(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-08
(45)【発行日】2022-08-17
(54)【発明の名称】シリコン単結晶の育成方法およびシリコン単結晶の引き上げ装置
(51)【国際特許分類】
C30B 29/06 20060101AFI20220809BHJP
C30B 15/00 20060101ALI20220809BHJP
【FI】
C30B29/06 502G
C30B15/00 Z
(21)【出願番号】P 2019158190
(22)【出願日】2019-08-30
【審査請求日】2021-09-01
(73)【特許権者】
【識別番号】302006854
【氏名又は名称】株式会社SUMCO
(74)【代理人】
【識別番号】110000637
【氏名又は名称】特許業務法人樹之下知的財産事務所
(72)【発明者】
【氏名】山田 惇弘
(72)【発明者】
【氏名】横山 竜介
【審査官】山本 一郎
(56)【参考文献】
【文献】特開2007-31260(JP,A)
【文献】特開平09-263485(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C30B 29/06
C30B 15/00
(57)【特許請求の範囲】
【請求項1】
チョクラルスキー法によるシリコン単結晶の育成方法であって、
石英ルツボ内のシリコン原料を加熱し、シリコン融液を形成する加熱工程と、
前記シリコン融液に対して水平磁場を印加する磁場印加工程と、
前記石英ルツボに温度勾配を設定する石英ルツボの温度勾配設定工程と、を備え、
前記石英ルツボの温度勾配設定工程は、前記磁場印加工程後に前記石英ルツボにおける磁場方向の一方側と前記磁場方向の他方側との間で温度勾配ができるように前記石英ルツボに温度勾配を与えることを特徴とするシリコン単結晶の育成方法。
【請求項2】
請求項1に記載のシリコン単結晶の育成方法において、
前記磁場印加工程における前記シリコン融液の酸素移送方向を推定する酸素移送方向推定工程を備え、
前記石英ルツボの温度勾配設定工程では、前記石英ルツボの前記磁場方向の一方側と前記磁場方向の他方側のうち、前記酸素移送方向推定工程において推定された前記酸素の移送元側の温度が低くなるように、あるいは高くなるように前記温度勾配を設定することを特徴とするシリコン単結晶の育成方法。
【請求項3】
請求項2に記載のシリコン単結晶の育成方法において、
前記酸素移送方向推定工程は、前記石英ルツボの回転方向および前記シリコン融液の対流の回転方向により前記酸素移送方向を推定することを特徴とするシリコン単結晶の育成方法。
【請求項4】
請求項3に記載のシリコン単結晶の育成方法において、
前記磁場印加工程では、前記シリコン融液の表面温度に基づいて前記対流の回転方向を推定し、前記対流の回転方向が所望の回転方向であるときに磁場を印加することを特徴とするシリコン単結晶の育成方法。
【請求項5】
軸線回りに回転可能な石英ルツボと、
前記石英ルツボ内のシリコン融液を加熱する加熱装置と、
前記シリコン融液に対して水平磁場を印加する磁場印加装置と、を備え、
前記加熱装置は、前記石英ルツボにおける磁場方向の一方側と前記磁場方向の他方側との間で温度勾配ができるように形成されていることを特徴とするシリコン単結晶の引き上げ装置。
【請求項6】
請求項5に記載のシリコン単結晶の引き上げ装置において、
前記加熱装置はカーボンヒーターであり、前記カーボンヒーターは複数のヒーター片として周方向に分割され、各々の前記ヒーター片は、それぞれ温度制御可能であることを特徴とするシリコン単結晶の引き上げ装置。
【請求項7】
請求項5に記載のシリコン単結晶の引き上げ装置において、
前記加熱装置はカーボンヒーターであり、前記カーボンヒーターは、前記磁場方向の一方側と前記磁場方向の他方側とで厚みが異なることを特徴とするシリコン単結晶の引き上げ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコン単結晶の育成方法およびシリコン単結晶の引き上げ装置に関する。
【背景技術】
【0002】
シリコン単結晶(単結晶インゴット)の製造にはチョクラルスキー法(以下、CZ法という)と呼ばれる方法が使われる。一般的に、CZ法を用いたシリコン単結晶の製造においては、シリコン単結晶は結晶欠陥や酸素が析出した酸素析出物の発生を抑制するために、低酸素濃度であることが高品質であるとされている。
【0003】
特許文献1には、ヒーターの熱中心高さを制御することによって、シリコン単結晶中の酸素濃度を低減することができる引き上げ装置が記載されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
シリコン単結晶では、酸素濃度の低減が求められる一方、ある程度の酸素濃度を要求される場合もある。例えば、ウェーハ強度が要求される場合、高酸素濃度のシリコン単結晶が要求されるように、様々な酸素濃度が要求される。
シリコン融液中の酸素は結晶成長界面である固液界面を介してシリコン単結晶に取り込まれるため、酸素濃度の調整のためには、固液界面における酸素濃度の調整が必要となるが、現状の引き上げ装置では、酸素濃度の調整に限界があるという課題があった。
【0006】
本発明の目的は、シリコン単結晶の必要に応じた酸素濃度の制御が可能となるシリコン単結晶の育成方法およびシリコン単結晶の引き上げ装置を提供することにある。
【課題を解決するための手段】
【0007】
本発明シリコン単結晶の育成方法は、チョクラルスキー法によるシリコン単結晶の育成方法であって、石英ルツボ内のシリコン原料を加熱し、シリコン融液を形成する加熱工程と、前記シリコン融液に対して水平磁場を印加する磁場印加工程と、前記石英ルツボに温度勾配を設定する石英ルツボの温度勾配設定工程と、を備え、前記石英ルツボの温度勾配設定工程は、前記磁場印加工程後に前記石英ルツボにおける磁場方向の一方側と前記磁場方向の他方側との間で温度勾配ができるように前記石英ルツボに温度勾配を与えることを特徴とする。
【0008】
上記シリコン単結晶の育成方法において、前記磁場印加工程における前記シリコン融液の酸素移送方向を推定する酸素移送方向推定工程を備え、前記石英ルツボの温度勾配設定工程では、前記石英ルツボの前記磁場方向の一方側と前記磁場方向の他方側のうち、前記酸素移送方向推定工程において推定された前記酸素の移送元側の温度が低くなるように、あるいは高くなるように前記温度勾配を設定してもよい。
【0009】
上記シリコン単結晶の育成方法において、前記酸素移送方向推定工程は、前記石英ルツボの回転方向および前記シリコン融液の対流の回転方向により前記酸素移送方向を推定してもよい。
【0010】
上記シリコン単結晶の育成方法において、前記磁場印加工程では、前記対流の回転方向を前記シリコン融液の表面温度に基づいて前記対流の回転方向を推定し、前記対流の回転方向が所望の回転方向であるときに磁場を印加してもよい。
【0011】
本発明の第2の態様によれば、シリコン単結晶の引き上げ装置は、軸線回りに回転可能な石英ルツボと、前記石英ルツボ内のシリコン融液を加熱する加熱装置と、前記シリコン融液に対して水平磁場を印加する磁場印加装置と、を備え、前記加熱装置は、前記石英ルツボにおける磁場方向の一方側と前記磁場方向の他方側との間で温度勾配ができるように形成されていることを特徴とする。
【0012】
上記シリコン単結晶の引き上げ装置において、前記加熱装置はカーボンヒーターであり、前記カーボンヒーターは複数のヒーター片として周方向に分割され、各々の前記ヒーター片は、それぞれ温度制御可能であってもよい。
【0013】
上記シリコン単結晶の引き上げ装置において、前記加熱装置はカーボンヒーターであり、前記カーボンヒーターは、前記磁場方向の一方側と前記磁場方向の他方側とで厚みが異なっていてよい。
【発明の効果】
【0014】
本発明によれば、シリコン単結晶の育成中に、シリコン融液中の酸素が磁場方向のいずれかに移送される場合でも、石英ルツボにおける磁場方向の一方側と磁場方向の他方側との間で温度勾配ができるように石英ルツボの温度を保持して、石英ルツボから溶出する酸素の濃度を異ならせることで、酸素濃度の制御を行うことができる。
【図面の簡単な説明】
【0015】
【
図1】本発明の実施形態に係る引き上げ装置の概略断面図である。
【
図3】シリコン融液の対流の回転方向、ルツボの回転方向、および酸素移送方向を示す説明図である。
【
図4】シリコン融液に生じる流れを示す説明図である。
【
図5】磁場印加タイミング決定工程における測定点の温度変化を示すグラフである。
【
図6】シリコン融液の表面における温度状態を推定した温度分布図である。
【
図7】対流の回転方向およびルツボの回転方向に基づく酸素移送のメカニズムを示す説明図である。
【
図8】ヒーターの温度勾配による酸素溶出量の違いを示す説明図である。
【
図9】本発明の他の実施形態に係る引き上げ装置の断面図である。
【発明を実施するための形態】
【0016】
以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
〔引き上げ装置〕
図1は、本発明の実施形態に係る引き上げ装置1の概略断面図である。
図2は、
図1のII-II線断面図である。図中には、構造の理解の容易化のため、互いに直交するX軸、Y軸およびZ軸を示す(他の図においても同様とする。)。X方向およびY方向は水平方向に対応し、Z方向は鉛直方向に対応する。
引き上げ装置1は、チョクラルスキー法によりシリコン単結晶Sを引き上げ、育成を行う装置である。
図1に示されるように、引き上げ装置1は、外郭を構成するチャンバ2と、チャンバ2の中心部に配置されるルツボ3と、ヒーター4と、磁場印加装置5と、を備える。
【0017】
ルツボ3は、鉛直方向上方から見て円形をなす、シリコン融液Mが貯留される容器である。ルツボ3は、内側の石英ルツボ3Aと、外側の黒鉛ルツボ3Bとから構成される二重構造である。ルツボ3は、回転および昇降が可能でZ軸に沿って延びる支持軸6の上端部に固定されている。
【0018】
ヒーター4は、ルツボ3内のシリコン融液Mを加熱する加熱装置である。ヒーター4は、円筒形状をなし、ルツボ3の外側においてルツボ3の中心軸Aと同軸状に配置されている。ヒーター4は、ヒーター内を電流が通ることによりジュール熱で加熱する抵抗加熱式の所謂カーボンヒーターである。ヒーター4の外側には、チャンバ2の内面に沿って断熱材7が設けられている。ヒーター4の詳細構造は後述する。
【0019】
磁場印加装置5は、ルツボ3内のシリコン融液Mに対して水平磁場を印加する装置である。
磁場印加装置5は、それぞれ電磁コイルで構成された第1の磁性体5Aおよび第2の磁性体5Bを備える。第1の磁性体5Aおよび第2の磁性体5Bは、チャンバ2の外側においてルツボ3を挟んで対向するように設けられている。磁場印加装置5は、磁場方向MDの正方向が+Y方向(
図1における紙面手前側から奥側に向かう方向)となるように、水平磁場を印加する。水平磁場の磁場強度は例えば0.18テスラ~0.40テスラである。
磁場印加装置5によって生じる磁力線は互いに及ぼす斥力により、場所によって向きが異なる。ここでは、磁場方向MDとは、互いの斥力が釣り合っている、磁力線の中立線の向きを意味する。また、磁力線の向きと同じ方向を「磁場方向MDの正方向」、磁力線の向きと逆の方向を「磁場方向MDの負方向」として記載している。
【0020】
ルツボ3の上方には、引き上げ軸8が配置されている。引き上げ軸8は、ワイヤなどによって形成されている。引き上げ軸8は、支持軸6と同軸上で逆方向または同一方向に所定の速度で回転する。引き上げ軸8の下端には種結晶SCが取り付けられている。
【0021】
チャンバ2内には、熱遮蔽体9が配置されている。熱遮蔽体9は、筒状をなし、ルツボ3内のシリコン融液Mの上方で育成中のシリコン単結晶Sを囲む。
熱遮蔽体9は、育成中のシリコン単結晶Sに対して、ルツボ3内のシリコン融液Mやヒーター4やルツボ3の側壁からの高温の輻射熱を遮断する。また、熱遮蔽体9は、結晶成長界面である固液界面SIの近傍に対しては、外部への熱の拡散を抑制し、単結晶中心部および単結晶外周部の引き上げ軸方向の温度勾配を制御する役割を担う。
【0022】
チャンバ2の上部には、ガス導入口10が設けられている。ガス導入口10は、アルゴンガスなどの不活性ガスをチャンバ2内に導入する。チャンバ2の下部には、排気口11が設けられている。排気口11は、図示しない真空ポンプの駆動により、チャンバ2内の気体を吸引して排出する。ガス導入口10からチャンバ2内に導入された不活性ガスは、育成中のシリコン単結晶Sと熱遮蔽体9との間を下降する。次いで、不活性ガスは、熱遮蔽体9の下端とシリコン融液Mの液面との隙間を経た後、熱遮蔽体9の外側、さらにルツボ3の外側に向けて流れる。その後、不活性ガスは、ルツボ3の外側を下降し、排気口11から排出される。
【0023】
引き上げ装置1は、シリコン融液Mの表面MAの温度を測定する温度測定装置12を備える。温度測定装置12は、
図1、
図2に示すように、シリコン融液Mの表面MA上であって、固液界面SI周囲の3箇所の測定点P1,P2,P3(P)を測定するために、3つの反射部13および3つの放射温度計14を有する(
図1には2つの放射温度計14のみ示す。)。
【0024】
反射部13は、チャンバ2内部に設置されている。反射部13としては、耐熱性の観点から、一面を鏡面研磨して反射面としたシリコンミラーを用いることが好ましい。
放射温度計14は、チャンバ2外部に設置されている。放射温度計14は、チャンバ2に設けられた石英窓2Aを介して入射される輻射光Lを受光して、測定点Pの温度を非接触で測定する。
【0025】
第1の測定点P1および第3の測定点P3は、中心軸Aを含み、かつ、磁場方向MDと直交する仮想面F1上に設定されている。第1の測定点P1と第3の測定点P3とは、中心軸Aに対して対称をなす位置に設定されている。
第2の測定点P2は、中心軸Aを含み、かつ、磁場方向MDと平行をなす仮想面F2上であって第1の磁性体5A側に設定されている。
【0026】
次に、ヒーター4の詳細構造について説明する。
ヒーター4は、鉛直方向上方から見たときに、水平磁場の磁場方向MDの一方側と他方側とで、加熱能力が異なるように構成されている。具体的には、ヒーター4は、仮想面F1の両側の加熱能力が異なるように構成されている。すなわち、ヒーター4は、石英ルツボ3Aにおける磁場方向MDの一方側と磁場方向MDの他方側との間で温度勾配ができるように形成されている。
本実施形態のヒーター4は、仮想面F1の一方側(第1の磁性体5A側)に位置する第1の加熱部4Aと、仮想面F2の他方側(第2の磁性体5B側)に位置する第2の加熱部4Bとを備えている。
【0027】
第1の加熱部4Aおよび第2の加熱部4Bは、平面視で中心角が180°の半円筒状に形成されている。第1の加熱部4Aと第2の加熱部4Bは厚みが異なり、第2の加熱部4Bの厚みは第1の加熱部4Aの厚みより薄い。すなわち第2の加熱部4Bの電気抵抗が第1の加熱部4Aの電気抵抗より大きくなるので、第1の加熱部4Aと第2の加熱部4Bとに同じ大きさの電圧を印加すると、第2の加熱部4Bの発熱量は、第1の加熱部4Aよりも大きくなる。
【0028】
〔シリコン単結晶の育成方法〕
次に、本実施形態のシリコン単結晶の引き上げ装置1を用いたシリコン単結晶の育成方法について説明する。本実施形態のシリコン単結晶の育成方法は、シリコン融液Mの酸素濃度分布を考慮して行われるものである。具体的には、本実施形態のシリコン単結晶の育成方法では、シリコン融液M中の酸素の移送方向を制御するとともに、磁場方向MDで温度勾配を有するヒーター4でシリコン融液Mを加熱することによって、シリコン融液Mの酸素濃度分布を制御するものである。
シリコン単結晶の育成方法は、加熱工程と、温度測定工程と、磁場印加タイミング決定工程と、磁場印加工程と、石英ルツボ3Aに温度勾配を設定する石英ルツボの温度勾配設定工程と、をこの順序で有する。なお、工程の順序については、適宜変更してもよい。
【0029】
加熱工程は、無磁場状態、すなわち、磁場印加装置5を稼働させない状態で、ヒーター4を用いてルツボ3内のシリコン原料を加熱し、シリコン融液Mを形成するとともに、シリコン融液Mを加熱する工程である。
【0030】
温度測定工程は、温度測定装置12によってシリコン融液Mの表面MAの温度を測定する工程である。
磁場印加タイミング決定工程は、シリコン融液Mの表面MAの温度を測定結果に基づいて、磁場を印加するタイミングを決定して、対流CFの回転方向を制御する工程である。
磁場印加工程は、シリコン融液Mの温度を保持しながら回転している石英ルツボ3A内のシリコン融液Mに対して水平磁場を印加する工程である。
石英ルツボの温度勾配設定工程は、磁場印加工程後に、ヒーター4を用いて石英ルツボ3Aに温度勾配を与える工程である。石英ルツボの温度勾配設定工程により、石英ルツボ3Aにおける磁場方向MDの一方側と磁場方向MDの他方側との間で温度勾配ができる。
【0031】
〔ルツボ内のシリコン融液における酸素移送方向〕
ここで、ルツボ3内のシリコン融液Mにおける酸素移送のメカニズムについて説明する。
本発明者らは、シリコン単結晶Sの育成過程において、ルツボ3を中心軸A回りに回転させるとともに、磁場印加装置5によりシリコン融液Mに磁場を印加した場合、シリコン融液M中に酸素濃度の分布が生じることを見出した。具体的には、磁場方向MDに対して、一方の酸素濃度が高くなるとともに、他方の酸素濃度が低くなることによって、磁場方向MDのいずれか一方(正方向または負方向)に向かう酸素の移送が生じる現象が生じる。
移送とは、拡散および対流によって酸素がシリコン融液M内を移動することをいう。また、酸素がAからBに移送される場合、Aが移送元側、Bが移送先側である。
【0032】
本発明者らは、酸素濃度の分布に起因する
図3に示すような酸素移送方向DFは、シリコン融液M内の(1)対流CF(ロール流)の回転方向、(2)ルツボ3の回転方向Rの2つの要因により制御することができることを見出した。具体的には、(1)対流CFの回転方向(時計回り、反時計回り)、(2)ルツボ3の回転方向R(時計回り、反時計回り)の組み合わせにより、磁場方向MDのどちらの方向に酸素が移送されるかを推定することができることを見出した。
以下で説明する対流CFの回転方向とは、磁場方向MDの正方向で見て(+Y方向で見て)、時計回りの回転方向(
図3に示す)か、反時計回りの回転方向である。ルツボ3の回転方向Rとは、鉛直方向上方から見て(-Z方向で見て)、時計回りの回転方向(
図3に示す)か、反時計回りの回転方向である。
【0033】
〔(1)対流の回転方向およびその制御方法〕
以下、磁場印加タイミング決定工程で利用される対流CFの回転方向およびその制御方法について詳細に説明する。以下に説明する方法によって、対流CFの回転方向を時計回りにするか、反時計回りにするかを制御することができる。
本発明者らは、磁場が印加されたシリコン融液Mには、対流CFが生じることを見出した。
図3に示されるように、対流CFは、シリコン融液Mの表面MAとルツボ3の底面との中間で、磁場方向MDに延びる仮想軸線Vを中心にシリコン融液Mが仮想軸線V回りに流動するロール状の流れである。シリコン融液Mは、この流れが生じることによって安定状態となる。
対流CFの回転方向は、磁場方向MDの正方向から見て時計回りか反時計回りとなるが、発明者らは、磁場印加装置5により磁場を印加するタイミングによって対流CFの回転方向を制御することができることを見出した。具体的には、対流CFの回転方向は、磁場を印加する時点のシリコン融液Mの表面MAの温度に基づいて制御することができる。
【0034】
本実施形態のシリコン単結晶の育成方法の加熱工程では、シリコン融液Mには水平磁場が印加されず、石英ルツボ3Aを0.1rpm~1rpmで回転させる。この状態では、石英ルツボ3Aの外周近傍でシリコン融液Mが加熱されるため、
図4に示されるように、シリコン融液Mの底部から表面MAに向かう上昇方向の対流が生じている。上昇したシリコン融液Mは、シリコン融液Mの表面MAで冷却され、石英ルツボ3Aの中心で石英ルツボ3Aの底部に戻り、下降流Dが生じる。
【0035】
外周部分で上昇し、中央部分で下降流Dが生じた状態では、熱対流による不安定性により下降流Dの位置は無秩序に移動し、中心からずれる。このような下降流Dは、シリコン融液Mの表面MA上の温度分布によって発生する。温度は、下降流Dに対応する部分が最も低く、下降流Dから表面MAの外側に向かうにしたがって温度が徐々に高くなる。
【0036】
図5は、加熱工程後における測定点P1,P2,P3の温度変化を示すグラフである。
図5の横軸は時間で、縦軸は温度である。
加熱工程後は、
図5に示されるように、測定点P1,P2,P3の温度は、全てが周期振動する。振動周期は、例えば600secであり、ルツボの回転周期300secとは一致しない。振動の位相は、測定点P1,P2,P3でそれぞれ90secずつずれている。
【0037】
温度振動1周期を4分割し、それぞれの温度状態を推定したものを
図6に示す。例えば、
図6(A)の状態では、中心が石英ルツボ3Aの回転中心からずれた第1の領域A1の温度が最も低く、その外側に位置する第2の領域A2、第3の領域A3、第4の領域A4、第5の領域A5の順に温度が高くなっている。
図6(D)の状態で磁場印加装置5により磁場を印加すると、磁場強度が上昇する一方で、温度は、ルツボ3の回転方向Rに従って
図6(A)の状態に近づく。その状態で磁場が十分強くなり、制動力によって、流れが固定される。
図6(A)の状態では、下降流が図中の右方向に寄っており、磁場に垂直な面の流動を考えると、図中の左端のルツボ壁で上昇し、中心から右にずれた箇所で下降する渦流が優勢となっている。その渦が磁場印加後も主流として残り、測定点P1の温度が高い状態、すなわち、時計回りモードに固定されたと考えられる。従って、磁場印加タイミング決定工程において、対流CFの回転方向を時計回りモードとする場合は
図6(D)、対流CFの回転方向を反時計回りモードとする場合は
図6(B)のタイミングで磁場印加を開始することによって、回転方向を制御することができる。
【0038】
〔(2)ルツボの回転方向〕
ルツボ3の回転方向Rは、支持軸6を駆動する駆動源によって制御することができる。すなわち、支持軸6を制御することによって、ルツボ3の回転方向Rを時計回りにするか、反時計回りにするかを制御することができる。
【0039】
〔対流の回転方向およびルツボの回転方向に基づく酸素移送方向〕
次に、対流CFの回転方向およびルツボ3の回転方向Rに基づく酸素移送のメカニズムについて説明する。発明者らは、酸素の移送方向DFは、以下のようなメカニズムによって決定するものと考えた。
図7(a)に示されるように、対流CFが発生することによって、ルツボ3の底面近傍には、矢印CF1で示されるような流れが発生する。すなわち、ルツボ3の底面近傍では、酸素は、X方向の片側に向かう流れに乗る。対流CFを構成する流れのうち、上昇流によって運ばれた高濃度酸素融液は、シリコン融液M中に酸素を供給することなく、表面MAから蒸発する。一方、ルツボ3の底面付近の流れでは、酸素が表面MAから蒸発することなくシリコン融液M中に酸素を供給する働きとなる。
また、
図7(b)に示すように、ルツボ3が回転することによって、シリコン融液Mにはルツボ3の内面との間のせん断応力により矢印R1に示されるような力が作用する。
【0040】
高酸素濃度のシリコン融液Mは、ルツボ3の底面の流れCF1によりX方向の片側に集まるとともに、ルツボ3の内面とのせん断応力による流れに乗ることによって磁場方向MDの正方向に移送される。
【0041】
以下の表は、上記メカニズムによって推定される対流CFの回転方向およびルツボ3の回転方向Rと、酸素の移送方向との関係を示すものである。このように、シリコン融液M中の酸素移送方向DFは、対流CFの回転方向およびルツボ3の回転方向Rによって推定することができる。換言すれば、対流CFの回転方向およびルツボ3の回転方向Rを制御することによって酸素移送方向DFを制御することができる。
【0042】
酸素移送方向DFは、上述したようなメカニズムによって推定することができるが、計算機シミュレーションにより推定することもできる。計算機シミュレーションにより推定する場合、3次元流動モデルを用いて、ルツボ内融液の流れや温度に対する水平磁場の影響や炉内熱環境の影響を考慮できるものが望ましい。
【0043】
【0044】
本実施形態の引き上げ装置1では、対流CFの回転およびルツボ3の回転により、シリコン融液M中の酸素が移送される場合においても、酸素濃度の不均一性を低減する等、酸素濃度の制御を行うことができる。
石英ルツボの温度勾配設定工程では、例えば、
図8に示すように、ヒーター4により二酸化シリコン(SiO
2)を成分とする石英ルツボ3Aが加熱されることによって、石英ルツボ3Aから酸素O
2が溶け出す。本実施形態のヒーター4は、石英ルツボ3Aにおける磁場方向MDの一方側と磁場方向MDの他方側との間で温度勾配ができるように形成されている。よって、石英ルツボ3Aにおいて温度が高い側からより多くの酸素O
2が溶け出す。本実施形態では、電気抵抗が第1の加熱部4Aの電気抵抗より大きい第2の加熱部4Bに近い側からより多くの酸素O
2が溶け出す。
すなわち、本実施形態のシリコン単結晶の引き上げ装置1では、ヒーター4の加熱に起因する酸素O
2の溶出量が磁場方向MDの一方側と他方側とで異なる。
【0045】
上記実施形態によれば、石英ルツボ3から溶出する酸素O
2の濃度を磁場方向MDの一方側と他方側とで異ならせることによって、シリコン単結晶Sの育成中にシリコン融液M中の酸素O
2が磁場方向MDの正方向または負方向に移送される場合でも、酸素濃度の不均一性を低減する等、酸素濃度の制御を行うことができる。
具体的には、
図8に示されるように、対流CFの回転方向およびルツボ3の回転方向Rの制御により酸素移送方向DFを磁場方向MDの正方向とするとともに、ヒーター4の温度勾配により、酸素の移送で酸素濃度が低くなる箇所に積極的に酸素O
2を供給する。これによって、酸素濃度の不均一性が低減されるため、固液界面SIからシリコン単結晶Sに取り込まれる酸素を増加させて酸素濃度を高めることができる。
【0046】
なお、上記実施形態では、ヒーター4の温度勾配をヒーター4の厚みを異ならせることにより実現しているがこれに限ることはない。例えば、
図9の変形例に示すように、ヒーター4を複数のヒーター片4C~4Fとして周方向に分割し、印加する電圧をヒーター片4C~4F毎に異ならせる制御を行ってもよい。
印加する電圧をヒーター片毎に変更することによって、石英ルツボ3Aにおいてより多くの酸素O
2が溶け出す位置を所望の位置に変更することができる。これにより、石英ルツボ3Aの磁場方向MDの一方側と磁場方向MDの他方側のうち、所望の側の温度が高くなるように温度勾配を設定することができる。温度勾配の設定により、シリコン融液M中の酸素濃度の更なる制御が可能となり、ひいては、シリコン単結晶Sに取り込まれる酸素量の制御が可能となる。
【0047】
本変形例のシリコン単結晶の引き上げ装置1を用いたシリコン単結晶の育成方法は、磁場印加工程における酸素移送方向を推定する酸素移送方向推定工程を有する。本変形例のシリコン単結晶の育成方法では、酸素移送方向推定工程において、石英ルツボ3Aの回転方向Rおよびシリコン融液Mの対流CFの回転方向により酸素移送方向を推定し、石英ルツボの温度勾配設定工程では、石英ルツボの磁場方向の一方側と磁場方向の他方側のうち、酸素移送方向推定工程において推定された酸素の移送元側の温度が高くなるように温度勾配を設定することができる。すなわち、酸素の移送元側においてより多くの酸素が溶け出すように設定することによって、石英ルツボに温度勾配を設けない場合に比べて、より高い酸素濃度の単結晶が得られる。
逆に、酸素の移送元側の石英ルツボの温度が低くなるように石英ルツボに温度勾配を設けると、石英ルツボに温度勾配を設けない場合に比べて、より低い酸素濃度の単結晶が得られる。
【0048】
この例に限ることはなく、磁場方向MDの一方側と磁場方向MDの他方側との間で所望の温度勾配ができるように石英ルツボ3Aの温度を保持することで、様々な酸素濃度の制御を行うことができる。
【0049】
例えば、ウェーハの強度を向上させるには、高酸素濃度のシリコン単結晶Sを育成することが好ましい。Siの格子間に酸素原子が位置することで、ウェーハの機械強度が向上するからである。
また、ゲッタリングサイトとして利用する場合も高酸素濃度のシリコン単結晶Sが好ましい。デバイス製造中に拡散する不純物金属をゲッタリングするためのゲッタリングサイトとして、酸素析出物を利用することができるからである。
【0050】
一方、パワーデバイス用のシリコン単結晶Sとしては、低酸素濃度のものが好ましい。
デバイスのチャネル部に酸素析出物が存在すると、デバイス特性を悪化させるからである。(リーク電流や耐圧性の悪化など)電流がウェーハの高さ方向に流れるように設計されているパワーデバイスはウェーハ全体がチャネル部になるので,結晶の低酸素化が必要である。
【0051】
なお、ヒーター4の分割数は、
図9に示すような6分割に限られず、2分割、4分割など任意の分割数としてよい。すなわち、ヒーター4の温度勾配つけることができれば、様々な方法を採用することができる。
【符号の説明】
【0052】
1…引き上げ装置、2…チャンバ、3…ルツボ、3A…石英ルツボ、4…ヒーター、4C~4F…ヒーター片、5…磁場印加装置、12…温度測定装置、CF…対流、M…シリコン融液、MD…磁場方向、S…シリコン単結晶。