(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-21
(45)【発行日】2022-07-29
(54)【発明の名称】荷電粒子ビーム装置
(51)【国際特許分類】
H01J 37/317 20060101AFI20220722BHJP
G01N 1/28 20060101ALI20220722BHJP
G01N 1/32 20060101ALI20220722BHJP
H01J 37/20 20060101ALI20220722BHJP
H01J 37/22 20060101ALI20220722BHJP
【FI】
H01J37/317 D
G01N1/28 F
G01N1/28 G
G01N1/28 W
G01N1/32 B
H01J37/20 B
H01J37/22 502H
(21)【出願番号】P 2018069105
(22)【出願日】2018-03-30
【審査請求日】2021-01-28
(73)【特許権者】
【識別番号】503460323
【氏名又は名称】株式会社日立ハイテクサイエンス
(74)【代理人】
【識別番号】100165179
【氏名又は名称】田▲崎▼ 聡
(74)【代理人】
【識別番号】100126664
【氏名又は名称】鈴木 慎吾
(74)【代理人】
【識別番号】100161207
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100175824
【氏名又は名称】小林 淳一
(72)【発明者】
【氏名】鈴木 将人
(72)【発明者】
【氏名】富松 聡
(72)【発明者】
【氏名】佐藤 誠
(72)【発明者】
【氏名】麻畑 達也
【審査官】鳥居 祐樹
(56)【参考文献】
【文献】特開2016-157671(JP,A)
【文献】特開2016-050853(JP,A)
【文献】米国特許出願公開第2016/0064187(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/317
G01N 1/28
G01N 1/32
H01J 37/20
H01J 37/22
(57)【特許請求の範囲】
【請求項1】
試料から試料片を摘出し、前記試料片の姿勢を転換し、試料片ホルダに固定する工程を自動的に実施する荷電粒子ビーム装置であって、
荷電粒子ビームを照射する荷電粒子ビーム照射光学系と、
前記試料を載置して移動する試料ステージと、
前記試料片を保持および搬送するための回転軸を含む移動機構を備えたニードルと、
前記試料片が移設される試料片ホルダを保持するホルダ固定台と、
前記
荷電粒子ビームの照射によってデポジション膜を形成するガスを供給するガス供給部と、
前記ニードルと前記試料片とを分離する際または前記ニードルに付着した残渣のトリミング加工の際に、前記試料片を前記試料
片ホルダに固定させた前記ニードルを回転させることなく、前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを前記ニードルに付着した前記デポジション膜に照射させ
てニードルクリーニングを行う制御を施すコンピュータと、を備え
、
前記コンピュータは、前記ニードルと前記試料片とを分離する際または前記ニードルに付着した残渣のトリミング加工の際に、前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを前記デポジション膜及び前記ニードルに照射させ、
前記コンピュータは、前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを照射させ、前記試料片と前記ニードルとを分離する際に形成された前記ニードルの端面を除去加工する、荷電粒子ビーム装置。
【請求項2】
前記コンピュータは、
前記ニードルと前記試料片とを分離する際または前記ニードルに付着した残渣のトリミング加工の際に、前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを前記ニードルの前記デポジション膜が付着した側に照射させることを特徴とする請求項
1に記載の荷電粒子ビーム装置。
【請求項3】
前記コンピュータは、
前記ニードルと前記試料片とを分離する際または前記ニードルに付着した残渣のトリミング加工の際に、前記ニードルの先端の厚さ寸法が所定の値を超過した場合に、前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを前記ニードルの前記デポジション膜が付着した側に照射させ、前記厚さ寸法が所定の値以内となるように加工することを特徴とする請求項
1または2に記載の荷電粒子ビーム装置。
【請求項4】
前記コンピュータは、
前記ニードルと前記試料片とを分離する際または前記ニードルに付着した残渣のトリミング加工の際に、前記荷電粒子ビームを照射し取得した前記デポジション膜及び前記ニードルの画像データにおける各ピクセルの輝度変化に応じて、前記荷電粒子ビーム照射光学系からの前記荷電粒子ビームの照射を終了することを特徴とする請求項1から
3のいずれか一に記載の荷電粒子ビーム装置。
【請求項5】
前記コンピュータは、前記ニードルと前記試料片とを分離する際に、前記ニードルに付着した
前記デポジション膜に対して前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを照射させることを特徴とする請求項1から
4のいずれか一に記載の荷電粒子ビーム装置。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、自動でサンプリングする荷電粒子ビーム装置に関する。
【背景技術】
【0002】
透過電子顕微鏡観察用の試料片作製において、集束イオンビームによる加工技術が用いられている。試料に集束イオンビームを照射することによって作製した試料片を摘出し、試料ホルダに移設するサンプリングを自動的に実施できる自動試料片作製装置が知られている(特許文献1参照)。
また、試料片を保持したニードルを回転させることにより試料片の姿勢を転換し、試料片を試料ホルダに固定することで、仕上げ加工時に発生するカーテン効果を抑制する荷電粒子ビーム装置が知られている(特許文献2参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2016-050853号公報
【文献】特開2009-110745号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本明細書では、「サンプリング」とは、試料に荷電粒子ビームを照射することによって作製した試料片を摘出して、その試料片を観察、分析、および計測などの各種工程に適した形状に加工することを指し、さらに具体的には、試料から集束イオンビームによる加工によって形成された試料片を試料片ホルダに移設することを言う。
【0005】
従来の自動試料片作製装置による複数の試料片作製では、試料片の接続で用いたデポジション膜がニードルに大量に残っていると次のサンプリングにおいて試料片とニードルの接続強度が保てない場合があるため、ニードルに付着したデポジション膜を複数方向から集束イオンビームを照射し、除去加工するニードルクリーニングを、例えば自動サンプリング10回に1度程度の頻度で行われていた。
しかしながら、試料片の姿勢を転換する自動サンプリングではニードルの回転で試料片がニードルから飛ばされないよう接続強度を保つためにニードルトリミングをより頻繁に行う必要があり、自動サンプリング全体の所要時間が増大してしまう問題があった。
【0006】
本発明は、従来のニードルクリーニングを用いた場合よりも短時間で自動サンプリングを実施することが可能な荷電粒子ビーム装置を提供することを目的としている。
【課題を解決するための手段】
【0007】
上記課題を解決して係る目的を達成するために、本発明は以下の態様を採用した。
(1)試料から試料片を摘出し、前記試料片の姿勢を転換し、試料片ホルダに固定する工程を自動的に実施する荷電粒子ビーム装置であって、荷電粒子ビームを照射する荷電粒子ビーム照射光学系と、前記試料を載置して移動する試料ステージと、前記試料片を保持および搬送するための回転軸を含む移動機構を備えたニードルと、前記試料片が移設される試料片ホルダを保持するホルダ固定台と、前記集束イオンビームの照射によってデポジション膜を形成するガスを供給するガス供給部と、前記試料片を前記試料ホルダに固定させた前記ニードルを回転させることなく、前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを前記ニードルに付着した前記デポジション膜に照射させる制御を施すコンピュータと、を備える。
【0008】
(2)上記(1)に記載の荷電粒子ビーム装置では、前記コンピュータは、前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを前記デポジション膜及び前記ニードルに照射する。
【0009】
(3)上記(2)に記載の荷電粒子ビーム装置では、前記コンピュータは、前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを照射させ、前記試料片と前記ニードル分離する際に形成されたニードルの端面を除去加工する。
【0010】
(4)上記(2)または上記(3)に記載の荷電粒子ビーム装置では、前記コンピュータは、前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを前記ニードルの前記デポジション膜が付着した側に照射する。
【0011】
(5)上記(2)から(4)のいずれか一に記載の荷電粒子ビーム装置では、前記コンピュータは、前記ニードルの先端の厚さ寸法が所定の値を超過した場合に、前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを前記ニードルの前記デポジション膜が付着した側に照射させ、前記厚さ寸法が所定の値以内となるように加工する。
【0012】
(6)上記(1)から(5)のいずれか一に記載の荷電粒子ビーム装置では、前記コンピュータは、前記荷電粒子ビームを照射し取得した前記デポジション膜及び前記ニードルの画像データにおける各ピクセルの輝度変化に応じて、前記荷電粒子ビーム照射光学系からの前記荷電粒子ビームの照射を終了する。
【0013】
(7)上記(1)から(6)のいずれか一に記載の荷電粒子ビーム装置では前記コンピュータは、前記ニードルと前記試料片とを分離する際に、前記ニードルに付着したデポジション膜に対して前記荷電粒子ビーム照射光学系から前記荷電粒子ビームを照射する。
【発明の効果】
【0014】
試料片を試料ホルダに固定させたニードルを回転させることなく、荷電粒子ビームをニードルに付着したデポジション膜に照射させるため、複数方向から集束イオンビームを照射し除去加工するニードルクリーニングに比べて短時間で複数の自動試料片サンプリングを行うことができる。
【図面の簡単な説明】
【0015】
【
図1】本発明の実施形態に係る荷電粒子ビーム装置の構成図である。
【
図2】本発明の実施形態に係る荷電粒子ビーム装置の試料に形成された試料片を示す平面図である。
【
図3】本発明の実施形態に係る荷電粒子ビーム装置の試料片ホルダを示す平面図である。
【
図4】本発明の実施形態に係る荷電粒子ビーム装置の試料片ホルダを示す側面図である。
【
図5】本発明の実施形態に係る荷電粒子ビーム装置の動作を示すフローチャートのうち、特に、初期設定工程のフローチャートである。
【
図6】本発明の実施形態に係る荷電粒子ビーム装置において、繰返し使ったニードルの真の先端を説明するための模式図であり、特に(A)は実際のニードル先端を説明する模式図であり、(B)は、吸収電流信号で得られた第1画像を説明する模式図である。
【
図7】本発明の実施形態に係る荷電粒子ビーム装置のニードル先端における電子ビーム照射による二次電子画像の模式図であり、特に(A)は背景より明るい領域を抽出した第2画像を示す模式図であり、(B)は背景より暗い領域を抽出した第3画像を示す模式図である。
【
図8】
図7の第2画像と第3画像を合成した第4画像を説明する模式図である。
【
図9】本発明の実施形態に係る荷電粒子ビーム装置の動作を示すフローチャートのうち、特に、試料片ピックアップ工程のフローチャートである。
【
図10】本発明の実施形態に係る荷電粒子ビーム装置において、ニードルを試料片に接続させる際におけるニードルの停止位置を説明するための模式図である。
【
図11】本発明の実施形態に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像におけるニードルの先端および試料片を示す図である。
【
図12】本発明の実施形態に係る荷電粒子ビーム装置の電子ビームにより得られる画像におけるニードルの先端および試料片を示す図である。
【
図13】本発明の実施形態に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像におけるニードルおよび試料片の接続加工位置を含む加工枠を示す図である。
【
図14】本発明の実施形態に係る荷電粒子ビーム装置における、ニードルを試料片に接続する時の、ニードルと試料片の位置関係、デポジション膜形成領域を説明するための模式図である。
【
図15】本発明の実施形態に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像における試料および試料片の支持部の切断加工位置T1を示す図である。
【
図16】本発明の実施形態に係る荷電粒子ビーム装置の電子ビームにより得られる画像における試料片が接続されたニードルを退避させている状態を示す図である。
【
図17】本発明の実施形態に係る荷電粒子ビーム装置の電子ビームにより得られる画像における試料片が接続されたニードルに対してステージを退避させた状態を示す図である。
【
図18】本発明の実施形態に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像データにおける試料片が接続されたニードルの回転角度0°でのアプローチモードの状態を示す図である。
【
図19】本発明の実施形態に係る荷電粒子ビーム装置の電子ビームにより得られる画像における試料片が接続されたニードルの回転角度0°でのアプローチモードの状態を示す図である。
【
図20】本発明の実施形態に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像における試料片が接続されたニードルの回転角度90°でのアプローチモードの状態を示す図である。
【
図21】本発明の実施形態に係る荷電粒子ビーム装置の電子ビームにより得られる画像における試料片が接続されたニードルの回転角度90°でのアプローチモードの状態を示す図である。
【
図22】本発明の実施形態に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像における試料片が接続されたニードルの回転角度180°でのアプローチモードの状態を示す図である。
【
図23】本発明の実施形態に係る荷電粒子ビーム装置の電子ビームにより得られる画像における試料片が接続されたニードルの回転角度180°でのアプローチモードの状態を示す図である。
【
図24】本発明の実施形態に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像における柱状部の試料片の取り付け位置を示す図である。
【
図25】本発明の実施形態に係る荷電粒子ビーム装置の電子ビームにより得られる画像における柱状部の試料片の取り付け位置を示す図である。
【
図26】本発明の実施形態に係る荷電粒子ビーム装置の動作を示すフローチャートのうち、特に、試料片マウント工程のフローチャートである。
【
図27】本発明の実施形態に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像における試料台の試料片の取り付け位置周辺で移動停止したニードルを示す図である。
【
図28】本発明の実施形態に係る荷電粒子ビーム装置の電子ビームにより得られる画像における試料台の試料片の取り付け位置周辺で移動停止したニードルを示す図である。
【
図29】本発明の実施形態に係る荷電粒子ビーム装置の電子ビームにより得られる画像における試料台の試料片の取り付け位置周辺で移動停止したニードルを示す図である。
【
図30】本発明の実施形態に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像におけるニードルと試料片とを接続するデポジション膜を切断するための切断加工位置を示す図である。
【
図31】本発明の実施形態に係る荷電粒子ビーム装置において、試料片姿勢を180°回転させたマウント工程のうち試料片の試料片ホルダへの取付が完了し、ニードルと試料片の分離をするために集束イオンビーム照射を行う範囲を画定した状態を示す図である。
【
図32】本発明の実施形態に係る荷電粒子ビーム装置において、試料片姿勢を180°回転させたマウント工程のうち、デポジション膜への集束イオンビーム照射を行いニードルと試料片の分離が完了した状態を示す図ある。
【
図33】本発明の実施形態に係る荷電粒子ビーム装置において、試料片姿勢を180°回転させるピックアップ工程のうち、デポジション膜の付着したニードルと試料片および試料表面との位置関係を示す図である。
【
図34】本発明の実施形態に係る荷電粒子ビーム装置において、ニードル回転角度180°でのマウント工程のうち、集束イオンビームを照射して得られる画像からニードル輪郭情報を抽出し、デポジション膜の位置を捕捉する過程を示す模式図である。
【
図35】本発明の実施形態に係る荷電粒子ビーム装置において、ニードル回転角度180°でのマウント工程のうち、集束イオンビームを照射して得られる画像から、付着したデポジション膜へ選択的に集束イオンビーム照射を行う範囲を画定した状態を示す模式図である。
【
図36】本発明の実施形態に係る荷電粒子ビーム装置において、ニードル回転角度180°でのマウント工程のうち、デポジション膜への選択的な集束イオンビーム照射によってデポジション膜のみが除去された状態を示す図である。
【
図37】本発明の実施形態に係る荷電粒子ビーム装置において、試料片姿勢を180°回転させるピックアップ工程のうち、先端面の厚さが増加した状態のニードルと試料片および試料表面との位置関係を示す図である。
【
図38】本発明の実施形態に係る荷電粒子ビーム装置において、ニードル回転角度180°でのマウント工程のうち、ニードル先端の厚さ寸法が所定の値を超過した場合、集束イオンビームを照射して得られる画像からニードル輪郭情報を抽出し、トリミングすべきデポジション膜およびニードルの加工領域を画定する過程を示す模式図である。
【
図39】本発明の実施形態に係る荷電粒子ビーム装置において、ニードル回転角度180°でのマウント工程のうち、ニードル先端の厚さ寸法が所定の値を超過した場合、ニードル先端に付着したデポジション膜を含むニードル先端の上面にのみ集束イオンビーム照射を行う範囲を画定した状態を示す図である。
【
図40】発明の実施形態に係る荷電粒子ビーム装置において、ニードル回転角度180°でのマウント工程のうち、ニードルと試料片の分離のための加工範囲をニードルに付着したデポジション膜まで拡大した状態を示す図である。
【
図41】発明の実施形態に係る荷電粒子ビーム装置において、ニードル回転角度180°でのマウント工程のうち、ニードルと試料片の分離と同時にニードルに付着したデポジション膜を除去するための加工範囲を画定する過程を示す図である。
【
図42】本発明の実施形態に係る荷電粒子ビーム装置の集束イオンビームにより得られる画像データにおけるニードルを退避させた状態を示す図である。
【
図43】本発明の実施形態に係る荷電粒子ビーム装置の電子ビームにより得られる画像におけるニードルを退避させた状態を示す図である。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態に係る自動で試料片を作製可能な荷電粒子ビーム装置について添付図面を参照しながら説明する。
【実施例】
【0017】
図1は、本発明の実施形態に係る荷電粒子ビーム装置10の構成図である。本発明の実施形態に係る荷電粒子ビーム装置10は、
図1に示すように、内部を真空状態に維持可能な試料室11と、試料室11の内部において試料Sおよび試料片ホルダPを固定可能なステージ12と、ステージ12を駆動するステージ駆動機構13と、を備えている。荷電粒子ビーム装置10は、試料室11の内部における所定の照射領域(つまり走査範囲)内の照射対象に集束イオンビーム(FIB)を照射する集束イオンビーム照射光学系14を備えている。荷電粒子ビーム装置10は、試料室11の内部における所定の照射領域内の照射対象に電子ビーム(EB)を照射する電子ビーム照射光学系15を備えている。荷電粒子ビーム装置10は、集束イオンビームまたは電子ビームの照射によって照射対象から発生する二次荷電粒子(二次電子、二次イオン)Rを検出する検出器16を備えている。荷電粒子ビーム装置10は、照射対象の表面にガスGを供給するガス供給部17を備えている。ガス供給部17は具体的には外径200μm程度のノズル17aなどである。荷電粒子ビーム装置10は、ステージ12に固定された試料Sから微小な試料片Qを取り出し、試料片Qを保持して試料片ホルダPに移設するニードル18と、ニードル18を駆動して試料片Qを搬送するニードル駆動機構19と、ニードル18に流入する荷電粒子ビームの流入電流(吸収電流とも言う)を検出し、流入電流信号はコンピュータに送り画像化する吸収電流検出器20と、を備えている。
このニードル18とニードル駆動機構19を合わせて試料片移設手段と呼ぶこともある。荷電粒子ビーム装置10は、検出器16によって検出された二次荷電粒子Rに基づく画像データなどを表示する表示装置21と、コンピュータ22と、入力デバイス23と、を備えている。
なお、集束イオンビーム照射光学系14および電子ビーム照射光学系15の照射対象は、ステージ12に固定された試料S、試料片Q、および照射領域内に存在するニードル18や試料片ホルダPなどである。
【0018】
この実施形態に係る荷電粒子ビーム装置10は、照射対象の表面に集束イオンビームを走査しながら照射することによって、被照射部の画像化やスパッタリングによる各種の加工(掘削、トリミング加工など)と、デポジション膜の形成などが実行可能である。荷電粒子ビーム装置10は、試料Sから透過電子顕微鏡による透過観察用の試料片Q(例えば、薄片試料、針状試料など)や電子ビーム利用の分析試料片を形成する加工を実行可能である。荷電粒子ビーム装置10は、試料片ホルダPに移設された試料片Qを、透過電子顕微鏡による透過観察に適した所望の厚さ(例えば、5~100nmなど)の薄膜とする加工が実行可能である。荷電粒子ビーム装置10は、試料片Qおよびニードル18などの照射対象の表面に集束イオンビームまたは電子ビームを走査しながら照射することによって、照射対象の表面の観察を実行可能である。
吸収電流検出器20は、プリアンプを備え、ニードルの流入電流を増幅し、コンピュータ22に送る。吸収電流検出器20により検出されるニードル流入電流と荷電粒子ビームの走査と同期した信号により、表示装置21にニードル形状の吸収電流画像を表示でき、ニードル形状や先端位置特定が行える。
【0019】
図2は、本発明の実施形態に係る荷電粒子ビーム装置10において、集束イオンビームを試料S表面(斜線部)に照射して形成された、試料Sから摘出される前の試料片Qを示す平面図である。符号Fは集束イオンビームによる加工枠、つまり、集束イオンビームの走査範囲を示し、その内側(白色部)が集束イオンビーム照射によってスパッタ加工されて掘削された加工領域Hを示している。符号Refは、試料片Qを形成する(掘削しないで残す)位置を示すレファレンスマーク(基準点)であり、例えば、後述するデポジション膜(例えば、一辺1μmの正方形)に集束イオンビームによって例えば直径30nmの微細穴を設けた形状などであり、集束イオンビームや電子ビームによる画像ではコントラスト良く認識することができる。試料片Qの概略の位置に知るにはデポジション膜を利用し、精密な位置合わせには微細穴を利用する。試料Sにおいて試料片Qは、試料Sに接続される支持部Qaを残して側部側および底部側の周辺部が削り込まれて除去されるようにエッチング加工されており、支持部Qaによって試料Sに片持ち支持されている。試料片Qの長手方向の寸法は、例えば、10μm、15μm、20μm程度で、幅(厚さ)は、例えば、500nm、1μm、2μm、3μm程度の微小な試料片である。
【0020】
試料室11は、排気装置(図示略)によって内部を所望の真空状態になるまで排気可能であるとともに、所望の真空状態を維持可能に構成されている。
ステージ12は、試料Sを保持する。ステージ12は、試料片ホルダPを保持するホルダ固定台12aを備えている。このホルダ固定台12aは複数の試料片ホルダPを搭載できる構造であってもよい。
図3は試料片ホルダPの平面図であり、
図4は側面図である。試料片ホルダPは、切欠き部31を有する略半円形板状の基部32と、切欠き部31に固定される試料台33とを備えている。基部32は、例えば金属によって直径3mmおよび厚さ50μmなどの円形板状から形成されている。試料台33は、例えばシリコンウェハから半導体製造プロセスによって形成され、導電性の接着剤によって切欠き部31に貼着されている。試料台33は櫛歯形状であり、離間配置されて突出する複数(例えば、5本、10本、15本、20本など)で、試料片Qが移設される柱状部(以下、ピラーとも言う)34を備えている。
各柱状部34の幅を違えておくことにより、各柱状部34に移設した試料片Qと柱状部34の画像を対応付けて、さらに対応する試料片ホルダPと対応付けてコンピュータ22に記憶させておくことにより、1個の試料Sから多数個の試料片Qを作製した場合であっても間違わずに認識でき、後続する透過電子顕微鏡等の分析を該当する試料片Qと試料S上の摘出箇所との対応付けも間違いなく行なえる。各柱状部34は、例えば先端部の厚さは10μm以下、5μm以下などに形成され、先端部に取り付けられる試料片Qを保持する。
なお、基部32は、上記のような直径3mmおよび厚さ50μmなどの円形板状に限定されることはなく、例えば長さ5mm、高さ2mm、厚さ50μmなどの矩形板状であってもよい。要するに、基部32の形状は、後続する透過電子顕微鏡に導入するステージ12に搭載できる形状であるとともに、試料台33に搭載した試料片Qの全てがステージ12の可動範囲内に位置するような形状であればよい。このような形状の基部32によれば、試料台33に搭載した全ての試料片Qを透過電子顕微鏡で観察することができる。
【0021】
ステージ駆動機構13は、ステージ12に接続された状態で試料室11の内部に収容されており、コンピュータ22から出力される制御信号に応じてステージ12を所定軸に対して変位させる。ステージ駆動機構13は、少なくとも水平面に平行かつ互いに直交するX軸およびY軸と、X軸およびY軸に直交する鉛直方向のZ軸とに沿って平行にステージ12を移動させる移動機構13aを備えている。ステージ駆動機構13は、ステージ12をX軸またはY軸周りに傾斜させる傾斜機構13bと、ステージ12をZ軸周りに回転させる回転機構13cと、を備えている。
【0022】
集束イオンビーム照射光学系14は、試料室11の内部においてビーム出射部(図示略)を、照射領域内のステージ12の鉛直方向上方の位置でステージ12に臨ませるとともに、光軸を鉛直方向に平行にして、試料室11に固定されている。これによって、ステージ12に載置された試料S、試料片Q、および照射領域内に存在するニードル18などの照射対象に鉛直方向上方から下方に向かい集束イオンビームを照射可能である。また、荷電粒子ビーム装置10は、上記のような集束イオンビーム照射光学系14の代わりに他のイオンビーム照射光学系を備えてもよい。イオンビーム照射光学系は、上記のような集束ビームを形成する光学系に限定されない。イオンビーム照射光学系は、例えば、光学系内に定型の開口を有するステンシルマスクを設置して、ステンシルマスクの開口形状の成形ビームを形成するプロジェクション型のイオンビーム照射光学系であってもよい。このようなプロジェクション型のイオンビーム照射光学系によれば、試料片Qの周辺の加工領域に相当する形状の成形ビームを精度良く形成でき、加工時間が短縮される。
集束イオンビーム照射光学系14は、イオンを発生させるイオン源14aと、イオン源14aから引き出されたイオンを集束および偏向させるイオン光学系14bと、を備えている。イオン源14aおよびイオン光学系14bは、コンピュータ22から出力される制御信号に応じて制御され、集束イオンビームの照射位置および照射条件などがコンピュータ22によって制御される。イオン源14aは、例えば、液体ガリウムなどを用いた液体金属イオン源やプラズマ型イオン源、ガス電界電離型イオン源などである。イオン光学系14bは、例えば、コンデンサレンズなどの第1静電レンズと、静電偏向器と、対物レンズなどの第2静電レンズと、などを備えている。イオン源14aとして、プラズマ型イオン源を用いた場合、大電流ビームによる高速な加工が実現でき、大きな試料Sの摘出に好適である。
【0023】
電子ビーム照射光学系15は、試料室11の内部においてビーム出射部(図示略)を、照射領域内のステージ12の鉛直方向に対して所定角度(例えば60°)傾斜した傾斜方向でステージ12に臨ませるとともに、光軸を傾斜方向に平行にして、試料室11に固定されている。これによって、ステージ12に固定された試料S、試料片Q、および照射領域内に存在するニードル18などの照射対象に傾斜方向の上方から下方に向かい電子ビームを照射可能である。
電子ビーム照射光学系15は、電子を発生させる電子源15aと、電子源15aから射出された電子を集束および偏向させる電子光学系15bと、を備えている。電子源15aおよび電子光学系15bは、コンピュータ22から出力される制御信号に応じて制御され、電子ビームの照射位置および照射条件などがコンピュータ22によって制御される。電子光学系15bは、例えば、電磁レンズや偏向器などを備えている。
【0024】
なお、電子ビーム照射光学系15と集束イオンビーム照射光学系14の配置を入れ替えて、電子ビーム照射光学系15を鉛直方向に、集束イオンビーム照射光学系14を鉛直方向に所定角度傾斜した傾斜方向に配置してもよい。
【0025】
検出器16は、試料Sおよびニードル18などの照射対象に集束イオンビームや電子ビームが照射された時に照射対象から放射される二次荷電粒子(二次電子および二次イオン)Rの強度(つまり、二次荷電粒子の量)を検出し、二次荷電粒子Rの検出量の情報を出力する。検出器16は、試料室11の内部において二次荷電粒子Rの量を検出可能な位置、例えば照射領域内の試料Sなどの照射対象に対して斜め上方の位置などに配置され、試料室11に固定されている。
【0026】
ガス供給部17は試料室11に固定されており、試料室11の内部においてガス噴射部(ノズルとも言う)を有し、ステージ12に臨ませて配置されている。ガス供給部17は、集束イオンビームによる試料Sのエッチングを試料Sの材質に応じて選択的に促進するためのエッチング用ガスと、試料Sの表面に金属または絶縁体などの堆積物によるデポジション膜を形成するためのデポジション用ガスなどを試料Sに供給可能である。例えば、シリコン系の試料Sに対するフッ化キセノンと、有機系の試料Sに対する水と、などのエッチング用ガスを、集束イオンビームの照射と共に試料Sに供給することによって、エッチングを材料選択的に促進させる。また、例えば、プラチナ、カーボン、またはタングステンなどを含有したデポジション用ガスを、集束イオンビームの照射と共に試料Sに供給することによって、デポジション用ガスから分解された固体成分を試料Sの表面に堆積(デポジション)できる。デポジション用ガスの具体例として、カーボンを含むガスとしてフェナントレンやナフタレンやピレンなど、プラチナを含むガスとしてトリメチル・エチルシクロペンタジエニル・プラチナなど、また、タングステンを含むガスとしてタングステンヘキサカルボニルなどがある。また、供給ガスによっては、電子ビームを照射することでも、エッチングやデポジションを行なうことができる。但し、本発明の荷電粒子ビーム装置10におけるデポジション用ガスは、デポジション速度、試料片Qとニードル18間のデポジション膜の確実な付着の観点からカーボンを含むデポジション用ガス、例えばフェナントレンやナフタレン、ピレンなどが最適であり、これらのうちいずれかを用いる。
【0027】
ニードル駆動機構19は、ニードル18が接続された状態で試料室11の内部に収容されており、コンピュータ22から出力される制御信号に応じてニードル18を変位させる。ニードル駆動機構19は、ステージ12と一体に設けられており、例えばステージ12が傾斜機構13bによって傾斜軸(つまり、X軸またはY軸)周りに回転すると、ステージ12と一体に移動する。ニードル駆動機構19は、3次元座標軸の各々に沿って平行にニードル18を移動させる移動機構(図示略)と、ニードル18の中心軸周りにニードル18を回転させる回転機構(図示略)と、を備えている。なお、この3次元座標軸は、試料ステージの直交3軸座標系とは独立しており、ステージ12の表面に平行な2次元座標軸とする直交3軸座標系で、ステージ12の表面が傾斜状態、回転状態にある場合、この座標系は傾斜し、回転する。
【0028】
コンピュータ22は、少なくともステージ駆動機構13と、集束イオンビーム照射光学系14と、電子ビーム照射光学系15と、ガス供給部17と、ニードル駆動機構19を制御する。
コンピュータ22は、試料室11の外部に配置され、表示装置21と、操作者の入力操作に応じた信号を出力するマウスやキーボードなどの入力デバイス23とが接続されている。
コンピュータ22は、入力デバイス23から出力される信号または予め設定された自動運転制御処理によって生成される信号などによって、荷電粒子ビーム装置10の動作を統合的に制御する。
【0029】
コンピュータ22は、荷電粒子ビームの照射位置を走査しながら検出器16によって検出される二次荷電粒子Rの検出量を、照射位置に対応付けた輝度信号に変換して、二次荷電粒子Rの検出量の2次元位置分布によって照射対象の形状を示す画像データを生成する。吸収電流画像モードでは、コンピュータ22は、荷電粒子ビームの照射位置を走査しながらニードル18に流れる吸収電流を検出することによって、吸収電流の2次元位置分布(吸収電流画像)によってニードル18の形状を示す吸収電流画像データを生成する。コンピュータ22は、生成した各画像データとともに、各画像データの拡大、縮小、移動、および回転などの操作を実行するための画面を、表示装置21に表示させる。コンピュータ22は、自動的なシーケンス制御におけるモード選択および加工設定などの各種の設定を行なうための画面を、表示装置21に表示させる。
【0030】
本発明の実施形態による荷電粒子ビーム装置10は上記構成を備えており、次に、この荷電粒子ビーム装置10の動作について説明する。
【0031】
以下、コンピュータ22が実行する自動サンプリングの動作、つまり荷電粒子ビーム(集束イオンビーム)による試料Sの加工によって形成された試料片Qを自動的に試料片ホルダPに移設させる動作について、初期設定工程、試料片ピックアップ工程、試料片マウント工程に大別して、順次説明する。
【0032】
<初期設定工程>
図5は、本発明の実施形態に係る荷電粒子ビーム装置10による自動サンプリングの動作のうち初期設定工程の流れを示すフローチャートである。先ず、コンピュータ22は、自動シーケンスの開始時に操作者の入力に応じて後述する姿勢制御モードの有無等のモード選択、テンプレートマッチング用の観察条件、および加工条件設定(加工位置、寸法、個数等の設定)、ニードル先端形状の確認などを行なう(ステップS010)。
【0033】
次に、コンピュータ22は、柱状部34のテンプレートを作成する(ステップS020からステップS027)。このテンプレート作成において、先ず、コンピュータ22は、操作者によってステージ12のホルダ固定台12aに設置される試料片ホルダPの位置登録処理を行なう(ステップS020)。コンピュータ22は、サンプリングプロセスの最初に柱状部34のテンプレートを作成する。コンピュータ22は、柱状部34毎にテンプレートを作成する。コンピュータ22は、各柱状部34のステージ座標取得とテンプレート作成を行ない、これらをセットで記憶し、後にテンプレートマッチング(テンプレートと画像の重ね合わせ)で柱状部34の形状を判定する際に用いる。コンピュータ22は、テンプレートマッチングに用いる柱状部34のテンプレートとして、例えば、画像そのもの、画像から抽出したエッジ情報などを予め記憶する。コンピュータ22は、後のプロセスで、ステージ12の移動後にテンプレートマッチングを行い、テンプレートマッチングのスコアによって柱状部34の形状を判定することにより、柱状部34の正確な位置を認識することができる。なお、テンプレートマッチング用の観察条件として、テンプレート作成用と同じコントラスト、倍率などの観察条件を用いると、正確なテンプレートマッチングを実施することができるので望ましい。
ホルダ固定台12aに複数の試料片ホルダPが設置され、各試料片ホルダPに複数の柱状部34が設けられている場合、各試料片ホルダPに固有の認識コードと、該当試料片ホルダPの各柱状部34に固有の認識コードとを予め定めておき、これら認識コードと各柱状部34の座標およびテンプレート情報とを対応付けてコンピュータ22が記憶してもよい。
また、コンピュータ22は、上記認識コード、各柱状部34の座標、およびテンプレート情報と共に、試料Sにおける試料片Qが摘出される部位(摘出部)の座標、および周辺の試料面の画像情報をセットで記憶してもよい。
また、例えば岩石、鉱物、および生体試料などの不定形な試料の場合、コンピュータ22は、低倍率の広視野画像、摘出部の位置座標、および画像などをセットにして、これらの情報を認識情報として記憶してもよい。この認識情報を、薄片化した試料Sと関連付けし、または、透過電子顕微鏡像と試料Sの摘出位置と関連付けして記録してもよい。
【0034】
コンピュータ22は、試料片ホルダPの位置登録処理を、後述する試料片Qの移動に先立って行なっておくことによって、実際に適正な形状の試料台33が存在することを予め確認しておくことができる。
この位置登録処理において、先ず、コンピュータ22は、粗調整の動作として、ステージ駆動機構13によってステージ12を移動し、試料片ホルダPにおいて試料台33が取り付けられた位置に照射領域を位置合わせする。次に、コンピュータ22は、微調整の動作として、荷電粒子ビーム(集束イオンビームおよび電子ビームの各々)の照射により生成する各画像データから、事前に試料台33の設計形状(CAD情報)から作成したテンプレートを用いて試料台33を構成する複数の柱状部34の位置を抽出する。そして、コンピュータ22は、抽出した各柱状部34の位置座標と画像を、試料片Qの取り付け位置として登録処理(記憶)する(ステップS023)。この時、各柱状部34の画像が、予め準備しておいた柱状部の設計図、CAD図、または柱状部34の標準品の画像と比較して、各柱状部34の変形や欠け、欠落等の有無を確認し、もし、不良であればその柱状部の座標位置と画像と共に不良品であることもコンピュータ22は記憶する。
次に、現在登録処理の実行中の試料片ホルダPに登録すべき柱状部34が無いか否かを判定する(ステップS025)。この判定結果が「NO」の場合、つまり登録すべき柱状部34の残数mが1以上の場合には、処理を上述したステップS023に戻し、柱状部34の残数mが無くなるまでステップS023とS025を繰り返す。一方、この判定結果が「YES」の場合、つまり登録すべき柱状部34の残数mがゼロの場合には、処理をステップS027に進める。
【0035】
ホルダ固定台12aに複数個の試料片ホルダPが設置されている場合、各試料片ホルダPの位置座標、該当試料片ホルダPの画像データを各試料片ホルダPに対するコード番号などと共に記録し、さらに、各試料片ホルダPの各柱状部34の位置座標と対応するコード番号と画像データを記憶(登録処理)する。コンピュータ22は、この位置登録処理を、自動サンプリングを実施する試料片Qの数の分だけ、順次、実施してもよい。
そして、コンピュータ22は、登録すべき試料片ホルダPが無いか否かを判定する(ステップS027)。この判定結果が「NO」の場合、つまり登録すべき試料片ホルダPの残数nが1以上の場合には、処理を上述したステップS020に戻し、試料片ホルダPの残数nが無くなるまでステップS020からS027を繰り返す。一方、この判定結果が「YES」の場合、つまり登録すべき試料片ホルダPの残数nがゼロの場合には、処理をステップS030に進める。
これにより、1個の試料Sから数10個の試料片Qを自動作製する場合、ホルダ固定台12aに複数の試料片ホルダPが位置登録され、そのそれぞれの柱状部34の位置が画像登録されているため、数10個の試料片Qを取り付けるべき特定の試料片ホルダPと、さらに、特定の柱状部34を即座に荷電粒子ビームの視野内に呼び出すことができる。
なお、この位置登録処理(ステップS020、S023)において、万一、試料片ホルダP自体、もしくは、柱状部34が変形や破損していて、試料片Qが取り付けられる状態に無い場合は、上記の位置座標、画像データ、コード番号と共に、対応させて『使用不可』(試料片Qが取り付けられないことを示す表記)などとも登録しておく。これによって、コンピュータ22は、後述する試料片Qの移設の際に、『使用不可』の試料片ホルダP、もしくは柱状部34はスキップされ、次の正常な試料片ホルダP、もしくは柱状部34を観察視野内に移動させることができる。
【0036】
次に、コンピュータ22は、ニードル18のテンプレートを作成する(ステップS030からS050)。テンプレートは、後述するニードルを試料片に正確に接近させる際の画像マッチングに用いる。
このテンプレート作成工程において、先ず、コンピュータ22は、ステージ駆動機構13によってステージ12を一旦移動させる。続いて、コンピュータ22は、ニードル駆動機構19によってニードル18を初期設定位置に移動させる(ステップS030)。初期設定位置は、集束イオンビームと電子ビームがほぼ同一点に照射でき、両ビームの焦点が合う点(コインシデンスポイント)であって、直前に行ったステージ移動によって、ニードル18の背景には試料Sなどニードル18と誤認するような複雑な構造が無い、予め定めた位置である。このコインシデンスポイントは、集束イオンビーム照射と電子ビーム照射によって同じ対象物を異なった角度から観察することができる位置である。
【0037】
次に、コンピュータ22は、電子ビーム照射による吸収画像モードによって、ニードル18の位置を認識する(ステップS040)。
コンピュータ22は、電子ビームを走査しながらニードル18に照射することによってニードル18に流入する吸収電流を検出し、吸収電流画像データを生成する。この時、吸収電流画像には、ニードル18と誤認する背景が無いため、背景画像に影響されずにニードル18を認識できる。コンピュータ22は、電子ビームの照射によって吸収電流画像データを取得する。吸収電流像を用いてテンプレートを作成するのは、ニードルが試料片に近づくと、試料片の加工形状や試料表面のパターンなど、ニードルの背景にはニードルと誤認する形状が存在することが多いため、二次電子像では誤認するおそれが高く、誤認防止するため背景に影響を受けない吸収電流像を用いる。二次電子像は背景像に影響を受けやすく、誤認のおそれが高いのでテンプレート画像としては適さない。このように、吸収電流画像ではニードル先端のカーボンデポジション膜を認識できないので、真のニードル先端を知ることはできないが、テンプレートとのパターンマッチングの観点から吸収電流像が適している。
【0038】
ここで、コンピュータ22は、ニードル18の形状を判定する(ステップS042)。
万一、ニードル18の先端形状が変形や破損等により、試料片Qを取り付けられる状態に無い場合(ステップS042;NG)には、ステップS043から、
図35のステップS280のNO側に飛び、ステップS050以降の全ステップは実行せずに自動サンプリングの動作を終了させる。つまり、ニードル先端形状が不良の場合、これ以上の作業が実行できず、装置操作者によるニードル交換の作業に入る。ステップS042におけるニードル形状の判断は、例えば、1辺200μmの観察視野で、ニードル先端位置が所定の位置から100μm以上ずれている場合は不良品と判断する。なお、ステップS042において、ニードル形状が不良と判断した場合、表示装置21に『ニードル不良』等と表示して(ステップS043)、装置の操作者に警告する。不良品と判断したニードル18は新たなニードル18に交換するか、軽微な不良であればニードル先端を集束イオンビーム照射によって成形してもよい。
ステップS042において、ニードル18が予め定めた正常な形状であれば次のステップS044に進む。
【0039】
ここで、ニードル先端の状態を説明しておく。
図6(A)は、ニードル18(タングステンニードル)の先端にカーボンデポジション膜DMの残渣が付着している状態を説明するためにニードル先端部を拡大した模式図である。吸収電流像を用いてテンプレートを作成するのは、ニードル18が試料片Qに近づくと、試料片Qの加工形状や試料表面のパターンなど、ニードル18の背景にはニードル18と誤認する形状が存在することが多いため、二次電子像では誤認するおそれが高く、誤認防止するため背景に影響を受けない吸収電流像を用いる。二次電子像は背景像に影響を受けやすく、誤認のおそれが高いのでテンプレート画像としては適さない。このように、吸収電流画像ではニードル先端のカーボンデポジション膜DMを認識できないので、真のニードル先端を知ることはできないが、テンプレートとのパターンマッチングの観点から吸収電流像が適している。
【0040】
図6(B)は、カーボンデポジション膜DMが付着したニードル先端部の吸収電流像の模式図である。背景に複雑なパターンがあっても背景形状に影響されずに、ニードル18は明確に認識できる。背景に照射される電子ビーム信号は画像に反映されないため、背景はノイズレベルの一様なグレートーンで示される。一方、カーボンデポジション膜DMは背景のグレートーンより若干暗く見え、吸収電流像ではカーボンデポジション膜DMの先端が明確に確認できないことが分かった。吸収電流像では、カーボンデポジション膜DMを含めた真のニードル位置を認識できないため、吸収電流像だけを頼りにニードル18を移動させると、ニードル先端が試料片Qに衝突するおそれが高い。
このため、以下のようにして、カーボンデポジション膜DMの先端座標Cからニードル18の真の先端座標を求める。なお、ここで、
図6(B)の画像を第1画像と呼ぶことにする。
ニードル18の吸収電流像(第1画像)を取得する工程がステップS044である。
次に、
図6(B)の第1画像を画像処理して、背景より明るい領域を抽出する(ステップS045)。
【0041】
図7(A)は、
図6(B)の第1画像を画像処理して、背景より明るい領域を抽出した模式図である。背景とニードル18の明度の差が小さいときには、画像コントラストを高めて、背景とニードルの明度の差を大きくしても良い。このようにして、背景より明るい領域(ニードル18の一部)を強調した画像が得られ、この画像をここでは第2画像と言う。
この第2画像をコンピュータに記憶する。
次に、
図6(B)の第1画像において、背景の明度より暗い領域を抽出する(ステップS046)。
【0042】
図7(B)は、
図6(B)の第1画像を画像処理して、背景より暗い領域を抽出した模式図である。ニードル先端のカーボンデポジション膜DMのみが抽出されて表示される。背景とカーボンデポジション膜DMの明度の差が小さい時には画像コントラストを高めて、画像データ上、背景とカーボンデポジション膜DMの明度の差を大きくしても良い。このようにして、背景より暗い領域を顕在化させた画像が得られる。ここで、この画像を第3画像と言い、第3画像をコンピュータ22に記憶する。
次に、コンピュータ22に記憶した第2画像と第3画像を合成する(ステップS047)。
【0043】
図8は合成後の表示画像の模式図である。但し、画像上、見やすくするために、第2画像でのニードル18の領域、第3画像におけるカーボンデポジション膜DMの部分の輪郭のみを線表示して、背景やニードル18、カーボンデポジション膜DMの外周以外は透明表示にしてもよいし、背景のみの透明にして、ニードル18とカーボンデポジション膜DMを同じ色や同じトーンで表示してもよい。このように、第2画像と第3画像はもともと第1画像を基にしているので、第2画像や第3画像の一方のみを拡大縮小や回転など変形しない限り、合成して得られる画像は第1画像を反映させた形状である。ここで、合成した画像を第4画像と呼び、この第4画像をコンピュータに記憶する。第4画像は、第1画像を基に、コントラストを調整し、輪郭を強調する処理を施しているため、第1画像と第4画像におけるニードル形状は全く同じで、輪郭が明確になっており、第1画像に比べてカーボンデポジション膜DMの先端が明確になる。
次に、第4画像から、カーボンデポジション膜DMの先端、つまり、カーボンデポジション膜DMが堆積したニードル18の真の先端座標を求める(ステップS048)。
コンピュータ22から第4画像を取り出し表示し、ニードル18の真の先端座標を求める。ニードル18の軸方向で最も突き出た箇所Cが真のニードル先端であり、画像認識により自動的に判断させ、先端座標をコンピュータ22に記憶する。
次に、テンプレートマッチングの精度を更に高めるために、ステップS044時と同じ観察視野でのニードル先端の吸収電流画像をレファレンス画像として、テンプレート画像はレファレンス画像データのうち、ステップS048で得たニードル先端座標を基準として、ニードル先端を含む一部のみを抽出したものとし、このテンプレート画像をステップS048で得たニードル先端の基準座標(ニードル先端座標)とを対応付けてコンピュータ22に登録する(ステップS050)。
【0044】
次に、コンピュータ22は、ニードル18を試料片Qに接近させる処理として、以下の処理を行なう。
なお、ステップS050においては、ステップS044時と同じ観察視野と限定したが、これに限ることはなく、ビーム走査の基準が管理できていれば同一視野に限定されることはない。また、上記ステップS050の説明ではテンプレートを、ニードル先端部を含むとしたが、基準座標とさえ座標が対応付けられていれば先端を含まない領域をテンプレートとしても構わない。
【0045】
コンピュータ22は、ニードル18を移動させる事前に実際に取得する画像データをレファレンス画像データとするので、個々のニードル18の形状の相違によらずに、精度の高いパターンマッチングを行うことができる。さらに、コンピュータ22は、背景に複雑な構造物が無い状態で各画像データを取得するので、正確な真のニードル先端座標を求めることができる。また、背景の影響を排除したニードル18の形状が明確に把握できるテンプレートを取得することができる。
【0046】
なお、コンピュータ22は、各画像データを取得する際に、対象物の認識精度を増大させるために予め記憶した好適な倍率、輝度、コントラスト等の画像取得条件を用いる。
また、上記の柱状部34のテンプレートを作成する工程(S020からS027)と、ニードル18のテンプレートを作成する工程(S030からS050)が逆であってもよい。但し、ニードル18のテンプレートを作成する工程(S030からS050)が先行する場合、後述のステップS280から戻るフロー(E)も連動する。
【0047】
<試料片ピックアップ工程>
図9は、本発明の実施形態に係る荷電粒子ビーム装置10による自動サンプリングの動作のうち、試料片Qを試料Sからピックアップする工程の流れを示すフローチャートである。ここで、ピックアップとは、集束イオンビームによる加工やニードルによって、試料片Qを試料Sから分離、摘出することを言う。
まず、コンピュータ22は、対象とする試料片Qを荷電粒子ビームの視野に入れるためにステージ駆動機構13によってステージ12を移動させる。目的とするレファレンスマークRefの位置座標を用いてステージ駆動機構13を動作させてもよい。
次に、コンピュータ22は、荷電粒子ビームの画像データを用いて、予め試料Sに形成されたレファレンスマークRefを認識する。コンピュータ22は、認識したレファレンスマークRefを用いて、既知であるレファレンスマークRefと試料片Qとの相対位置関係から試料片Qの位置を認識して、試料片Qの位置を観察視野に入るようにステージ移動する(ステップS060)。
次に、コンピュータ22は、ステージ駆動機構13によってステージ12を駆動し、試料片Qの姿勢が所定姿勢(例えば、ニードル18による取出しに適した姿勢など)になるように、姿勢制御モードに対応した角度分だけステージ12をZ軸周りに回転させる(ステップS070)。
次に、コンピュータ22は、荷電粒子ビームの画像データを用いてレファレンスマークRefを認識し、既知であるレファレンスマークRefと試料片Qとの相対位置関係から試料片Qの位置を認識して、試料片Qの位置合わせを行なう(ステップS080)。次に、コンピュータ22は、ニードル18を試料片Qに接近させる処理として、以下の処理を行う。
【0048】
コンピュータ22は、ニードル駆動機構19によってニードル18を移動させるニードル移動(粗調整)を実行する(ステップS090)。コンピュータ22は、試料Sに対する集束イオンビームおよび電子ビームによる各画像データを用いて、レファレンスマークRef(上述した
図2参照)を認識する。コンピュータ22は、認識したレファレンスマークRefを用いてニードル18の移動目標位置APを設定する。
ここで、移動目標位置APは、試料片Qに近い位置とする。移動目標位置APは、例えば、試料片Qの支持部Qaの反対側の側部に近接した位置とする。コンピュータ22は、移動目標位置APを、試料片Qの形成時の加工枠Fに対して所定の位置関係を対応付けている。コンピュータ22は、集束イオンビームの照射によって試料Sに試料片Qを形成する際の加工枠FとレファレンスマークRefとの相対的な位置関係の情報を記憶している。コンピュータ22は、認識したレファレンスマークRefを用いて、レファレンスマークRefと加工枠Fと移動目標位置AP(
図2参照)との相対的な位置関係を用いて、ニードル18の先端位置を移動目標位置APに向かい3次元空間内で移動させる。コンピュータ22は、ニードル18を3次元的に移動させる際に、例えば、先ずX方向およびY方向で移動させ、次にZ方向に移動させる。
コンピュータ22は、ニードル18を移動させる際に、試料片Qを形成する自動加工の実行時に試料Sに形成されたレファレンスマークRefを用いて、電子ビームと集束イオンビームによる異なった方向からの観察よって、ニードル18と試料片Qとの3次元的な位置関係が精度良く把握することができ、適正に移動させることができる。
【0049】
なお、上述の処理では、コンピュータ22は、レファレンスマークRefを用いて、レファレンスマークRefと加工枠Fと移動目標位置APとの相対的な位置関係を用いて、ニードル18の先端位置を移動目標位置APに向かい3次元空間内で移動させるとしたが、これに限定されない。コンピュータ22は、加工枠Fを用いること無しに、レファレンスマークRefと移動目標位置APとの相対的な位置関係を用いて、ニードル18の先端位置を移動目標位置APに向かい3次元空間内で移動させてもよい。
【0050】
次に、コンピュータ22は、ニードル駆動機構19によってニードル18を移動させるニードル移動(微調整)を実行する(ステップS100)。コンピュータ22は、ステップS050で作成したテンプレートを用いたパターンマッチングを繰り返して、また、SEM画像内のニードル18の先端位置としてはステップS047で得たニードル先端座標を用いて、移動目標位置APを含む照射領域に荷電粒子ビームを照射した状態でニードル18を移動目標位置APから接続加工位置に3次元空間内で移動させる。
【0051】
次に、コンピュータ22は、ニードル18の移動を停止させる処理を行なう(ステップS110)。
図10は、ニードルを試料片に接続させる際の位置関係を説明するための図で、試料片Qの端部を拡大した図である。
図10において、ニードル18を接続すべき試料片Qの端部(断面)をSIM画像中心35に配置し、SIM画像中心35から所定距離L1を隔て、例えば、試料片Qの幅の中央の位置を接続加工位置36とする。接続加工位置は、試料片Qの端面の延長上(
図10の符号36a)の位置であってもよい。この場合、デポジション膜が付き易い位置となって都合がよい。コンピュータ22は、所定距離L1の上限を1μmとし、好ましくは、所定距離L1を100nm以上かつ400nm以下とする。所定距離L1が100nm未満であると、後の工程で、ニードル18と試料片Qを分離する際に接続したデポジション膜のみを切断できず、ニードル18まで切除するリスクが高い。ニードル18の切除はニードル18を短小化させ、ニードル先端が太く変形してしまい、これを繰返すと、ニードル18を交換せざるを得ず、本発明の目的である繰返し自動でサンプリングを行うことに反する。また、逆に、所定距離L1が400nmを超えるとデポジション膜による接続が不十分となり、試料片Qの摘出に失敗するリスクが高くなり、繰返しサンプリングすることを妨げる。
また、
図10からは深さ方向の位置が見えないが、例えば、試料片Qの幅の1/2の位置と予め定める。但し、この深さ方向もこの位置に限定されることはない。この接続加工位置36の3次元座標をコンピュータ22に記憶しておく。
コンピュータ22は、予め設定されている接続加工位置36を指定する。コンピュータ22は、同じSIM画像またはSEM画像内にあるニードル18先端と接続加工位置36の三次元座標を基に、ニードル駆動機構19を動作させ、ニードル18を所定の接続加工位置36に移動する。コンピュータ22は、ニードル先端が接続加工位置36と一致した時に、ニードル駆動機構19を停止させる。
図11および
図12は、ニードル18が試料片Qに接近する様子を示しており、本発明の実施形態に係る荷電粒子ビーム装置10の集束イオンビームにより得られる画像を示す図(
図11)、および、電子ビームにより得られる画像を示す図(
図12)である。
図12はニードルの微調整前後の様子を示しており、
図12におけるニードル18aは、移動目標位置にあるニードル18を示し、ニードル18bはニードル18の微調整後、接続加工位置36に移動したニードル18を示していて、同一のニードル18である。なお、
図11および
図12は、集束イオンビームと電子ビームで観察方向が異なることに加え、観察倍率が異なっているが、観察対象とニードル18は同一である。
このようなニードル18の移動方法によって、ニードル18を試料片Q近傍の接続加工位置に精度良く、迅速に接続加工位置36に接近させる、停止させることができる。
【0052】
次に、コンピュータ22は、ニードル18を試料片Qに接続する処理を行なう(ステップS120)。コンピュータ22は、所定のデポジション時間に亘って、試料片Qおよびニードル18の先端表面にガス供給部17によってデポジション用ガスであるカーボン系ガスを供給しつつ、接続加工位置36に設定した加工枠R1を含む照射領域に集束イオンビームを照射する。これによりコンピュータ22は、試料片Qおよびニードル18をデポジション膜により接続する。
このステップS120では、コンピュータ22は、ニードル18を試料片Qに直接接触させずに間隔を開けた位置でデポジション膜により接続するので、後の工程でニードル18と試料片Qとが集束イオンビーム照射による切断により分離される際にニードル18が切断されない。また、ニードル18の試料片Qへの直接接触に起因する損傷などの不具合が発生することを防止できる利点を有している。さらに、たとえニードル18が振動しても、この振動が試料片Qに伝達されることを抑制できる。さらに、試料Sのクリープ現象による試料片Qの移動が発生する場合であっても、ニードル18と試料片Qとの間に過剰なひずみが生じることを抑制できる。
図13は、この様子を示しており、本発明の実施形態に係る荷電粒子ビーム装置10の集束イオンビームにより得られる画像データにおける、ニードル18および試料片Qの接続加工位置を含む加工枠R1(デポジション膜形成領域)を示す図であり、
図14は
図13の拡大説明図であり、ニードル18と試料片Q、デポジション膜形成領域(例えば、加工枠R1)の位置関係を分かり易くしている。ニードル18は試料片Qから所定距離L1の間隔を有した位置を接続加工位置として接近し、停止する。ニードル18と試料片Q、デポジション膜形成領域(例えば、加工枠R1)は、ニードル18と試料片Qを跨ぐように設定する。デポジション膜は所定距離L1の間隔にも形成され、ニードル18と試料片Qはデポジション膜で接続される。
【0053】
コンピュータ22は、ニードル18を試料片Qに接続する際には、後にニードル18に接続された試料片Qを試料片ホルダPに移設するときに事前にステップS010で選択された各アプローチモードに応じた接続姿勢をとる。コンピュータ22は、後述する複数(例えば、3つ)の異なるアプローチモードの各々に対応して、ニードル18と試料片Qとの相対的な接続姿勢をとる。
【0054】
なお、コンピュータ22は、ニードル18の吸収電流の変化を検出することによって、デポジション膜による接続状態を判定してもよい。コンピュータ22は、ニードル18の吸収電流が予め定めた電流値に達した時に試料片Qおよびニードル18がデポジション膜により接続されたと判定し、所定のデポジション時間の経過有無にかかわらずに、デポジション膜の形成を停止してもよい。
【0055】
次に、コンピュータ22は、試料片Qと試料Sとの間の支持部Qaを切断する処理を行なう(ステップS130)。コンピュータ22は、試料Sに形成されているレファレンスマークRefを用いて、予め設定されている支持部Qaの切断加工位置T1を指定する。
コンピュータ22は、所定の切断加工時間に亘って、切断加工位置T1に集束イオンビームを照射することによって、試料片Qを試料Sから分離する。
図15は、この様子を示しており、本発明の実施形態に係る荷電粒子ビーム装置10の集束イオンビームにより得られる画像データにおける試料Sおよび試料片Qの支持部Qaの切断加工位置T1を示す図である。
コンピュータ22は、試料Sとニードル18との導通を検知することによって、試料片Qが試料Sから切り離されたか否かを判定する(ステップS133)。
コンピュータ22は、試料Sとニードル18との導通を検知しない場合には、試料片Qが試料Sから切り離された(OK)と判定し、これ以降の処理(つまり、ステップS140以降の処理)の実行を継続する。一方、コンピュータ22は、切断加工の終了後、つまり切断加工位置T1での試料片Qと試料Sとの間の支持部Qaの切断が完了した後に、試料Sとニードル18との導通を検知した場合には、試料片Qが試料Sから切り離されていない(NG)と判定する。コンピュータ22は、試料片Qが試料Sから切り離されていない(NG)と判定した場合には、この試料片Qと試料Sとの分離が完了していないことを表示装置21への表示または警告音などにより報知する(ステップS136)。そして、これ以降の処理の実行を停止する。この場合、コンピュータ22は、試料片Qとニードル18を繋ぐデポジション膜(後述するデポジション膜DM2)を集束イオンビーム照射によって切断し、試料片Qとニードル18を分離して、ニードル18を初期位置(ステップS060)に戻るようにしてもよい。初期位置に戻ったニードル18は。次の試料片Qのサンプリングを実施する。
【0056】
次に、コンピュータ22は、ニードル退避の処理を行なう(ステップS140)。コンピュータ22は、ニードル駆動機構19によってニードル18を所定距離(例えば、5μmなど)だけ鉛直方向上方(つまりZ方向の正方向)に上昇させる。
図16は、この様子を示しており、本発明の実施形態に係る荷電粒子ビーム装置10の電子ビームにより得られる画像データにおける試料片Qが接続されたニードル18を退避させた状態を示す図である。
次に、コンピュータ22は、ステージ退避の処理を行なう(ステップS150)。コンピュータ22は、
図17に示すように、ステージ駆動機構13によってステージ12を、所定距離を移動させる。例えば、1mm、3mm、5mmだけ鉛直方向下方(つまりZ方向の負方向)に下降させる。コンピュータ22は、ステージ12を所定距離だけ下降させた後に、ガス供給部17のノズル17aをステージ12から遠ざける。例えば、鉛直方向上方の待機位置に上昇させる。
図17は、この様子を示しており、本発明の実施形態に係る荷電粒子ビーム装置10の電子ビームにより得られる画像データにおける試料片Qが接続されたニードル18に対してステージ12を退避させた状態を示す図である。
【0057】
次に、コンピュータ22は、試料片Qの姿勢制御の処理を行なう(ステップS153)。コンピュータ22は、ニードル駆動機構19によってニードル18を軸回転させることができるので、必要に応じて試料片Qの姿勢を制御することができる。コンピュータ22は、ニードル18に接続された試料片Qをニードル18の軸周りに回転させ、試料片ホルダPに対して試料片Qの上下または左右を変更する。例えば、コンピュータ22は、試料片Qにおける元の試料Sの表面が柱状部34の端面に垂直関係にあるか平行関係になるように試料片Qの姿勢を設定する。これによりコンピュータ22は、例えば後に実行する整形加工および仕上げ加工に適した試料片Qの姿勢を確保するとともに、試料片Qの薄片化仕上げ加工時に生じるカーテン効果の影響などを低減することができる。カーテン効果は、集束イオンビーム照射方向に生じる加工縞模様であって、完成後の試料片Qを電子顕微鏡で観察した場合、誤った解釈を与えてしまうので、試料片Qの適正な姿勢を確保することによって、観察の信頼性を向上させることができる。なお、コンピュータ22は、ニードル18を軸回転させる際には偏心補正を行なうことによって、試料片Qが実視野から外れないように回転を補正する。
【0058】
この姿勢制御において、先ず、コンピュータ22は、ニードル駆動機構19によってニードル18を駆動し、試料片Qの姿勢がアプローチモードに対応した所定姿勢になるように、アプローチモードに対応した姿勢制御モードの回転角度分だけニードル18を軸回転させる。ここでアプローチモードに対応した姿勢制御モードとは、試料片Qの姿勢を試料片ホルダPに対してアプローチモードに対応した所定姿勢に制御するモードである。この姿勢制御モードにおいてコンピュータ22は、上述した試料片ピックアップ工程において試料片Qに対し所定の角度で接近して試料片Qが接続されたニードル18を、所定の回転角度に軸回転することにより試料片Qの姿勢を制御する。アプローチモードは、姿勢制御モードによって所定姿勢に制御された試料片Qを試料片ホルダPにアプローチするモードである。コンピュータ22は、ニードル18を軸回転させる際には偏心補正を行なう。
図18~
図23は、この様子を示しており、複数(例えば、3つ)の異なるアプローチモードの各々において、試料片Qが接続されたニードル18の状態を示す図である。
【0059】
図18および
図19は、ニードル18の回転角度0°でのアプローチモードにおいて、本発明の実施形態に係る荷電粒子ビーム装置10の集束イオンビームにより得られる画像データにおける試料片Qが接続されたニードル18の状態(
図18)と、電子ビームにより得られる画像データにおける試料片Qが接続されたニードル18の状態(
図19)とを示す図である。コンピュータ22は、ニードル18の回転角度0°でのアプローチモードにおいては、ニードル18を回転させずに試料片Qを試料片ホルダPに移設するために適した姿勢状態を設定している。
図20および
図21は、ニードル18の回転角度90°でのアプローチモードにおいて、本発明の実施形態に係る荷電粒子ビーム装置10の集束イオンビームにより得られる画像データにおける試料片Qが接続されたニードル18を90°回転させた状態(
図20)と、電子ビームにより得られる画像データにおける試料片Qが接続されたニードル18を90°回転させた状態(
図21)とを示す図である。コンピュータ22は、ニードル18の回転角度90°でのアプローチモードにおいては、ニードル18を90°だけ回転させた状態で試料片Qを試料片ホルダPに移設するために適した姿勢状態を設定している。
図22および
図23は、ニードル18の回転角度180°でのアプローチモードにおいて、本発明の実施形態に係る荷電粒子ビーム装置10の集束イオンビームにより得られる画像データにおける試料片Qが接続されたニードル18を180°回転させた状態(
図22)と、電子ビームにより得られる画像データにおける試料片Qが接続されたニードル18を180°回転させた状態(
図23)とを示す図である。コンピュータ22は、ニードル18の回転角度180°でのアプローチモードにおいては、ニードル18を180°だけ回転させた状態で試料片Qを試料片ホルダPに移設するために適した姿勢状態を設定している。
なお、ニードル18と試料片Qとの相対的な接続姿勢は、予め上述した試料片ピックアップ工程において、試料片Qに対し所定の角度でニードル18をアプローチしてニードル18を試料片Qに接続する際に、各姿勢制御モードに適した接続姿勢に設定されている。
【0060】
コンピュータ22は、相互に接続されたニードル18および試料片Qの背景に構造物がない状態になるように、ステージ駆動機構13を動作させる。これは後続する処理(ステップ170)でニードル18および試料片Qのテンプレートを作成する際、集束イオンビームおよび電子ビームの各々により得られる試料片Qの画像データからニードル18および試料片Qのエッジ(輪郭)を確実に認識するためである。コンピュータ22は、ステージ12を所定距離だけ移動させる。試料片Qの背景を判断(ステップS160)し、背景が問題にならなければ、次のステップS170に進み、背景に問題があればステージ12を所定量だけ再移動させて(ステップS165)、背景の判断(ステップS160)に戻り、背景に問題が無くなるまで繰り返す。
【0061】
コンピュータ22は、ニードル18および試料片Qのテンプレート作成を実行する(ステップS170)。コンピュータ22は、試料片Qが固定されたニードル18を必要に応じて回転させた姿勢状態(つまり、試料台33の柱状部34に試料片Qを接続する姿勢)のニードル18および試料片Qのテンプレートを作成する。これによりコンピュータ22は、ニードル18の回転に応じて、集束イオンビームおよび電子ビームの各々により得られる画像データから3次元的にニードル18および試料片Qのエッジ(輪郭)を認識する。なお、コンピュータ22は、ニードル18の回転角度0°でのアプローチモードにおいては、電子ビームを必要とせずに、集束イオンビームにより得られる画像データからニードル18および試料片Qのエッジ(輪郭)を認識してもよい。
コンピュータ22は、ニードル18および試料片Qの背景に構造物がない位置にステージ12を移動させることをステージ駆動機構13またはニードル駆動機構19に指示した際に、実際に指示した場所にニードル18が到達していない場合には、観察倍率を低倍率にしてニードル18を探し、見つからない場合にはニードル18の位置座標を初期化して、ニードル18を初期位置に移動させる。
【0062】
このテンプレート作成(ステップS170)において、先ず、コンピュータ22は、試料片Qおよび試料片Qが接続されたニードル18の先端形状に対するテンプレートマッチング用のテンプレート(レファレンス画像データ)を取得する。コンピュータ22は、照射位置を走査しながらニードル18に荷電粒子ビーム(集束イオンビームおよび電子ビームの各々)を照射する。コンピュータ22は、荷電粒子ビームの照射によってニードル18から放出される二次荷電粒子R(二次電子など)の複数の異なる方向からの各画像データを取得する。コンピュータ22は、集束イオンビーム照射と、電子ビーム照射によって各画像データを取得する。コンピュータ22は、2つの異なる方向から取得した各画像データをテンプレート(レファレンス画像データ)として記憶する。
コンピュータ22は、集束イオンビームにより実際に加工された試料片Qおよび試料片Qが接続されたニードル18に対して実際に取得する画像データをレファレンス画像データとするので、試料片Qおよびニードル18の形状によらずに、精度の高いパターンマッチングを行うことができる。
なお、コンピュータ22は、各画像データを取得する際に、試料片Qおよび試料片Qが接続されたニードル18の形状の認識精度を増大させるために予め記憶した好適な倍率、輝度、コントラスト等の画像取得条件を用いる。
【0063】
次に、コンピュータ22は、ニードル退避の処理を行なう(ステップS180)。これは後続するステージ移動の際に、ステージ12と意図しない接触を防ぐためである。コンピュータ22は、ニードル駆動機構19によってニードル18を所定距離だけ移動させる。例えば、鉛直方向上方(つまりZ方向の正方向)に上昇させる。逆に、ニードル18はその場に停止させておき、ステージ12を所定距離だけ移動させる。例えば、鉛直方向下方(つまりZ方向の負方向)に降下させてもよい。ニードル退避方向は、上述の鉛直方向に限らず、ニードル軸方向であっても、その他の所定退避位置でもよく、ニードル先端に付いている試料片Qが、試料室内の構造物への接触や、集束イオンビームによる照射を受けない、予め定められた位置で有ればよい。
【0064】
次に、コンピュータ22は、上述のステップS020において登録した特定の試料片ホルダPが、荷電粒子ビームによる観察視野領域内に入るようにステージ駆動機構13によってステージ12を移動させる(ステップS190)。
図24および
図25はこの様子を示しており、特に
図24は、本発明の実施形態に係る荷電粒子ビーム装置10の集束イオンビームにより得られる画像の模式図であって、柱状部34の試料片Qの取り付け位置Uを示す図であり、
図25は、電子ビームにより得られる画像の模式図であって、柱状部34の試料片Qの取り付け位置Uを示す図である。
ここで、所望の試料片ホルダPの柱状部34が観察視野領域内に入るか否かを判定し(ステップS195)、所望の柱状部34が観察視野領域内に入れば、次のステップS200に進む。もし、所望の柱状部34が観察視野領域内に入らなければ、つまり、指定座標に対してステージ駆動が正しく動作しない場合は、直前に指定したステージ座標を初期化して、ステージ12が有する原点位置に戻る(ステップS197)。そして、再度、事前登録した所望の柱状部34の座標を指定して、ステージ12を駆動させ(ステップS190)て、柱状部34が観察視野領域内に入るまで繰り返す。
【0065】
次に、コンピュータ22は、ステージ駆動機構13によってステージ12を移動させて試料片ホルダPの水平位置を調整するとともに、試料片ホルダPの姿勢が所定姿勢になるように、姿勢制御モードに対応した角度分だけステージ12を回転と傾斜させる(ステップS200)。
このステップS200によって、元の試料S表面端面を柱状部34の端面に対して平行または垂直の関係に、試料片Qと試料片ホルダPの姿勢調整することができる。特に、柱状部34に固定した試料片Qを集束イオンビームで薄片化加工を行なうことを想定して、元の試料Sの表面端面と集束イオンビーム照射軸が垂直関係となるように試料片Qと試料片ホルダPの姿勢調整することが好ましい。また、柱状部34に固定する試料片Qが、元の試料Sの表面端面が柱状部34に垂直で、集束イオンビームの入射方向に下流側になるように試料片Qと試料片ホルダPの姿勢調整するのも好ましい。
ここで、試料片ホルダPのうち柱状部34の形状の良否を判定する(ステップS205)。ステップS023で柱状部34の画像を登録したものの、その後の工程で、予期せぬ接触等によって指定した柱状部34が変形、破損、欠落などしていないかを、柱状部34の形状の良否を判定するのがこのステップS205である。このステップS205で、該当柱状部34の形状に問題無く良好と判断できれば次のステップS210に進み、不良と判断すれば、次の柱状部34を観察視野領域内に入るようにステージ移動させるステップS190に戻る。
なお、コンピュータ22は、指定した柱状部34を観察視野領域内に入れるためにステージ12の移動をステージ駆動機構13に指示した際に、実際には指定された柱状部34が観察視野領域内に入らない場合には、ステージ12の位置座標を初期化して、ステージ12を初期位置に移動させる。
そしてコンピュータ22は、ガス供給部17のノズル17aを、集束イオンビーム照射位置近くに移動させる。例えば、ステージ12の鉛直方向上方の待機位置から加工位置に向かい下降させる。
【0066】
<試料片マウント工程>
ここで言う「試料片マウント工程」とは、摘出した試料片Qを試料片ホルダPに移設する工程のことである。
図26は、本発明の実施形態に係る荷電粒子ビーム装置10による自動サンプリングの動作のうち、試料片Qを所定の試料片ホルダPのうちの所定の柱状部34にマウント(移設)する工程の流れを示すフローチャートである。
コンピュータ22は、集束イオンビームおよび電子ビーム照射により得られる各画像データを用いて、上述したステップS020において記憶した試料片Qの移設位置を認識する(ステップS210)。コンピュータ22は、柱状部34のテンプレートマッチングを実行する。コンピュータ22は、櫛歯形状の試料台33の複数の柱状部34のうち、観察視野領域内に現れた柱状部34が予め指定した柱状部34であることを確認するために、テンプレートマッチングを実施する。コンピュータ22は、予め柱状部34のテンプレートを作成する工程(ステップS020)において作成した柱状部34毎のテンプレートを用いて、集束イオンビームおよび電子ビームの各々の照射により得られる各画像データとテンプレートマッチングを実施する。
【0067】
また、コンピュータ22は、ステージ12を移動した後に実施する柱状部34毎のテンプレートマッチングにおいて、柱状部34に欠落など問題が認められるか否かを判定する(ステップS215)。柱状部34の形状に問題が認められた場合(NG)には、試料片Qを移設する柱状部34を、問題が認められた柱状部34の隣の柱状部34に変更し、その柱状部34についてもテンプレートマッチングを行ない移設する柱状部34を決定する。柱状部34の形状に問題が無ければ次のステップS220に移る。
また、コンピュータ22は、所定領域(少なくとも柱状部34を含む領域)の画像データからエッジ(輪郭)を抽出して、このエッジパターンをテンプレートとしてもよい。また、コンピュータ22は、所定領域(少なくとも柱状部34を含む領域)の画像データからエッジ(輪郭)を抽出することができない場合には、画像データを再度取得する。抽出したエッジを表示装置21に表示し、観察視野領域内の集束イオンビームによる画像または電子ビームによる画像とテンプレートマッチングしてもよい。
【0068】
コンピュータ22は、電子ビームの照射により認識した取り付け位置と集束イオンビームの照射により認識した取り付け位置とが一致するように、ステージ駆動機構13によってステージ12を駆動する。コンピュータ22は、試料片Qの取り付け位置Uが視野領域の視野中心(加工位置)に一致するように、ステージ駆動機構13によってステージ12を駆動する。
【0069】
次に、コンピュータ22は、ニードル18に接続された試料片Qを試料片ホルダPに接触させる処理として、以下のステップS220~ステップS250の処理を行なう。
先ず、コンピュータ22は、ニードル18の位置を認識する(ステップS220)。コンピュータ22は、ニードル18に荷電粒子ビームを照射することによってニードル18に流入する吸収電流を検出し、吸収電流画像データを生成する。コンピュータ22は、集束イオンビーム照射と、電子ビーム照射によって各吸収電流画像データを取得する。コンピュータ22は、2つの異なる方向からの各吸収電流画像データを用いて3次元空間でのニードル18の先端位置を検出する。
なお、コンピュータ22は、検出したニードル18の先端位置を用いて、ステージ駆動機構13によってステージ12を駆動して、ニードル18の先端位置を予め設定されている視野領域の中心位置(視野中心)に設定してもよい。
【0070】
次に、コンピュータ22は、試料片マウント工程を実行する。先ず、コンピュータ22は、ニードル18に接続された試料片Qの位置を正確に認識するために、テンプレートマッチングを実施する。コンピュータ22は、予めニードル18および試料片Qのテンプレート作成工程(ステップS170)において作成した相互に接続されたニードル18および試料片Qのテンプレートを用いて、集束イオンビームおよび電子ビームの各々の照射により得られる各画像データにおいてテンプレートマッチングを実施する。
なお、コンピュータ22は、このテンプレートマッチングにおいて画像データの所定の領域(少なくともニードル18および試料片Qを含む領域)からエッジ(輪郭)を抽出する際には、抽出したエッジを表示装置21に表示する。また、コンピュータ22は、テンプレートマッチングにおいて画像データの所定の領域(少なくともニードル18および試料片Qを含む領域)からエッジ(輪郭)を抽出することができない場合には、画像データを再度取得する。
そして、コンピュータ22は、集束イオンビームおよび電子ビームの各々の照射により得られる各画像データにおいて、相互に接続されたニードル18および試料片Qのテンプレートと、試料片Qの取付け対象である柱状部34のテンプレートとを用いたテンプレートマッチングに基づき、試料片Qと柱状部34との距離を計測する。
そして、コンピュータ22は、最終的にステージ12に平行な平面内での移動のみによって試料片Qを、試料片Qの取付け対象である柱状部34に移設する。
【0071】
この試料片マウント工程において、先ず、コンピュータ22は、ニードル駆動機構19によってニードル18を移動させるニードル移動を実行する(ステップS230)。コンピュータ22は、集束イオンビームおよび電子ビームの各々の照射により得られる各画像データにおいて、ニードル18および試料片Qのテンプレートと、柱状部34のテンプレートとを用いたテンプレートマッチングに基づき、試料片Qと柱状部34との距離を計測する。コンピュータ22は、計測した距離に応じてニードル18を試料片Qの取付け位置に向かうように3次元空間内で移動させる。
【0072】
次に、コンピュータ22は、柱状部34と試料片Qとの間に予め定めた空隙L2を空けてニードル18を停止させる(ステップS240)。コンピュータ22は、この空隙L2を1μm以下とし、好ましくは、空隙L2を100nm以上かつ500nm以下とする。
この空隙L2が500nm以上の場合であっても接続できるが、デポジション膜による柱状部34と試料片Qとの接続に要する時間が所定値以上に長くなり、1μmは好ましくない。この空隙L2が小さくなるほど、デポジション膜による柱状部34と試料片Qとの接続に要する時間が短くなるが、接触させないことが肝要である。
なお、コンピュータ22は、この空隙L2を設ける際に、柱状部34およびニードル18の吸収電流画像を検知することによって両者の空隙を設けてもよい。
コンピュータ22は、柱状部34とニードル18との間の導通、または柱状部34およびニードル18の吸収電流画像を検知することによって、柱状部34に試料片Qを移設した後において、試料片Qとニードル18との切り離しの有無を検知する。
なお、コンピュータ22は、柱状部34とニードル18との間の導通を検知することができない場合には、柱状部34およびニードル18の吸収電流画像を検知するように処理を切り替える。
【0073】
次に、コンピュータ22は、ニードル18に接続された試料片Qを柱状部34に接続する処理を行なう(ステップS250)。
図27、
図28は、それぞれ
図24、
図25での観察倍率を高めた画像の模式図である。コンピュータ22は、
図27のように試料片Qの一辺と柱状部34の一辺が一直線になるように、かつ、
図28のように試料片Qの上端面と柱状部34の上端面が同一面になるように接近させ、空隙L2が所定の値になった時にニードル駆動機構19を停止させる。コンピュータ22は、空隙L2を有して試料片Qの取り付け位置に停止した状況で、
図27の集束イオンビームによる画像において、柱状部34の端部を含むようにデポジション用の加工枠R2を設定する。コンピュータ22は、試料片Qおよび柱状部34の表面にガス供給部17によってガスを供給しつつ、所定時間に亘って、加工枠R2を含む照射領域に集束イオンビームを照射する。この操作によっては集束イオンビーム照射部にデポジション膜が形成され、空隙L2が埋まり試料片Qは柱状部34に接続される。コンピュータ22は、柱状部34に試料片Qをデポジションにより固定する工程において、柱状部34とニードル18と間の導通を検知した場合にデポジションを終了する。
【0074】
コンピュータ22は、試料片Qと柱状部34との接続が完了したことの判定を行なう(ステップS255)。ステップS255は、例えば以下のように行なう。予めニードル18とステージ12の間に抵抗計を設置しておき、両者の導通を検出する。両者が離間している(空隙L2がある)時には電気抵抗は無限大であるが、両者が導電性のデポジション膜で覆われて、空隙L2が埋まっていくにつれて両者間の電気抵抗値は徐々に低下し、予め定めた抵抗値以下になったことを確認して電気的に接続されたと判断する。また、事前の検討から、両者間の抵抗値が予め定めた抵抗値に達した時にはデポジション膜は力学的に十分な強度を有し、試料片Qは柱状部34に十分に接続されたと判定できる。
なお、検知するのは上述の電気抵抗に限らず、電流や電圧など柱状部と試料片Qの間の電気特性が計測できればよい。また、コンピュータ22は、予め定めた時間内に予め定めた電気特性(電気抵抗値、電流値、電位など)を満足しなければ、デポジション膜の形成時間を延長する。また、コンピュータ22は、柱状部34と試料片Qの空隙L2、照射ビーム条件、デポジション膜用のガス種について最適なデポジション膜を形成できる時間を予め求めておき、このデポジション形成時間を記憶しておき、所定の時間でデポジション膜の形成を停止することできる。
コンピュータ22は、試料片Qと柱状部34との接続が確認された時点で、ガス供給と集束イオンビーム照射を停止させる。
図29は、この様子を示しており、本発明の実施形態に係る荷電粒子ビーム装置10の集束イオンビームによる画像データで、ニードル18に接続された試料片Qを柱状部34に接続するデポジション膜DM1を示す図である。
【0075】
なお、ステップS255においては、コンピュータ22は、ニードル18の吸収電流の変化を検出することによって、デポジション膜DM1による接続状態を判定してもよい。
コンピュータ22は、ニードル18の吸収電流の変化に応じて試料片Qおよび柱状部34がデポジション膜DM1により接続されたと判定した場合に、所定時間の経過有無にかかわらずに、デポジション膜DM1の形成を停止してもよい。接続完了が確認できれば次のステップS260に移り、もし、接続完了しなければ、予め定めた時間で集束イオンビーム照射とガス供給を停止して、集束イオンビームによって試料片Qとニードル18を繋ぐデポジション膜DM2を切断し、ニードル先端の試料片Qは破棄する。ニードルを退避させる動作に移る(ステップS270)。
【0076】
次に、コンピュータ22は、ニードル18と試料片Qとを接続するデポジション膜DM2を切断して、試料片Qとニードル18を分離する処理を行なう(ステップS260)。
上記
図29は、この様子を示しており、本発明の実施形態に係る荷電粒子ビーム装置10の集束イオンビームにより得られる画像データにおけるニードル18と試料片Qとを接続するデポジション膜DM2を切断するための切断加工位置T2を示す図である。コンピュータ22は、柱状部34の側面から所定距離(つまり、柱状部34の側面から試料片Qまでの空隙L2と、試料片Qの大きさL3との和)Lと、ニードル18と試料片Qの空隙の所定距離L1(
図29参照)の半分との和(L+L1/2)だけ離れた位置を切断加工位置T2に設定する。また、切断加工位置T2を、所定距離Lとニードル18と試料片Qの空隙の所定距離L1の和(L+L1)だけ離れた位置としてもよい。この場合、ニードル先端に残存するデポジション膜DM2(カーボンデポジション膜)が小さくなって、ニードル18のクリーニング(後述)作業の機会が少なくなって、連続自動サンプリングにとって好ましい。
コンピュータ22は、所定時間に亘って、切断加工位置T2に集束イオンビームを照射することによって、ニードル18を試料片Qから分離できる。コンピュータ22は、所定時間に亘って、切断加工位置T2に集束イオンビームを照射することによって、デポジション膜DM2のみを切断して、ニードル18を切断することなくニードル18を試料片Qから分離する。ステップS260においては、デポジション膜DM2のみを切断することが重要である。これにより、1度セットしたニードル18は長期間、交換せずに繰り返し使用できるため、無人で連続して自動サンプリングを繰返すことができる。
図30は、この様子を示しており、本発明の実施形態に係る荷電粒子ビーム装置10における集束イオンビームの画像データによるニードル18が試料片Qから切り離された状態を示す図である。ニードル先端にはデポジション膜DM2の残渣が付いている。
【0077】
コンピュータ22は、試料片ホルダPとニードル18との導通を検出することによって、ニードル18が試料片Qから切り離されたか否かを判定する(ステップS265)。コンピュータ22は、切断加工の終了後、つまり切断加工位置T2でのニードル18と試料片Qとの間のデポジション膜DM2を切断するために、集束イオンビーム照射を所定時間行なった後であっても、試料片ホルダPとニードル18との導通を検出した場合には、ニードル18が試料台33から切り離されていないと判定する。コンピュータ22は、ニードル18が試料片ホルダPから切り離されていないと判定した場合には、このニードル18と試料片Qとの分離が完了していないことを表示装置21に表示するか、または警報音により操作者に報知する。そして、これ以降の処理の実行を停止する。一方、コンピュータ22は、試料片ホルダPとニードル18との導通を検出しない場合には、ニードル18が試料片Qから切り離されたと判定し、これ以降の処理の実行を継続する。
【0078】
コンピュータ22は、ニードル18を所定角度回転させた姿勢制御モードにおいて、姿勢を制御した試料片Qとニードル18の分離が完了したと判定した後、集束イオンビームを照射して取得した画像データから回転状態のニードル18のエッジ(輪郭)とデポジション膜DM2の残渣の位置座標を取得する(ステップS270)。例えば、
図31は試料片姿勢を180°回転させた際の状態を示しており、本発明の実施形態に係る荷電粒子ビーム装置10の集束イオンビームにより得られる画像データにおけるニードル18と試料片Qとを接続するデポジション膜DM2を切断するための切断加工位置T2を示す模式図である。さらに、
図32は、
図32の切断加工位置T2に対して集束イオンビームによる切断加工を行って試料片Qとニードル18間の分離が完了した後の状態を示す模式図である。
図32におけるニードル18にデポジション膜DM2の残渣DM2aが付着した状態で、次の自動サンプリングの試料片ピックアップ工程に移行した状態を
図33に示す。例えば、
図35では、ニードル18を試料片Qにアプローチした際、ニードル18の端面上面エッジ18aと試料表面Sb間の高さの位置合わせをすると残渣DM2aのZ方向の高さ分段差が発生し、アプローチ後のデポジション膜DM2の成膜加工に要する時間を増加し、接着強度が低下するため、毎回ニードル18の先端部に残渣DM2aが無い状態でアプローチすることが望ましい。
【0079】
残渣DM2aの除去を行うための実施例について説明する。例えば、
図34は、デポジション膜DM2の切断加工により試料片Qと分離された後、コンピュータ22により、荷電粒子ビームの照射によって取得した画像データから、背景BGとニードル18の境界位置に存在し、背景BGに対して所定の輝度差を有するピクセル18Pを画面内上面は探索方向USD、下面は探索方向LSDに従って探索し、ニードル18のエッジを抽出する過程を示す模式図である。さらに、コンピュータ22は、ピクセル18Pのうち複数の代表ピクセル18USPを選出し、代表ピクセル18USPの位置座標から最小二乗法等の近似によりニードル18の上面エッジ点列18UESを求める。代表ピクセル18USPは、先端部分から選出すると、残渣DM2aの影響によって近似結果である上面エッジ点列18UESの信頼性が低下するため、残渣DM2aが付着する可能性のある先端部分領域を除いた取り付け部分側と中間部分等先端部分を避けた所定の箇所から選出する。次に、コンピュータ22は、ニードル18の上面エッジ点列18UESよりも画像面内上側に位置し、背景BGに対して所定の輝度差を有するピクセル群をニードル18に付着したデポジション膜DM2の残渣DM2aとして認識する。
図35は、認識した残渣DM2aの位置情報を元に、残渣DM2aの除去のためのトリミング加工領域T3を決定した状態を示す模式図である。
また、ニードル18のエッジおよび残渣DM2aの位置捕捉には、事前に荷電粒子ビーム照射によって取得したテンプレート画像と重ね合わせて差分を抽出する等の処理によってでもよい。
【0080】
コンピュータ22は、
図35における加工領域T3a内の各ピクセルに対して集束イオンビームをベクタースキャンすることで、ニードル18に付着した残渣DM2aのトリミング加工を実行する(ステップS280)。残渣DM2aの除去が完了した状態を示す模式図が
図36であり、毎回このような状態で次の自動サンプリングに移行することが望ましい。また、コンピュータ22は、荷電粒子ビーム照射前のデポジション膜DM2の残渣またはニードル18のピクセル内輝度と背景BGの輝度を記憶して集束イオンビーム照射によるスパッタリングで生じる輝度変化を随時モニタしてドーズ量の調整をし、例えば、ピクセル内の輝度が背景の輝度と同等になったタイミングで集束イオンビーム照射を停止してもよい。該トリミング加工は、自動サンプリングの試料片マウント工程の、ニードル18が回転した状態のままで行われるため、別途ニードルクリーニング加工をするための位置へのステージ移動、およびスキャンやニードル先端位置認識が不要であるため、所要時間を短縮することが可能である。
【0081】
次に、上述した実施形態の第1の変形例を説明する。
図37は、上面ニードル18の先端面の厚さが増加した場合、ニードル18を制御してニードル18の端面上面エッジ18aと試料表面Sbとの高さ位置を合わせる際の位置関係の例を示している。ニードル18の下面側と試料Sとの意図しない接触を回避するため、ニードル18は上面側から先鋭化加工されていることが望ましい。上述の実施形態においては、ニードル18の残渣DM2aのトリミング加工による除去について手順を説明したが、第1の変形例ではニードル18のエッジ認識を利用したニードル18の先鋭化加工について説明する。
コンピュータ22は、デポジション膜DM2の残渣DM2aまたはニードル18として抽出したピクセルの位置座標ごとに対して整形加工をするための集束イオンビームの加工領域を画定する際、下記に述べる判定により加工領域の異なる各処理に分岐する。コンピュータ22はニードル18の画像データ面内の上面エッジ点列18UESの先端側終点ピクセル18UEPと下面エッジ点列18LESの先端側終点ピクセル18LEP間の距離をニードル18の先端の厚さNTとして測定する。厚さNTが設定された所定の初期値NTa(例えば1μm)以下の場合には、上述のように残渣DM2aのピクセル群に限定して集束イオンビームをベクタースキャンする。また、厚さNTが初期値NTaを超過している場合には加工範囲を変更する。次に変更した場合の実施形態について説明する。
図38は、このようなステップにおける加工時のニードル18のエッジ認識時の過程を示している。輝度差を有するピクセル18Pの探索過程は
図43と同じである。コンピュータ22は厚さNTの判定結果をもとに、加工結果がニードル18の厚さNTが設定された所定の初期値NTaに収まるように加工領域の画定を行う。コンピュータ22は、抽出したニードル18の画像面内上面エッジ点列18UESを画像内-Y方向にNTから所定の厚さを差し引いた距離分平行移動させた点列とニードル18の上面のエッジ点列18UESに囲まれ、所定のX方向の長さ(例えば100μm)までの領域と残渣DM2aとして抽出した領域を包含した加工領域T4を設定する。この加工領域T4内に存在するピクセルに対して集束イオンビームをベクタースキャンして先鋭化加工を実施する。
図39は、先述した加工領域T4とニードル18との位置関係を示す模式図である。
【0082】
次に、上述した実施形態の第2の変形例を説明する。上述では、本発明における荷電粒子ビーム装置10によりニードル18の残渣DM2aとニードル18の先鋭化加工を試料片とニードルの分離(ステップS260)後に行う手順について説明したが、第2の変形例ではニードル18の残渣DM2aとニードル18の先鋭化加工を同時のタイミングにて行う実施形態を説明する。
コンピュータ22は、デポジション膜DM2の残渣またはニードル18への集束イオンビーム照射をニードル18と試料片Qとの分離のタイミングで行ってもよい。分離とトリミング加工のタイミングを同時にすることによって、画像データ取得に要するスキャン時間分を短縮することが可能である。例えば、
図40はニードル18と試料片Qとの分離の前に、係る荷電粒子ビーム装置10によって集束イオンビームを照射して取得した画像データの模式図を示す。さらに、
図41は、
図40の状態において、ニードル18と試料片Qとの接続部付近においてエッジ点列を抽出する過程の模式図である。コンピュータ22は、上述の同じ手順に基づいてニードル18の上面エッジ点列18UESと下面エッジ点列18LESを抽出した上で、事前に設定された試料片QのX方向の長さLの情報から、側面エッジの位置座標を求め、加工領域T2aを試料片Qのニードル18側の側面エッジまで拡張して画定する(
図41)。さらに、上述のニードル先端形状認識後の分岐を適用して加工領域T3および加工領域T4に加工領域T2を包含した加工領域T2aとしてもよい。また、ニードル18のエッジ抽出を行った後、画像面内水平方向に探索することで試料片Qの側面エッジ点列を抽出し、加工領域T2aの範囲を定めてもよい。拡張後の加工領域T2aに対しては、先述の実施形態と同じく集束イオンビームをベクタースキャンして加工を実行する。
【0083】
次に、コンピュータ22は、ニードル退避の処理を行なう(ステップS290)。コンピュータ22は、ニードル駆動機構19によってニードル18を試料片Qから所定距離だけ遠ざける。例えば、2mm、3mmなど鉛直方向上方、つまりZ方向の正方向に上昇させる。
図42および
図43は、この様子を示しており、それぞれ、ニードル18を試料片Qから上方に退避させた状態を、本発明の実施形態に係る荷電粒子ビーム装置10の集束イオンビームによる画像の模式図(
図42)であり、電子ビームによる画像の模式図(
図43)である。
【0084】
次に、引き続いて同じ試料Sの異なる場所からサンプリングを継続するか否かの判断を下す(ステップS300)。サンプリングすべき個数の設定は、ステップS010で事前に登録しているため、コンピュータ22はこのデータを確認して次のステップを判断する。継続してサンプリングする場合は、ステップS030に戻り、上述のように後続する処理を続けサンプリング作業を実行し、サンプリングを継続しない場合は、一連のフローを終了する。
【0085】
なお、ステップS050のニードルのテンプレート作成は、ステップS280の直後に行ってもよい。これにより、次のサンプリングに備えてのステップで、次のサンプリングの際にステップS050で行う必要がなくなり、工程が簡略化できる。
【0086】
以上により、一連の自動サンプリング動作が終了する。
なお、上述したスタートからエンドまでのフローは一例にすぎず、全体の流れに支障が出なければ、ステップの入れ替えやスキップを行なってもよい。
コンピュータ22は、上述したスタートからエンドまでを連続動作させることで、無人でサンプリング動作を実行させることができる。上述の方法により、ニードル18を交換することなく繰り返し試料サンプリングすることができるため、同一のニードル18を用いて多数個の試料片Qを連続してサンプリングすることができる。
これにより荷電粒子ビーム装置10は、試料Sから試料片Qを分離および摘出する際に同じニードル18の成形することなく、さらにはニードル18自体を交換することなく繰り返し使用でき、一個の試料Sから多数個の試料片Qを自動で作製することができる。従来のような操作者の手動操作を施すことなくサンプリングが実行できる。
【0087】
なお、上述した実施形態では、コンピュータ22は、ソフトウェア機能部、またはLSIなどのハードウェア機能部も含む。
また、上述した実施形態では、ニードル18は先鋭化された針状部材を一例として説明したが、先端が平たがね状などの形状であってもよい。
【0088】
また、本発明では、少なくとも摘出する試料片Qがカーボンから構成されている場合にも適用できる。本発明によるテンプレートと先端位置座標を用いて所望の位置に移動させることができる。つまり、摘出した試料片Qをニードル18の先端に固定された状態で、試料片ホルダPに移設する際に、試料片Q付きのニードル18を荷電粒子ビーム照射による二次電子画像から取得した真の先端座標(試料片の先端座標)と、試料片Q付きのニードル18の吸収電流画像から形成したニードル18のテンプレートを用いて、試料片Qを試料片ホルダPに所定の空隙を有して接近し、停止するよう制御することができる。
【0089】
また、本発明は、他の装置でも適用できる。例えば、微小部の電気特性を、探針を接触させて計測する荷電粒子ビーム装置、特に、荷電粒子ビームのうち電子ビームによる走査電子顕微鏡の試料室内に金属探針を装備した装置で、微細領域の導電部に接触させるために、タングステン探針の先端にカーボンナノチューブを備えた探針を用いて計測する荷電粒子ビーム装置において、通常の二次電子像では、配線パターン等の背景のためにタングステン探針先端が認識できない。そこで、吸収電流画像によってタングステン探針を認識し易くできるが、カーボンナノチューブの先端が認識できす、肝心の測定点にカーボンナノチューブを接触させることができない。そこで、本発明のうち、二次電子画像によってニードル18の真の先端座標を特定し、吸収電流画像によってテンプレートを作成する方法を用いることで、カーボンナノチューブ付きの探針を特定の測定位置に移動させ、接触させることができる。
【0090】
なお、上述の本発明による荷電粒子ビーム装置10によって作製された試料片Qは、別の集束イオンビーム装置に導入して、透過電子顕微鏡解析に相応しい薄さまで、装置操作者が慎重に操作し、加工してもよい。このように本発明による荷電粒子ビーム装置10と集束イオンビーム装置とを連携することによって、夜間に無人で多数個の試料片Qを試料片ホルダPに固定しておき、昼間に装置操作者が慎重に超薄の透過電子顕微鏡用試料に仕上げることができる。このため、従来、試料摘出から薄片加工までの一連作業を、一台の装置で装置操作者の操作に頼っていたことに比べて、装置操作者への心身の負担は大幅に軽減され、作業効率が向上する。
【0091】
なお、上記の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
例えば、本発明による荷電粒子ビーム装置10では、試料片Qを摘出する手段としてニードル18について説明をしたが、これに限定されることは無く、微細に動作するピンセットであってもよい。ピンセットを用いることで、デポジションを行なうことなく試料片Qを摘出でき、先端の損耗などの心配もない。ニードル18を使った場合であっても、試料片Qとの接続はデポジションに限定されることは無く、ニードル18に静電気力を付加した状態で試料片Qに接触させ、静電吸着して試料片Qとニードル18の接続を行なってもよい。
【符号の説明】
【0092】
10…荷電粒子ビーム装置、11…試料室、12…ステージ(試料ステージ)、13…ステージ駆動機構、14…集束イオンビーム照射光学系(荷電粒子ビーム照射光学系)、15…電子ビーム照射光学系(荷電粒子ビーム照射光学系)、16…検出器、17…ガス供給部、18…ニードル、19…ニードル駆動機構、20…吸収電流検出器、21…表示装置、22…コンピュータ、23…入力デバイス、33…試料台、34…柱状部、P…試料片ホルダ、Q…試料片、R…二次荷電粒子、S…試料