IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ギガフォトン株式会社の特許一覧

特許7110341ターゲット撮影装置及び極端紫外光生成装置
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-07-22
(45)【発行日】2022-08-01
(54)【発明の名称】ターゲット撮影装置及び極端紫外光生成装置
(51)【国際特許分類】
   G03F 7/20 20060101AFI20220725BHJP
   H05G 2/00 20060101ALI20220725BHJP
【FI】
G03F7/20 503
H05G2/00 K
【請求項の数】 23
(21)【出願番号】P 2020524959
(86)(22)【出願日】2018-06-11
(86)【国際出願番号】 JP2018022240
(87)【国際公開番号】W WO2019239458
(87)【国際公開日】2019-12-19
【審査請求日】2021-05-06
(73)【特許権者】
【識別番号】300073919
【氏名又は名称】ギガフォトン株式会社
(74)【代理人】
【識別番号】100083116
【弁理士】
【氏名又は名称】松浦 憲三
(72)【発明者】
【氏名】細田 裕計
【審査官】田中 秀直
(56)【参考文献】
【文献】国際公開第2017/126301(WO,A1)
【文献】国際公開第2015/041260(WO,A1)
【文献】特開平02-133884(JP,A)
【文献】特開2001-242503(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03F 7/20
H05G 2/00
(57)【特許請求の範囲】
【請求項1】
外部からタイミング信号を受信し、前記タイミング信号の受信時から第1の遅延時間だけ遅延させたタイミングで第1のトリガ信号を出力する遅延回路と、
前記第1のトリガ信号に基づいて発光する照明光源と、
前記照明光源から発せられた光が観察対象であるターゲットに照射されることにより、前記ターゲットの影の像を撮影するよう配置された、光増幅部を含む撮影部と、
前記撮影部によって撮影された撮影画像から背景輝度を計測する処理を含む画像処理を行う処理部と、
前記背景輝度に基づいて前記光増幅部のゲインを調整する制御を行う制御部と、
を備え
前記制御部は、さらに、前記処理部により計測された前記背景輝度に基づいて前記第1の遅延時間を調整する制御を行うターゲット撮影装置。
【請求項2】
請求項に記載のターゲット撮影装置であって、
前記制御部は、前記第1の遅延時間の調整を実施した後に、前記光増幅部のゲインの調整を実施するターゲット撮影装置。
【請求項3】
請求項に記載のターゲット撮影装置であって、
前記制御部は、前記背景輝度が最大になるように前記第1の遅延時間を調整する制御を行うターゲット撮影装置。
【請求項4】
請求項1に記載のターゲット撮影装置であって、
前記制御部は、前記処理部により計測された前記背景輝度が許容下限輝度を下回った場合に、前記光増幅部のゲインを調整する制御を行うターゲット撮影装置。
【請求項5】
請求項に記載のターゲット撮影装置であって、
予め基準輝度と前記基準輝度に対する許容変動幅とが設定され、
前記許容下限輝度は、前記基準輝度と前記許容変動幅とで規定されるターゲット撮影装置。
【請求項6】
請求項に記載のターゲット撮影装置であって、
前記制御部は、前記処理部により計測された前記背景輝度が前記許容下限輝度を下回った場合に、前記光増幅部のゲインを増加させる調整を行うターゲット撮影装置。
【請求項7】
請求項に記載のターゲット撮影装置であって、
前記制御部は、前記光増幅部のゲインの設定を変えて前記背景輝度の計測を行い、前記背景輝度が、予め定められた基準輝度に対する許容範囲内に収まるように前記光増幅部のゲインを調整する制御を行うターゲット撮影装置。
【請求項8】
請求項に記載のターゲット撮影装置であって、
前記制御部は、前記背景輝度と予め定められた基準輝度との比に基づいて、前記光増幅部のゲインを設定するターゲット撮影装置。
【請求項9】
請求項1に記載のターゲット撮影装置であって、
前記照明光源から発せられた光を前記ターゲットに向けて出射する光出射ポートと、
前記ターゲットの周辺を通過した光を前記撮影部に導入する光入射ポートとは、互いに前記ターゲットの通過位置を挟んで対向する位置に配置されるターゲット撮影装置。
【請求項10】
請求項1に記載のターゲット撮影装置であって、
前記撮影部は、画像センサと、シャッタと、を含み、
前記遅延回路は、前記タイミング信号の受信時から第2の遅延時間だけ遅延させたタイミングで第2のトリガ信号を出力し、かつ、前記タイミング信号の受信時から第3の遅延時間だけ遅延させたタイミングで第3のトリガ信号を出力し、
前記第2のトリガ信号に基づいて、前記画像センサによる撮影が行われ、
前記第3のトリガ信号に基づいて、前記シャッタの開閉が行われるターゲット撮影装置。
【請求項11】
請求項1に記載のターゲット撮影装置であって、
前記光増幅部は、イメージインテンシファイアであるターゲット撮影装置。
【請求項12】
請求項1に記載のターゲット撮影装置であって、
前記処理部は、前記撮影画像の各ピクセルのカウント値を基に、前記撮影画像の画像内全体の平均カウント値を算出する処理を行い、
前記制御部は、前記背景輝度として前記平均カウント値を取得するターゲット撮影装置。
【請求項13】
請求項1に記載のターゲット撮影装置であって、
前記処理部は、前記撮影画像の各ピクセルのカウント値から、前記撮影画像の画像内全体における最大カウント値を特定する処理を行い、
前記制御部は、前記背景輝度として前記最大カウント値を取得するターゲット撮影装置。
【請求項14】
請求項1に記載のターゲット撮影装置であって、
前記処理部は、前記撮影画像の各ピクセルのカウント値を基に、前記撮影画像の画像内全体の前記カウント値のヒストグラムを作成して、前記ヒストグラムのピークに対応するカウント値を特定する処理を行い、
前記制御部は、前記背景輝度として前記ピークに対応するカウント値を取得するターゲット撮影装置。
【請求項15】
請求項1に記載のターゲット撮影装置であって、
前記処理部は、前記撮影画像の画像領域内に予め設定された複数の計測領域ごとに、それぞれの計測領域内の平均カウント値を算出し、かつ、前記算出された前記計測領域ごとの前記平均カウント値の平均値を算出する処理を行い、
前記制御部は、前記背景輝度として前記平均値を取得するターゲット撮影装置。
【請求項16】
請求項1に記載のターゲット撮影装置であって、
前記処理部は、前記撮影画像の画像領域内に予め設定された複数の計測領域のうち、前記ターゲットの影が含まれている計測領域を演算から除外して、前記ターゲットの影が含まれていない残りの計測領域ごとに、それぞれの計測領域内の平均カウント値を算出し、かつ、前記算出された前記計測領域ごとの平均カウント値の平均値を算出する処理を行い、
前記制御部は、前記背景輝度として前記平均値を取得するターゲット撮影装置。
【請求項17】
内部でプラズマが生成されるチャンバと、
前記チャンバの内部に前記プラズマの発生源となるターゲットを供給するターゲット供給部と、
前記ターゲット供給部から前記チャンバの内部に供給された前記ターゲットの通過を検出してターゲット通過検出信号を出力するターゲット通過検出装置と、
前記ターゲット通過検出信号を受信し、前記ターゲット通過検出信号の受信時から第1の遅延時間だけ遅延させたタイミングで第1のトリガ信号を出力する遅延回路と、
前記第1のトリガ信号に基づいて発光する照明光源と、
前記照明光源から発せられた光が観察対象である前記ターゲットに照射されることにより、前記ターゲットの影の像を撮影するよう配置された、光増幅部を含む撮影部と、
前記撮影部によって撮影された撮影画像から背景輝度を計測する処理を含む画像処理を行う処理部と、
前記背景輝度に基づいて前記光増幅部のゲインを調整する制御を行う制御部と、
を備え、
前記制御部は、さらに、前記処理部により計測された前記背景輝度に基づいて前記第1の遅延時間を調整する制御を行い、
前記ターゲット供給部から前記チャンバの内部に供給された前記ターゲットにレーザ光を照射することにより前記ターゲットをプラズマ化して極端紫外光を生成する極端紫外光生成装置。
【請求項18】
請求項17に記載の極端紫外光生成装置であって、
前記制御部は、前記第1の遅延時間の調整を実施した後に、前記光増幅部のゲインの調整を実施する極端紫外光生成装置。
【請求項19】
請求項17に記載の極端紫外光生成装置であって、
前記制御部は、前記背景輝度が最大になるように前記第1の遅延時間を調整する制御を行う極端紫外光生成装置
【請求項20】
請求項17に記載の極端紫外光生成装置であって、
前記チャンバは、前記照明光源から発せられた光を前記ターゲットに向けて出射する光出射ポートとしての第1のウインドウと、
前記ターゲットの周辺を通過した光を前記撮影部に導入する光入射ポートとしての第2のウインドウと、を備え、
前記第1のウインドウと前記第2のウインドウとは、互いに前記ターゲットの通過位置を挟んで対向する位置に配置される極端紫外光生成装置。
【請求項21】
電子デバイスの製造方法であって、
内部でプラズマが生成されるチャンバと、
前記チャンバの内部に前記プラズマの発生源となるターゲットを供給するターゲット供給部と、
前記ターゲット供給部から前記チャンバの内部に供給された前記ターゲットの通過を検出してターゲット通過検出信号を出力するターゲット通過検出装置と、
前記ターゲット通過検出信号を受信し、前記ターゲット通過検出信号の受信時から第1の遅延時間だけ遅延させたタイミングで第1のトリガ信号を出力する遅延回路と、
前記第1のトリガ信号に基づいて発光する照明光源と、
前記照明光源から発せられた光が観察対象である前記ターゲットに照射されることにより、前記ターゲットの影の像を撮影するよう配置された、光増幅部を含む撮影部と、
前記撮影部によって撮影された撮影画像から背景輝度を計測する処理を含む画像処理を行う処理部と、
前記背景輝度に基づいて前記光増幅部のゲインを調整する制御を行う制御部と、
を備え、前記制御部は、さらに、前記処理部により計測された前記背景輝度に基づいて前記第1の遅延時間を調整する制御を行う極端紫外光生成装置を用いて、前記ターゲット供給部から前記チャンバの内部に供給された前記ターゲットにレーザ光を照射することにより前記ターゲットをプラズマ化して極端紫外光を生成し、
前記極端紫外光を露光装置に出力し、
前記露光装置内で感光基板上に前記極端紫外光を露光すること
を含む電子デバイスの製造方法。
【請求項22】
請求項21に記載の電子デバイスの製造方法であって、
前記制御部は、前記第1の遅延時間の調整を実施した後に、前記光増幅部のゲインの調整を実施する電子デバイスの製造方法。
【請求項23】
請求項21に記載の電子デバイスの製造方法であって、
前記制御部は、前記背景輝度が最大になるように前記第1の遅延時間を調整する制御を行う電子デバイスの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、ターゲット撮影装置及び極端紫外光生成装置に関する。
【背景技術】
【0002】
近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、20nm以下の微細加工が要求されるようになる。このため、波長13nm程度の極端紫外(EUV:Extreme Ultra Violet)光を生成するための装置と縮小投影反射光学系とを組み合わせた露光装置の開発が期待されている。
【0003】
EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)式の装置と、放電によって生成されるプラズマが用いられるDPP(Discharge Produced Plasma)式の装置と、軌道放射光が用いられるSR(Synchrotron Radiation)式の装置との3種類の装置が提案されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2001-242503号公報
【概要】
【0005】
本開示の1つの観点に係るターゲット撮影装置は、外部からタイミング信号を受信し、タイミング信号の受信時から第1の遅延時間だけ遅延させたタイミングで第1のトリガ信号を出力する遅延回路と、第1のトリガ信号に基づいて発光する照明光源と、照明光源から発せられた光が観察対象であるターゲットに照射されることにより、ターゲットの影の像を撮影するよう配置された、光増幅部を含む撮影部と、撮影部によって撮影された撮影画像から背景輝度を計測する処理を含む画像処理を行う処理部と、背景輝度に基づいて光増幅部のゲインを調整する制御を行う制御部と、を備える。
【0006】
本開示の他の1つの観点に係る極端紫外光生成装置は、内部でプラズマが生成されるチャンバと、チャンバの内部にプラズマの発生源となるターゲットを供給するターゲット供給部と、ターゲット供給部からチャンバの内部に供給されたターゲットの通過を検出してターゲット通過検出信号を出力するターゲット通過検出装置と、ターゲット通過検出信号を受信し、ターゲット通過検出信号の受信時から第1の遅延時間だけ遅延させたタイミングで第1のトリガ信号を出力する遅延回路と、第1のトリガ信号に基づいて発光する照明光源と、照明光源から発せられた光が観察対象であるターゲットに照射されることにより、ターゲットの影の像を撮影するよう配置された、光増幅部を含む撮影部と、撮影部によって撮影された撮影画像から背景輝度を計測する処理を含む画像処理を行う処理部と、背景輝度に基づいて光増幅部のゲインを調整する制御を行う制御部と、を備え、ターゲット供給部からチャンバの内部に供給されたターゲットにレーザ光を照射することによりターゲットをプラズマ化して極端紫外光を生成する。
【0007】
本開示の他の1つの観点に係る電子デバイスの製造方法は、内部でプラズマが生成されるチャンバと、チャンバの内部にプラズマの発生源となるターゲットを供給するターゲット供給部と、ターゲット供給部からチャンバの内部に供給されたターゲットの通過を検出してターゲット通過検出信号を出力するターゲット通過検出装置と、ターゲット通過検出信号を受信し、ターゲット通過検出信号の受信時から第1の遅延時間だけ遅延させたタイミングで第1のトリガ信号を出力する遅延回路と、第1のトリガ信号に基づいて発光する照明光源と、照明光源から発せられた光が観察対象であるターゲットに照射されることにより、ターゲットの影の像を撮影するよう配置された、光増幅部を含む撮影部と、撮影部によって撮影された撮影画像から背景輝度を計測する処理を含む画像処理を行う処理部と、背景輝度に基づいて光増幅部のゲインを調整する制御を行う制御部と、を備える極端紫外光生成装置を用いて、ターゲット供給部からチャンバの内部に供給されたターゲットにレーザ光を照射することによりターゲットをプラズマ化して極端紫外光を生成し、極端紫外光を露光装置に出力し、露光装置内で感光基板上に極端紫外光を露光することを含む。
【図面の簡単な説明】
【0008】
本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1図1は、例示的なLPP式のEUV光生成システムの構成を概略的に示す図である。
図2図2は、ターゲット撮影装置を含むEUV光生成装置の構成を概略的に示す図である。
図3図3は、ターゲット画像計測装置における照明部の第1構成例を模式的に示す図である。
図4図4は、ターゲット画像計測装置における照明部の第2構成例を模式的に示す図である。
図5図5は、ターゲット画像計測装置のタイミングチャートである。
図6図6は、フラッシュランプの発光タイミングの変化を例示的に示すグラフである。
図7図7は、フラッシュランプの経年劣化や状態変化等に起因して撮影画像の背景輝度が低下する様子を示すグラフである。
図8図8は、FLトリガの遅延時間TFLの設定が不適切な状態となる場合の例を示すタイミングチャートである。
図9図9は、フラッシュランプの発光状態に応じて画像センサによって撮影される撮影画像のイメージ図である。
図10図10は、図9に示した各画像A~Cにおいて破線で示した水平方向の信号強度を示すラインプロファイルを示すグラフである。
図11図11は、FLトリガの遅延時間TFLの設定が不適切な状態となる場合の他の例を示すタイミングチャートである。
図12図12は、シャッタ又は光増幅部の劣化によって、画像センサへの入射光量が低下する例を示すタイミングチャートである。
図13図13は、第1実施形態に係るターゲット撮影装置を含むEUV光生成装置の構成を概略的に示す図である。
図14図14は、画像センサから得られる撮影画像の画像データのイメージを例示的に示す図である。
図15図15は、図14に示した撮影画像における輝度ヒストグラムを示すグラフである。
図16図16は、撮影画像の画像領域内に設定される複数の計測領域の例を示す図である。
図17図17は、撮影画像の例を示す図である。
図18図18は、撮影画像の他の例を示す図である。
図19図19は、第1実施形態に係るターゲット撮影装置における制御のメインフローを示すフローチャートである。
図20図20は、第1実施形態に係るターゲット撮影装置における制御のメインフローを示すフローチャートである。
図21図21は、第1実施形態に係るターゲット撮影装置における制御のメインフローを示すフローチャートである。
図22図22は、画像データ解析処理のフローチャートである。
図23図23は、背景輝度取得aの処理内容を示すフローチャートである。
図24図24は、背景輝度取得bの処理内容を示すフローチャートである。
図25図25は、背景輝度取得cの処理内容を示すフローチャートである。
図26図26は、背景輝度取得dの処理内容を示すフローチャートである。
図27図27は、背景輝度取得eの処理内容を示すフローチャートである。
図28図28は、背景輝度取得a~eのそれぞれのメリット及びデメリットをまとめた図表である。
図29図29は、TFL最適化の処理内容を示すフローチャートである。
図30図30は、図21のステップS34に適用される光増幅部ゲイン調整Aの処理内容を示すフローチャートである。
図31図31は、第2実施形態に係るターゲット撮影装置における制御のメインフローの一部分を示すフローチャートである。
図32図32は、図31のステップS35に適用される光増幅部ゲイン調整Bの処理内容を示すフローチャートである。
図33図33は、第3実施形態に係るターゲット撮影装置を含んだEUV光生成装置の構成を例示的に示す図である。
図34図34は、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始からピコ秒オーダーの時間が経過した時点において推定されるターゲットの状態を模式的に示す図である。
図35図35は、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始からナノ秒オーダーの時間が経過した時点において推定されるターゲットの状態を模式的に示す図である。
図36図36は、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始から約1μsの時間が経過した時点における拡散ターゲットの状態を模式的に示す図である。
図37図37は、EUV光生成装置と接続された露光装置の概略構成を示す図である。
【実施形態】
【0009】
-目次-
1.極端紫外光生成システムの全体説明
1.1 構成
1.2 動作
2.用語の説明
3.ターゲット撮影装置を含むEUV光生成装置の説明
3.1 構成
3.2 動作
4.フラッシュランプの配置形態
4.1 第1構成例
4.2 動作
4.3 第2構成例
4.4 動作
5.ターゲット画像計測装置のトリガ関係の説明
6.課題
6.1 第1の課題
6.2 第2の課題
6.3 第3の課題
7.第1実施形態
7.1 構成
7.2 動作
7.3 TFL調整の実施タイミングについて
7.4 制御アルゴリズムの例
7.4.1 メインフローの説明
7.4.2 画像データ解析処理の例
7.4.3 TFL最適化処理の例
7.4.4 光増幅部ゲイン調整処理の例
7.5 効果
8.第2実施形態
8.1 構成
8.2 動作
8.3 効果
9.第3実施形態
9.1 構成
9.2 動作
9.3 効果
10.変形例
11.拡散ターゲットの計測について
12.EUV光生成装置を用いた電子デバイスの製造方法の例
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。
【0010】
以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
【0011】
1.極端紫外光生成システムの全体説明
1.1 構成
図1に、例示的なLPP式のEUV光生成システム10の構成を概略的に示す。EUV光生成装置12は、少なくとも1つのレーザ装置14と共に用いられる。本願においては、EUV光生成装置12及びレーザ装置14を含むシステムを、EUV光生成システム10と称する。EUV光生成装置12は、チャンバ16と、ターゲット供給部18とを含む。
【0012】
チャンバ16は、密閉可能な容器である。ターゲット供給部18は、ターゲット物質をチャンバ16内部に供給するよう構成され、例えば、チャンバ16の壁を貫通するように取り付けられる。ターゲット物質の材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又は、それらの内のいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
【0013】
チャンバ16の壁には、少なくとも1つの貫通孔が設けられている。その貫通孔は、ウインドウ20によって塞がれ、ウインドウ20をレーザ装置14から出力されるパルスレーザ光22が透過する。チャンバ16の内部には、例えば、回転楕円面形状の反射面を有するEUV光集光ミラー24が配置される。EUV光集光ミラー24は、第1の焦点及び第2の焦点を有する。EUV光集光ミラー24の表面には、例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成される。EUV光集光ミラー24は、例えば、その第1の焦点がプラズマ生成領域26に位置し、その第2の焦点が中間集光点(IF:Intermediate Focusing point)28に位置するように配置される。EUV光集光ミラー24の中央部には貫通孔30が設けられ、貫通孔30をパルスレーザ光23が通過する。
【0014】
EUV光生成装置12は、制御部40と、ターゲットセンサ42等を含む。ターゲットセンサ42は、ターゲット44の存在、軌跡、位置、及び速度のうちいずれか、又は複数を検出するよう構成される。ターゲットセンサ42は、撮像機能を備えてもよい。
【0015】
また、EUV光生成装置12は、チャンバ16の内部と露光装置46の内部とを連通させる接続部48を含む。接続部48内部には、アパーチャ50が形成された壁52が設けられる。壁52は、そのアパーチャ50がEUV光集光ミラー24の第2の焦点位置に位置するように配置される。
【0016】
さらに、EUV光生成装置12は、レーザ光伝送装置54、レーザ光集光ミラー56、ターゲット44を回収するためのターゲット回収部58等を含む。レーザ光伝送装置54は、レーザ光の伝送状態を規定するための光学素子と、この光学素子の位置、姿勢等を調整するためのアクチュエータとを備える。ターゲット回収部58は、チャンバ16内に出力されたターゲット44が進行する方向の延長線上に配置される。
【0017】
レーザ装置14は、MOPA(Master Oscillator Power Amplifier)システムであってよい。レーザ装置14は、図示せぬマスターオシレータと、図示せぬ光アイソレータと、複数台の図示せぬCOレーザ増幅器とを含んで構成され得る。マスターオシレータには固体レーザを採用することができる。マスターオシレータが出力するレーザ光の波長は、例えば10.59μmであり、パルス発振の繰り返し周波数は、例えば100kHzである。
【0018】
1.2 動作
図1を参照して、例示的なLPP式のEUV光生成システム10の動作を説明する。チャンバ16内は大気圧よりも低圧に保持され、好ましくは真空であってよい。或いは、チャンバ16の内部にはEUV光の透過率が高いガスが存在する。チャンバ16の内部に存在するガスは、例えば、水素ガスであってよい。
【0019】
レーザ装置14から出力されたパルスレーザ光21は、レーザ光伝送装置54を経て、パルスレーザ光22としてウインドウ20を透過してチャンバ16内に入射する。パルスレーザ光22は、少なくとも1つのレーザ光経路に沿ってチャンバ16内を進み、レーザ光集光ミラー56で反射されて、パルスレーザ光23として少なくとも1つのターゲット44に照射される。
【0020】
ターゲット供給部18は、ターゲット物質によって形成されたターゲット44をチャンバ16内部のプラズマ生成領域26に向けて出力するよう構成される。ターゲット44には、パルスレーザ光23に含まれる少なくとも1つのパルスが照射される。パルスレーザ光23が照射されたターゲット44はプラズマ化し、そのプラズマから放射光60が放射される。放射光60に含まれるEUV光62は、EUV光集光ミラー24によって選択的に反射される。EUV光集光ミラー24によって反射されたEUV光62は、中間集光点28で集光され、露光装置46に出力さる。なお、1つのターゲット44に、パルスレーザ光23に含まれる複数のパルスが照射されてもよい。
【0021】
制御部40は、EUV光生成システム10全体の制御を統括するよう構成される。制御部40は、ターゲットセンサ42の検出結果を処理する。制御部40は、ターゲットセンサ42の検出結果に基づいて、例えば、ターゲット44が出力されるタイミング、ターゲット44の出力方向等を制御する。さらに、制御部40は、例えば、レーザ装置14の発振タイミング、パルスレーザ光22の進行方向、パルスレーザ光23の集光位置等を制御する。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御が追加される。
【0022】
本開示において、制御部40その他の制御装置は、1台又は複数台のコンピュータのハードウェア及びソフトウェアの組み合わせによって実現することが可能である。ソフトウェアはプログラムと同義である。プログラマブルコントローラはコンピュータの概念に含まれる。コンピュータは、CPU(Central Processing Unit)及びメモリを含んで構成され得る。ソフトウェアはプログラムと同義である。プログラマブルコントローラはコンピュータの概念に含まれる。
【0023】
また、制御部40その他の制御装置の処理機能の一部又は全部は、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)に代表される集積回路を用いて実現してもよい。
【0024】
また、複数の制御装置の機能を1台の制御装置で実現することも可能である。さらに本開示において、制御部40その他の制御装置は、ローカルエリアネットワークやインターネットといった通信ネットワークを介して互いに接続されてもよい。分散コンピューティング環境において、プログラムユニットは、ローカル及びリモート両方のメモリストレージデバイスに保存されてもよい。
【0025】
2.用語の説明
「パルスレーザ光」は、複数のパルスを含むレーザ光を意味し得る。
【0026】
「レーザ光」は、パルスレーザ光に限らずレーザ光一般を意味し得る。
【0027】
「ターゲット」は、チャンバに導入されたレーザ光の被照射物である。レーザ光が照射されたターゲットは、プラズマ化してEUV光を放射する。ターゲットは、プラズマの発生源となる。
【0028】
「ドロップレット」は、チャンバ内へ供給されたターゲットの一形態である。ドロップレットは、ドロップレット状のターゲットと同義である。ドロップレットは、溶融したターゲット物質の表面張力によってほぼ球状となった滴状のターゲットを意味し得る。チャンバの内部においてドロップレットが進行する経路を「ドロップレット軌道」という。
【0029】
「拡散ターゲット」は、ターゲットにパルスレーザ光が照射されたことにより微細な粒子等に拡散したターゲットを意味する。ターゲット物質の微細な粒子群を「ミスト」という場合がある。拡散ターゲットにはプラズマが含まれる場合がある。拡散ターゲット(ミスト)は、ターゲットの一形態である。
【0030】
「プラズマ光」は、プラズマ化したターゲットから放射された放射光である。当該放射光にはEUV光が含まれている。
【0031】
「EUV光」という表記は、「極端紫外光」の略語表記である。「極端紫外光生成装置」は「EUV光生成装置」と表記される。
【0032】
3.ターゲット撮影装置を含むEUV光生成装置の説明
3.1 構成
図2は、ターゲット撮影装置を含むEUV光生成装置の構成を概略的に示す図である。EUV光生成装置12は、ターゲット通過検出装置70と、ターゲット画像計測装置90とを備えている。ターゲット通過検出装置70とターゲット画像計測装置90は、チャンバ16に搭載される。
【0033】
ターゲット通過検出装置70は、照明部71と、検出部81とを含んで構成される。照明部71は、照明光源72と、照明光学系74と、光学フィルタ76とを含んで構成される。照明光源72は単色光のレーザ光源又は複数波長を出射するランプでもよい。また照明光源72は光ファイバを含んでもよく、光ファイバは照明光学系74に接続される。照明光学系74は集光レンズを含んで構成される。照明部71は、ウインドウ78を介してチャンバ16の外側に配置される。ウインドウ78はチャンバ16の壁に取り付けられている。ウインドウ78は、照明光学系74の構成要素に含まれてもよい。
【0034】
検出部81は、光学フィルタ82と、検出光学系84と、光センサ86とを含んで構成される。光センサ86は、1つ若しくは複数の受光面を含む。光センサ86は、フォトダイオード、フォトダイオードアレイ、アバランシェフォトダイオード、光電子増倍管、マルチピクセルフォトンカウンター、及びイメージインテンシファイアのうちのいずれかによって構成することができる。光センサ86は受光量に応じた電気信号を出力する。検出光学系84は、照明光源72からの照明光により照明されたターゲットの像を光センサ86の素子上に転写するレンズを含んで構成される。
【0035】
検出部81は、ウインドウ88を介してチャンバ16の外側に配置される。ウインドウ88は、ウインドウ78と対向してチャンバ16の壁に取り付けられている。ウインドウ88は、検出光学系84の構成要素に含まれてもよい。照明部71と検出部81は、ターゲットの通過位置を挟んで互いに対向するようにチャンバ16に取り付けられる。
【0036】
ターゲット画像計測装置90は、照明部91と計測部101とを含んで構成される。照明部91は、照明光源としてのフラッシュランプ92と、照明光学系94とを含んで構成される。照明部91は、ウインドウ98を介してチャンバ16の外側に配置される。ウインドウ98は、チャンバ16の壁に取り付けられている。照明光学系94には、コリメートレンズが用いられる。
【0037】
計測部101は、光学フィルタ102と、結像光学系104と、シャッタ105Aと、光増幅部105Bと、転写光学系106と、画像センサ107とを含んで構成される。結像光学系104は、第1レンズ104Aと、第2レンズ104Bとを含んで構成される。
【0038】
シャッタ105Aと光増幅部105Bは一体化された機器であってもよく、例えば、ゲート動作が可能なイメージインテンシファイアを用いることができる。イメージインテンシファイアは、光電面と、マイクロチャンネルプレート(MCP:micro-channel plate)と、蛍光面と、を含んで構成される。光電面は、光を電子に変換する。MCPは、光電面から放出された電子を2次元的に検出して増倍する電子増倍素子である。MCPに印加する電圧を調整することにより、ゲインを調整することができる。蛍光面は、MCPの出力端から放出された電子を光に変換する。
【0039】
イメージインテンシファイアのゲート動作は、光電面とMCPの入力面との間の電位差を変化させることで実現される。ゲート動作はシャッタ動作と同義である。光電面の電位をMCPの入力面の電位よりも低くすると、光電面から放出された電子がMCPに入射し、蛍光面から出力像が得られる。このゲートONの状態が「シャッタ開」の状態に相当する。また、光電面の電位をMCPの入力面の電位よりも高くすると、電子はMCPに到達せず、蛍光面から出力像が得られない状態になる。このゲートOFFの状態が「シャッタ閉」の状態に相当する。例えば、MCPの入射面の電位を固定して、光電面に負極性のパルス電圧を印加することにより、ゲート動作が可能である。
【0040】
画像センサ107として、例えば、CCD(Charge-Coupled Device)イメージセンサを用いることができる。計測部101は、ウインドウ108を介してチャンバ16の外側に配置される。ウインドウ108は、ウインドウ98と対向してチャンバ16の壁に取り付けられている。照明部91と計測部101は、ターゲットの通過位置を挟んで互いに対向するようにチャンバ16に取り付けられる。
【0041】
ウインドウ98は、フラッシュランプ92から発せられた光を観察対象であるターゲットに向けて出射する光出射ポートの役割を果たす。ウインドウ98は本開示における「第1のウインドウ」の一例である。ウインドウ108はターゲットの周辺を通過した光を計測部101に導入する光入射ポートの役割を果たす。ウインドウ108は本開示における「第2のウインドウ」の一例である。
【0042】
制御部40は、処理部110と、遅延回路112と、光増幅部ゲイン制御部113と、を含む。処理部110は、画像センサ107によって撮影された画像の画像データを処理する。遅延回路112は、ターゲット通過検出装置70からのターゲット通過検出信号を受信し、ターゲット通過検出信号の受信に基づいてFLトリガ、シャッタトリガ、撮像トリガ、及びドライブレーザ出力トリガなど各種のトリガ信号を生成する。FLの表記は「フラッシュランプ」を表す。光増幅部ゲイン制御部113は、光増幅部105Bのゲインを制御する。
【0043】
照明部91のウインドウ98と、計測部101のウインドウ108の対向方向は、ドロップレットの進行経路であるドロップレット軌道と直交してもよいし、ドロップレット軌道と非直交であってもよい。
【0044】
EUV光生成装置12は、ドライブレーザ生成部114と共に用いられる。ドライブレーザ生成部114は、図1で説明したレーザ装置14及びレーザ光伝送装置54を含んだ構成に相当する。なお、図2では、図1に示したレーザ光伝送装置54、レーザ光集光ミラー56、及びEUV光集光ミラー24等の図示を省略した。ドライブレーザ生成部114は、複数台のレーザ装置を含んで構成されてもよい。本例のドライブレーザ生成部114は、図示せぬプリパルスレーザ装置及びメインパルスレーザ装置を含んで構成される。
【0045】
チャンバ16には、図示せぬ排気装置と、図示せぬ圧力センサとが設けられている。また、チャンバ16は図示せぬガス供給装置と接続される。
【0046】
ターゲット供給部18の詳細な構成は図示されていないが、ターゲット供給部18は、ターゲット物質を貯蔵する図示せぬタンクと、ターゲット物質を出力するノズル孔を含むノズルと、ノズルに配置された図示せぬピエゾ素子と、を含む。また、タンクの外側側面部には図示せぬヒータと図示せぬ温度センサとが配置される。さらに、EUV光生成装置12は、ターゲット物質を貯蔵するタンク内の圧力を調節する図示せぬ圧力調節器を備えている。ターゲット供給部18のノズルは、溶融したターゲット物質をチャンバ16内へジェット状に噴出するような形状で形成されている。ノズル孔から出力させるターゲット物質の一例として、液体スズを採用し得る。ノズルの中心軸方向の延長線上には、チャンバ16の内部にあるプラズマ生成領域26が位置する。
【0047】
3.2 動作
図2において、方向に関する説明の便宜上、XYZ直交座標軸を導入する。ターゲット供給部18からターゲット物質のドロップレットを出力する方向をY軸の方向とする。チャンバ16から露光装置46(図1参照)に向かってEUV光を導出する方向をX軸の方向とし、図2の紙面に垂直な方向をZ軸の方向とする。
【0048】
制御部40は、チャンバ16に取り付けられている図示せぬ圧力センサの検出値に基づいて、チャンバ16内の圧力が所定の範囲内となるように、図示せぬ排気装置による排気及びガス供給装置からのガス供給を制御する。チャンバ16内の圧力の所定の範囲とは、例えば、数パスカル[Pa]から数百パスカル[Pa]の間の値である。
【0049】
ターゲット供給部18は、例えば、コンティニュアスジェット方式によりドロップレット116を形成する。コンティニュアスジェット方式では、ノズルを振動させて、ノズル孔からジェット状に噴出したターゲット物質の流れに周期的振動を与え、ターゲット物質を周期的に分離する。分離されたターゲット物質は、自己の表面張力によって自由界面を形成してドロップレット116を形成し得る。
【0050】
制御部40は、ターゲット供給部18のタンクに取り付けられているヒータを制御することにより、タンク内のターゲット物質を融点以上の所定の温度まで加熱する。ターゲット物質として融点が232℃であるスズ(Sn)が用いられる場合、制御部40はヒータを制御することにより、タンク内のスズを融点以上の250℃から290℃の温度範囲の所定の温度まで加熱してタンク内のスズを温調する。また、制御部40は、タンク内の圧力がノズル孔から所定の速度で液体スズのジェットを出力し得る圧力となるように圧力調節器を制御する。
【0051】
次に制御部40は、ドロップレット116が生成するように、ターゲット供給部18のノズルに取り付けられているピエゾ素子に所定の波形の電圧を供給する信号を送信する。ピエゾ素子に所定の波形の電圧が供給されることによりピエゾ素子が振動する。その結果、ノズル孔から出力されるジェット状の液体スズがドロップレット116に分断され、均一な体積のドロップレット116が生成され得る。
【0052】
ドライブレーザ生成部114は、プリパルスレーザ光を出力するよう構成されたプリパルスレーザ装置と、メインパルスレーザ光を出力するよう構成されたメインパルスレーザ装置とを含んで構成される。本実施形態におけるLPP式のEUV光生成装置12では、ドロップレット状のターゲットにプリパルスレーザ光を照射してターゲットを拡散させ、拡散ターゲットを形成した後、この拡散ターゲットにメインパルスレーザ光を照射する。このように、拡散ターゲットにメインパルスレーザ光を照射すれば、ターゲット物質が効率良くプラズマ化され得る。これによれば、パルスレーザ光のエネルギーからEUV光のエネルギーへの変換効率(Conversion Efficiency:CE)が向上し得る。
【0053】
拡散ターゲットを形成するためのプリパルスレーザ光は、各パルスのパルス幅が1ナノ秒[ns]未満、好ましくは500ピコ秒[ps]未満、さらに好ましくは50ピコ秒[ps]未満の短パルスとされる。さらに、プリパルスレーザ光は、各パルスのフルーエンスが、メインパルスレーザ光の各パルスのフルーエンス以下で、かつ、6.5J/cm以上、好ましくは30J/cm以上、さらに好ましくは45J/cm以上とされる。
【0054】
このような構成によれば、プリパルスレーザ光の各パルスのパルス幅を短くすることにより、ターゲットを細かい粒子状に破壊して拡散させ得る。これにより、拡散したターゲットにメインパルスレーザ光を照射したときに、ターゲットが効率良くプラズマ化され、CEが向上し得る。
【0055】
なお、メインパルスレーザ光の照射に先行して複数のプリパルスレーザ光をターゲットに照射する構成を採用してもよい。
【0056】
ターゲット回収部58は、パルスレーザ光23が照射されずにプラズマ生成領域26を通過したドロップレット116や、パルスレーザ光23の照射によっても拡散しなかったドロップレットの一部分を回収する。
【0057】
ターゲット通過検出装置70の照明部71は、ターゲット供給部18からチャンバ16内に導入されたターゲットを照明する。ターゲットが所定の位置を通過すると検出部81に受光される光強度が低下する。ターゲットの通過に伴う光強度の変化は、光センサ86により検出される。光センサ86は、ターゲットの通過タイミングを示すターゲット検出信号を制御部40に出力する。
【0058】
制御部40は、ターゲット検出信号が所定の閾値電圧を下回ったタイミングでターゲット通過検出信号を生成する。なお、検出部81においてターゲット通過検出信号を生成し、検出部81から制御部40にターゲット通過検出信号が出力されてもよい。すなわち、ターゲット通過検出装置70は、光センサ86によってターゲットの通過を検出し、制御部40にターゲット通過検出信号を送信してもよい。
【0059】
遅延回路112は、受信したターゲット通過検出信号に対して、フラッシュランプ92、シャッタ105A、画像センサ107及びドライブレーザ生成部114の各装置に対してそれぞれ予め設定された遅延時間を付与して、装置ごとのトリガ信号を出力する。フラッシュランプ92、シャッタ105A、画像センサ107及びドライブレーザ生成部114の各装置について、それぞれ設定された装置ごとの遅延時間は、ターゲットがプラズマ生成領域26の指定地点に到達するまでの時間から、トリガ信号を受信する各装置の内部遅延時間及び伝送時間を差し引いて定める。
【0060】
フラッシュランプ92に与えられるトリガ信号を「FLトリガ」という。シャッタ105Aに与えられるトリガ信号を「シャッタトリガ」という。画像センサ107に与えられるトリガ信号を「撮像トリガ」という。ドライブレーザ生成部114に与えられるトリガ信号を「ドライブレーザ出力トリガ」という。
【0061】
遅延回路112の働きにより、フラッシュランプ92の発光、シャッタ105Aの開動作、及び画像センサ107の露光が同期する。すなわち、遅延回路112の働きにより、FLトリガに基づいてフラッシュランプ92が発光したタイミングでシャッタトリガに基づいてシャッタ105Aが開く。光増幅部105Bは、シャッタ透過光を増幅し、撮像トリガによって画像センサ107が露光を行う。
【0062】
その結果として、ターゲット画像計測装置90は、プラズマ生成領域26付近のターゲットを撮像する。画像センサ107を介して取得された画像データは、制御部40の処理部110に送られ、処理部110において画像処理される。
【0063】
4.フラッシュランプの配置形態
4.1 第1構成例
図3は、ターゲット画像計測装置90における照明部91の第1構成例を模式的に示す図である。図3に例示した照明部91は、ケース96内にフラッシュランプ92と照明光学系94とが収容され、チャンバ壁16Aにケース96が直接取り付けられている。チャンバ壁16Aは、チャンバ16の壁の一部である。
【0064】
4.2 動作
図3に示すように、フラッシュランプ92は、照明光学系94の近傍に配置される。チャンバ壁16Aに直接取り付けられたケース96に収容されているフラッシュランプ92から発せられた照明光は、照明光学系94及びウインドウ98を介してプラズマ生成領域26の付近に照射される。
【0065】
4.3 第2構成例
図4は、ターゲット画像計測装置90における照明部91の第2構成例を示す図である。図4に例示する照明部91のフラッシュランプ92は、照明光学系94の近傍に配置せず、照明光学系94から十分な距離を隔てた遠方に配置される。また、照明部91は、フラッシュランプ92から発せられた照明光を照明光学系94へと導く光ファイバ93を備えている。
【0066】
4.4 動作
図4に示したフラッシュランプ92から発せられた照明光は、光ファイバ93を用いてケース96内の照明光学系94へ伝送される。照明光は、光ファイバ伝送によりチャンバ付近で照明光学系94によりコリメートされ、プラズマ生成領域26の付近に照射される。なお、光ファイバ93に代えて、又は、これと組み合わせて、ミラーを用い、照明光を伝送する光伝送光路を採用してもよい。図4で例示したとおり、フラッシュランプ92はチャンバ16から離れた位置に置くことができる。
【0067】
5.ターゲット画像計測装置のトリガ関係の説明
図5は、ターゲット画像計測装置のタイミングチャートである。ターゲット通過検出信号は、撮像トリガ、シャッタトリガ、及びFLトリガの各トリガ信号のタイミングの基準となるタイミング信号である。遅延回路112は、ターゲット通過検出信号の受信時からそれぞれ必要な遅延時間を与えて、撮像トリガ、シャッタトリガ及びFLトリガの各トリガ信号を出力する。
【0068】
遅延回路112は、ターゲット通過検出信号の受信時から遅延時間Tccdだけ遅延させた撮像トリガを生成し、撮像トリガを画像センサ107に送信する。撮像トリガがONとなる時間の長さは、例えば、概ね1ミリ秒である。
【0069】
遅延回路112は、ターゲット通過検出信号の受信時から遅延時間Tstrだけ遅延させたシャッタトリガを生成し、シャッタトリガをシャッタ105Aに送信する。シャッタトリガに基づいてシャッタ105Aの開閉が行われる。シャッタトリガがONとなる時間の長さは、例えば、概ね20ナノ秒である。遅延回路112は、ターゲット通過検出信号の受信時から遅延時間TFLだけ遅延させたFLトリガを生成し、FLトリガをフラッシュランプ92に送信する。FLトリガがONとなる時間の長さは、例えば、概ね10マイクロ秒である。
【0070】
図5における「FL発光」は、FLトリガが入力されたフラッシュランプ92の発光強度を示している。フラッシュランプ92の発光強度は、フラッシュ発光による照明光の輝度を示している。フラッシュランプ92は、高輝度パルス光源であり、トリガ入力から少し遅れて発光し始め、トリガ入力タイミングからTemitの時間で発光強度がピークに達し、その後、発光強度が減衰する。
【0071】
図5は、FLトリガの遅延時間TFLの設定が適切な状態の例を示している。FLトリガの遅延時間TFLの設定が適切な状態の一例は、|Tstr-(TFL+Temit)|<0.5×FW_at80%となる状態である。ここで「FW_at80%」は、フラッシュランプ92の標準的な発光パルスの発光ピーク値の80%になるところのパルス全幅を表す。FLトリガの遅延時間TFLの設定が適切な状態である場合、フラッシュランプ92の発光ピークのタイミングがシャッタトリガのタイミングに概ね一致する。シャッタトリガのタイミングは、シャッタ開タイミングにほぼ一致している。図5中、FL発光におけるシャッタトリガのON期間に重なるハッチング部Hの面積(積分値)が画像センサ107によって撮影される画像の背景輝度に相当する。
【0072】
図5に示したように、FLトリガの遅延時間TFLの設定が適切な状態である場合、背景輝度が十分に明るい正常なターゲット像(図9の画像A参照)が得られる。
【0073】
6.課題
6.1 第1の課題
フラッシュランプ92を長期間にわたって使用していると、フラッシュランプ92の放電電極の損耗や、封入ガスの劣化、電子回路部品の劣化等によって、フラッシュランプ92のトリガ入力から発光までの時間差が変化する。
【0074】
図6は、フラッシュランプの発光タイミングの変化を例示的に示したグラフである。横軸は、FLトリガの入力時からの時間差(経過時間)を示しており、単位はナノ秒[ns]である。横軸の原点はトリガ入力時である。縦軸はフラッシュランプの発光強度を示している。図6において、Date.Xで示した発光波形は、ある特定の日時Xにおいて計測されたフラッシュランプの発光状態を示している。例えば、Date.Xの発光波形は、フラッシュランプの初期性能を示している。図6において、Date.Zで示した発光波形は、日時Xから十分に長期間経過した特定の日時Zにおいて計測されたフラッシュランプの発光状態を示している。フラッシュランプの長期間の使用に伴い、フラッシュランプのトリガ入力から発光までの時間差が長くなる。
【0075】
従来、フラッシュランプ92へのトリガ入力のタイミングは、装置の使用を開始する初期の段階で、計測部101における撮像系の露光タイミングと同期するように、つまり、露光時間内の積分光量(撮影画像の背景光量)が最大化するように、調整される。そして、その後は、フラッシュランプ92へのトリガ入力のタイミングの調整は行われない。
【0076】
したがって、Date.Xの発光波形における発光ピークのタイミングと、シャッタトリガのタイミングとを概ね一致させるよう設定された装置状態において、Date.Zのような発光波形になると、シャッタトリガのON期間に照射される照明光の光量が低下する。
【0077】
すなわち、フラッシュランプ92の経年劣化や状態変化によってフラッシュランプ92のトリガ入力から発光までの時間が変化することにより、撮像系の露光タイミングとの同期が崩れる。
【0078】
図7は、フラッシュランプ92の経年劣化や状態変化等に起因して撮影画像の背景輝度が低下する様子を示したグラフである。図7の横軸は、時間を表しており、単位は月(month)である。縦軸は背景輝度を示している。図7中の「X」は、図6のDate.Xの日付けを表し、図7の「Z」は、図6のDate.Zの日付けを表す。図7中の「Y」は、XとZの間の特定の日付けを指す。図7に示すように、フラッシュランプ92の長期間の使用により、背景輝度が低下していく。
【0079】
図8は、FLトリガの遅延時間TFLの設定が不適切な状態となる場合の例を示している。図8の最下段に示したFL発光の波形のうち、符号Aで示した発光状態は、図5に示した発光状態と同じ波形であり、発光ピークがシャッタトリガのタイミングと概ね一致している。
【0080】
これに対し、図8中の符号Bと符号Cで示したそれぞれの波形は、FLトリガのトリガ入力タイミングからフラッシュランプ92の発光までの時間差が長くなり、フラッシュランプ92の発光ピークとシャッタトリガのタイミングがずれている状態を示している。
【0081】
図5において、トリガ入力のタイミングから発光のピークに達するまでの時間差を発光ピーク到達時間Temitとすると、図5におけるFL発光のTemitが、フラッシュランプ92の劣化等により、例えば、図8に示すTemit-Bに変化する。
【0082】
この場合、例えば、符号Bの状態では、シャッタトリガのON期間と重なるハッチング部Hの面積が図5で説明したハッチング部Hの面積よりも減少し、撮影画像の背景輝度が低下する。また、符号Cの状態になると、シャッタトリガのON期間と、FL発光期間とがずれてしまい、撮影画像の背景輝度が極端に低下する。
【0083】
符号Bの状態や符号Cの状態は、FLトリガの遅延時間TFLの設定が不適切な状態に該当する。FLトリガの遅延時間TFLの設定が不適切な状態の一例は、|Tstr-(TFL+Temit)|>0.5×FW_at80%となる状態である。図8に示したように、FLトリガの遅延時間TFLの設定が不適切な状態である場合、シャッタトリガに対してフラッシュランプの発光ピークが一致していないので、背景輝度が暗い異常なターゲット像(図9の画像B及び画像C参照)が得られる。
【0084】
図9は、FLトリガの入力からFL発光までの時間差が、図8のA、B、及びCのそれぞれの状態である場合に、画像センサ107によって撮影される撮影画像のイメージ図である。図9の最左に示した画像Aは、FLトリガの入力からFL発光までの時間差が、図6において「A」で示した状態である場合に、画像センサ107によって撮影される撮影画像のイメージ図である。図9の中央に示した画像Bは、FLトリガの入力からFL発光までの時間差が、図8の「B」で示した状態である場合に、画像センサ107によって撮影される撮影画像のイメージ図である。図9の最右に示した画像Cは、FLトリガの入力からFL発光までの時間差が、図8の「C」で示した状態である場合に、画像センサ107によって撮影される撮影画像のイメージ図である。
【0085】
フラッシュランプ92の長期間の使用により、FLトリガ入力から発光までの時間差が、図8のA→B→Cのように変化したとすると、画像センサ107によって撮影される画像のイメージは、図9の画像A→画像B→画像Cのように次第に背景が暗くなる。画像A、画像B及び画像Cの各画像における黒丸は、ターゲットの影である。
【0086】
各画像A~Cにおいて破線で示した水平方向の信号強度を示すラインプロファイルは、図10のようになる。図10の横軸は水平方向の位置を表し、縦軸は信号強度、すなわち輝度を表す。なお、信号強度は、画像データにおける画素のカウント値、つまり、デジタル信号値で表すことができる。
【0087】
図10中「A」で示したラインプロファイルは、図9の画像Aにおける破線aで示したラインの断面プロファイルである。図10中「B」で示したラインプロファイルは、図9の画像Bにおける破線bで示したラインの断面プロファイルである。図10中「C」で示したラインプロファイルは、図9の画像Cにおける破線cで示したラインの断面プロファイルである。図10に示す各ラインプロファイルにおいて、ターゲットの影の部分は、背景部分に比べて信号強度が低くなる。背景部分の信号の変動は熱ノイズによるものである。画像Aのように背景が明るい撮影画像の場合、ターゲットの影と背景との明暗の差が大きく、ターゲットの影に相当するターゲット信号を適切に判別できる。ターゲット信号とは、ターゲットの影の部分を捉えた信号である。
【0088】
一方、画像Bのように、背景輝度が低い条件では、ターゲット信号とノイズの判別が困難になる。さらに、画像Cのように背景輝度が低下すると、ターゲットであるのか背景のノイズであるのかを判別不能なものとなり得る。つまり、背景輝度が低下すると、信号レベルが低下し、ターゲット信号に対するノイズの影響が相対的に大きくなる。その結果、撮影画像に基づくターゲットの位置や形状などの計測の誤差が拡大し、最悪の場合には計測不能に陥る。
【0089】
上述のように、フラッシュランプ92の経年劣化や状態変化によって、露光タイミングとの同期が崩れ、露光時間内の積分光量が低下することにより、ターゲットの影と背景とのコントラストが低下して、ターゲットの計測精度が低下する。
【0090】
6.2 第2の課題
第2の課題として、フラッシュランプ92を長期間にわたって使用した場合、フラッシュランプ92の発光光量そのものが低下し得る。すなわち、フラッシュランプ92を長期間にわたって使用した場合、図5で説明した発光ピーク到達時間の増大と、発光光量の低下とが同時に発生し得る。図11は、フラッシュランプ92の劣化によって、発光ピーク到達時間Temitが増大し、かつ、発光光量も低下する例を示している。図11の最下段に示したFL発光の光強度を示す波形のうち、符号D及び符号Eで示した発光状態は、フラッシュランプ92の発光光量が低下している様子を示している。なお、符号Aで示した発光状態は、図5に示した発光状態と同じ波形であり、発光ピークがシャッタトリガのタイミングと概ね一致している。
【0091】
図11中、符号Dで示す光強度の波形におけるシャッタトリガのON期間に重なるハッチング部Hの面積(積分値)が画像センサ107によって撮影される背景輝度に相当する。
【0092】
図11の符号D及びEに示すように、発光タイミングの遅れだけで無く、発光光量そのものも低下することによって、図9及び図10で説明した現象が発生する。その結果として、撮影画像に基づくターゲットの位置や形状などの計測の誤差が拡大し、最悪の場合には計測不能に陥るおそれがある。
【0093】
6.3 第3の課題
第3の課題として、フラッシュランプ92の劣化に限らず、シャッタ105A又は光増幅部105Bも劣化し得る。
【0094】
図12は、シャッタ105A又は光増幅部105Bの劣化によって、画像センサ107への入射光量が低下する例を示している。図12中の符号Fは、光増幅部105Bから出力された光強度の例を示す。図12の最下段に示した符号Aで示した発光状態は、図5に示した発光状態と同じ波形である。図12中、符号Fで示す光強度の波形におけるシャッタトリガのON期間に重なるハッチング部Hの面積(積分値)が画像センサ107によって撮影される背景輝度に相当する。
【0095】
図12の符号Fに示すように、シャッタ105A又は光増幅部105Bの劣化によって図9及び図10で説明した現象が発生する。その結果として、撮影画像に基づくターゲットの位置や形状などの計測の誤差が拡大し、最悪の場合には計測不能に陥るおそれがある。
【0096】
また、画像センサ107によって撮影される背景輝度が低下する要因としては他にも、ウインドウ98及び/又はウインドウ108の汚れにより透過光量が低下する場合などがあり得る。
【0097】
7.第1実施形態
7.1 構成
図13は、第1実施形態に係るターゲット撮影装置を含むEUV光生成装置の構成を概略的に示す図である。図2との相違点を説明する。
【0098】
図13に示す第1実施形態に係るターゲット撮影装置を含むEUV光生成装置の制御部40は、処理部110による撮影画像の背景輝度計測の結果を用いて、遅延回路112のTLトリガの遅延時間を調整する制御を行う。さらに、制御部40は、処理部110による撮影画像の背景輝度計測の結果を用いて、光増幅部105Bのゲインを調整する制御を行う。なお、光増幅部105Bに対するゲインの指令は、光増幅部ゲイン制御部113を介して光増幅部105Bに送られる。
【0099】
7.2 動作
処理部110は、画像センサ107から得られる撮影画像の画像データを基に、撮影画像の背景輝度を計測する。
【0100】
処理部110は、撮影画像の背景輝度計測の結果に基づき、遅延回路112に対してTFL変更指令を出力し得る。TFL変更指令は、FLトリガの遅延時間TFLの設定を変更させる指令であり、遅延時間TFLの設定値又は変更量を指令する情報を含む。
【0101】
また、処理部110は、撮影画像の背景輝度計測の結果に基づき、光増幅部ゲイン制御部113に対してGamp変更指令を出力し得る。Gamp変更指令は、光増幅部のゲインGampを変更させる指令であり、ゲインGampの設定値又は変更量を指令する情報を含む。
【0102】
図14に、撮影画像の画像データのイメージを例示的に示す。撮影画像には、ターゲットの影が映っている。このような撮影画像から、背景輝度を計測する方法として、例えば、次のような計測方法a~cを採用し得る。
【0103】
計測方法a:撮影画像の画像内全体の平均カウント値を背景輝度として採用する。カウント値とは画素のデジタル信号値を指す。カウント値は、画素が受けた光の強さを所定の階調数の段階における数値として表され、輝度が高いほどカウント値は大きくなる。例えば、所定の階調数が256階調(8ビット)である場合、カウント値は、0から255の範囲のいずれかの数値で表される。
【0104】
計測方法b:撮影画像の画像内全体の中の最大カウント値を背景輝度として採用する。
【0105】
計測方法c:撮影画像の画像内全体のカウント値のヒストグラムのピークに対応するカウント値を背景輝度として採用する。
【0106】
図15は、図14に示した撮影画像における輝度ヒストグラムを示す。横軸は、撮影画像の各ピクセルのカウント値であり、縦軸は該当ピクセル数を表す。図15中の「a」の矢印は、計測方法aによって取得する背景輝度のヒストグラム上の位置を示している。図中の「b」の矢印は、計測方法bによって取得する背景輝度のヒストグラム上の位置を示している。図中の「c」の矢印は、計測方法cによって取得する背景輝度のヒストグラム上の位置を示している。
【0107】
また、撮影画像から背景輝度を計測する他の方法として、次のような計測方法d、eを採用し得る。
【0108】
計測方法d:撮影画像の画像領域内に予め複数の計測領域を設定しておき、複数の計測領域のそれぞれの平均カウント値の平均値を背景輝度として採用する。
【0109】
例えば、図16に示すように、撮影画像の画像領域内に予め4つの計測領域W1、W2、W3、W4を設定しておく。図16には、各計測領域W1、W2、W3、W4の境界を規定する四角形の計測枠が示されている。それぞれの計測枠内でのみ平均値(平均カウント値)を計算し、計測領域W1、W2、W3、W4ごとの4つの平均カウント値の平均値を背景輝度として採用する。複数の計測領域は、Y方向の位置が異なり、かつX方向の位置が異なる少なくとも2つの計測領域を含むことが好ましい。
【0110】
計測方法e:撮影画像の画像領域内に予め複数の計測領域を設定しておき、複数の計測領域のうち、ターゲットが含まれた計測領域を除いた残りの計測領域のそれぞれの平均カウント値の平均値を背景輝度として採用する。
【0111】
図17は、撮影画像の例である。図17の撮影画像は、画面の上から下に向かってターゲットが進行する向きで撮影が行われたものである。図17の例では、予め設定した複数の計測領域W1~W4のうち、ターゲットを含む計測領域W2及び計測領域W4については、背景輝度の計算から除外する。この場合、残りの計測領域W1と計測領域W3のそれぞれについて平均カウント値を求め、それら計測領域W1、W3ごとの2つの平均カウント値の平均値を背景輝度として採用する。
【0112】
各計測領域にターゲットが含まれるか否かの判定は、例えば、次の2つの方法のいずれか、又は両方の組み合わせで行うことができる。
【0113】
[ターゲットの有無の判定方法1]ターゲットの供給位置の情報に基づき判定する。制御部40は、ターゲット供給部18から出力するターゲットの供給位置の情報を保持している。ターゲット供給部18は、図示せぬ二次元ステージを介してチャンバ16に取り付けられている。制御部40は、二次元ステージを制御してターゲットの供給位置を制御する。制御部40は、二次元ステージの制御情報として、ターゲットの供給位置を保持している。制御部40は、このターゲット供給位置の情報を基に、撮影画像内におけるターゲットの位置を判定し得る。
【0114】
[ターゲットの有無の判定方法2]撮影画像における各計測領域内の最低輝度の情報からターゲットの有無を判定できる。既述のとおり、撮影画像においてターゲットは影として映る。影の部分は輝度が低くなるため、計測領域内の画素の最低輝度が予め定められた規定の値よりも低い値である場合には、計測領域内にターゲットが含まれていると判定できる。
【0115】
図18は、撮影画像の他の例である。図18に示した撮影画像は、画面の左から右に向かってターゲットが進行する向きで撮影が行われたものである。画像センサ107の向きによって、図18のような撮影画像になる場合があり得る。図18の場合、撮影画像の画像領域内に予めの設定した複数の計測領域W1、W2、W3、W4のうち、ターゲットを含む計測領域W3及び計測領域W4については、背景輝度の計算から除外する。この場合、計測領域W1と計測領域W2のそれぞれについて平均カウント値を求め、それら計測領域ごとの2つの平均カウント値の平均値を背景輝度として採用する。
【0116】
計測方法d又は計測方法eによれば、撮影画像内において背景輝度を計算するための計測領域を予め固定して限定することにより、計測方法a~cと比較して、演算量が少なく、高速に背景輝度を取得することができる。
【0117】
また、計測方法eで説明したように、ターゲットが含まれる計測領域を演算の対象から除外することによって、ターゲットの状態による平均輝度のばらつきが抑制される。
【0118】
図16図18で例示したように、撮影画像の画像領域内に複数の計測領域を予め設定しておくことにより、ターゲットがいずれかの計測領域に含まれた場合に計測不能となることを防止することができる。
【0119】
7.3 TFL調整の実施タイミングについて
背景輝度計測は、例えば、ターゲット計測を行うごとに毎回、又は、複数回のターゲット計測につき1回の割合で、常時実施してもよい。そして、計測された背景輝度が予め定めた基準輝度の許容変動幅(例えば90%)を下回った場合に、TFL調整を実施する。TFL調整とは、FLトリガの遅延時間TFLを最適な値に調整することを意味する。FLトリガの遅延時間TFLを調整することは、FLトリガのタイミングを調整すること、つまりフラッシュランプ92の発光タイミングを調整すること、と同義である。
【0120】
また、計測された背景輝度が基準輝度の90%を下回らない場合であっても、1週間から1ヶ月程度の規定の期間経過ごとに定期的に、TFL調整を実施してもよい。
【0121】
本実施形態では、TFL調整のみならず、必要に応じて、光増幅部105BのゲインGampの調整が行われる。光増幅部105BのゲインGampを調整することを「光増幅部ゲイン調整」という。また、光増幅部ゲイン調整を「Gamp調整」と表記する場合がある。
【0122】
7.4 制御アルゴリズムの例
7.4.1 メインフローの説明
図19図21は、第1実施形態に係るターゲット撮影装置における制御のメインフローを示すフローチャートである。図19図21に示すフローチャートの各ステップは、制御部40として機能する1つ又は複数のCPU(Central Processing Unit)がプログラムを実行することにより実施され得る。
【0123】
図19のステップS11において、制御部40は、遅延時間TFL及び光増幅部105BのゲインGampについてそれぞれをデフォルト値に設定する。
【0124】
ステップS12において、制御部40は、TFL調整及びGamp調整のための各種パラメータの値を設定する。例えば、制御部40は、TFLの変更幅ΔT、Gampの変更幅ΔG、平均化サンプル数Nsample、背景輝度の目標値Q、及び背景輝度の許容変動幅αの各値を設定する。ステップS12において設定される各パラメータの数値の一例を示すと、ΔT=50ナノ秒[ns]、ΔG=2.5%、Nsample=10、Q=200、及びα=10%である。なお、許容変動幅α=10%とは、基準輝度に相当する目標値Qの±10%までの範囲を許容することを意味する。
【0125】
また、制御部40は、ステップS12において、FLトリガの遅延時間TFL及び光増幅部のゲインGampに関しては一旦調整済みであるとして、調整フラグFの値をF=0(調整完了)とする。
【0126】
調整フラグFは、TFL調整又はGamp調整の調整状態を示すフラグである。本例の場合、Fは{0,1,2,3,4}のいずれかの値を取り得る。
【0127】
F=0は、調整完了(調整済み)の状態を表す。
【0128】
F=1は、TFL調整開始の状態を表す。F=1の状態において現在のTFL値での背景輝度を取得する。
【0129】
F=2は、TFL調整中の第1状態を表す。F=2の状態においてTFLをマイナス側に変更した場合の背景輝度データの取得が行われる。
【0130】
F=3は、TFL調整中の第2状態を表す。F=3の状態においてTFLをプラス側に変更した場合の背景輝度データの取得が行われる。
【0131】
F=4は、Gamp調整中を表す。
【0132】
ステップS13において、制御部40は、背景輝度の平均処理のための積算用パラメータの初期化を行う。例えば、制御部40は、背景輝度の積算値Qsumを初期値である「0」に初期化する。また、制御部40は、積算データ数Nを初期値である「0」に初期化する。
【0133】
ステップS14において、制御部40は、ターゲット画像計測装置90の画像センサ107で撮影された画像データを受信したか否かを判定する。ステップS14にてNo判定の場合、制御部40はステップS14の処理をループさせ、画像データの受信を待つ。
【0134】
ステップS14において、制御部40は、画像センサ107で撮影された画像データを受信すると、ステップS16に進む。
【0135】
ステップS16において、制御部40は、画像データ解析を行う。処理部110は、画像データ解析の中で撮影画像の背景輝度Qを取得する。背景輝度Qの取得方法については、既に説明した計測方法a~eのいずれか、又はこれらの適宜の組み合わせを用いることができる。画像データ解析(ステップS16)の処理内容の詳細は後述する。
【0136】
ステップS17において、制御部40は、背景輝度の積算処理を行う。制御部40は、ステップS16にて取得された背景輝度Qを積算値Qsumに加算して、Qsumの値を更新する。
【0137】
また、ステップS17において、制御部40は、積算データ数Nの値に「1」を加え、積算データ数Nの値を更新する。
【0138】
ステップS18において、制御部40は、積算データ数Nが予め定めた平均化サンプル数に到達したか否かの確認を行う。制御部40は、Nの値とNsampleの値とを比較し、N≧Nsampleを満たすか否かを判定する。ステップS18にてNo判定である場合、ステップS14に戻る。積算データ数Nが平均化サンプル数に達するまでステップS14~S18が繰り返される。
【0139】
積算データ数Nが平均化サンプル数に到達し、ステップS18にてYes判定になると、制御部40は、ステップS19に進む。
【0140】
ステップS19において、制御部40は、平均処理を実施して、平均背景輝度Qave=Qsum/Nsampleを計算する。また、制御部40は、Qaveを求めた後、QsumとNsampleの各々を初期化する。
【0141】
次に、ステップS20において、制御部40は、調整フラグFの状態を確認し、調整開始又は調整中(F=1~4のいずれか)の場合は、各調整処理へ移行する一方、調整完了(F=0)の場合は、背景輝度の確認へ進む。すなわち、ステップS20において、制御部40は、調整フラグFの値がF=0であるか否かを判定する。
【0142】
ステップS20にてYes判定である場合、制御部40は、図20のステップS21に進む。図20に示すステップS21~ステップS24を含む処理ルートは、通常ルートに相当する。
【0143】
ステップS21において、制御部40は、平均背景輝度Qaveが目標値Qに対して許容範囲の下限以上であるか否かを判定する。つまり、制御部40は、Qave≧(1-α)Qを満たすか否かを判定する。なお、目標値Qは、本開示における「基準輝度」の一例である。(1-α)Qは本開示における「許容下限輝度」の一例である。許容下限輝度は、目標値Qと(1-α)の積によって設定される形態に限らない。許容下限輝度は、予め決められた値であっても構わない。
【0144】
ステップS21にてNo判定の場合、すなわち、Qaveが許容範囲の下限を下回っている場合は、ステップS22に進む。
【0145】
ステップS22において、制御部40は、次のループでTFL調整に処理ルートを変更するために、F=1とする。
【0146】
一方、ステップS21にてYes判定の場合、すなわち、Qaveが許容範囲の下限以上である場合には、制御部40はステップS23に進む。ステップS23において、制御部40は、平均背景輝度Qaveが目標値Qに対して許容範囲の上限以上であるか否かを判定する。つまり、制御部40は、Qave≦(1+α)Qを満たすか否かを判定する。(1+α)Qは本開示における「許容上限輝度」の一例である。許容上限輝度は、目標値Qと(1+α)の積によって設定される形態に限らない。許容上限輝度は、予め決められた値であっても構わない。
【0147】
ステップS23にてNo判定の場合、すなわち、Qaveが許容範囲の上限を上回っている場合には、制御部40はステップS24に進む。
【0148】
ステップS24において、制御部40は、次のループで光増幅部ゲイン調整に処理ルートを変更するために、F=4とする。
【0149】
ステップS24にてYes判定の場合、すなわち、平均背景輝度Qaveが基準輝度に対して許容範囲内であれば、制御部40は、図19のステップS14に戻って通常ルートのループを再開する。
【0150】
図20のステップS22又はステップS24の後、図19のステップS14に戻る。
【0151】
図20のステップS22又はステップS24を経て、図19のステップS14に戻った場合、ステップS20にてNo判定となる。
【0152】
ステップS20にてNo判定の場合、すなわち、調整フラグFが0以外の値である場合には、制御部40は、図21のステップS31に進む。図21に示すステップS31~ステップS34を含む処理ルートは、調整ルートに相当する。
【0153】
ステップS31において、制御部40は、調整フラグFがF≦3であるか否かを判定する。調整フラグFがF=1~3のいずれかであることは、TFLを最適化する調整が行われることを意味する。ステップS31にてYes判定の場合、制御部40はステップS32に進み、TFL最適化の処理を行う。
【0154】
ステップS32では、計算の結果に基づいた遅延時間TFLを実際の装置に反映して、背景輝度データを取得し、背景輝度が最大となるようにTFLを最適化する。ステップS32に実施されるTFL最適化処理の内容については後述する。ステップS32の後、制御部40は、図19のステップS14に戻り、次のループを再開する。
【0155】
また、制御部40は、F=1~3のいずれかの場合において、光増幅部105Bのゲイン調整によって背景輝度の更なる最適化が必要な場合には、TFLを最適化する処理を実施した後に、F=4として、光増幅部105Bのゲイン調整に入るように準備する。
【0156】
図21のステップS31にてNo判定の場合、すなわち、F=4である場合には、制御部40はステップS34に進む。ステップS34において、制御部40は、背景輝度が目標値Qに対する許容範囲内に収まるように光増幅部105Bのゲインを調整する。ステップS34にて実施される光増幅部ゲイン調整Aの処理内容については後述する。ステップS34の後、制御部40は、図10のステップS14に戻り、次のループを再開する。
【0157】
なお、図21のステップS32におけるTFL最適化の後、光増幅部ゲイン調整が不要な場合、制御部40は、図20で説明した通常ルートを含む処理に復帰する。
【0158】
7.4.2 画像データ解析処理の例
図22は、画像データ解析処理のフローチャートである。画像データ解析処理は、ターゲット位置及び/又は形状計測のサブルーチン(ステップS40)と、背景輝度取得のサブルーチン(ステップS42)とを含んで構成される。
【0159】
ステップS40において、制御部40は、ターゲット位置及び/又は形状の計測を行う。例えば、制御部40の処理部110は、撮影画像からドロップレットの径、ドロップレットの位置、ドロップレットの間隔、及びミストの広がり形状のうち、少なくとも1つを計測する。ここでいうミストは、拡散ターゲットを指す。
【0160】
ステップS42において、制御部40は、背景輝度取得のサブルーチンとして、計測方法a~eの5つの方法のうち、いずれかの計測方法に対応する処理を採用して背景輝度を計測する。計測方法a、計測方法b、計測方法c、計測方法d、計測方法eに基づく背景輝度の取得処理を、それぞれ「背景輝度取得a」、「背景輝度取得b」、「背景輝度取得c」、「背景輝度取得d」、「背景輝度取得e」と表記する。
【0161】
図23は、背景輝度取得aの処理内容を示すフローチャートである。ステップS50において、処理部110は、画像の平均輝度Iaveを計算する。ここでいう平均輝度は、画像センサ107から得られるデジタル画像データの各画素のカウント数の平均値、すなわち、撮影画像全体の画素値の平均値を計算することによって求められる。
【0162】
ステップS52において、制御部40は、背景輝度QとしてIaveを採用する。
【0163】
図24は、背景輝度取得bの処理内容を示すフローチャートである。ステップS60において、処理部110は、画像の最大輝度Imaxを計算する。ここでいう最大輝度は、画像センサ107から得られるデジタル画像データの各画素のカウント数の中から、最も大きなカウント数を特定することによって求められる。
【0164】
ステップS62において、制御部40は、背景輝度QとしてImaxを採用する。
【0165】
図25は、背景輝度取得cの処理内容を示すフローチャートである。
【0166】
ステップS70において、処理部110は、画像の輝度ヒストグラムを作成する。処理部110は、撮影画像の各ピクセルのカウント値を基に、図15で説明したような輝度ヒストグラムを作成する。
【0167】
その後、ステップS72において、処理部110は、輝度ヒストグラムのピーク値Ipeakを取得する。輝度ヒストグラムのピーク値は、該当ピクセル数が最大となる画素のカウント値であり、ピークに対応するカウント値を意味する。
【0168】
ステップS74において、制御部40は、背景輝度QとしてIpeakを採用する。
【0169】
図26は、背景輝度取得dの処理内容を示すフローチャートである。ステップS80において、制御部40は、計測領域の個数Nwindowを設定する。図16で説明した例ではNwindow=4である。
【0170】
ステップS81において、制御部40は、計測領域ごとの背景輝度Qを初期化し、かつ、演算対象とする計測領域を指定するインデックスmを初期化する。ステップS82の初期化処理により、Q=0(k=1,2,・・・Nwindow)及びm=1に設定される。kは、Nwindow個の計測領域の各々を識別するインデックスである。
【0171】
ステップS82において、処理部110は、m番目の計測枠内の平均輝度Iaveを取得する。m番目の計測枠内とは、m番目の計測領域と同義である。
【0172】
ステップS83において、制御部40は、Q=Iaveとし、ステップS84に進む。
【0173】
ステップS84において、制御部40は、mの値をインクリメントし、m+1を新たにmの値に設定する。
【0174】
次いで、ステップS85において、制御部40は、mがNwindowを超えたか否かの判定を行う。ステップS85において、mがNwindow以下であれば、ステップS82に戻り、ステップS82~S85の処理を繰り返す。
【0175】
ステップS85において、mがNwindowを超えた場合には、制御部40はステップS86に進む。
【0176】
ステップS86において、処理部110は、Nwindow個のQ(k=1,2,・・・Nwindow)の平均値を計算し、算出された平均値を撮影画像の背景輝度Qとして採用する。
【0177】
図27は、背景輝度取得eの処理内容を示すフローチャートである。ステップS90において、制御部40は、計測領域の個数Nwindowを設定する。図17及び図18で説明した例ではNwindow=4である。
【0178】
ステップS91において、制御部40は、演算に必要な各種の初期化処理を行う。制御部40は、計測領域ごとの計測データの有効/無効を判定するパラメータpを初期化してp=0(k=1,2,・・・Nwindow)とする。制御部40は、計測領域ごとの背景輝度Qを初期化してQ=0(k=1,2,・・・Nwindow)とする。制御部40は、演算対象とする計測領域を指定するインデックスmをm=1に設定する。また、制御部40は、計測枠内にターゲットが存在するか否かの判定基準となるβの値を、例えばβ=0.2と設定する。
【0179】
ステップS92において、制御部40は、m番目の計測枠内の平均輝度Iaveと最小輝度Iminを取得する。処理部110は、m番目の計測枠内の平均輝度Iaveと最小輝度Iminを求める処理を行う。ステップS93において、制御部40は、(Iave-Imin)/Iaveがβよりも小さいか否かを判定する。
【0180】
計測枠内にターゲットが含まれている場合、(Iave-Imin)/Iaveの値は1に近い値となる。一方、計測枠内にターゲットが含まれていない場合、(Iave-Imin)/Iaveの値は0に近い値となる。
【0181】
ステップS93において、制御部40は、(Iave-Imin)/Iaveがβよりも小さいと判定した場合は、ステップS94に進む。ステップS94において、制御部40は、p=1とし、かつ、Q=Iaveとした後、ステップS96に進む。
【0182】
一方、ステップS93において、制御部40は、(Iave-Imin)/Iaveがβ以上であると判定した場合は、ステップS95に進む。ステップS95において、制御部40は、p=0とした後、ステップS96に進む。
【0183】
ステップS96において、制御部40は、mの値をインクリメントして、m+1を新たにmの値に設定する。
【0184】
ステップS97において、制御部40は、mがNwindowを超えたか否かの判定を行う。ステップS97において、mがNwindow以下であれば、ステップS92に戻り、ステップS92~S97の処理を繰り返す。
【0185】
ステップS97において、制御部40は、mがNwindowを超えたと判定すると、ステップS98に進む。
【0186】
ステップS98において、処理部110は、Q=Σ(p)/Σ(p)の計算式に従い、撮影画像の背景輝度Qを求める。これにより、p=0となった計測枠の計測データは除外され、p=1となった計測枠の計測データのみを用いて背景輝度Qが算出される。
【0187】
図23図27で説明した背景輝度取得a~eのそれぞれのメリット及びデメリットを図28の表にまとめた。表中の「A」は相対的に評価が高いことを示しており、表中の「B」は「A」に比べて評価が劣ることを示している。
【0188】
処理の複雑さに関して、背景輝度取得aと背景輝度取得bは、逐次処理のため、処理は容易である。この点、背景輝度取得c、d及びeは、処理がやや複雑となる。
【0189】
処理範囲に関して、背景輝度取得a、b及びcは、処理範囲が画像伝耐のため、処理に時間がかかる。一方、背景輝度取得dと背景輝度取得eは、処理範囲が領域枠で規定される範囲に限定されるので短時間で処理できる。
【0190】
ターゲット像の影響に関して、背景輝度取得b、c及びeでは、原理的にターゲット像は背景輝度にほとんど影響を与えない。一方、背景輝度取得aと背景輝度取得dでは、背景輝度がターゲット像の影響を受ける。
【0191】
熱ノイズの影響は、背景輝度取得bの計測結果のみに表れる。
【0192】
図28から総合的に評価すると、背景輝度取得a~eのうち、背景輝度取得eの処理が最も好ましい方法である。
【0193】
7.4.3 TFL最適化処理の例
図29は、TFL最適化の処理内容を示すフローチャートである。図29は、図20のステップS32に適用されるフローチャートである。図29の各ステップを詳述する前に、図29に示す処理の全体を概説する。
【0194】
制御部40は、TFL調整開始の調整フラグF=1が立っている場合は、現在の平均背景輝度Qaveを、暫定的に最大背景輝度Qave maxとして記録する(ステップS102)。その後、制御部40は、最初にTFLのマイナス方向の確認をするために調整フラグFをF=2に変更し(ステップS103)、現在のTFLからΔTだけ差し引いた値を、新しいTFLとして設定して(ステップS110)、図19図21に示すメインフローへ戻る。
【0195】
FL調整中の調整フラグF=2又はF=3が立っている場合は、図19図21に示すメインフローにおいて、再度、平均背景輝度Qaveを取得して、図29の処理に戻ってきている。したがって、制御部40は、現在の平均背景輝度Qaveと今までの最大背景輝度Qave maxを比較し、現在の平均背景輝度Qaveの方が大きい場合は、Qave maxをQaveで更新する(ステップS105)。その後、TFLを1つ前の手順と同じ方向に、再設定する(ステップS110又はステップS116)。すなわち、F=2の場合はマイナス方向に、F=3の場合はプラス方向に、それぞれTFLを再設定する。これは、平均背景輝度が前回より上がったので、タイミングの調整方向は合っているケースである。
【0196】
これとは逆に、現在の平均背景輝度Qaveが今までの最大背景輝度Qave maxよりも小さい場合は、制御部40は、次の調整ステップへ移行する(ステップS112)。すなわち、制御部40は、F=2であった場合にはF=3に変更し、F=3であった場合にはF=4に変更する。これは、平均背景輝度が前回より下がったので、タイミングの調整方向が間違っている、又は、調整が行き過ぎているケースである。この場合、制御部40は、ステップS112において調整フラグFをインクリメントした後、TFLを前回調整した方向と逆方向にΔTの単位で変更する(ステップS114又はステップS118)。つまり、制御部40は、F=2からF=3へ移行した場合、現在のTFLにΔTを加える。F=3からF=4へ移行した場合は、現在のTFLからΔTを差し引く。なお、F=4になったら、図29のフローには戻らず、光増幅部ゲイン調整A(図20のステップS34)に移行する。
【0197】
次に、図29に示すフローチャートの各ステップを詳述する。
【0198】
ステップS100において、制御部40は、調整フラグを確認し、F=1であるか否かを判定する。調整フラグFがF=1である場合に、ステップS100の判定結果がYes判定となり、制御部40は、ステップS102に進む。
【0199】
ステップS102において、制御部40は、最大背景輝度Qave maxの値として現在の平均背景輝度Qaveの値を暫定設定する。
【0200】
ステップS103において、制御部40は、TFLを短縮する方向であるマイナス方向の確認を実施するために、調整フラグFをF=2に設定する。
【0201】
次いで、ステップS110において、制御部40は、TFLからΔTだけ引いた値を新たにTFLとする。ステップS110は、FLトリガのタイミングをマイナス方向のずらすことに相当している。ステップS110にて変更されたTFLは、遅延回路112に反映される。ステップS110の後、制御部40は、図19図22に示すメインフローに復帰する。
【0202】
図29のステップS100において判定結果がNo判定である場合、すなわち、調整フラグFがF=2~4のいずれかの値である場合には、制御部40は、ステップS104に進む。
【0203】
ステップS104において、制御部40は、現在の平均背景輝度Qaveが、最大背景輝度Qave maxよりも大きいか否かを判定する。Qave>Qave maxを満たす場合、制御部40は、ステップS105に進み、最大背景輝度Qave maxを現在の平均背景輝度Qaveの値に更新する。
【0204】
ステップS105の後、制御部40は、ステップS106において、調整フラグFがF=2であるか否かを判定する。ステップS106にてYes判定の場合、すなわち、調整フラグFがF=2である場合には、TFLのマイナス方向の確認中であることから、制御部40は、ステップS110に進み、TFLをマイナス方向に調整する処理を継続する。
【0205】
ステップS104の判定結果がNo判定の場合、すなわち、現在の平均背景輝度Qaveが最大背景輝度Qave maxよりも小さい場合には、制御部40はステップS112に進み、調整フラグFの値をインクリメントする。
【0206】
ステップS113において、制御部40は、調整フラグFがF=3であるか否かを判定する。ステップS113にてYes判定の場合、すなわち、調整フラグFがF=3である場合には、TFLのプラス方向の確認中であることから、制御部40は、ステップS114に進み、TFLにΔTを加えて、新たにTFLとする。ステップS114の処理は、前回のステップS110において、マイナス方向にΔTだけずらしたTFLの値が不適切であったとして、現在の最大背景輝度Qave maxが得られていたTFLの値に戻す処理に相当する。
【0207】
ステップS114の後、制御部40は、ステップS116に進み、TFLにΔTを加えて、新たにTFLとする。ステップS114にて変更されたTFLは、遅延回路112に反映される。ステップS116の後、制御部40は、図19図22に示すメインフローに復帰する。
【0208】
F=3の状態で図29のステップS106に到来すると、ステップS106にてNo判定となり、制御部40は、ステップS116に進む。TFLについてΔTずつプラス方向の調整を行うと、やがて、ステップS104においてNo判定となり得る。F=3の状態でステップS112に到来すると、制御部40は、調整フラグFの値に1を加える。これにより、調整フラグFはF=4になる。この場合、ステップS113にてNo判定となり、制御部40はステップS118に進む。
【0209】
ステップS118において、制御部40は、TFLからΔTを引いて、新たにTFLとする。ステップS118の処理は、前回のステップS116において、プラス方向にΔTだけずらしたTFLの値が不適切であったとして、現在の最大背景輝度Qave maxが得られていたTFLの値に戻す処理に相当する。
【0210】
ステップS118の後、制御部40は、図19図22に示すメインフローに復帰する。
【0211】
7.4.4 光増幅部ゲイン調整処理の例
図30は、光増幅部ゲイン調整Aの処理内容を示すフローチャートである。図30は、図20のステップS34に適用されるフローチャートである。図30に示すフローチャートは、光増幅部105BのゲインGampを予め定めた変更幅ΔGで段階的に変更する処理の例である。
【0212】
ステップS130において、制御部40は、現在の平均背景輝度Qaveが許容範囲の下限以上であるか否かを判定する。すなわち、制御部40は、Qave≧(1-α)Qを満たすか否かを判定する。現在の平均背景輝度Qaveが許容範囲の下限を下回っている場合、制御部40は、ステップS132に進む。
【0213】
ステップS132において、制御部40は、光増幅部105BのゲインGampをΔGだけ増加させ、Gampの設定を変更する。但し、Gamp+ΔGが別途指定の最大値を上回る場合には、制御部40は、Gampを別途指定の最大値に設定する。ステップS132にて設定されたゲインGampの指令が光増幅部105Bに反映される。ステップS132の後、制御部40は、図30のフローチャートを抜けて、図19図21に示すメインフローに復帰する。
【0214】
その一方、図30のステップS130にてYes判定の場合、制御部40は、ステップS134に進み、現在の平均背景輝度Qaveが許容範囲の下限以上であるか否かを判定する。すなわち、制御部40は、Qave≦(1+α)Qを満たすか否かを判定する。現在の平均背景輝度Qaveが許容範囲の上限を上回っている場合、制御部40は、ステップS136に進む。
【0215】
ステップS136において、制御部40は、光増幅部105BのゲインGampをΔGだけ減少させ、Gampの設定を変更する。但し、Gamp-ΔGが別途指定の最小値を下回る場合には、制御部40は、Gampを別途指定の最小値に設定する。ステップS136にて設定されたゲインGampの指令が光増幅部105Bに反映される。ステップS136の後、制御部40は、図30のフローチャートを抜けて、図19図21に示すメインフローに復帰する。
【0216】
また、図30のステップS134にてYes判定の場合、すなわち、現在の平均背景輝度Qaveが目標値Qの許容範囲内にある場合には、制御部40は、ステップS138に進む。ステップS138において、制御部40は、調整フラグFをF=0とする。ステップS138の後、制御部40は、図30のフローチャートを抜けて、図19図21に示すメインフローに復帰し、通常ルートに戻る。
【0217】
第1実施形態において説明した計測部101は本開示における「撮影部」の一例である。光増幅部ゲイン制御部113を含む制御部40は本開示における「制御部」の一例である。ターゲット画像計測装置90と制御部40との組み合わせは本開示における「ターゲット撮影装置」の一例である。ターゲット通過検出信号は本開示における「タイミング信号」の一例である。遅延回路112がターゲット通過検出信号を受信することは本開示における「外部からタイミング信号を受信」の一例である。FLトリガは本開示における「第1のトリガ信号」の一例である。TFLは本開示における「第1の遅延時間」の一例である。撮像トリガは本開示における「第2のトリガ信号」の一例に相当する。Tccdは本開示における「第2の遅延時間」の一例である。シャッタトリガは本開示における「第3のトリガ信号」の一例である。Tstrは「第3の遅延時間」の一例に相当する。
【0218】
7.5 効果
第1実施形態によれば、ターゲットの影を捉えた撮影画像から背景輝度を計測して、その計測結果を基に光増幅部105BのゲインGampを調整することにより、適切な明るさの撮影画像を得ることができる。これにより、フラッシュランプ92の劣化による発光光量の低下や、シャッタ105A又は光増幅部105Bの劣化による光量の低下など、各種要因に起因する背景輝度の低下を抑制することができ、背景輝度を概ね一定に保つことができる。第1実施形態によれば、ターゲットの計測精度を維持することができる。
【0219】
8.第2実施形態
8.1 構成
第2実施形態に係るターゲット撮影装置を含むEUV光生成装置の構成は、図13に示した第1実施形態の構成と同様であってよい。
【0220】
8.2 動作
第1実施形態との相違点を説明する。第2実施形態では、第1実施形態と比較して、光増幅部105Bのゲイン調整の処理内容が異なる。第1実施形態では光増幅部ゲイン調整A(図21のステップS34)の処理として、図30のフローチャートを採用する例を示した。これに対し、第2実施形態では、光増幅部ゲイン調整Aの処理に代えて、光増幅部ゲイン調整Bの処理を採用する。
【0221】
すなわち、第2実施形態では、図21のフローチャートに代えて、図31のフローチャートが採用される。図31のフローチャートは、図21におけるステップS34に代えて、光増幅部ゲイン調整B(ステップS35)のステップを含む。
【0222】
図32は、光増幅部ゲイン調整Bの処理内容を示すフローチャートである。図32に示すフローチャートは、図31のステップS35に適用される。図32に示すフローチャートは、背景輝度を目標値Qに対する許容範囲内に収めるように、光増幅部105BのゲインGampを平均背景輝度Qaveと目標値Qの比に基づいて、決め打ちで変更する処理の例である。
【0223】
ステップS140において、制御部40は、現在の平均背景輝度Qaveが許容範囲に入っているか否かを判定する。すなわち、制御部40は、Qave≧(1-α)QかつQave≦(1+α)Qを満たすか否かを判定する。現在の平均背景輝度Qaveが許容範囲の下限を下回っている場合、又は、現在の平均背景輝度Qaveが許容範囲の上限を上回っている場合には、制御部40は、ステップS142に進む。
【0224】
ステップS142において、制御部40は、平均背景輝度Qaveと目標値Qの比に基づいて、新しいゲインGampを設定する。例えば、制御部40は、Gamp×(Q/Qave)の値を新しいゲインGampとして設定する。但し、Gamp×(Q/Qave)によって定まる値が別途指定の最大値を上回ることになる場合には、制御部40は、Gampを別途指定の最大値に設定する。また、Gamp×(Q/Qave)によって定まる値が別途指定の最小値を下回ることになる場合には、制御部40は、Gampを別途指定の最小値に設定する。ステップS142にて設定されたゲインGampの指令が光増幅部105Bに反映される。ステップS142の後、制御部40は、図32のフローチャートを抜けて、図19図20及び図22に示すメインフローに復帰する。
【0225】
その一方、図32のステップS140にてYes判定の場合、すなわち、現在の平均背景輝度Qaveが目標値Q0に対して許容範囲内に収まっている場合には、制御部40は、ステップS144に進む。
【0226】
ステップS144において、制御部40は、調整フラグFをF=0とする。ステップS144の後、制御部40は、図32のフローチャートを抜けて、図19図20及び図31に示すメインフローに復帰し、通常ルートに戻る。
【0227】
なお、第2実施形態の場合、図19のフローチャートにおけるステップS12において、ΔGの値を設定する処理は省略される。他の処理内容は第1実施形態と同様である。
【0228】
8.3 効果
第2実施形態によれば、第1実施形態と同様の効果が得られる。
【0229】
9.第3実施形態
9.1 構成
図33は、第3実施形態に係るターゲット撮影装置を含むEUV光生成装置の構成を示す図である。
【0230】
図13に示した第1実施形態との相違点を説明する。第1実施形態では、計測部101におけるシャッタ105Aと光増幅部105Bを一体化した機器で構成した例を示し、一体化した機器の具体例としてゲート動作可能なイメージインテンシファイアを説明した。
【0231】
これに対し、第3実施形態では、計測部101のシャッタ105Aと光増幅部105Bがそれぞれ独立した機器で構成される。図33に示すように、シャッタ105A及び光増幅部105Bは、結像光学系104から画像センサ107に至る光路上に直列に配置される。シャッタ105Aと光増幅部105Bの間には、レンズ109その他の光学素子が配置されてもよい。レンズ109は、転写光学系の一部であってよい。
【0232】
9.2 動作
第3実施形態の動作は、第1実施形態又は第2実施形態と同様である。
【0233】
9.3 効果
第3実施形態によれば、第1実施形態と同様の効果が得られる。
【0234】
10.変形例
第1実施形態から第3実施形態の各実施形態では、TFL調整の制御とGamp調整の制御とを組み合わせて実施する例を説明したが、Gamp調整のみを単独で実施する構成を採用してもよい。例えば、ターゲット画像計測装置90のウインドウ98及び/又はウインドウ108の汚れによって画像センサ107に入る光量が低下している場合には、その低下分を補償するように、Gampを増加させる調整を実施すればよい。
【0235】
11.拡散ターゲットの計測について
第1実施形態から第3実施形態の各実施形態の説明においては、ターゲット画像計測装置90がドロップレット状のターゲットを撮影する例を説明したが、ターゲット画像計測装置90は、ターゲットにプリパルスレーザ光を照射した後の拡散ターゲットを撮影してもよい。
【0236】
図34図36は、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光が照射された場合の拡散ターゲットの生成過程を模式的に示す断面図である。図34は、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始からピコ秒オーダーの時間が経過した時点において推定されるターゲットの状態を示す。図35は、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始からナノ秒オーダーの時間が経過した時点において推定されるターゲットの状態を示す。図36は、ターゲットにピコ秒オーダーのパルス幅を有するプリパルスレーザ光の照射開始から約1μsの時間が経過した時点における拡散ターゲットの状態を示す。
【0237】
図34に示すように、ドロップレット状のターゲットにプリパルスレーザ光が照射されると、ターゲット表面にプリパルスレーザ光のエネルギーの一部が吸収され得る。その結果、プリパルスレーザ光が照射されたターゲット表面からほぼ垂直にターゲットの外側に向かうイオンや原子等の噴射を伴う、レーザアブレーションが発生し得る。これにより、プリパルスレーザ光が照射されたターゲット表面に対して垂直かつターゲット内部に向かって、レーザアブレーションによる反作用が働き得る。
【0238】
このプリパルスレーザ光は、例えば、6.5J/cm以上のフルーエンスを有し、ピコ秒オーダーの時間内でターゲット照射を終了し得るので、時間あたりにターゲットへ照射される光のエネルギーが大きい。したがって、強力なレーザアブレーションが短時間で発生し得る。このため、レーザアブレーションによる反作用も大きく、ターゲットの内部に衝撃波が発生するものと推測される。
【0239】
衝撃波は、プリパルスレーザ光が照射されたターゲットの表面に対してほぼ垂直に進行するため、ドロップレット状のターゲットのほぼ中心に集束する。衝撃波の波面は、当初、ターゲットの表面とほぼ平行なほぼ半球面状である。衝撃波が集束するに伴って、エネルギーが集中し、集中したエネルギーが一定の大きさを超えると、ドロップレット状のターゲットの破壊が始まる。
【0240】
ターゲットの破壊は、集束することによってエネルギーが一定の大きさを超えた衝撃波の、ほぼ半球面状の波面から始まるものと推測される。このことが、図35及び図36に示すように、ターゲットがプリパルスレーザ光の入射側にドーム型に拡散した理由であると考えられる。
【0241】
図34において、衝撃波がドロップレット状のターゲットの中心にまで集束すると、エネルギーが最も集中し、ターゲットの残りの部分も一気に破壊され得る。このことが、図36に示すように、ターゲットがプリパルスレーザ光の進行方向側に円環状に拡散した理由であると考えられる。
【0242】
また、図34においては、強力なレーザアブレーションが発生していると推測されるが、レーザアブレーションが発生している時間は僅かであり、衝撃波がターゲットの中心に到達するまでの時間も短いと推測される。そして、図35に示すように、おそらくナノ秒オーダーの時間が経過した時にはターゲットが破壊され始めていると推測される。このことが、図36に示すように、ターゲットの重心がプリパルスレーザ光の照射前の位置からあまり移動していない理由であると推測される。
【0243】
第1実施形態から第3実施形態で説明したEUV光生成装置12において、ドライブレーザ出力トリガ、撮像トリガ、シャッタトリガ、及びFLトリガの遅延時間を適切に設定することにより、ターゲット画像計測装置90は、拡散ターゲットを計測し得る。
【0244】
12.EUV光生成装置を用いた電子デバイスの製造方法の例
図37は、EUV光生成装置と接続された露光装置の概略構成を示す図である。図37において、露光装置46は、マスク照射部462とワークピース照射部464とを含む。マスク照射部462は、EUV光生成装置12から入射したEUV光62によって、反射光学系463を介してマスクテーブルMTのマスクパターンを照明する。EUV光生成装置12は、第1実施形態から第3実施形態及び変形例として説明した少なくとも一形態の構成を含む。
【0245】
ワークピース照射部464は、マスクテーブルMTによって反射されたEUV光62を、反射光学系465を介してワークピーステーブルWT上に配置された図示せぬワークピース上に結像させる。
【0246】
ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。露光装置46は、マスクテーブルMTとワークピーステーブルWTとを同期して平行移動させることにより、マスクパターンを反映したEUV光をワークピースに露光する。
【0247】
以上のような露光工程によって半導体ウエハにデバイスパターンを転写することで半導体デバイスを製造することができる。半導体デバイスは電子デバイスの一例である。
【0248】
上記の説明は、制限ではなく単なる例示を意図している。したがって、添付の特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかであろう。
【0249】
本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書、及び添付の特許請求の範囲に記載される不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29
図30
図31
図32
図33
図34
図35
図36
図37