するフルオレノール類をモノマーとして用いる前記重合方法のものと同様である。
【0090】
この方法で得られる有機膜形成用組成物に用いられる重合体の調製には種々のハロゲン化物やトシレートおよびメシレートを要求性能に合わせて単独または複数組み合わせて用いることが可能である。例えば、平坦化特性の向上に寄与する側鎖構造、エッチング耐性、耐熱性に寄与する剛直な芳香環構造などを持つものを任意の割合で組み合わせることができる。そのためこれらの重合体を用いた有機膜形成用組成物は埋め込み/平坦化特性とエッチング耐性を高い次元で両立することが可能となる。
【0091】
以上のように、本発明の一般式(1A)で示される部分構造を有する重合体であれば、高いエッチング耐性、優れたよれ耐性を発現できる有機膜形成用組成物を与えるものとなる。
【0092】
<有機膜形成用組成物>
また、本発明では、一般式(1A)で示される部分構造を有する重合体及び有機溶剤を含有する有機膜形成用組成物を提供する。なお、本発明の有機膜形成用組成物において、本発明の一般式(1A)で示される部分構造を有する重合体を単独又は複数組み合わせて用いることができる。
【0093】
本発明の有機膜形成用組成物には更にブレンド用化合物、別のポリマー等の改質剤をブレンドすることもできる。前記改質剤は、本発明の有機膜形成用組成物と混合し、スピンコーティングの成膜性や、段差を有する基板での埋め込み特性を向上させる役割を持つ。このような改質剤としては、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-ジメチルフェノール、2,5-ジメチルフェノール、3,4-ジメチルフェノール、3,5-ジメチルフェノール、2,4-ジメチルフェノール、2,6-ジメチルフェノール、2,3,5-トリメチルフェノール、3,4,5-トリメチルフェノール、2-tert-ブチルフェノール、3-tert-ブチルフェノール、4-tert-ブチルフェノール、2-フェニルフェノール、3-フェニルフェノール、4-フェニルフェノール、3,5-ジフェニルフェノール、2-ナフチルフェノール、3-ナフチルフェノール、4-ナフチルフェノール、4-トリチルフェノール、レゾルシノール、2-メチルレゾルシノール、4-メチルレゾルシノール、5-メチルレゾルシノール、カテコール、4-tert-ブチルカテコール、2-メトキシフェノール、3-メトキシフェノール、2-プロピルフェノール、3-プロピルフェノール、4-プロピルフェノール、2-イソプロピルフェノール、3-イソプロピルフェノール、4-イソプロピルフェノール、2-メトキシ-5-メチルフェノール、2-tert-ブチル-5-メチルフェノール、ピロガロール、チモール、イソチモール、4,4’-(9H-フルオレン-9-イリデン)ビスフェノール、2,2’ジメチル-4,4’-(9H-フルオレン-9-イリデン)ビスフェノール、2,2’ジアリル-4,4’-(9H-フルオレン-9-イリデン)ビスフェノール、2,2’ジフルオロ-4,4’-(9H-フルオレン-9-イリデン)ビスフェノール、2,2’ジフェニル-4,4’-(9H-フルオレン-9-イリデン)ビスフェノール、2,2’ジメトキシ-4,4’-(9H-フルオレン-9-イリデン)ビスフェノール、2,3,2’,3’-テトラヒドロ-(1,1’)-スピロビインデン-6,6’-ジオール、3,3,3’,3’-テトラメチル-2,3,2’,3’-テトラヒドロ-(1,1’)-スピロビインデン-6,6’-ジオール、3,3,3’,3’,4,4’-ヘキサメチル-2,3,2’,3’-テトラヒドロ-(1,1’)-スピロビインデン-6,6’-ジオール、2,3,2’,3’-テトラヒドロ-(1,1’)-スピロビインデン-5,5’-ジオール、5,5’-ジメチル-3,3,3’,3’-テトラメチル-2,3,2’,3’-テトラヒドロ-(1,1’)-スピロビインデン-6,6’-ジオール、1-ナフトール、2-ナフトール、2-メチル-1-ナフトール、4-メトキシ-1-ナフトール、7-メトキシ-2-ナフトール及び1,5-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン等のジヒドロキシナフタレン、3-ヒドロキシナフタレン-2-カルボン酸メチル、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネン等のノボラック樹脂、ポリヒドロキシスチレン、ポリスチレン、ポリビニルナフタレン、ポリビニルアントラセン、ポリビニルカルバゾール、ポリインデン、ポリアセナフチレン、ポリノルボルネン、ポリシクロデセン、ポリテトラシクロドデセン、ポリノルトリシクレン、ポリ(メタ)アクリレート及びこれらの共重合体が挙げられる。また、特開2004-205685号公報記載のナフトールジシクロペンタジエン共重合体、特開2005-128509号公報記載のフルオレンビスフェノールノボラック樹脂、特開2005-250434号公報記載のアセナフチレン共重合体、特開2006-227391号公報記載のフェノール基を有するフラーレン、特開2006-293298号公報記載のビスフェノール化合物及びこのノボラック樹脂、特開2006-285095号公報記載のアダマンタンフェノール化合物のノボラック樹脂、特開2010-122656号公報記載のビスナフトール化合物及びこのノボラック樹脂、特開2008-158002号公報記載のフラーレン樹脂化合物等をブレンドすることもできる。前記改質剤の配合量は、本発明の一般式(1A)で示される部分構造を有する重合体100質量部に対して0~1,000質量部が好ましく、より好ましくは0~500質量部である。
【0094】
[有機溶剤]
本発明の有機膜形成用組成物において使用可能な有機溶剤としては、一般式(1A)で示される部分構造を有する重合体、酸発生剤、架橋剤、その他添加剤等が溶解するものであれば特に制限はない。具体的には、特開2007-199653号公報中の(0091)~(0092)段落に記載されている溶剤などの沸点が180℃未満の溶剤を使用することができる。中でも、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、2-ヘプタノン、シクロペンタノン、シクロヘキサノン及びこれらのうち2種以上の混合物が好ましく用いられる。
【0095】
このような組成物であれば、回転塗布で塗布することができ、また上述のような本発明の一般式(1A)で示される部分構造を有する重合体を含有するため、良好なドライエッチング耐性を有するとともに耐熱性及び高度な埋め込み/平坦化特性を併せ持つ有機膜形成用組成物となる。
【0096】
さらに、本発明の有機膜形成用組成物には有機溶剤として、上記の沸点が180℃未満の溶剤に沸点が180℃以上の高沸点溶剤を添加する事も可能である(沸点が180℃未満の溶剤と沸点が180℃以上の溶剤の混合物)。高沸点有機溶剤としては、一般式(1A)で示される部分構造を有する重合体を溶解できるものであれば、炭化水素類、アルコール類、ケトン類、エステル類、エーテル類、塩素系溶剤等の制限は特にはないが、具体例として1-オクタノール、2-エチルヘキサノール、1-ノナノール、1-デカノール、1-ウンデカール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、グリセリン、酢酸n-ノニル、エチレングリコール、モノヘキシルエーテル、エチレングリコールモノー2-エチルヘキシルエーテル、エチレングリコールモノフェニルエーテル、エチレングリコールモノベンジルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノイソプロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノイソブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノフェニルエーテル、ジエチレングリコールモノベンジルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールブチルメチルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコール-n-ブチルエーテル、トリエチレングリコールブチルメチルエーテル、トリエチレングリコールジアセテート、テトラエチレングリコールジメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノ-n-プロピルエーテル、トリプロピレングリコールモノ-n-ブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、トリアセチン、プロピレングリコールジアセテート、ジプロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールメチル-n-プロピルエーテル、ジプロピレングリコールメチルエーテルアセテート、1,4―ブタンジオールジアセテート、1,3―ブチレングリコールジアセテート、1,6-ヘキサンジオールジアセテート、トリエチレングリコールジアセテート、γ-ブチロラクトン、マロン酸ジヘキシル、コハク酸ジエチル、コハク酸ジプロピル、コハク酸ジブチル、コハク酸ジヘキシル、アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジブチルなどを例示することができ、これらを単独または混合し用いても良い。
【0097】
前記高沸点溶剤の沸点は、有機膜形成用組成物を熱処理する温度に合わせて適宜選択すればよく、添加する高沸点溶剤の沸点は180℃~300℃であることが好ましく、200℃~300℃であることがより好ましい。前記沸点が180℃以上であれば沸点が低すぎることによってベーク(熱処理)した際の揮発が速すぎる恐れがないため、十分な熱流動性を得ることができる。また、前記沸点が300℃以下であれば沸点が高すぎることなくベーク後も前記高沸点溶剤が有機膜中に揮発せずに残存してしまうことがないため、エッチング耐性等の有機膜物性に悪影響を及ぼす恐れがない。
【0098】
また、前記高沸点溶剤を使用する場合、高沸点溶剤の配合量は、沸点180℃未満の溶剤100質量部に対して1~30質量部とすることが好ましい。このような配合量であれば、ベーク時に十分な熱流動性が付与することができなくなったり、有機膜中に残存しエッチング耐性などの膜物性の劣化につながったりする恐れがない。
【0099】
このような有機膜形成用組成物であれば、一般式(1A)で示される部分構造を有する重合体に高沸点溶剤の添加による熱流動性が付与されることで、高度な埋め込み/平坦化特性を併せ持つ有機膜形成用組成物となる。
【0100】
[その他の添加物]
本発明の有機膜形成用組成物においては、硬化反応を更に促進させるために酸発生剤を添加することができる。酸発生剤は熱分解によって酸を発生するものや、光照射によって酸を発生するものがあるが、いずれのものも添加することができる。具体的には、特開2007-199653号公報中の(0061)~(0085)段落に記載されている材料を添加することができるがこれらに限定されない。
【0101】
前記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。酸発生剤を添加する場合の添加量は、一般式(1A)で示される部分構造を有する重合体100質量部に対して好ましくは0.05~50質量部、より好ましくは0.1~10質量部である。
【0102】
本発明の有機膜形成用組成物には、スピンコーティングにおける塗布性を向上させるために界面活性剤を添加することができる。界面活性剤としては、例えば、特開2009-269953号公報中の(0142)~(0147)記載のものを用いることができる。
【0103】
また、本発明の有機膜形成用組成物には、硬化性を高め、上層膜とのインターミキシングを更に抑制するために、架橋剤を添加することもできる。架橋剤としては、特に限定されることはなく、公知の種々の系統の架橋剤を広く用いることができる。一例として、メラミン系架橋剤、グリコールウリル系架橋剤、ベンゾグアナミン系架橋剤、ウレア系架橋剤、β-ヒドロキシアルキルアミド系架橋剤、イソシアヌレート系架橋剤、アジリジン系架橋剤、オキサゾリン系架橋剤、エポキシ系架橋剤を例示できる。
【0104】
メラミン系架橋剤として、具体的には、ヘキサメトキシメチル化メラミン、ヘキサブトキシメチル化メラミン、これらのアルコキシ及び/又はヒドロキシ置換体、及びこれらの部分自己縮合体を例示できる。グリコールウリル系架橋剤として、具体的には、テトラメトキシメチル化グリコールウリル、テトラブトキシメチル化グリコールウリル、これらのアルコキシ及び/又はヒドロキシ置換体、及びこれらの部分自己縮合体を例示できる。ベンゾグアナミン系架橋剤として、具体的には、テトラメトキシメチル化ベンゾグアナミン、テトラブトキシメチル化ベンゾグアナミン、これらのアルコキシ及び/又はヒドロキシ置換体、及びこれらの部分自己縮合体を例示できる。ウレア系架橋剤として、具体的には、ジメトキシメチル化ジメトキシエチレンウレア、このアルコキシ及び/又はヒドロキシ置換体、及びこれらの部分自己縮合体を例示できる。β-ヒドロキシアルキルアミド系架橋剤として具体的には、N,N,N’,N’-テトラ(2-ヒドロキシエチル)アジピン酸アミドを例示できる。イソシアヌレート系架橋剤として具体的には、トリグリシジルイソシアヌレート、トリアリルイソシアヌレートを例示できる。アジリジン系架橋剤として具体的には、4,4’-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン、2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオナート]を例示できる。オキサゾリン系架橋剤として具体的には、2,2’-イソプロピリデンビス(4-ベンジル-2-オキサゾリン)、2,2’-イソプロピリデンビス(4-フェニル-2-オキサゾリン)、2,2’-イソプロピリデンビス(4-フェニル-2-オキサゾリン)、2,2’-メチレンビス4,5-ジフェニル-2-オキサゾリン、2,2’-メチレンビス-4-フェニル-2-オキサゾリン、2,2’-メチレンビス-4-tertブチル-2-オキサゾリン、2,2’-ビス(2-オキサゾリン)、1,3-フェニレンビス(2-オキサゾリン)、1,4-フェニレンビス(2-オキサゾリン)、2-イソプロペニルオキサゾリン共重合体を例示できる。エポキシ系架橋剤として具体的には、ジグリシジルエーテル、エチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,4-シクロヘキサンジメタノールジグリシジルエーテル、ポリ(メタクリル酸グリシジル)、トリメチロールエタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテルを例示できる。
【0105】
また、本発明の有機膜形成用組成物には、平坦化/埋め込み特性を更に向上させるために、可塑剤を添加することができる。可塑剤としては、特に限定されることはなく、公知の種々の系統の可塑剤を広く用いることができる。一例として、フタル酸エステル類、アジピン酸エステル類、リン酸エステル類、トリメリット酸エステル類、クエン酸エステル類などの低分子化合物、ポリエーテル系、ポリエステル系、特開2013-253227記載のポリアセタール系重合体などのポリマーを例示できる。
【0106】
また、本発明の有機膜形成用組成物には、埋め込み/平坦化特性を可塑剤と同じように付与するための添加剤として、例えば、ポリエチレングリコール、ポリプロピレングリコール構造を有する液状添加剤、又は30℃から250℃までの間の重量減少率が40質量%以上であり、かつ重量平均分子量が300~200,000である熱分解性重合体が好ましく用いられる。この熱分解性重合体は、下記一般式(DP1)、(DP1a)で示されるアセタール構造を有する繰り返し単位を含有するものであることが好ましい。
【0107】
【化34】
(式中、R
6は水素原子又は置換されていてもよい炭素数1~30の飽和もしくは不飽和の一価有機基である。Y1は炭素数2~30の飽和又は不飽和の二価有機基である。)
【0108】
【化35】
(式中、R
6aは炭素数1~4のアルキル基である。Y
aは炭素数4~10の飽和又は不飽和の二価炭化水素基であり、エーテル結合を有していてもよい。nは平均繰り返し単位数を表し、3~500である。)
【0109】
なお、本発明の有機膜形成用組成物は1種を単独で又は2種以上を組み合わせて用いることができる。該有機膜形成用組成物はレジスト下層膜材料又は半導体装置製造用平坦化材料の用途に用いることができる。
また、本発明の有機膜形成用組成物は、2層レジストプロセス、ケイ素含有中間層膜を用いた3層レジストプロセス、ケイ素含有無機ハードマスク中間膜及び有機反射防止膜を用いた4層レジストプロセス等といった多層レジストプロセス用レジスト下層膜材料として極めて有用である。
【0110】
<有機膜形成方法>
本発明では、前記有機膜形成用組成物を用い、リソグラフィーで用いられる多層レジスト膜のレジスト下層膜又は半導体製造用平坦化膜として機能する有機膜を形成する方法を提供する。
【0111】
本発明の有機膜形成方法では、前記有機膜形成用組成物を、スピンコート法等で被加工基板上にコーティングする。スピンコート法等を用いることで、良好な埋め込み特性を得ることができる。スピンコート後、溶媒を蒸発し、レジスト上層膜やレジスト中間層膜とのミキシング防止のため、架橋反応を促進させるためにベーク(熱処理)を行う。ベークは100℃以上600℃以下、10~600秒の範囲内で行うことが好ましく、より好ましくは200℃以上500℃以下、10~300秒の範囲内で行う。デバイスダメージやウエハーの変形への影響を考えると、リソグラフィーのウエハープロセスでの加熱温度の上限を600℃以下とすることが好ましく、より好ましくは500℃以下である。
【0112】
また、本発明の有機膜形成方法では、被加工基板上に本発明の有機膜形成用組成物を上記同様スピンコート法等でコーティングし、該有機膜形成用組成物を酸素濃度0.1%以上21%以下の雰囲気中で焼成して硬化させることにより有機膜を形成することもできる。
【0113】
本発明の有機膜形成用組成物をこのような酸素雰囲気中で焼成することにより、十分に硬化した有機膜を得ることができる。ベーク中の雰囲気としては空気中でも構わないが、酸素を低減させるためにN2、Ar、He等の不活性ガスを封入しておくことは、有機膜の酸化を防止するために好ましい。酸化を防止するためには酸素濃度をコントロールする必要があり、好ましくは1000ppm以下、より好ましくは100ppm以下である。ベーク中の有機膜の酸化を防止すると、吸収が増大したりエッチング耐性が低下したりすることがないため好ましい。
【0114】
このような本発明の有機膜形成方法は、その優れた埋め込み/平坦化特性により、被加工基板の凹凸に係らず平坦な有機膜を得ることができるため、高さ30nm以上の構造体又は段差を有する被加工基板上に平坦な有機膜を形成する場合に極めて有用である。
なお、このレジスト下層膜又は半導体装置製造用平坦化膜等の有機膜の厚さは適宜選定されるが、30~20,000nmとすることが好ましく、50~15,000nmとすることがより好ましい。
【0115】
(パターン形成方法)
本発明では、このような有機膜形成用組成物を用いた3層レジストプロセスによるパターン形成方法として、被加工基板にパターンを形成する方法であって、少なくとも、被加工基板上に本発明の有機膜形成用組成物を用いて有機膜を形成する工程、前記有機膜の上にケイ素含有するレジスト下層膜材料を用いてケイ素含有レジスト下層膜を形成する工程、前記ケイ素含有レジスト下層膜の上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、前記レジスト上層膜に回路パターンを形成する工程、前記回路パターンが形成されたレジスト上層膜をマスクにして前記ケイ素含有レジスト下層膜にエッチングでパターン転写する工程、前記パターンが転写されたケイ素含有レジスト下層膜をマスクにして前記有機膜にエッチングでパターン転写する工程、前記パターンが転写された有機膜をマスクにして前記被加工体にエッチングでパターンを形成する工程を含むパターン形成方法を提供する。
【0116】
前記3層レジストプロセスのケイ素含有レジスト下層膜は、酸素ガス又は水素ガスによるエッチング耐性を示すため、前記3層レジストプロセスにおいて、ケイ素含有レジスト下層膜をマスクにして行う有機膜のドライエッチングを酸素ガス又は水素ガスを主体とするエッチングガスを用いて行うことが好ましい。
【0117】
上記3層レジストプロセスのケイ素含有レジスト下層膜としては、ポリシロキサンベースの下層膜も好ましく用いられる。ケイ素含有レジスト下層膜に反射防止効果を持たせることによって、反射を抑えることができる。特に193nm露光用としては、有機膜として芳香族基を多く含み基板とのエッチング選択性の高い材料を用いると、k値が高くなり基板反射が高くなるが、ケイ素含有レジスト下層膜として適切なk値になるような吸収を持たせることで反射を抑えることが可能になり、基板反射を0.5%以下にすることができる。反射防止効果があるケイ素含有レジスト下層膜としては、248nm、157nm露光用としてはアントラセン、193nm露光用としてはフェニル基又はケイ素-ケイ素結合を有する吸光基をペンダントし、酸あるいは熱で架橋するポリシロキサンが好ましく用いられる。
【0118】
前記ケイ素含有レジスト下層膜の上に有機反射防止膜(BARC)を形成してもよく、この場合、被加工体上に本発明の有機膜形成用組成物を用いて有機膜を形成する工程、前記有機膜の上にケイ素含有レジスト下層膜材料を用いてケイ素含有レジスト下層膜を形成する工程、前記ケイ素含有レジスト下層膜の上にBARCを形成する工程、前記BARC上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、前記レジスト上層膜に回路パターンを形成する工程、前記回路パターンが形成されたレジスト上層膜をマスクにして前記BARCと前記ケイ素含有レジスト下層膜に順次エッチングでパターン転写する工程、前記パターンが転写されたケイ素含有レジスト下層膜をマスクにして前記有機膜にエッチングでパターン転写する工程、前記パターンが転写された有機膜をマスクにして前記被加工体をエッチングして前記被加工体にパターンを形成する工程により、前記被加工体にパターンを形成できる。
【0119】
また、レジスト下層膜として無機ハードマスクを形成してもよく、この場合には、被加工基板上に本発明の有機膜形成用組成物を用いて有機膜を形成する工程、前記有機膜の上にケイ素酸化膜、ケイ素窒化膜、ケイ素酸化窒化膜から選ばれる無機ハードマスクを形成する工程、前記無機ハードマスクの上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、前記レジスト上層膜に回路パターンを形成する工程、前記回路パターンが形成されたレジスト上層膜をマスクにして前記無機ハードマスクをエッチングでパターン転写する工程、前記パターンが形成された無機ハードマスクをマスクにして前記有機膜をエッチングでパターン転写する工程、前記パターンが形成された有機膜をマスクにして前記被加工体をエッチングして前記被加工体にパターンを形成する工程により、前記被加工体にパターンを形成できる。
【0120】
上記のように、有機膜の上に無機ハードマスクを形成する場合は、CVD法やALD法等でケイ素酸化膜、ケイ素窒化膜、及びケイ素酸化窒化膜(SiON膜)を形成できる。例えばケイ素窒化膜の形成方法としては、特開2002-334869号公報、国際公開第2004/066377号パンフレットに記載されている。無機ハードマスクの膜厚は5~200nmが好ましく、より好ましくは10~100nmである。また、無機ハードマスクとしては、反射防止膜としての効果が高いSiON膜が最も好ましく用いられる。SiON膜を形成する時の基板温度は300~500℃となるために、下層膜としては300~500℃の温度に耐える必要がある。本発明で用いる有機膜形成用組成物は、高い耐熱性を有しており300℃~500℃の高温に耐えることができるため、CVD法又はALD法で形成された無機ハードマスクと、回転塗布法で形成された有機膜の組み合わせが可能である。
【0121】
また、BARCを用いた4層レジストプロセスとしても好適で、この場合、被加工体上に本発明の有機膜形成用組成物を用いて有機膜を形成する工程、前記有機膜の上にケイ素酸化膜、ケイ素窒化膜、ケイ素酸化窒化膜から選ばれる無機ハードマスクを形成する工程、前記無機ハードマスクの上にBARCを形成する工程、前記BARC上にフォトレジスト組成物を用いてレジスト上層膜を形成する工程、前記レジスト上層膜に回路パターンを形成する工程、前記回路パターンが形成されたレジスト上層膜をマスクにして前記BARCと前記無機ハードマスクに順次エッチングでパターン転写する工程、前記パターンが形成された無機ハードマスクをマスクにして前記有機膜にエッチングでパターン転写する工程、前記パターンが形成された有機膜をマスクにして前記被加工体をエッチングして前記被加工体にパターンを形成する工程により、前記被加工体にパターンを形成できる。
【0122】
上記のように、無機ハードマスクの上にレジスト上層膜としてフォトレジスト膜を形成してもよいが、無機ハードマスクの上にBARCをスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。特に、無機ハードマスクとしてSiON膜を用いた場合、SiON膜とBARCの2層の反射防止膜によって1.0を超える高NAの液浸露光においても反射を抑えることが可能となる。BARCを形成するもう一つのメリットとしては、SiON膜直上でのフォトレジストパターンの裾引きを低減させる効果があることである。
【0123】
前記3層レジストプロセスにおけるレジスト上層膜は、ポジ型でもネガ型でもどちらでもよく、通常用いられているフォトレジスト組成物と同じものを用いることができる。フォトレジスト組成物をスピンコート後、プリベークを行うが、60~180℃で10~300秒の範囲が好ましい。その後常法に従い、露光を行い、さらに、ポストエクスポジュアーベーク(PEB)、現像を行い、レジストパターンを得る。なお、レジスト上層膜の厚さは特に制限されないが、30~500nmが好ましく、50~400nmがより好ましい。
また、露光光としては、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
本発明のパターン形成方法において、前記レジスト上層膜に回路パターンを形成する方法として、波長が10nm以上300nm以下の光リソグラフィー、電子線による直接描画、ナノインプリンティングまたはこれらの組み合わせを用いることが好ましい。
【0124】
また、本発明のパターン形成方法において、現像方法として、アルカリ現像または有機溶剤による現像を用いることが好ましい。
【0125】
次に、得られたレジストパターンをマスクにしてエッチングを行う。3層レジストプロセスにおけるケイ素含有レジスト下層膜や無機ハードマスクのエッチングは、フルオロカーボン系のガスを用いて上層レジストパターンをマスクにして行う。これにより、ケイ素含有レジスト下層膜パターンや無機ハードマスクパターンを形成する。
【0126】
次いで、得られたケイ素含有レジスト下層膜パターンや無機ハードマスクパターンをマスクにして、有機膜のエッチング加工を行う。
【0127】
次の被加工基板等の被加工体のエッチングも、常法によって行うことができ、例えば被加工基板がSiO2、SiN、シリカ系低誘電率絶縁膜であればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行う。基板加工をフロン系ガスでエッチングした場合、3層レジストプロセスにおけるケイ素含有レジスト下層膜パターンは基板加工と同時に剥離される。塩素系、臭素系ガスで基板をエッチングした場合は、ケイ素含有レジスト下層膜パターンの剥離は基板加工後にフロン系ガスによるドライエッチング剥離を別途行う必要がある。
【0128】
本発明の有機膜形成用組成物によって得られる有機膜は、これら被加工基板エッチング時のエッチング耐性に優れる特徴がある。
本発明のパターン形成方法において、前記被加工体として、半導体装置基板、金属膜、金属炭化膜、金属酸化膜、金属窒化膜、金属酸化炭化膜または金属酸化窒化膜を用いることが好ましい。
さらに、前記金属として、ケイ素、チタン、タングステン、ハフニウム、ジルコニウム、クロム、ゲルマニウム、銅、銀、金、アルミニウム、インジウム、ガリウム、ヒ素、パラジウム、鉄、タンタル、イリジウム、モリブデンまたはこれらの合金を用いることが好ましい。
【0129】
なお、被加工基板としては、特に限定されるものではなく、Si、α-Si、p-Si、SiO2、SiN、SiON、W、TiN、Al等の基板や、該基板上に被加工層が成膜されたもの等が用いられる。被加工層としては、Si、SiO2、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等種々のLow-k膜及びそのストッパー膜が用いられ、通常好ましくは50~10,000nm、より好ましくは100~5,000nmの厚さに形成し得る。なお、被加工層を成膜する場合、基板と被加工層とは、異なる材質のものが用いられる。
【0130】
また、被加工基板として、高さ30nm以上の構造体又は段差を有する被加工基板を用いることが好ましい。
【0131】
3層レジストプロセスの一例について、
図1を用いて具体的に示すと下記の通りである。
3層レジストプロセスの場合、
図1(A)に示したように、基板1の上に積層された被加工層2上に本発明の有機膜形成用組成物を用いて有機膜3を形成した後、ケイ素含有レジスト下層膜4を形成し、その上にレジスト上層膜5を形成する。
【0132】
次いで、
図1(B)に示したように、レジスト上層膜の所用部分6を露光し、PEB及び現像を行ってレジストパターン5aを形成する(
図1(C))。この得られたレジストパターン5aをマスクとし、CF系ガスを用いてケイ素含有レジスト下層膜4をエッチング加工してケイ素含有レジスト下層膜パターン4aを形成する(
図1(D))。レジストパターン5aを除去後、この得られたケイ素含有レジスト下層膜パターン4aをマスクとして有機膜3を酸素プラズマエッチングし、有機膜パターン3aを形成する(
図1(E))。さらにケイ素含有レジスト下層膜パターン4aを除去後、有機膜パターン3aをマスクに被加工層2をエッチング加工し、パターン2aを形成する(
図1(F))。
【0133】
無機ハードマスクを用いる場合、ケイ素含有レジスト下層膜4が無機ハードマスクであり、BARCを敷く場合はケイ素含有レジスト下層膜4又は無機ハードマスクとレジスト上層膜5との間にBARC層を設ける。BARCのエッチングはケイ素含有レジスト下層膜4のエッチングに先立って連続して行われる場合もあるし、BARCだけのエッチングを行ってからエッチング装置を変える等してケイ素含有レジスト下層膜4のエッチングを行うことができる。
【0134】
このように、本発明のパターン形成方法であれば、多層レジストプロセスにおいて、被加工基板に微細なパターンを高精度で形成することができる。
【実施例】
【0135】
以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
有機膜形成用組成物に含有される重合体(A1)~(A17)の合成には下記フルオレノール類(B1)~(B10)と芳香族含有化合物(C1)~(C3)を用いた。
【0136】
【0137】
【0138】
複数のフルオレノール類を用いて重合体を合成した場合、そのフルオレノール類の仕込み比率を下記式のようにm、lを用いて記載した。
【化38】
【0139】
(合成例1)
窒素雰囲気下、フルオレノール(B1)30.0gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸14.0gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF(テトラヒドロフラン)100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより下記式で示される重合体(A1)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値による重合体(A1)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2200、Mw/Mn=1.38であった。
【化39】
【0140】
(合成例2)
窒素雰囲気下、フルオレノール(B2)30.0gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸13.8gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF(テトラヒドロフラン)100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより下記式で示される重合体(A2)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値による重合体(A2)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2190、Mw/Mn=1.43であった。
【化40】
【0141】
(合成例3)
窒素雰囲気下、フルオレノール(B3)30.0gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸13.1gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより下記式で示される重合体(A3)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値による重合体(A3)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2450、Mw/Mn=1.68であった。
【化41】
【0142】
(合成例4)
窒素雰囲気下、フルオレノール(B4)30.0gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸13.0gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(A4)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A4)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2370、Mw/Mn=1.59であった。
【化42】
【0143】
(合成例5)
窒素雰囲気下、フルオレノール(B5)30.0gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸10.7gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(A5)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A5)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2720、Mw/Mn=1.69であった。
【化43】
【0144】
(合成例6)
窒素雰囲気下、フルオレノール(B6)30.0gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸10.1gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(A6)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A6)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2840、Mw/Mn=1.75であった。
【化44】
【0145】
(合成例7)
窒素雰囲気下、フルオレノール(B7)30.0gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸10.6gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することで重合体(A7)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A7)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2760、Mw/Mn=1.65であった。
【化45】
【0146】
(合成例8)
窒素雰囲気下、フルオレノール(B8)30.0gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸10.2gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(A8)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A8)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2820、Mw/Mn=1.58であった。
【化46】
【0147】
(合成例9)
窒素雰囲気下、フルオレノール(B3)30.0g、水0.49gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸13.1gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(A9)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A9)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=1820、Mw/Mn=1.45であった。
【化47】
【0148】
(合成例10)
窒素雰囲気下、フルオレノール(B1)30.0g、芳香族含有化合物(C1)3.44gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸14.0gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(A10)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A10)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=1620、Mw/Mn=1.52であった。
【化48】
【0149】
(合成例11)
窒素雰囲気下、フルオレノール(B3)30.0g、芳香族含有化合物(C2)2.28gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸13.1gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(A11)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A11)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=1670、Mw/Mn=1.58であった。
【化49】
【0150】
(合成例12)
窒素雰囲気下、フルオレノール(B7)30.0g、芳香族含有化合物(C3)4.96gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸10.6gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(A12)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A12)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=1830、Mw/Mn=1.33であった。
【化50】
【0151】
(合成例13)
窒素雰囲気下、フルオレノール(B1)15.0g、フルオレノール(B9)13.3gに1,2-ジクロロエタン200gを加え、内温50℃で均一溶液とした。メタンスルホン酸14.0gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(A13)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A13)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2550、Mw/Mn=1.72であった。
【化51】
【0152】
(合成例14)
窒素雰囲気下、フルオレノール(B10)13.1gに1,2-ジクロロエタン100gを加え、内温50℃で均一溶液とした。メタンスルホン酸13.1gをゆっくりと加え、内温70℃で4時間反応を行った。その後、内温50℃まで冷却した後、予め均一化させたフルオレノール(B3)21.0g、1,2-ジクロロエタン100g混合液をゆっくりと滴下し、再度、内温70℃に昇温し8時間反応した。室温まで冷却後、トルエン500gを加え、純水100gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(A14)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A14)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2890、Mw/Mn=1.64であった。
【化52】
【0153】
(合成例15)
窒素雰囲気下、フルオレノール(B9)60.0gに1,2-ジクロロエタン400gを加え、内温50℃で均一溶液とした。メタンスルホン酸31.6gをゆっくりと加え、内温70℃で8時間反応した。室温まで冷却後、トルエン1000gを加え、純水200gで6回洗浄を行い、有機層を減圧乾固した。残渣にTHF(テトラヒドロフラン)200gを加え均一溶液とした後、メタノール600gに晶出した。沈降した結晶をろ過で分別し、メタノール400gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(A15)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A15)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2630、Mw/Mn=1.67であった。
【化53】
【0154】
(合成例16)
合成例15で合成した重合体(A15)を20.0g、テトラブチルアンモニウムヨージド1.4g、25%水酸化ナトリウム水溶液25.3g、及びトルエン120gを窒素雰囲気下、内温50℃で均一分散液とした。n―ブチルブロマイド4.0gとプロパルギルブロマイド13.9gの混合液をゆっくり滴下し、内温50℃で12時間反応を行った。室温まで冷却後、トルエン200gを加え、水層を除去した。さらに有機層を3.0%硝酸水溶液60gで2回、純水60gで5回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え、メタノール300gでポリマーを再沈させた。沈降したポリマーをろ過で分別、メタノール200gで2回洗浄を行い回収した。回収したポリマーを70℃で真空乾燥することにより重合体(A16)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A16)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=3280、Mw/Mn=1.75であった。
【化54】
【0155】
(合成例17)
合成例15で合成した重合体(A15)を20.0g、テトラブチルアンモニウムヨージド1.4g、25%水酸化ナトリウム水溶液25.3g、及びトルエン120gを窒素雰囲気下、内温50℃で均一分散液とした。アリルブロマイド8.8gとプロパルギルブロマイド8.7gの混合液をゆっくり滴下し、内温50℃で12時間反応を行った。室温まで冷却後、トルエン200gを加え、水層を除去した。さらに有機層を3.0%硝酸水溶液60gで2回、純水60gで5回洗浄を行い、有機層を減圧乾固した。残渣にTHF100gを加え、メタノール300gでポリマーを再沈させた。沈降したポリマーをろ過で分別、メタノール200gで2回洗浄を行い回収した。回収したポリマーを70℃で真空乾燥することにより重合体(A17)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(A17)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2980、Mw/Mn=1.68であった。
【化55】
【0156】
[比較合成例]
窒素雰囲気下、ナフタレン12.8g、9―フルオレノン18.0gを加え、230℃まで昇温させ8時間反応を行った、反応開始直後から1 時間おきにメタンスルホン酸0.25ml を計8 回、反応液に加えた。室温まで冷却後、反応液にトルエン40g を加え、純水で6回洗浄を行い、有機層を減圧乾固した。残渣にTHF(テトラヒドロフラン)100gを加え均一溶液とした後、メタノール300gに晶出した。沈降した結晶をろ過で分別し、メタノール200gで2回洗浄を行い回収した。回収した結晶を70℃で真空乾燥することにより重合体(R1)を得た。THFを展開溶媒としたGPC測定により求めたポリスチレン換算値によるGPCにより重合体(R1)の重量平均分子量(Mw)、分散度(Mw/Mn)を求めたところ、Mw=2130、Mw/Mn=2.61であった。
【化56】
【0157】
表1に実施例に用いた重合体(A1)~(A14)、(A-16)、(A-17)および比較例に用いた重合体(R1)の構造式とMw、Mw/Mn結果の一覧を示す。
【表1】
【0158】
有機膜形成用組成物(UDL-1~19、比較UDL-1~2)の調製
前記重合体(A1)~(A14)、(A16)、(A17)および(R1)、高沸点溶剤として(S1)1,6-ジアセトキシヘキサン(沸点260℃)、(S2)トリプロピレングリコールモノメチルエーテル(沸点242℃)を用い、FC-4430(住友スリーエム(株)製)を0.1質量%を含むプロピレングリコールモノメチルエーテルアセテート(PGMEA)またはシクロヘキサノン(CyHO)を用いて表2に示す割合で溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって有機膜形成用組成物(UDL-1~19、比較UDL-1~2)をそれぞれ調製した。なお、比較UDL-2には下記式で示される酸発生剤(AG)および架橋剤(XL)を用いた。
【0159】
【0160】
【0161】
実施例1-1~1-19、比較例1-1~1-2(溶媒耐性測定)
前記UDL-1~19、比較UDL-1~2をシリコン基板上に塗布し、大気中、350℃で60秒間ベークした後、膜厚を測定し、その上にPGMEA溶媒をディスペンスし、30秒間放置しスピンドライ、100℃で60秒間ベークしてPGMEAを蒸発させ、PGMEA処理前後の膜厚を測定した。成膜後の膜厚とPGMEA処理後の膜厚を用いて残膜率を求めた。その結果を表3に示す。
【0162】
【0163】
表3に示されるように、本発明の重合体を用いた有機膜(実施例1-1~1-19)は、PGMEA処理後の残膜率が99%以上あり、熱処理により架橋反応が起き、十分な溶剤耐性を発現していることがわかる。それに対して重合体(R1)を用いた比較UDL-1は架橋部位がないため重合体単独では溶剤耐性が発現せず、溶剤耐性を発現させるには酸発生剤と架橋剤を添加する必要があった(比較UDL-2)。これらの結果より本発明の重合体の部分構造が熱架橋基として有効に機能していることがわかる。
【0164】
実施例2-1~2-19、比較例2-1~2-2(ハードネス測定)
前記UDL-1~19、比較UDL-1~2をシリコン基板上に塗布し、大気中、350℃で60秒間ベークし、膜厚200nmの有機膜を形成した。これらの有機膜を東陽テクニカ社製ナノインデンターSA2型装置でナノインデンテーション試験を行い、前記有機膜のハードネスを測定した。その結果を表4に示す。
【0165】
【0166】
表4に示されるように実施例2-1~2-19は比較例2-1~2-2に比べハードネスが大きく、本発明の重合体は、比較UDL-1、-2に用いた重合体(R1)に比べ、より緻密で強度の高い有機膜が形成可能なことが確認できた。これは本発明の重合体が熱硬化性を有するため、硬化後の有機膜が高炭素密度の縮合芳香環のみで構成された緻密な有機膜を形成できるためハードネスが高い結果になった。それに対し比較例に用いた重合体(R1)は高炭素密度であるが、重合体自身には熱硬化性がないため有機膜硬度が高い値とならなかった。また、重合体(R1)は架橋剤を用いて溶剤耐性を発現させることができるが、架橋剤により重合体の炭素密度が損なわれるため、硬化有機膜となった後もハードネスが大きく上昇する結果とはならなかった。
【0167】
実施例3-1~3-19、比較例3-1~3-2(エッチング試験)
[CF4/CHF3系ガスでのエッチング試験]
前記UDL-1~19、比較UDL―1~2をシリコン基板上に塗布して、大気中、350℃で60秒間ベークし、膜厚200nmになるよう有機膜を形成後、下記条件でCF4/CHF3系ガスでのエッチング試験を行った。この場合、東京エレクトロン株式会社製ドライエッチング装置TE-8500を用い、エッチング前後の有機膜の膜厚差を求めた。結果を表5に示す。
【0168】
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
CHF3ガス流量 10ml/min
CF4ガス流量 100ml/min
Heガス流量 200ml/min
時間 20sec
【0169】
【0170】
表5において、比較UDL-1のCF4/CHF3系ガスでのエッチングによって減少した膜厚を100としたときの実施例、比較例のそれぞれの膜減少を比率として表した。その比率が小さいほど、エッチング耐性に優れる。
【0171】
[O2系ガスでのエッチング試験]
前記UDL-1~19、比較UDL―1~2をシリコン基板上に塗布して、空気雰囲気下、大気中、350℃で60秒間ベークし、膜厚 200nmになるよう有機膜を形成し、下記条件でO2系ガスでのエッチング試験を行った。この場合、東京エレクトロン株式会社製ドライエッチング装置TE-8500を用い、エッチング前後のポリマー膜の膜厚差を求めた。結果を表5に併せて示す。
【0172】
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 100W
O2ガス流量 30ml/min
N2ガス流量 70ml/min
時間 60sec
【0173】
CF4/CHF3系ガスでのエッチング試験と同様に、表5において、比較UDL-1のO2系ガスでのエッチングによって減少した膜厚を100としたときの実施例、比較例のそれぞれの膜減少を比率として表した。その比率が小さいほど、エッチング耐性に優れる。
【0174】
表5に示す通り、実施例3-1~3-19と比較例3-1~3-2を比べるとCF4/CHF3系ガス、O2系ガスのいずれのエッチング試験においても、実施例3-1~3-19の有機膜のエッチング後の減少量は、比較UDL-1~2の有機膜のエッチング後の減少量に比べて小さく、エッチング耐性に優れた有機膜が形成されていることがわかる。また、比較例3-1と3-2を比べると架橋剤を用いて有機膜を形成した比較例3-2においては、架橋剤の添加に有機膜の炭素含量が低下することによりエッチング耐性が約10%損なわれる結果となった。また、本発明の重合体を用いた実施例3-1~3-19と比較例重合体(R1)を用いた比較例3-1を比較するとハードネスの測定の結果から示唆されるとおり、本発明の重合体を用いた実施例3-1~3-19は熱架橋により緻密な有機膜となっているため、比較例3-1に比べエッチング後の有機膜厚減少量が5%以上抑えられており、本発明の有機膜形成用組成物から形成される有機膜の方がエッチング耐性に優れる結果となった。
【0175】
実施例4-1~4-19、比較例4-1~4-2(パターンエッチング試験)
前記UDL-1~19、比較UDL-1~2を膜厚200nmのSiO2膜が形成された直径300mmのSiウェハー基板上に塗布し、大気中、350℃で60秒間ベーク後の膜厚200nmになるようにレジスト下層膜を形成した。その上にケイ素含有レジスト中間層材料(SOG-1)を塗布して220℃で60秒間ベークして膜厚35nmのレジスト中間層膜を形成し、レジスト上層膜材料(ArF用SLレジスト)を塗布し、105℃で60秒間ベークして膜厚100nmのレジスト上層膜を形成した。レジスト上層膜に液浸保護膜(TC-1)を塗布し90℃で60秒間ベークし膜厚50nmの保護膜を形成した。
【0176】
レジスト上層膜材料(ArF用SLレジスト)としては、下記式で示されるポリマー(RP1)100質量部、下記式で示される酸発生剤(PAG1)6.6質量部、下記式で示される塩基性化合物(Amine1)0.8質量部を、FC-430(住友スリーエム(株)製)0.1質量%を含むPGMEA2500質量部中に溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって調製した。
【0177】
【0178】
液浸保護膜材料(TC-1)としては、下記式で示される保護膜ポリマー(PP1)100質量部を、ジイソアミルエーテル2700質量部及び2-メチル-1-ブタノール270質量部からなる有機溶剤中に溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって調製した。
【0179】
【0180】
ケイ素含有レジスト中間層材料(SOG-1)は、下記式で示されるArF珪素含有中間膜ポリマー(SiP1)100質量部、及び下記式で示される架橋触媒(CAT1)1質量部を、FC-4430(住友スリーエム社製)0.1質量%を含むPGMEA4000質量部中に溶解させ、孔径0.1μmのフッ素樹脂製のフィルターで濾過することによって調製した。
【0181】
【0182】
次いで、ArF液浸露光装置((株)ニコン製;NSR-S610C、NA1.30、σ0.98/0.65、35度ダイポールs偏光照明、6%ハーフトーン位相シフトマスク)で露光量を変えながら露光し、100℃で60秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で30秒間現像し、ピッチ100nmでレジスト線幅を50nmから30nmまでのポジ型のラインアンドスペースパターンを得た。
その後、東京エレクトロン製エッチング装置Teliusを用いてドライエッチングによるレジストパターンをマスクにしたケイ素含有中間層の加工、ケイ素含有中間層をマスクにした下層膜の加工、下層膜をマスクにしたSiO2膜の加工を順次行った。
【0183】
エッチング条件は下記に示すとおりである。
レジストパターンのSOG膜への転写条件:
チャンバー圧力 10.0Pa
RFパワー 1,500W
CF4ガス流量 15sccm
O2ガス流量 75sccm
時間 15sec
【0184】
SOG膜の下層膜への転写条件:
チャンバー圧力 2.0Pa
RFパワー 500W
Arガス流量 75sccm
O2ガス流量 45sccm
時間 120sec
【0185】
SiO2膜への転写条件:
チャンバー圧力 2.0Pa
RFパワー 2,200W
C5F12ガス流量 20sccm
C2F6ガス流量 10sccm
Arガス流量 300sccm
O2 60sccm
時間 90sec
【0186】
パターン断面を(株)日立製作所製電子顕微鏡(S-4700)にて観察して形状を比較し、表6にまとめた。
【0187】
【0188】
表6の結果の通り、実施例4-1~4-19の結果よりUDL-1~19を液浸リソグラフィー用3層レジストのレジスト下層膜として用いた場合、パターン形状評価において現像後のレジスト形状は良好であり、反射防止膜としての有用な効果を有することがわかる。それに対して、比較例4-1は比較UDL-1を用いたため熱硬化性がなく溶剤耐性が取れないためケイ素含有レジスト中間層材料(SOG-1)の塗布時に膜が溶解してしまいパターン形成ができなかった。比較UDL-2を用いた比較例4-2はレジストパターンが形成可能であったためエッチング後のパターン形状の比較を行った。
【0189】
エッチング後のパターン形状において実施例4-1~4-19は現像後のレジスト形状、酸素エッチング後、基板加工エッチング後の下層膜の形状とも良好であった。露光により作られたレジスト線幅に従って、基板転写後のパターン寸法も変化し、比較例4-2においては40nm程度の線幅でパターンよれが発生したが、本発明の重合体を用いた実施例4-1~4-19はパターン寸法35nm以下までよれがなく、本発明の重合体を含む有機膜形成用組成物から形成された有機膜は高いよれ耐性を有することが判明した。本発明の重合体のように、ハードネスが0.60GPaを超える緻密な高強度の有機膜をレジスト下層膜として使用することにより高いよれ耐性を得られることがわかる。
【0190】
実施例5-1~5-19(埋め込み特性)
SiO2基板上に厚さ500nmで直径が160nmの密集ホールパターンが形成されているSiO2段差基板上に、UDL-1~19を350℃で60秒ベークにより平坦な基板上で80nmの膜厚になるような条件で塗布しレジスト下層膜を形成した。レジスト下層膜を形成した基板を割断し、ホールの底までレジスト下層膜が埋め込まれているかどうかを走査型電子顕微鏡(SEM)で観察した。結果を表7に示す。
【0191】
【0192】
表7に示されるように、本発明のUDL-1~UDL-19を用いてレジスト下層膜を形成した実施例5-1~5-19では、いずれもホールの底まで良好に埋め込みができており、被加工基板に段差がある場合も十分な埋め込み特性が期待でき、多層プロセス用のレジスト下層膜材料として有用な特性を有していることがわかる。
【0193】
実施例6-1~6-4、比較例6-1~6-2(平坦化特性)
有機膜形成用組成物(UDL-3、4、18、19、比較UDL-1、2)をそれぞれ、巨大孤立トレンチパターン(トレンチ幅10μm、トレンチ深さ0.10μm)を有するSiO
2ウエハー基板上に塗布し、大気中、350℃で60秒間焼成した後、トレンチ部分と非トレンチ部分の有機膜の段差(
図2中のdelta)を、パークシステムズ社製NX10原子間力顕微鏡(AFM)を用いて観察した。結果を表8に示す。本評価において、段差が小さいほど、平坦化特性が良好であるといえる。なお、本評価では、深さ0.10μmのトレンチパターンを、通常膜厚約0.2μmの有機膜形成用組成物を用いて平坦化しており、平坦化特性の優劣を評価するために厳しい評価条件となっている。
【0194】
【0195】
表8に示されるように、本発明の有機膜形成用組成物は、比較例6-1、比較例6-2に比べて、トレンチ部分と非トレンチ部分の有機膜の段差が小さく、平坦化特性に優れることが確認された。比較例6-1、比較例6-2においては膜の緻密差が劣るためベークにより生じる膜減りが大きくなるため、段差上部と段差下部の膜厚差がベークにより強調され平坦性が悪くなったものと推察される。また、高沸点溶剤を添加した実施例6-3、6-4と添加していない実施例6-1、6-2とを比較すると高沸点溶剤の添加により平坦性が改善していることがわかる。
【0196】
以上のように、本発明の有機膜形成用組成物は、高いエッチング耐性を有するとともにエッチング時のよれ耐性に優れており、超微細かつ高精度なパターン加工のための多層レジストプロセス、特に3層レジストプロセス用下層膜として極めて有用な有機膜を与えるものである。
【0197】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【符号の説明】
【0198】
1・・・基板、2・・・被加工層、2a・・・被加工層パターン、
3・・・有機膜、3a・・・有機膜パターン、
4・・・ケイ素含有レジスト下層膜、4a・・・ケイ素含有レジスト下層膜パターン、
5・・・レジスト上層膜、5a・・・レジストパターン、6・・・所用部分。