IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ミツトヨの特許一覧

<>
  • 特許-非接触座標測定装置 図1
  • 特許-非接触座標測定装置 図2
  • 特許-非接触座標測定装置 図3
  • 特許-非接触座標測定装置 図4
  • 特許-非接触座標測定装置 図5
  • 特許-非接触座標測定装置 図6
  • 特許-非接触座標測定装置 図7
  • 特許-非接触座標測定装置 図8
  • 特許-非接触座標測定装置 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-21
(45)【発行日】2022-07-29
(54)【発明の名称】非接触座標測定装置
(51)【国際特許分類】
   G01C 3/06 20060101AFI20220722BHJP
【FI】
G01C3/06 120W
【請求項の数】 5
(21)【出願番号】P 2017251865
(22)【出願日】2017-12-27
(65)【公開番号】P2019117141
(43)【公開日】2019-07-18
【審査請求日】2020-11-09
(73)【特許権者】
【識別番号】000137694
【氏名又は名称】株式会社ミツトヨ
(74)【代理人】
【識別番号】110000637
【氏名又は名称】特許業務法人樹之下知的財産事務所
(72)【発明者】
【氏名】鈴木 義将
(72)【発明者】
【氏名】奈良 正之
(72)【発明者】
【氏名】原 慎一
【審査官】仲野 一秀
(56)【参考文献】
【文献】特開2013-117453(JP,A)
【文献】特開平10-96778(JP,A)
【文献】特開2000-214260(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01C 3/00-3/32
G01S 7/48-7/51
17/00-17/95
G01B 11/00-11/30
(57)【特許請求の範囲】
【請求項1】
測定対象物の第1測定点に第1レーザー光を照射し、前記第1レーザー光の反射光に基づく受光信号を生成する第1レーザーユニットと、
前記受光信号に基づいて前記第1測定点までの距離を測定する第1測定部と、
前記測定対象物の前記第1測定点とは異なる第2測定点に第2レーザー光を照射し、前記第2レーザー光の反射光と参照光とを干渉させてビート信号を生成する第2レーザーユニットと、
前記ビート信号に基づいて前記第2測定点までの距離を測定する第2測定部と、
前記第1測定点が移動する軌跡に沿って前記第2測定点が前記第1測定点を追尾するように、前記第1レーザー光及び前記第2レーザー光の各出射方向を同時に変化させる出射方向変更機構と、を備え、
前記第2測定部は、前記第2測定点までの距離を測定するとき、前記第1測定点の測定値に基づいて、前記ビート信号の次数を決定することを特徴とする非接触座標測定装置。
【請求項2】
請求項1に記載の非接触座標測定装置において、
前記第1レーザーユニット及び前記第2レーザーユニットは、前記第1レーザー光前記第2レーザー光との間に所定角度が形成されるように配置され、
前記出射方向変更機構は、前記第1レーザーユニット及び前記第2レーザーユニットを一体的に回転させることを特徴とする非接触座標測定装置。
【請求項3】
請求項1又は請求項2に記載の非接触座標測定装置において、
前記第1レーザーユニット及び前記第1測定部を含んで構成される第1レーザー距離計の測定精度は、前記第2レーザーユニット及び前記第2測定部を含んで構成される第2レーザー距離計の絶対距離測定可能範囲よりも小さい値を許容差とする測定精度に設定されていることを特徴とする非接触座標測定装置。
【請求項4】
請求項3に記載の非接触座標測定装置において、
前記第2レーザーユニットは、前記第2レーザー光を発生するレーザー光発生部と、前記レーザー光発生部から発生した前記第2レーザー光を集光する集光レンズと、前記集光レンズを当該集光レンズの光軸上で駆動するレンズ駆動部とを有しており、
前記レンズ駆動部は、前記第1測定点の測定値に基づいて、前記集光レンズを駆動することを特徴とする非接触座標測定装置。
【請求項5】
請求項1から請求項4のいずれか一項に記載の非接触座標測定装置において、
前記第1測定部及び前記第2測定部は、前記第1レーザー光及び前記第2レーザー光の各出射方向が所定角度変化する毎に測定を行い、
前記第1測定部及び前記第2測定部の各測定間隔を、前記第1測定点の測定値に基づいて設定する測定間隔設定部をさらに備えることを特徴とする非接触座標測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非接触座標測定装置に関する。
【背景技術】
【0002】
従来、測定対象物に対してレーザー光を走査させながら測定対象物までの距離を測定するレーザー距離計が搭載され、レーザー光の出射方向及び測定対象物までの距離に基づいて、測定対象物表面の3次元座標を点群として取得する非接触座標測定装置が存在する(例えば特許文献1参照)。
【0003】
非接触座標測定装置には、測定対象物までの距離を測定するための様々なレーザー距離計が利用されるが、工業分野での利用が期待される高精度なレーザー距離計として、波長走査レーザーを利用したヘテロダイン干渉法を利用したものが存在する(例えば非特許文献1、特許文献2参照)。このヘテロダイン干渉法では、測定光で反射された反射光と参照光とを干渉させて生じるビート信号の周波数に基づいて、測定対象物までの距離を求める。ただし、ビート信号の周波数は所定の光路長毎に同一状態を繰り返すため、所定の光路長の範囲内では絶対距離を測定可能であるが、所定の光路長を超えた距離を測定するためには、ビート信号の周波数繰り返し数である次数を判別する必要がある。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2017-181429号公報
【文献】特開平10-82858号公報
【非特許文献】
【0005】
【文献】小林喬郎、「半導体レーザーによる干渉測長技術」、光学、1988年6月、第17巻、第6号
【発明の概要】
【発明が解決しようとする課題】
【0006】
前述した特許文献2には、波長走査レーザーを利用したヘテロダイン干渉法においてビート信号の次数判定を行う方法が開示されている。しかし、特許文献2に開示された方法では、ビート信号の次数判別を行うために、測定対象物までの距離を一定に保った状態で波長走査量を変化させる必要がある。非接触座標測定装置がビート信号の次数判別を行うレーザー距離計を搭載している場合、各測定点でレーザー光の走査を停止して次数判別を行う必要があるため、全体的な測定時間が長くなってしまう。
【0007】
一方、ビート信号を利用しない一般的な方式(例えばタイム・オブ・フライト方式又は位相差方式など)の粗測定を予め行い、粗測定の結果を利用して高精度測定の際のビート信号の次数を決定することが考えられる。しかし、粗測定と高精度測定とをそれぞれ行う場合、測定対象物を2回走査することになり、全体的な測定時間が通常の倍近くになってしまう。
【0008】
本発明の目的は、測定対象物を高精度かつ短時間で測定できる非接触座標測定装置を提供することにある。
【課題を解決するための手段】
【0009】
本発明の非接触座標測定装置は、測定対象物の第1測定点に第1レーザー光を照射し、前記第1レーザー光の反射光に基づく受光信号を生成する第1レーザーユニットと、前記受光信号に基づいて前記第1測定点までの距離を測定する第1測定部と、前記測定対象物の第2測定点に第2レーザー光を照射し、前記第2レーザー光の反射光と参照光とを干渉させてビート信号を生成する第2レーザーユニットと、前記ビート信号に基づいて前記第2測定点までの距離を測定する第2測定部と、前記第1測定点が移動する軌跡に沿って前記第2測定点が移動するように、前記第1レーザー光及び前記第2レーザー光の各出射方向を同時に変化させる出射方向変更機構と、を備え、前記第2測定部は、前記第2測定点までの距離を測定するとき、前記第1測定点の測定値に基づき、前記ビート信号の次数を決定することを特徴とする。
【0010】
本発明では、第1レーザーユニット及び第1測定部が第1レーザー距離計を構成しており、第2レーザーユニット及び第2測定部が第2レーザー距離計を構成している。ここで、第1レーザー距離計は、ビート信号を利用しない一般的な方式(タイム・オブ・フライト方式又は位相差方式など)のレーザー距離計として構成され、その第1測定部は、第1レーザー光の受光信号に基づき、第1測定点までの距離を測定する。一方、第2レーザー距離計は、ビート信号を利用するレーザー距離計として構成され、その第2測定部は、第2レーザー光の反射光と参照光とが干渉して生成されるビート信号に基づき、第2測定点までの距離を測定する。
本発明において、任意の測定範囲を測定する場合、出射方向変更機構により、測定対象物において第1レーザー光の照射点を第2レーザー光の照射点が追尾することにより、第1測定点が移動する軌跡に沿って第2測定点が移動する。すなわち、第2レーザー距離計は、第1レーザー距離計によって既に測定された箇所を後追いで測定する。このため、第2測定部は、第2測定点までの距離を測定するとき、第1測定点の測定値に基づき、ビート信号の次数を決定することができる。これにより、第2レーザー距離計は、従来技術のような次数判別を行う必要なく、第1レーザー距離計よりも高精度な測定を短時間で行うことができる。また、第1レーザー距離計及び第2レーザー距離計が任意の測定範囲を測定する各期間は重なるため、測定範囲を2回走査する場合よりも、測定範囲を走査するための時間が短縮される。
従って、本発明によれば、測定対象物を高精度かつ短時間で測定できる非接触座標測定装置が提供される。
【0011】
本発明の非接触座標測定装置において、前記第1レーザーユニット及び前記第2レーザーユニットは、前記第1レーザー光及び前記第2レーザー光が所定角度を成すように配置され、前記出射方向変更機構は、前記第1レーザーユニット及び前記第2レーザーユニットを一体的に回転させることが好ましい。
本発明では、出射方向変更機構が第1レーザーユニット及び第2レーザーユニットを一体的に回転させることにより、第1レーザー光及び第2レーザー光の各出射方向は一括して変化する。これにより、測定範囲の走査を簡単かつ高速に行うことができる。
【0012】
本発明の非接触座標測定装置において、前記第1レーザーユニット及び前記第1測定部を含んで構成される第1レーザー距離計の測定精度は、前記第2レーザーユニット及び前記第2測定部を含んで構成される第2レーザー距離計の絶対距離測定可能範囲よりも小さい値を許容差とする測定精度に設定されていることが好ましい。
本発明では、第2測定部が、第1測定点の測定値に基づき、ビート信号の次数を好適に決定することができる。なお、第1レーザー距離計の測定精度及び第2レーザー距離計の絶対距離測定可能範囲をそれぞれ設定する方法は、従来技術と同様である。
【0013】
本発明の非接触座標測定装置において、前記第2レーザーユニットは、前記第2レーザー光を発生するレーザー光発生部と、前記レーザー光発生部から発生した前記第2レーザー光を集光する集光レンズと、前記集光レンズを当該集光レンズの光軸上で駆動するレンズ駆動部とを有しており、前記レンズ駆動部は、前記第1測定部による前記第1測定点の測定値に基づいて、前記集光レンズを駆動することが好ましい。
本発明では、第2レーザー光が第2測定点を照射する前に、集光レンズの光軸方向の位置を調整開始することができる。このため、第2レーザー光が第2測定点を照射してから集光レンズの調整を開始する場合に比べ、全体的な測定時間を短縮することができる。
【0014】
本発明の非接触座標測定装置は、前記第1測定部及び前記第2測定部は、前記第1レーザー光及び前記第2レーザー光の各出射方向が所定角度変化する毎に測定を行い、前記第1測定部及び前記第2測定部の各測定間隔を、前記第1測定点の測定値に基づいて設定する測定間隔設定部をさらに備えることが好ましい。
本発明では、測定間隔設定部が第1測定点の測定値に基づいて測定間隔を設定することにより、測定対象物の凹凸の段差付近で第2測定点を高密度に設定し、高精度な測定を行うことができる。また、凹凸のある測定対象物で第2測定点の点群間隔を一定に設定することができる。また、測定距離が短い場合に、第2測定点の数を少なく設定し、データ保存量を節約することができる。
【発明の効果】
【0015】
本発明は、測定対象物の任意の範囲を高精度かつ短時間で測定できる非接触座標測定装置を提供できる。
【図面の簡単な説明】
【0016】
図1】本発明の一実施形態に係る非接触座標測定装置の外観を模式的に示す斜視図。
図2】前記実施形態の非接触座標測定装置の構成を示すブロック図。
図3】前記実施形態の第1レーザー光及び第2レーザー光の各出射方向を示す模式図。
図4】前記実施形態の絶対距離測定範囲を説明する模式図。
図5】前記実施形態の第1レーザー光及び第2レーザー光がそれぞれ照射される各測定点を示す模式図。
図6】前記実施形態の座標測定方法を説明するフローチャート。
図7】測定対象物の例を示す模式図。
図8】測定対象物の他の例を示す模式図。
図9】測定対象物の他の例を示す模式図。
【発明を実施するための形態】
【0017】
本発明の一実施形態について図面を参照して説明する。
〔非接触座標測定装置の基本的構成〕
図1及び図2に示すように、非接触座標測定装置1は、測定ヘッド2と、測定ヘッド2を任意の方向に回転駆動するヘッド駆動機構3と、測定ヘッド2の回転角を検出する角度検出部4と、制御部5とを備え、測定対象物Wの測定面の3次元座標を点群として取得するものである。なお、測定対象物Wの測定面は、XY平面(垂直面)に対して略平行に配置されるものとする。
【0018】
測定ヘッド2は、第1レーザーユニット10及び第2レーザーユニット20を備えている。
第1レーザーユニット10は、レーザー光発生部11及び検出部12を有している。レーザー光発生部11は、レーザー光L1(第1レーザー光)を生成して測定対象物Wに照射する。検出部12は、測定対象物Wで反射されたレーザー光L1を検出し、受光信号Sd1を制御部5に出力する。
第1レーザーユニット10を構成する各部は、後述の第1測定部51と共に、一般的なレーザー距離計に用いられるタイム・オブ・フライト方式や位相差方式等の第1レーザー距離計101を構成している。
【0019】
第2レーザーユニット20は、レーザー光発生部21、干渉計(ヘテロダイン干渉計)22、検出部23、集光レンズ24及びレンズ駆動部25を有している。
レーザー光発生部21は、超音波光学変調器等を含んで構成され、時間と共に周波数が変化するレーザー光を出射する。干渉計22は、レーザー光発生部21から発生したレーザー光を測定光及び参照光に分離し、この測定光をレーザー光L2(第2レーザー光)として測定対象物Wに照射する。また、干渉計22は、測定対象物Wで反射されたレーザー光L2の反射光と参照光とを干渉させて、ビートを含む干渉光を生成する。検出部23は、干渉光を検出し、ビート信号Sd2を制御部5に出力する。集光レンズ24は、干渉計22から出射したレーザー光L2を、測定対象物Wの表面上に集光させる。レンズ駆動部25は、集光レンズ24を光軸方向に移動させるための機構を有する。
第2レーザーユニット20を構成する各部は、後述の第2測定部52と共に、波長走査型ヘテロダイン方式の第2レーザー距離計102を構成している。
【0020】
ヘッド駆動機構3は、本発明の出射方向変更機構であって、2軸回転駆動機構を構成しており、測定ヘッド2を回転駆動することにより第1レーザーユニット10及び第2レーザーユニット20を一体的に回転させる。具体的には、ヘッド駆動機構3は、軸A1周りに測定ヘッド2を回転させる第1回転駆動部31と、軸A1に直交する軸A2周りに測定ヘッド2を回転させる第2回転駆動部32とを有している。なお、本実施形態では、軸A1と軸A2との交点が、非接触座標測定装置1による測定基準点Rとなる。
本実施形態では、軸A1はX方向(垂直方向)に平行であり、軸A2はY方向(水平方向)に平行であり、ヘッド駆動機構3は、測定ヘッド2の方位角及び仰角をそれぞれ変化させることができる。
角度検出部4は、測定ヘッド2の方位角を検出する検出器及び測定ヘッド2の仰角を検出する検出器を含んでおり、測定ヘッド2の角度情報を制御部5に出力する。
【0021】
図3に示すように、第1レーザーユニット10からのレーザー光L1の出射方向と、第2レーザーユニット20からのレーザー光L2の出射方向とは、軸A1を中心とする所定の角度θpを挟んで配置される。
ここで、レーザー光L1は測定対象物Wの測定点P1(第1測定点)に照射され,レーザー光L2は測定対象物Wの測定点P2(第2測定点)に照射される。測定点P1,P2は、X方向の位置が同じであり、Y方向の位置が異なる。測定ヘッド2が軸A1周りに回転する場合、測定点P1,P2は共にY方向に移動し、測定ヘッド2が軸A2周りに回転する場合、測定点P1,P2は共にX方向に移動する。
【0022】
図2に戻って、制御部5は、第1測定部51、第2測定部52、測定間隔設定部53及びヘッド制御部54を有する。
第1測定部51は、距離測定部511及び座標測定部512を有する。
距離測定部511は、測定ヘッド2が所定角度変化する毎に、第1レーザーユニット10の検出部12から出力された受光信号Sd1に基づき、測定基準点Rから測定点P1までの距離を測定する。
座標測定部512は、距離測定部511に測定された測定点P1までの距離と、角度検出部4に検出された測定ヘッド2の角度情報(レーザー光L1の出射角度)とに基づき、測定点P1の3次元座標を測定する。
【0023】
第2測定部52は、距離測定部521、座標測定部522及びレンズ制御部523を有する。
距離測定部521は、測定ヘッド2が所定角度変化する毎に、第1測定部51による測定値に基づき、検出部23から出力されたビート信号Sd2の次数mを決定し、決定した次数mとビート信号Sd2とに基づいて、測定基準点Rから測定点P2までの距離を測定する。
座標測定部522は、距離測定部521に測定された測定点P2までの距離と、角度検出部4に検出された測定ヘッド2の角度情報(レーザー光L2の出射角度)とに基づき、測定点P2の3次元座標を測定する。
レンズ制御部523は、第2レーザーユニット20におけるレンズ駆動部25を制御し、集光レンズ24の光軸方向の位置を制御する。
なお、第1測定部51及び第2測定部52によって測定された各データは、制御部5における図示しない記憶部に記憶される。
【0024】
測定間隔設定部53は、第1測定部51及び第2測定部52の各測定間隔を設定する。例えば、測定間隔設定部53は、第1測定部51及び第2測定部52の各々が測定を行うタイミングとなる測定ヘッド2の回転角度を設定する。これにより、第1測定部51及び第2測定部52は、測定ヘッド2が軸A1又は軸A2周りに所定角度回転する毎に(レーザー光L1,L2の各出射方向が所定角度変化する毎に)測定を行うように設定される。また、測定間隔設定部53は、第1測定部51及び第2測定部52の各測定間隔を、第1測定点の測定値に基づいて調整する。
ヘッド制御部54は、レーザー光L1,L2が測定対象物Wを走査するように、ヘッド駆動機構3を制御する。
【0025】
以上の構成において、第2レーザー距離計102は、波長走査型ヘテロダイン方式の構成を有しているため、所定範囲での絶対距離Ldを測定することができる(図4参照)。この所定範囲(絶対距離測定可能範囲Labs)は、ビート信号Sd2の周波数が同一状態を繰り返す光路長によって定まる。このため、第2レーザー距離計102によって測定される距離Lは、ビート信号Sd2の次数m及び絶対距離Ldに基づいて、L=m×Labs+Ldの式により算出される。例えば図4に示す例では、ビート信号Sd2の次数mが2であるため、距離L=2×Labs+Ldとして算出される。
【0026】
一方、第1レーザー距離計101は、タイム・オブ・フライト方式又は位相差方式などの構成を有しているため、第2レーザー距離計102よりも測定精度が低いが、次数の判別を必要とせずに比較的に長い距離を測定することができる。
本実施形態では、第1レーザー距離計101の測定精度は、第2レーザー距離計102の絶対距離測定可能範囲Labsよりも小さい値を許容差とする測定精度に設定されており、好ましくは絶対距離測定可能範囲Labsの1/2よりも小さい値を許容差とする測定精度に設定されている。例えば、第2レーザー距離計102の絶対距離測定可能範囲Labsが1m程度である場合、第1レーザー距離計101の測定精度は、少なくとも±1mよりも高い精度、好ましくは±500mmよりも高い精度を有する。
【0027】
〔非接触座標測定装置の動作〕
図5に示すように、非接触座標測定装置1は、測定対象物Wの所望の測定範囲Rwをレーザー光L1,L2で走査(ここではラスタースキャン)する。なお、図5に示される測定点P1,P2は、例示的なものであり、測定範囲Rwに設定される全ての測定点P1,P2を示すものではない。
【0028】
測定範囲Rwの走査を開始するとき、1回目の測定として、測定点P1(1)が測定範囲Rwにおける走査線SLの開始地点に配置され、第1測定部51が測定点P1(1)を測定する。このときの測定点P2(1)は、測定範囲Rw外に配置される。
その後、測定点P1,P2がY方向の一方側から他方側に向かって(走査線SLに沿って)移動し、第1測定部51及び第2測定部52が各測定点P1,P2の測定を行う。このとき、測定点P1,P2は、互いの間に略一定の距離を保ったまま、測定点P1が移動する軌跡に沿って測定点P2が移動する。
そして、最後(N回目)の測定として、測定点P2(N)が測定範囲Rwにおける走査線SLの終了地点に配置され、第2測定部52が測定点P2(N)を測定する。これにより、この走査線SLの測定が完了する。このときの測定点P1(N)は、測定範囲Rw外に配置される。
一ライン分の走査線SLの測定が完了した後、測定点P1,P2は、次の走査線SLに移動する。
【0029】
以下、測定点P1,P2が走査線SLに沿って移動するときの処理について、図6に示すフローチャートを参照して説明する。
まず、n回目の測定として、第1測定部51が、測定点P1(n)の座標を測定すると同時に、第2測定部52が測定点P2(n)の座標を測定する(処理S1)。
処理S1において、nが2以上である場合、第2測定部52の距離測定部521が測定点P2(n)までの距離を測定する際、測定点P1(n-x)までの距離である粗測定値Dr(n-x)を利用して、ビート信号Sd2の次数mを決定する。
ここで、測定点P1(n-x)は、n回目の測定よりもx回だけ前に測定された測定点P1であり、その座標が測定点P2(n)に一致するか、測定点P2(n)に最も近いものであることが好ましい。例えば、測定点P1(n-x)は、測定ヘッド2の軸A1周りの回転位置が現時点よりもレーザー光L1,L2間の角度θpだけ前に位置するときに測定されたものを利用できる。これにより、第2測定部52は、測定点P1(n-x)までの距離である粗測定値Dr(n-x)を、測定点P2(n)までの距離のおおよその値として扱うことができる。そして、第2測定部52は、L=m×Labs+Ldの距離Lが粗測定値Dr(n-x)に最も近くなる次数mを求めることで、次数mを決定することができる。
【0030】
次に、測定点P2(n)が走査線SLの終点付近に配置される場合には現在の走査線SLの測定動作を終了する一方、測定点P2(n)が走査線SLの途中である場合には次の処理に移行する(処理S2)。
【0031】
次に、測定間隔設定部53は、次の測定点P1(n+1),P2(n+1)までの測定間隔を設定する(処理S3)。
具体的には、測定間隔設定部53は、前回測定された測定点P1(n-1)までの距離である粗測定値Dr(n-1)と、今回測定された測定点P1(n)までの距離である粗測定値Dr(n)との差の絶対値(距離差)を算出し、算出した距離差が閾値T以下の場合には、測定間隔を通常値のままに保つ。一方、測定間隔設定部53は、算出した距離差が閾値Tよりも大きい場合には、測定間隔を通常値よりも小さい値に設定する。
【0032】
本実施形態における測定間隔は、測定ヘッド2の軸A1周りの回転角によって設定される。測定間隔の通常値は、例えばレーザー光L1,L2間の角度θpに設定される。測定間隔が通常値より小さい値に設定された場合、現在位置から角度θpより小さい角度を回転した時点で次の測定が行われる。閾値Tは、所望する測定精度に応じて設定可能である。
【0033】
レンズ制御部523は、今回測定された測定点P1(n)までの距離である粗測定値Dr(n)に基づいて、次回測定のために集光レンズ24の光軸方向の位置調整が必要か否かを判断する(処理S4)。
具体的には、レンズ制御部523は、粗測定値Dr(n)が現時点の集光レンズ24による集光が可能な範囲(集光可能範囲)内である場合には、集光レンズ24の光軸方向の位置調整が不要と判断し、レンズ駆動部25に対する制御を行わない。
【0034】
一方、レンズ制御部523は、粗測定値Dr(n)が現時点の集光レンズ24による集光可能範囲外である場合には、次回測定のために集光レンズ24の光軸方向の位置調整が必要と判断し、レンズ駆動部25に対する制御を開始する(処理S5)。
例えば、粗測定値Dr(n)が集光可能範囲よりも大きい(遠い)場合には、集光レンズ24を測定対象物Wに近づけ始め、粗測定値Dr(n)が集光可能範囲よりも小さい(近い)場合には、集光レンズ24を測定対象物Wから遠ざけ始める。
なお、最終的な集光レンズ24の位置調整については、次回の測定までに行われればよい。
【0035】
以上の処理S4又は処理S5の後、nがカウントアップされ、再び処理S1が実行される。
なお、処理S1の後、測定ヘッド2は軸A1周の回転を開始しており、次回の処理S1では、レーザー光L1,L2の各照射点は、測定点P1(n+1),P2(n+1)に移動している。
【0036】
[効果]
前記実施形態によれば、以下の効果を奏する。
(1)第2レーザー距離計102は、第1レーザー距離計101に既に測定された箇所を後追いで測定するため、測定点P2までの距離を測定するとき、測定点P1の測定値に基づき、ビート信号Sd2の次数mを決定することができる。これにより、第2レーザー距離計102は、従来技術のような次数判別を行う必要がない。
【0037】
例えば、図7に示す測定対象物Wでは、測定点P2(n),P2(n+1)間の距離Lが絶対距離測定可能範囲Labsより小さいが、測定点P2(n+1),P2(n+2)間の距離Lが絶対距離測定可能範囲Labsより大きい。このような測定対象物Wを測定する場合、従来技術では、各測定点P2(n),P2(n+1),P2(n+2)で走査を停止し、ビート信号の次数判別を行う必要があるため、全体的な測定時間がかかる。
一方、本実施形態では、各測定点P2(n),P2(n+1),P2(n+2)を測定するとき、既に測定した各測定点P1(例えばP2(n-1),P2(n),P2(n+1)までの距離である各粗測定値Drに基づき、ビート信号Sd2の次数mを決定することができる。このため、各測定点(n),P2(n+1),P2(n+2)でビート信号Sd2の次数mを判別するために走査を停止する必要がなく、全体的な測定時間が短縮される。なお、図7では、第2レーザーユニット20のみを模式的に示している。
また、第1レーザー距離計101及び第2レーザー距離計102が任意の測定範囲Rwを測定する各期間は重なるため、測定範囲Rwを2回走査する場合よりも、測定範囲Rwを走査するための時間が短縮される。
従って、本実施形態によれば、測定対象物Wを高精度かつ短時間で測定できる非接触座標測定装置1が提供される。
【0038】
(2)ヘッド駆動機構3は、軸A1を中心として第1レーザーユニット10及び第2レーザーユニット20を回転させることにより、測定点P1,P2を移動させる。よって、測定範囲Rwの走査を簡単かつ高速に行うことができる。
【0039】
(3)また、第1レーザー距離計101の測定精度は、第2レーザー距離計102の絶対距離測定可能範囲Labsよりも小さい値を許容差とする測定精度に設定されているため、距離測定部521は、ビート信号Sd2の次数mを好適に決定することができる。
【0040】
(4)レンズ駆動部25は、n個目の測定点P1(n)の粗測定値Drに基づいて、n+1個目の測定点P2(n+1)を測定するために、集光レンズ24の光軸方向の位置を予め移動させるため(処理S4,S5)、全体的な測定時間の短縮が可能である。
【0041】
例えば、図8に示す測定対象物Wを測定する場合を説明する。なお、図8では、n回目、n+1回目、n+2回目の各測定点P1,P2が見易さのために紙面上下方向にずらして示されるが、実際にはY方向において重なる位置に配置される。
図8において、測定点P1(n)までの距離である粗測定値Dr(n)は、測定点P2(n)を測定した時点の集光レンズ24の集光可能範囲内であるため、n回目の測定後、集光レンズ24の位置はそのまま保たれる。
一方、測定点P1(n+1)までの距離である粗測定値Dr(n+1)は、測定点P2(n+1)を測定した時点の集光レンズ24の集光可能範囲より遠い。このため、n+1回目の測定後、測定点P2(n+2)の測定のために、集光レンズ24は測定対象物Wに近づくように駆動される。すなわち、n+2回目の測定を開始する前に、集光レンズ24の光軸方向の位置を予め移動させることができる。
よって、本実施形態によれば、測定を開始してから集光レンズ24の調整を行うような従来技術に比べ、全体的な測定時間を短縮することができる。
【0042】
(5)測定間隔設定部53は、任意の測定点P2(n)の測定値と、この測定点P2(n)より前に測定された測定点P2(n-x)の測定値との差が所定の閾値Tよりも大きい場合、測定間隔を通常値よりも小さく設定するため(処理S3)、高精度な測定が可能になる。
【0043】
例えば、図9に示す測定対象物Wを測定する場合を説明する。なお、図9に示す測定対象物Wは、測定範囲Rw内に形成された複数の穴Hを有する。また、図9に示される測定点P1,P2は、例示的なものであり、測定範囲Rwに設定される全ての測定点P1,P2を示すものではない。
図9において、穴H外に設定された測定点P1(n-1)を測定した後に、穴H内に設定された測定点P1(n)を測定した場合、あるいは、穴H内に設定された測定点P1(n-1)を測定した後に、穴H外に設定された測定点P1(n)を測定した場合、前回測定時の粗測定値Dr(n-1)と、今回測定時の粗測定値Dr(n)との距離差が閾値Tよりも大きくなる。この場合、測定間隔は通常値よりも小さく設定されることにより、穴Hの段差付近は高密度に測定される。このため、測定範囲Rwはより高精度に測定される。
【0044】
〔変形例〕
本発明は、前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
【0045】
例えば、測定ヘッド2は、複数の第1レーザーユニット10を有していてもよい。例えば、Y方向に第2レーザーユニット20を挟んで2つの第1レーザーユニット10を配置する場合、測定ヘッド2を軸A1周りに回転させることにより、Y方向の両側に走査を行うことができる。また、X方向に第2レーザーユニット20を挟んで2つの第1レーザーユニット10を配置する場合、測定ヘッド2を軸A2周りに回転させることにより、X方向の両側に走査を行うことができる。よって、測定範囲Rwを走査する方向に基づいて、所望の第1レーザーユニット10を設けてもよい。
【0046】
前記実施形態では、本発明の出射方向変更機構が第1レーザーユニット10及び第2レーザーユニット20を2軸で駆動可能なヘッド駆動機構3として構成されているが、本発明はこれに限られない。例えば、本発明の出射方向変更機構は、第1レーザーユニット及び第2レーザーユニットを1軸で駆動可能な機構であってもよいし、レーザー光L1,L2の出射方向を変更するためのミラー等であってもよい。
【0047】
前記実施形態では、第2レーザー距離計102は、波長走査型ヘテロダイン方式を採用しているが、本発明はこれに限られず、ビート信号の次数の決定を行う様々な方式を採用できる。
【0048】
前記実施形態では、第2レーザーユニット20が集光レンズ24及びレンズ駆動部25を有しているが、本発明はこれに限られない。第2レーザーユニット20が集光レンズ24を有さない場合であっても、粗測定値Drに基づいてビート信号Sd2の次数mを決定することによる本発明の効果を得ることができる。
【0049】
前記実施形態では、凹凸面の段差付近を高精度に測定することを目的として、測定間隔を調整しているが(処理S3)、他の目的によって測定間隔を調整してもよい。
例えば、測定対象物Wが不連続形状であって、凹凸面の段差(測定対象面がこれまでよりも遠距離に位置すること)を検出した場合、測定間隔を短くしてもよい。この場合、測定対象物Wの全体に設定される測定点P1,P2の点群間隔を均一にすることができる。
また、測定対象物Wが不連続形状であって、凹凸面の段差(測定対象面がこれまでよりも近距離に位置すること)を検出した場合、測定間隔を長くしてもよい。この場合、データ保存点数が少なくなり、制御部5における記憶部のデータ保存領域を節約できる。
【0050】
前記実施形態では、測定間隔設定部53は測定が行われるべき測定ヘッド2の回転角度を設定するが、測定ヘッド2が一定速度で回転する場合、測定時間間隔を設定するものであってもよい。
【0051】
本発明は、前記実施形態において説明したフローチャートに限定されない。例えば、前記実施形態における処理S3と、処理S4,S5との順番は逆であってもよい。
【産業上の利用可能性】
【0052】
本発明は、測定対象物の任意の範囲を高精度かつ短時間で測定できる非接触座標測定装置として利用できる。
【符号の説明】
【0053】
1…非接触座標測定装置、2…測定ヘッド、10…第1レーザーユニット、11…レーザー光発生部、12…検出部、101…第1レーザー距離計、20…第2レーザーユニット、21…レーザー光発生部、22…干渉計、23…検出部、24…集光レンズ、25…レンズ駆動部、102…第2レーザー距離計、3…ヘッド駆動機構(出射方向変更機構)、31…第1回転駆動部、32…第2回転駆動部、4…角度検出部、5…制御部、51…第1測定部、511…距離測定部、512…座標測定部、52…第2測定部、521…距離測定部、522…座標測定部、523…レンズ制御部、53…測定間隔設定部、54…ヘッド制御部、A1,A2…軸、Dr…粗測定値、H…穴、L1,L2…レーザー光、Labs…絶対距離測定可能範囲、P1,P2…測定点、Rw…測定範囲、Sd1…受光信号、Sd2…ビート信号、SL…走査線、W…測定対象物。
図1
図2
図3
図4
図5
図6
図7
図8
図9