(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-19
(45)【発行日】2022-07-27
(54)【発明の名称】微粒子除去膜、微粒子除去装置及び微粒子除去方法
(51)【国際特許分類】
B01D 71/82 20060101AFI20220720BHJP
B01D 61/14 20060101ALI20220720BHJP
C02F 1/44 20060101ALI20220720BHJP
【FI】
B01D71/82
B01D61/14 500
C02F1/44 J
(21)【出願番号】P 2018067402
(22)【出願日】2018-03-30
【審査請求日】2020-11-24
(73)【特許権者】
【識別番号】000001063
【氏名又は名称】栗田工業株式会社
(73)【特許権者】
【識別番号】000000033
【氏名又は名称】旭化成株式会社
(74)【代理人】
【識別番号】100086911
【氏名又は名称】重野 剛
(74)【代理人】
【識別番号】100144967
【氏名又は名称】重野 隆之
(72)【発明者】
【氏名】田中 洋一
(72)【発明者】
【氏名】藤村 侑
(72)【発明者】
【氏名】飯野 秀章
(72)【発明者】
【氏名】川勝 孝博
(72)【発明者】
【氏名】金田 真幸
(72)【発明者】
【氏名】松本 光明
【審査官】松井 一泰
(56)【参考文献】
【文献】特開2014-173013(JP,A)
【文献】特表2002-537106(JP,A)
【文献】特開2017-164718(JP,A)
【文献】特開2017-019881(JP,A)
【文献】特開2016-155052(JP,A)
【文献】特開2013-240765(JP,A)
【文献】特開2009-131815(JP,A)
【文献】特開2007-000723(JP,A)
【文献】特開2003-154238(JP,A)
【文献】特開2000-024474(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B01D 53/22
B01D 61/00- 71/82
C02F 1/44
(57)【特許請求の範囲】
【請求項1】
液体中の微粒子を除去する微粒子除去膜において、
超純水中の粒径10nm以下の極微小粒子除去用膜であって、カチオン性官能基を有する精密濾過膜又は限外濾過膜よりなり、該カチオン性官能基が分子量600以上であるかもしくは重合度10以上の高分子官能基であることを特徴とする微粒子除去膜。
【請求項2】
請求項1に記載の微粒子除去膜を有する液体中の微粒子除去装置。
【請求項3】
請求項2に記載の微粒子除去装置を備える純水又は超純水製造装置。
【請求項4】
請求項1に記載の微粒子除去膜又は請求項2に記載の微粒子除去装置を用いる液体中の微粒子除去方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、純水や超純水製造プロセス、あるいは電子部品製造および半導体洗浄プロセス等における液中の微粒子を除去する微粒子除去膜、微粒子除去装置及び微粒子除去方法と、この微粒子除去装置を備える純水又は超純水製造装置に関する。本発明は、特に、超純水製造・供給システムにおけるユースポイント前のサブシステムや給水系路、および電子部品製造プロセスおよび半導体洗浄プロセス等のシステムにおいて、液体中の粒子径50nm以下特に10nm以下の極微小の微粒子を高度に除去する技術として有用である。
【背景技術】
【0002】
従来、半導体・電子部品製造用等の濾過フィルターとして、1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム塩からなる群から選ばれる1つ以上の官能基を有するポリケトン多孔膜が提案されている(特許文献1)。
また、超純水製造プロセスで水中の微粒子を除去する装置として、弱カチオン性官能基を有する精密濾過膜(MF膜)もしくは限外濾過膜(UF膜)を有する膜濾過手段を設けたものが提案されている(特許文献2)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2014-173013号公報
【文献】特開2016-155052号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1,2に記載されるように、多孔性膜にカチオン性官能基を導入した微粒子除去膜は公知であるが、多孔性膜に導入されたカチオン性官能基の分子量や重合度と微粒子の除去性能との関係についての検討はなされていない。
なお、特許文献1には、ポリケトン膜に導入するカチオン性官能基が分子量1000以上のポリマーであると、膜に対する物理的な結合力が強く、ゼータ電位の発現において好ましいことが記載されているが、このカチオン性官能基は、カチオン性官能基の分子量が1000以上であると微粒子除去性能が高くなることを示唆するものではない。
また、特許文献1の実施例14では、ポリエチレンイミンを用いてポリケトン多孔膜にカチオン性官能基を導入しているが、その分子量については明らかにされておらず、実施例14で製造された膜の粒子捕捉率が、エチレンジアミン等の低分子量の化合物を用いた他の実施例と同等であることから、ここで使用されているポリエチレンイミンの分子量は、後掲の比較例に示されるように、高々分子量300程度と考えられる。
【0005】
本発明は、カチオン性官能基を有する精密濾過膜又は限外濾過膜よりなる微粒子除去膜であって、従来の微粒子除去膜よりも微粒子除去性能に優れた微粒子除去膜と、この微粒子除去膜を用いた微粒子除去装置及び微粒子除去方法、この微粒子除去装置を備える純水又は超純水製造装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、膜に導入されるカチオン性官能基の分子量又は重合度が微粒子除去性能に大きく影響すること、分子量又は重合度の大きいカチオン性官能基ほど微粒子除去性能に優れることを見出し、本発明を完成させた。
即ち、本発明は以下を要旨とする。
【0007】
[1] 液体中の微粒子を除去する微粒子除去膜において、カチオン性官能基を有する精密濾過膜又は限外濾過膜よりなり、該カチオン性官能基が分子量600以上であるかもしくは重合度10以上の高分子官能基であることを特徴とする微粒子除去膜。
【0008】
[2] [1]に記載の微粒子除去膜を有する液体中の微粒子除去装置。
【0009】
[3] [2]に記載の微粒子除去装置を備える純水又は超純水製造装置。
【0010】
[4] [1]に記載の微粒子除去膜又は[2]に記載の微粒子除去装置を用いる液体中の微粒子除去方法。
【発明の効果】
【0011】
本発明によれば、液体中の粒径50nm以下特に10nm以下の極微小の微粒子を高度に除去することができる。
本発明によれば、水系全般、特に純水や超純水製造プロセス、あるいは電子部品製造および半導体洗浄プロセスにおける各種の液体から、極微小の微粒子を高度に除去して効率的に高純度化を図ることができる。
【図面の簡単な説明】
【0012】
【
図1】微粒子除去膜のカチオン性官能基による微粒子捕捉機構を説明する模式図である。
【
図2】試験Iで用いた試験装置を示す系統図である。
【
図3】試験IIで用いた試験装置を示す系統図である。
【発明を実施するための形態】
【0013】
以下に本発明の実施の形態を詳細に説明する。
【0014】
<メカニズム>
本発明において、分子量600以上、或いは重合度10以上の高分子量のカチオン性官能基で修飾した膜を用いることで、高い微粒子除去能を得ることができるメカニズムについては、次のように考えられる。
即ち、マイナスに荷電した液体中の微粒子は、膜に導入されたカチオン性官能基のプラス荷電により引き寄せられて捕捉除去されるが、
図1(a)に示すように、カチオン性官能基の分子量が小さい(或いは重合度が低い)と、膜表面からのカチオン性官能基鎖が短いことにより、立体構造的に微粒子を捕捉し難いが、
図1(b)に示すように、カチオン性官能基の分子量が大きい(或いは重合度が高い)と、膜表面からのカチオン性官能基鎖が長いことにより、立体構造的に微粒子を捕捉し易くなり、微粒子を高度に除去し得るようになる。
【0015】
上記のメカニズムから、本発明では、分子量600以上、或いは重合度10以上のカチオン性官能基を有するMF膜又はUF膜を用いる。カチオン性官能基の分子量は600以上であればよいが、好ましくは10000以上である。一方、透水性、溶出性の観点から、カチオン性官能基の分子量は、通常300万以下であることが好ましく、同様に、カチオン性官能基の重合度は10以上であり、好ましくは200以上、70000以下である。なお、ここで重合度とは、カチオン性官能基中の繰り返し単位数であり、好ましくはアミノ基の数に該当する。
【0016】
<被処理液体>
本発明において、微粒子を除去する被処理液体としては特に制限はなく、例えば、純水、イソプロピルアルコール等のアルコール、硫酸水溶液、塩酸水溶液等の無機酸水溶液、アンモニア水溶液等のアルカリ水溶液、シンナー、炭酸水、過酸化水素水、フッ化水素溶液などが挙げられる。
【0017】
本発明は、これらの液体中の粒径50nm以下、特に10nm以下の極微小粒子の除去に有効である。
【0018】
なお、上記被処理液体中の微粒子濃度については特に制限はないが、通常100μg/L以下、或いは1~1010個/mLである。
【0019】
<膜材質・膜形態>
本発明の微粒子除去膜の基材となる精密濾過(MF)膜又は限外濾過(UF)膜の材質としては特に制限はなく、高分子膜であってもよく、無機膜であってもよく、金属膜であってもよい。
【0020】
高分子膜としては、PVA(ポリビニルアルコール)、PSF(ポリスルホン)、PES(ポリエーテルスルホン)、PEI(ポリエーテルイミド)、PI(ポリイミド)、PTFE(ポリテトラフルオロエチレン)、PE(ポリエチレン)、PC(ポリカーボネート)、PA(ポリアミド)、ポリケトン、セルロース混合エステル、ポリビニリデンフロライドなどよりなる膜が挙げられる。
無機膜としては、アルミナ、ジルコニアなどの金属酸化膜が挙げられる。
【0021】
膜の形態についても特に制限はなく、中空糸膜、平膜など、用途に応じて適当なものを用いればよい。例えば、超純水装置のユニットで微粒子を除去するための末端膜モジュールとしては、通常、中空糸膜が用いられている。一方、プロセス洗浄機に装着するフィルタはプリーツ状の平膜を用いることが多い。
【0022】
本発明の微粒子除去膜は、MF膜又はUF膜に導入されたカチオン性官能基による電気的な吸着能で水中の微粒子を捕捉除去するものであるため、その孔径は、除去対象微粒子よりも大きくてもよいものであるが、過度に大きいと、微粒子除去効率が悪く、逆に過度に小さくても膜濾過時の圧力が高くなり好ましくない。従って、MF膜であれば孔径0.05~0.2μm程度のものが好ましく、UF膜であれば分画分子量が4000~100万程度のものが好ましい。
【0023】
<カチオン性官能基及びその導入方法>
MF膜又はUF膜にカチオン性官能基を導入する方法については特に制限はないが、化学反応による方法、コーティングによる方法、さらにこれらを組み合わせた方法などが挙げられる。化学修飾(化学反応)による方法は、脱水縮合反応などが挙げられる。また、プラズマ処理やコロナ処理などが挙げられる。コーティングによる方法はポリマーを含む水溶液などに含浸させる方法が挙げられる。
【0024】
化学修飾によりカチオン性官能基を導入する方法としては、例えば、ポリケトン膜に弱カチオン性アミノ基を付与する化学修飾方法として、1級アミンとの化学反応などが挙げられる(ポリエチレンイミンなどの多官能化アミンであれば、多くの活性点を付与することができるので好ましい。)。
【0025】
以下、ポリケトン膜にポリエチレンイミンを反応させた場合の反応例を示す。
【0026】
【0027】
正のゼータ電位を付与するという観点で、基材膜を構成する少なくとも1つの水素原子を他の基に置換する場合、置換方法としては、例えば、電子線、γ線、プラズマ等の照射によってラジカルを発生させた後、グラフト重合により、グリシジルメタクリレートなどの反応性の側鎖を有するモノマーを重合し、ここへカチオン性官能基を有する反応性モノマーを付加させる方法が挙げられる。反応性モノマーの例としては、1級アミン、2級アミン、3級アミン、4級アンモニウム塩を含むアクリル酸、メタクリル酸、ビニルスルホン酸の誘導体、アリルアミン、p-ビニルベンジルトリメチルアンモニウムクロライド等が挙げられる。上記の付加処理は、多孔膜に成形する前に行ってもよいし、多孔膜に成形した後に行ってもよいが、成形性の観点から、多孔膜に成形した後に行う方が好ましい。
【0028】
正のゼータ電位を付与するというポリマーとしては、PSQ(ポリスチレン4級アンモニウム塩)、ポリエチレンイミン、ポリジアリルジメチルアンモニウムクロリド、アミノ基含有カチオン性ポリ(メタ)アクリル酸エステル、アミノ基含有カチオン性ポリ(メタ)アクリルアミド、ポリアミンアミド-エピクロロヒドリン、ポリアリルアミン、ポリジシアンジアミド、キトサン、カチオン化キトサン、アミノ基含有カチオン化デンプン、アミノ基含有カチオン化セルロース、アミノ基含有カチオン化ポリビニルアルコール及び上記ポリマーの酸塩が挙げられる。また、上記ポリマーあるいはポリマーの酸塩は、他のポリマーとの共重合体であってもよい。
【0029】
<好適な適用領域>
本発明の微粒子除去膜を有する本発明の微粒子除去装置は、超純水製造・供給システムにおいて、一次純水システムから超純水を製造するサブシステム、特にそのサブシステムの最後段の微粒子除去装置として好適に用いられる。また、サブシステムからユースポイントに超純水を送給する給水系路に設けられてもよい。更に、ユースポイントにおける最終微粒子除去装置として用いることもできる。
【実施例】
【0030】
以下に実施例を挙げて本発明をより具体的に説明する。
【0031】
なお、以下において、試験膜としては以下のものを用い、いずれも特開2014-173013号公報記載の方法で製造した。
【0032】
ブランク膜:非修飾ポリケトン膜(孔径0.14μm、厚さ100μm)
カチオン膜(600):上記のブランク膜に対して、カチオン性官能基として分子量600のPEI(ポリエチレンイミン)を導入した3級アミノ基修飾ポリケトン膜
カチオン膜(70000):上記のブランク膜に対して、カチオン性官能基として分子量70000のPEIを導入した3級アミノ基修飾ポリケトン膜
カチオン膜(300):上記のブランク膜に対して、カチオン性官能基として分子量300のPEIを導入した3級アミノ基修飾ポリケトン膜
【0033】
また、試験水としては、以下のものを用いた。
金微粒子試験水:超純水に粒子径10nmの金微粒子(BBIソリューション社製)を250μg/Lの濃度となるように添加したもの
シリカ微粒子試験水:超純水に粒径12nmのシリカ微粒子(シグマアルドリッチ社製)を1×109個/mLの濃度に添加したもの
【0034】
[試験I:金微粒子の潜り込み深さの評価]
図2に示す試験装置を用い、金微粒子タンク1から超純水に金微粒子を注入して金微粒子試験水を調製し、試験膜を装着した微粒子除去膜モジュール2に5mL/minの条件で0.5時間通水した。
金微粒子試験水の通水後、膜モジュールから試験膜を取り出し、膜の断面を観察し、マイクロスコープにより試験膜表面からの金微粒子の潜り込み深さを計測し、結果を表1に示した。
潜り込み深さが大きいことは微粒子を膜で吸着できないことを示し、微粒子捕捉能の面で好ましくない。
なお、ブランク膜を用いた比較例I-1では、金微粒子を捕捉できず、ブレークした。
【0035】
【0036】
表1より明らかなように、分子量が600以上のカチオン性官能基を導入した膜を用いることで、10nm金微粒子の潜り込み深さを30μm以下に抑えることができた。一方、分子量300のカチオン性官能基を導入した膜では、10nm金微粒子の潜り込み深さが60μm以上であり、ブランク膜では全く捕捉することができず、充分な除去性能を持ち合わせていなかった。
【0037】
[試験II:シリカ微粒子の除去率の評価]
図3に示す試験装置を用い、シリカ微粒子タンク3から超純水にシリカ微粒子を注入してシリカ微粒子試験水を調製し、試験膜を装着した微粒子除去膜モジュール4に10L/minの条件で通水した。
この微粒子除去膜モジュール4の入口と出口にそれぞれオンライン微粒子モニター(KANOMAX社製「LiquiTrac Scanning TPC1000」)5,6を設け、入口水と出口水の微粒子数から、微粒子除去率を算出した。結果を表2に示す。
【0038】
【0039】
表2より明らかなように、分子量600と70000のカチオン性官能基を導入した膜は12nmシリカ粒子の除去性能は共に99%以上を満たしていたが、分子量300のカチオン性官能基を導入したものでは除去性能は93%であった。このことから、分子量600以上のカチオン性官能基が微粒子を除去する上での最適値であることが分かる。
【符号の説明】
【0040】
1 金微粒子タンク
2,4 微粒子除去モジュール
3 シリカ微粒子タンク
5,6 オンライン微粒子モニター