(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-10
(45)【発行日】2022-08-19
(54)【発明の名称】プラズマ処理システム
(51)【国際特許分類】
H01L 21/3065 20060101AFI20220812BHJP
【FI】
H01L21/302 105A
【外国語出願】
(21)【出願番号】P 2021034064
(22)【出願日】2021-03-04
(62)【分割の表示】P 2016150938の分割
【原出願日】2016-08-01
【審査請求日】2021-04-02
(32)【優先日】2015-11-04
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】ジョンクイ・タン
(72)【発明者】
【氏名】チアン・フー
(72)【発明者】
【氏名】イン・ウー
(72)【発明者】
【氏名】チン・スー
(72)【発明者】
【氏名】ホワ・シアン
【審査官】宇多川 勉
(56)【参考文献】
【文献】特開2000-323454(JP,A)
【文献】特開2000-164571(JP,A)
【文献】特開2000-133638(JP,A)
【文献】特開2013-239757(JP,A)
【文献】特開平10-135192(JP,A)
【文献】特開平02-260424(JP,A)
【文献】特開平07-283208(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/3065
(57)【特許請求の範囲】
【請求項1】
半導体デバイス製造のためのプラズマ処理システムであって、
処理チャンバ内に設置された基板ホルダであって、前記基板ホルダは、前記処理チャンバ内のプラズマ生成領域に面して基板を保持するように構成された基板サポート面を含み、前記プラズマ生成領域は、二様態プロセスガス組成を受け取るように構成される、基板ホルダと、
前記二様態プロセスガス組成を含むプロセスガス供給部であって、前記プロセスガス供給部は、前記二様態プロセスガス組成を前記処理チャンバ内の前記プラズマ生成領域に送るように接続され、前記二様態プロセスガス組成は、エッチャント種及び堆積種を含み、前記エッチャント種は、前記二様態プロセスガス組成が第1の高周波数電力を浴びるときにエッチング優位の効果を前記基板に提供するように構成され、
ここで前記二様態プロセスガス組成は、前記二様態プロセスガス組成が前記第1の高周波数電力に曝されたときに、前記基板上のエッチングフロントでの第1の活性化エネルギが基本的にゼロであるようように構成されており、前記堆積種は、前記二様態プロセスガス組成が第2の高周波数電力を浴びるときに堆積優位の効果を前記基板に提供するように構成され、
ここで前記二様態プロセスガス組成は、前記二様態プロセスガス組成が第2の高周波数電力に曝されたときに、前記基板上の前記エッチングフロントに前記第1の活性化エネルギよりも大きい第2の活性化エネルギが提供されるように構成されており、プロセスガス供給部と、
高周波数電源であって、前記プラズマ生成領域内で前記基板にエッチング優位の効果を引き起こさせるプラズマを生成するために、前記プラズマ生成領域内に存在するときに第1の期間にわたり前記第1の高周波数電力を前記二様態プロセスガス組成に供給するように構成され、前記プラズマ生成領域内で前記基板に堆積優位の効果を引き起こさせるプラズマを生成するために、前記プラズマ生成領域内に存在するときに第2の期間にわたり前記第2の高周波数電力を前記二様態プロセスガス組成に供給するように構成され、前記第1の高周波数電力に代わって前記第2の高周波数電力を供給するように構成され、前記第1の期間にわたる前記第1の高周波数電力の供給と、前記第2の期間にわたる前記第2の高周波数電力の供給とを、指定の全期間にわたり交互にかつ連続して繰り返すように構成される、高周波数電源と、
を備える、プラズマ処理システム。
【請求項2】
請求項1に記載のプラズマ処理システムであって、
前記第1の期間中に供給される前記第1の高周波数電力は、前記第2の期間中に供給される第2の高周波数電力よりも小さい、プラズマ処理システム。
【請求項3】
請求項1に記載のプラズマ処理システムであって、
前記第1の期間中に供給される前記第1の高周波数電力は、前記第2の期間中に供給される第2の高周波数電力よりも大きい、プラズマ処理システム。
【請求項4】
請求項1に記載のプラズマ処理システムであって、
前記第1の高周波数電力及び前記第2の高周波数電力のうちの低い方は、約100ワット(W)から約1000Wに及ぶ範囲内である、又は約300Wから約600Wに及ぶ範囲内である、又は約500Wである、プラズマ処理システム。
【請求項5】
請求項4に記載のプラズマ処理システムであって、
前記第1の高周波数電力及び前記第2の高周波数電力のうちの高い方は、約750ワット(W)から約6000Wに及ぶ範囲内である、又は約1000Wから約4000Wに及ぶ範囲内である、又は約2500Wである、プラズマ処理システム。
【請求項6】
請求項1に記載のプラズマ処理システムであって、
前記第1の期間の持続時間は、前記第2の期間の持続時間よりも短い、プラズマ処理システム。
【請求項7】
請求項1に記載のプラズマ処理システムであって、
前記第1の期間の持続時間は、前記第2の期間の持続時間の約3分の1である、プラズマ処理システム。
【請求項8】
請求項1に記載のプラズマ処理システムであって、更に、
高周波数信号に対して実質的に透明な構造によって前記プラズマ生成領域から分離されたコイルアセンブリであって、前記高周波数電源は、前記コイルアセンブリを通じて前記第1の高周波数電力及び前記第2の高周波数電力を前記プラズマ生成領域に供給するように接続される、コイルアセンブリを備える、プラズマ処理システム。
【請求項9】
請求項1に記載のプラズマ処理システムであって、更に、
前記プラズマ生成領域に面して配置された電極であって、前記高周波数電源は、前記電極を通じて前記第1の高周波数電力及び前記第2の高周波数電力を前記プラズマ生成領域に供給するように接続される、電極を備える、プラズマ処理システム。
【請求項10】
請求項1に記載のプラズマ処理システムであって、更に、
バイアス高周波数電源であって、前記第1の期間にわたり第1のバイアス電圧を前記基板ホルダに供給するように構成され、前記第2の期間にわたり第2のバイアス電圧を前記基板ホルダに供給するように構成されるバイアス高周波数電源、を備える、プラズマ処理システム。
【請求項11】
請求項10に記載のプラズマ処理システムであって、
前記第1のバイアス電圧は、最大で約5000ボルト(V)に及ぶ範囲内である、又は最大で約3000Vに及ぶ範囲内である、又は約100Vから約5000Vに及ぶ範囲内である、又は約200Vから約3000Vに及ぶ範囲内である、プラズマ処理システム。
【請求項12】
請求項11に記載のプラズマ処理システムであって、
前記第2のバイアス電圧は、前記第1のバイアス電圧よりも小さい、プラズマ処理システム。
【請求項13】
請求項12に記載のプラズマ処理システムであって、
前記第1の期間の持続時間は、前記第2の期間の持続時間よりも短い、プラズマ処理システム。
【請求項14】
請求項12に記載のプラズマ処理システムであって、
前記第1の期間の持続時間は、前記第2の期間の持続時間の約3分の1である、プラズマ処理システム。
【請求項15】
請求項11記載のプラズマ処理システムであって、
前記第2のバイアス電圧は、前記プラズマ生成領域内の前記プラズマの生成中に前記基板からのマスク材料の除去を引き起こすために必要とされる閾値バイアス電圧未満である、プラズマ処理システム。
【請求項16】
請求項11記載のプラズマ処理システムであって、
前記第2のバイアス電圧は、ゼロである、プラズマ処理システム。
【請求項17】
請求項1に記載のプラズマ処理システムであって、
前記二様態プロセスガス組成は、フッ素ベースのエッチャント種及び炭素ベースの堆積種を含む、プラズマ処理システム。
【請求項18】
請求項1に記載のプラズマ処理システムであって、
前記二様態プロセスガス組成は、酸素ベースのエッチャント種及びケイ素ベースの堆積種を含む、プラズマ処理システム。
【請求項19】
請求項1に記載のプラズマ処理システムであって、
前記高周波数電源は、1kHz(キロヘルツ)から100MHz(メガヘルツ)に及ぶ範囲内、又は400kHzから60MHzに及ぶ範囲内、又は約1MHzから約60MHzに及ぶ範囲内、又は約100kHzから約1MHzに及ぶ範囲内の1つ以上の周波数を有する高周波数信号の生成を通じて、前記第1の高周波数電力及び前記第2の高周波数電力を供給するように構成される、プラズマ処理システム。
【請求項20】
請求項1に記載のプラズマ処理システムであって、
前記エッチャント種及び前記堆積種は、前記二様態プロセスガス組成に供給される高周波数電力の関数の形で異なる解離速度応答を有する、プラズマ処理システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体デバイスの製造に関する。
【背景技術】
【0002】
現代の半導体チップ製造プロセスの多くは、プラズマの生成を含み、生成されたプラズマから、プラズマを浴びる基板の表面に直接的に又は間接的に変化を及ぼすために使用されるイオン成分及び/又はラジカル成分が導出される。例えば、基板表面から材料をエッチングするために、又は基板表面上に材料を堆積させるために、又は基板表面上に既に存在する材料を改質するために、プラズマをベースにした様々なプロセスが使用できる。プラズマは、多くの場合、制御された環境内でプロセスガスに高周波数(RF)電力を供給することによって生成され、プロセスガスは、活性化されて所望のプラズマに変化する。プラズマの特性は、数あるなかでも特に、プロセスガスの材料組成、プロセスガスの流量、プラズマ発生領域及び周辺構造の幾何学的特徴、プロセスガス及び周辺材料の温度、投入されるRF電力の周波数及び振幅、並びにプラズマの荷電成分を基板に引き付けるために供給されるバイアス電力などが挙げられるがこれらに限定はされない多くのプロセスパラメータによって影響される。生成されたプラズマがどのように基板と相互作用するかに影響を及ぼしえる幾つかのプロセスパラメータを理解して制御することに、関心が持たれている。本発明が起きるのは、この状況下である。
【発明の概要】
【0003】
代表的な一実施形態では、半導体製造において標的材料をプラズマエッチングするための方法が開示される。この方法は、プロセスモジュール内で基板ホルダの上に基板を配置する動作(a)を含む。基板は、標的材料を覆うマスク材料を含み、標的材料の少なくとも一部分は、マスク材料内の開口を通して露出している。方法は、また、基板を覆っているプラズマ生成領域に二様態プロセスガス組成を供給するための動作(b)も含む。方法は、また、基板に浴びせるプラズマを生成するために、第1の期間にわたり、プラズマ生成領域内の二様態プロセスガス組成に第1の高周波数電力が供給される動作(c)を含む。第1の高周波数電力の供給を通じて生成されたプラズマは、エッチング優位の効果を基板に対して引き起こす。方法は、また、基板に浴びせるプラズマを生成するために、第1の期間の終了後の第2の期間にわたり、プラズマ生成領域内の二様態プロセスガス組成に第2の高周波数電力が供給される動作(d)を含む。第2の高周波数電力は、第1の高周波数電力に代わって供給される。第2の高周波数電力の供給を通じて生成されたプラズマは、堆積優位の効果を基板に対して引き起こす。方法は、また、基板上で露出している標的材料を所要の量だけ除去するために必要とされる全期間にわたり、動作(c)と動作(d)とを交互に且つ連続して繰り返すための動作(e)も含む。
【0004】
実施形態の一例では、半導体製造において標的材料をプラズマエッチングするための方法が開示される。この方法は、プロセスモジュール内で基板ホルダの上に基板を配置する動作(a)を含む。基板は、標的材料を覆うマスク材料を含み、標的材料の少なくとも一部分は、マスク材料内の開口を通して露出している。方法は、また、基板を覆うプラズマ生成領域に二様態プロセスガス組成を供給するための動作(b)も含む。方法は、また、基板に浴びせるプラズマを生成するために、第1の期間にわたり、プラズマ生成領域内の二様態プロセスガス組成に第1の高周波数電力が供給される動作(c)を含む。第1の高周波数電力の供給を通じて生成されたプラズマは、エッチング優位の効果を基板に対して引き起こす。また、動作(c)の最中は、高バイアス電圧レベルに対応する第1のバイアス電圧設定で、基板ホルダにおいてバイアス電圧が供給される。方法は、また、基板に浴びせるプラズマを生成するために、第1の期間の終了後の第2の期間にわたり、プラズマ生成領域内の二様態プロセスガス組成に第2の高周波数電力が供給される動作(d)を含む。第2の高周波数電力は、第1の高周波数電力に代わって供給される。第2の高周波数電力の供給を通じて生成されたプラズマは、堆積優位の効果を基板に対して引き起こす。また、動作(d)では、基板ホルダにおけるバイアス電圧が、低いバイアス電圧レベルに対応する第2のバイアス電圧設定に引き下げられる。方法は、また、基板上で露出している標的材料を所要の量だけ除去するために必要とされる全期間にわたり、動作(c)と動作(d)とを交互に且つ連続して繰り返すための動作(e)も含む。
【0005】
例を挙げて本発明を説明している添付の図面に併せた以下の詳細な説明から、本発明のその他の態様及び利点が更に明らかになる。
【図面の簡単な説明】
【0006】
【
図1A】本発明の一部の実施形態にしたがった、プラズマエッチングプロセスのために用意された基板の例の一部分の垂直断面を示した図である。
【0007】
【
図1B】プラズマエッチングプロセスの実施後における、
図1Aからの基板の例の一部分の垂直断面を示した図である。
【0008】
【
図2】本発明の様々な実施形態にしたがった、基板プロセスモジュールの例を示した図である。
【0009】
【
図3A】本発明の一部の実施形態にしたがった、低い主要プラズマ電力ではエッチング優位な効果を及び高い主要プラズマ電力では堆積優位の効果を提供するように構成された二様態プロセスガス組成の例における堆積種及びエッチャント種について、主要プラズマ電力に対して解離速度を記したグラフである。
【0010】
【
図3B】本発明の一部の実施形態にしたがった、高い主要プラズマ電力ではエッチング優位な効果を及び低い主要プラズマ電力では堆積優位の効果を提供するように構成された二様態プロセスガス組成の例における堆積種及びエッチャント種について、主要プラズマ電力に対して解離速度を記したグラフである。
【0011】
【
図4A】本発明の一部の実施形態にしたがった、標的材料のプラズマエッチングで二様態プロセスガス組成を使用するための方法のフローチャートである。
【0012】
【
図4B】本発明の一部の実施形態にしたがった、
図4Aの方法にしたがった供給主要プラズマ電力を時間の関数として記したグラフである。
【0013】
【
図5A】本発明の一部の実施形態にしたがった、バイアス電圧の使用と併せて標的材料のプラズマエッチングで二様態プロセスガス組成を使用するための方法のフローチャートである。
【0014】
【
図5B】本発明の一部の実施形態にしたがった、
図5Aの方法にしたがった供給主要プラズマ電力を時間の関数として示したグラフである。
【0015】
【
図5C】本発明の一部の実施形態にしたがった、様々な供給主要プラズマ電力に応じて印加バイアス電圧の関数としてブランケット酸化物エッチング速度を示したグラフの一例である。
【発明を実施するための形態】
【0016】
以下の説明では、提示された実施形態の完全な理解を可能にするために、数々の具体的詳細が特定されている。しかしながら、当業者にならば、本発明がこれらの具体的詳細の一部又は全部を伴わずに実施されてもよいことが明らかである。また、本発明を不必要に不明瞭にしないために、周知のプロセス動作の詳細な説明は省略される。
【0017】
本明細書では、半導体デバイス製造プロセスにおける基板からの材料のプラズマエッチングの向上のための、方法及びシステムが開示される。実施形態の例において、本明細書で使用される基板という用語は、半導体ウエハを指している。しかしながら、他の実施形態では、本明細書で使用される基板という用語は、サファイヤ、GaN、若しくはSiC、又はその他の基板材料で形成された基板を指すことができ、ガラスパネル/基板、金属箔、金属シート、ポリマ材料などといったものを含むことができる。また、様々な実施形態において、本明細書で言う基板は、形態、形状、及び/又は大きさが様々であってよい。例えば、一部の実施形態では、本明細書で言う基板は、200mm(ミリメートル)半導体ウエハ、300mm半導体ウエハ、又は450mm半導体ウエハに相当してよい。また、一部の実施形態では、本明細書で言う基板は、数あるなかでも特に、フラットパネルディスプレイのための矩形の基板などといった、非円形の基板に相当してよい。
【0018】
図1Aは、本発明の一部の実施形態にしたがった、プラズマエッチングプロセスのために一例として用意された基板101の一部分の垂直断面を示している。基板101は、トランジスタデバイスとこれらのトランジスタデバイスの様々な端子及びゲートを接続するワイヤとを形成して所定の集積回路を形成するために、特定の形状を有する様々な導体材料及び絶縁体/誘電体材料の層を複数枚積み重ねたものであると理解されるべきである。説明を容易にするために、基板101の基部101Aは、追加の構造がそこから形成されることになる特定の地点まで様々な材料層を複数枚積み重ねたこの集合体を表すものとする。
【0019】
図1Aは、基板101の基部101Aの上に配置された標的材料152の層と、標的材料152の層の上に配置されたマスク材料154の層とを示している。下の標的材料152の一領域を露出させるために、マスク材料154に開口156が形成される。この構成によって、開口156の底で露出している部分の標的材料152を除去するために、プラズマエッチングプロセスが実施される。
【0020】
図1Bは、プラズマエッチングプロセスの実施後における、
図1Aからの基板の例101の一部分の垂直断面を示している。
図1Bは、開口156を通してプラズマエッチングプロセスを受けた標的材料152の部分の除去を示している。標的材料152の除去部分に対応する開口は、マスク材料154及び標的材料152の両方にわたる全体の開口高さ160と、開口幅158とを有する。開口幅158は、集積回路レイアウトの臨界寸法(CD)に相当してよい。開口高さ160対開口幅158の比率は、開口のアスペクト比を定めている。
【0021】
現代の半導体デバイス製造では、高アスペクト比(HAR)エッチングが大きな課題になっている。例えば、導体エッチングプロセスでは、炭素のHARエッチングが特に課題であるが、これは、現存する多くのHAR関連の課題のうちの1つに過ぎない。HARエッチングプロセスでは、一般に、標的材料152のエッチング速度と、標的材料152を覆っているマスク材料154に対する標的材料152のエッチング選択性との間で妥協がなされる。より具体的に言うと、標的材料152のエッチング速度を高めるためには、上を覆っているマスク材料154に対する標的材料152のエッチング選択性を幾分犠牲にする必要があるだろう。また、一部のエッチングプロセスでは、標的材料152のエッチング速度を更に速くして、それに相応して標的材料152のアスペクト比依存エッチング(ARDE)を更に優れたものにするために、基板101レベルに更に高いバイアス電圧が印加され、プラズマからの例えばイオンなどの荷電成分を更に直接的に基板101に向かって引き付ける。しかしながら、一部のプロセスでは、基板101レベルに印加されるバイアス電圧の増加に伴って、マスク材料154に対する標的材料152のエッチング選択性が急激に低下し、それによって、上を覆っているマスク材料の急激な喪失が引き起こされる恐れがある。
【0022】
本明細書では、各プロセス状態においてプラズマの生成のために同じプロセスガス組成を使用しつつ、プラズマの生成のために供給されるRF電力の変動にしたがってプラズマプロセスがエッチング優位のプロセス状態と堆積優位のプロセス状態とで切り替わる方法が開示される。この意味で、プロセスガス組成は、二様態プロセスガス組成と称される。エッチング優位のプロセス状態で動作しているときは、標的材料152はエッチングされ、マスク材料154も除去される。堆積優位のプロセス状態で動作しているときは、マスク材料154を修復する/再構築するために、マスク材料154の上に新しい材料(一例としてポリマ材料など)が堆積される。堆積優位のプロセス状態にある最中は、一部の標的材料152がエッチングされるかもしれないが、標的材料152のエッチングの大半は、エッチング優位のプロセス状態で生じる。
【0023】
図2は、本発明の様々な実施形態にしたがった、基板プロセスモジュール100の例を示している。プロセスモジュール100は、プラズマ104が中で生成されるプラズマ生成領域104Aに面して基板101を保持するように構成された基板ホルダ102を含む。本開示は、主に、標的材料152を覆っているマスク材料154を損なうことなく標的材料152のHARエッチングを向上させるために、バイアス電力、主要プラズマ電力、及びバイアス電圧RF信号周波数の1つ以上のプロセスパラメータが体系的に制御される、装置、システム、並びに方法に関する。背景の例を提供するために、プロセスモジュール100は、誘導結合プラズマ(ICP)プロセスモジュールとして描かれている。しかしながら、その他の実施形態では、プロセスモジュール100は、半導体製造で使用されるその他のタイプのプロセスモジュールとして定義できることが理解されるべきである。
【0024】
プロセスモジュール100は、所定の制御方式で基板101の特性を改質するために、基板101にプラズマベースの処理動作を受けさせるように構成される。プロセスモジュール100は、1つ以上の壁構造103Aと、ボトム構造103Bと、トップ構造103Cとを含む周囲構造によって画定されるチャンバ103を含む。一部の実施形態では、トップ構造103Cは、数あるなかでも特に、石英又はセラミックなどの、RF信号を伝搬可能な材料で形成される。チャンバ103は、導電性材料で形成でき、基準地電位106への電気的接続を有する。
【0025】
プロセスモジュール100は、トップ構造103Cの上方に配置されるコイルアセンブリ105を含む。コイルアアセンブリ105には、RF電力(RF信号)を供給するために、接続109を通じてRF電源107が接続される。コイルアセンブリ105に供給されるRF電力は、本明細書では、主要プラズマ電力と称される。様々な実施形態において、主要プラズマ電力は、約6000ワット(W)又は更に高くに達することができる。様々な実施形態において、RF電源107は、コイルアセンブリ105へのRF電力の適切な伝達を提供するために、1つ以上のRF生成器とそれに関係付けられたインピーダンス整合回路網とを含む。
【0026】
様々な実施形態において、RF電源107は、1つ以上の周波数で動作する1つ以上のRF信号生成器を含むことができる。複数のRF信号周波数が、同時にコイルアセンブリ105に供給できる。一部の実施形態では、RF電源107によって出力される信号周波数は、1kHz(キロヘルツ)から100MHz(メガヘルツ)に及ぶ範囲内に設定される。一部の実施形態では、RF電源107によって出力される信号周波数は、400kHzから60MHzに及び範囲内に設定される。一部の実施形態では、RF電源107は、2MHz、27Mz、及び60MHzの周波数でRF信号を生成するように設定される。一部の実施形態では、RF電源107は、約1MHzから約60MHzに及ぶ周波数範囲内で1つ以上の高周波数RF信号を生成するように及び約100kHzから約1MHzに及ぶ周波数範囲内で1つ以上の低周波数RF信号を生成するように設定される。上で言及されたRF信号周波数は、例として提供されていることが理解されるべきである。実際は、RF電源107は、プラズマ生成領域104A内でプラズマ104を生成するための必要に応じ、基本的にあらゆる周波数の基本的にあらゆるRF信号を生成するように構成できる。また、RF電源107は、指定のRF信号周波数がコイルアセンブリ105に伝達されることを保証するために、周波数をベースにしたフィルタリング、即ち、ハイパスフィルタリング及び/又はローパスフィルタリングを含むことができる。
【0027】
一部の実施形態では、プロセスモジュール100は、基板101を移送してチャンバ103に入れる又はチャンバ103から出するために通すことができる、ゲート弁又はその他のコンポーネントなどの開閉式のアクセスポート111を含む。プロセスモジュール100は、また、基板ホルダ102を覆っているチャンバ103の内部領域に1つ以上のプロセスガス組成を供給するために通すことができる、複数のプロセスガス供給ポート113A、113B、113Cを含む。動作中は、プロセスガス供給部115が、1つ以上のプロセスガス組成を1本以上の接続ライン117A、117B、117Cを通してプロセスガス供給ポート113A、113B、113Cにそれぞれ送るように動作し、RF電力は、それがトップ構造103Cの下方で基板ホルダ102を覆っているプラズマ生成領域内に電磁場を生成し、プラズマ生成領域104A内の1つ以上のプロセスガス組成をプラズマ104に変換できるように、RF電源107からコイルアセンブリ105に供給される。次いで、イオン及び/又はラジカルなどのプラズマ104の反応性成分が、基板101の露出表面の部分と相互作用する。プロセスモジュール100は、ガス及び副生成物材料が排出ポート121へ流れるために通ることができる複数の側方通気構造119を含み、排出ポート121は、チャンバ103の内部に負の圧力を印加して使用済みプロセスガス及び副生成物材料の排出を促すように構成された排出モジュール123に接続される。
【0028】
また、一部の実施形態では、基板ホルダ102は、プラズマ104からのイオンを基板ホルダ102に向かって及びその上に保持されている基板101に向かって引き付けるために、接続127を通じてバイアスRF電源125からバイアスRF電力を受け取って、基板ホルダ102にかかるバイアス電圧を生成するように構成される。様々な実施形態において、基板ホルダ102にかかる生成バイアス電圧は、約5000ワット(V)又は更に高くに達することができる。様々な実施形態において、RF電源125は、基板ホルダ102へのRF電力の適切な伝達を提供するために、1つ以上のRF生成器とそれに関係付けられたインピーダンス整合回路網とを含む。
【0029】
様々な実施形態において、RF電源125は、1つ以上の周波数で動作する1つ以上のRF信号生成器を含むことができる。複数のRF信号周波数が、同時に基板ホルダ102に供給できる。一部の実施形態では、RF電源125によって出力される信号周波数は、1kHz(キロヘルツ)から100MHz(メガヘルツ)に及ぶ範囲内に設定される。一部の実施形態では、RF電源125によって出力される信号周波数は、400kHzから60MHzに及び範囲内に設定される。一部の実施形態では、RF電源125は、2MHz、27Mz、及び60MHzの周波数でRF信号を生成するように設定される。一部の実施形態では、RF電源125は、約1MHzから約60MHzに及ぶ周波数範囲内で1つ以上の高周波数RF信号を生成するように及び約100kHzから約1MHzに及ぶ周波数範囲内で1つ以上の低周波数RF信号を生成するように設定される。上で言及されたRF信号周波数は、例として提供されていることが理解されるべきである。実際は、RF電源125は、基板101において所定のバイアス電圧を生成するための必要に応じ、基本的にあらゆる周波数の基本的にあらゆるRF信号を生成するように構成できる。また、RF電源125は、指定のRF信号周波数が基板ホルダ102に伝達されることを保証するために、周波数をベースにしたフィルタリング、即ち、ハイパスフィルタリング及び/又はローパスフィルタリングを含むことができる。
【0030】
プロセスモジュール100は、ICPプロセスモジュールの一例を示しているが、様々な実施形態において、プロセスモジュール100は、半導体デバイス製造に使用される基本的にあらゆるタイプのプロセスモジュールであることができる。例えば、一部の実施形態では、プロセスモジュール100は、容量結合プラズマ(CCP)プロセスモジュールであることができ、このようなCCPプロセスモジュールでは、ICPプロセスモジュールで使用されるコイルアセンブリ105に代わり、チャンバ103内に1つ以上の電極が配置され、これらの電極にRF電力が送られる。CCPプロセスモジュールでは、1つ以上の電極は、トップ電極(例えば、数あるなかでも特に、シャワーヘッド電極又は固体電極)、ボトム電極(例えば、数あるなかでも特に、静電チャック又は基板サポート)、及びサイド電極(例えば、数あるなかでも特に、周辺のリング状電極)の1つ以上を含むことができ、トップ電極、ボトム電極、及びサイド電極は、プラズマ生成領域を取り巻くように構成される。CCPプロセスモジュールの1つ以上の電極に送られるRF電力は、1つ以上の電極から、プラズマ生成領域内に存在する1つ以上のプロセスガス組成を経て、基準地電位に伝達され、その際に、プラズマ生成領域104A内の1つ以上のプロセスガス組成をプラズマ104に変換する。したがって、CCPプロセスモジュールの1つ以上の電極に送られるRF電力は、本明細書で言うところの主要プラズマ電力である。
【0031】
上で言及されたICPプロセスモジュール及びCCPプロセスモジュールの例は、説明を容易にするために、わかりやすく説明されていることが理解されるべきである。実際は、プロセスモジュール100は、ICPであれ、CCPであれ、又は何らかのその他のタイプであれ、本明細書で説明されていない多くのコンポーネントを含む複合システムである。しかしながら、本説明の場合は、プロセスモジュール100が、そのタイプにかかわらず、基板101の処理を可能にして特定の結果を得るためにプラズマ104に面して基板101を固定方式で保持するように構成された基板ホルダ102を含むことが理解されるべきである。プロセスモジュール100によって実施されてよいプラズマ処理動作の例として、数あるなかでも特に、エッチング動作、堆積動作、及びアッシング動作が挙げられる。
【0032】
新しい集積回路技術の開発に伴って、HARエッチング用途が更に増え、ARDEがいっそう大きな課題になっている。HARエッチングでは、アスペクト比の増加に伴って、イオンの開放移動のために利用できる立体角が減少することから、HAR特徴の底でエッチングが進行している箇所であるエッチングフロントに到達できるイオンが減少する。また、HARエッチングでは、アスペクト比の増加に伴って、イオンがHAR特徴の底のエッチングフロントに到達する前に散乱相互作用を通じて失うエネルギが増加する。その結果、HARエッチングにおけるアスペクト比の増加に伴って、HAR特徴の底のエッチングフロントに到達するイオンのうち、そのエネルギが標的材料の活性化を引き起こすのに十分ではなくそれゆえにエッチングに寄与できないイオンが増加する。従来のプラズマエッチングプロセスのなかには、アスペクト比が10:1を超えるとHARエッチング用途におけるエッチング速度の大幅な喪失を見せるものがある。
【0033】
HARエッチングにおけるARDEの問題に対処するための手法は、1つには、基板レベルに印加されるバイアス電圧を引き上げて、基板に向かうイオンの指向性を上げるとともに基板に入射するイオンエネルギを増加させ、それによって、HAR特徴の底のエッチングフロントに到達するイオンの数及びエネルギの両方を増加させる手法である。しかしながら、バイアス電圧の引き上げは、より高エネルギのイオンをHAR特徴の底のエッチングフロントに到達させる働きをする一方で、より高エネルギのイオンによるマスク材料154のスパッタリングの増加を原因として、標的材料152を覆っているマスク材料154の喪失の増加も招く。したがって、マスク材料154に対する標的材料152のエッチング選択性は、基板101レベルに印加されるバイアス電圧の引き上げとともに急速に降下する恐れがある。
【0034】
一部のエッチング用途では、マスク材料154に対する標的材料152のエッチング選択性を高めるために、高電圧バルスパルシング(HVBP)エッチングプロセスが、例えばゼロバイアス電圧の印加に対して基板101レベルにおける高バイアス電圧の印加が50%未満であるなどの低デューティーサイクルで実施される。しかしながら、実験が示すところによると、HARの幾何学的形状の場合、標的材料152のエッチング速度は、基板101レベルにゼロバイアス電圧が存在するときはアスペクト比の増加に伴って非常に低くなる(ゼロに近づくことすらある)。また、標的材料152のエッチング速度と、マスク材料154に対する標的材料152のエッチング選択性との間の妥協の他にも、プロフィール制御の難しさ、ホールの歪み、及び/又はトップの詰まりなど、HVBPエッチングプロセス及び/又は連続波(CW)エッチングプロセスに関係するその他の問題があることもある。例えば、次世代三次元NANDデバイスのための、マスク材料層の厚さの増加及び臨界寸法の減少に伴って、数あるなかでも特に、エッチングの速度、標的材料対マスク材料の選択性、プロフィールの制御、ホールの歪み、及び/又はトップの詰まりに関するプロセス仕様を満たすために、本明細書で説明されるような改良された方法及びシステムが必要とされている。
【0035】
別の手法では、混合モードパルシング(MMP)が使用される。この混合モードパルシングでは、或るパルスでは、プロセスガス組成が標的材料のエッチングを促すように調合され、次のパルスでは、プロセスガス組成が更なるマスク材料の堆積を促すように調合され、次のパルスでは、プロセスガス組成が標的材料のエッチングを促すように調合され、以下同様に続くように、連続するパルスとパルスとの間でプロセスガス組成が変更される。しかしながら、MMP手法における、パルス間でのプロセスガス組成の変更は、多くのシステムリソースを必要とし、プロセス全体の複雑性を増加させ、基板の処理を完了させるために必要とされる時間を増加させる恐れがある。
【0036】
本明細書では、エッチングプロセスのためのプラズマを生成するために1つの二様態プロセスガス組成が適用される方法が開示される。この方法では、二様態プロセスガス組成は、プラズマを生成するために供給されるRF電力の変動にしたがって、即ち主要プラズマ電力にしたがって、エッチング優位のプロセス状態と堆積優位のプロセス状態との間での推移を可能にするように構成される。ここでは、二様態プロセスガス組成は、ポリマの堆積が少なくエッチングの優位性が強い、つまりエッチングにより対象が浸食される傾向(以下、痩せ傾向)の化学剤の組成である。一部の実施形態では、二様態プロセスガス組成の痩せ傾向の化学剤は、また、主要プラズマ電力がエッチング優位のプロセス状態を引き起こすように設定されるときに、エッチングフロントにおける活性化エネルギを引き下げて、エッチングを更に速くする。二様態プロセスガス組成は、プラズマが或る主要プラズマ電力レベルでは基板に対してエッチング優位の効果を示し、別の主要プラズマ電力レベルでは基板に対して堆積優位の効果を示すように、プラズマに供給される主要プラズマ電力の関数の形で様々な解離速度応答を有する1種以上のエッチャント種と1種以上の堆積種との組み合わせを含む。
【0037】
例えば、一部の実施形態では、二様態プロセスガス組成は、フッ素ベースのエッチャント種と、炭素ベースの堆積種とを含むことができる。これらの実施形態の例では、二様態プロセスガス組成の痩せ傾向は、その炭素対フッ素の比率によって表すことができ、フッ素の多さは、痩せ傾向の強さ及びエッチングの多さに相当し、炭素の多さは、痩せ傾向の弱さ及び堆積の多さに相当する。しかしながら、その他の実施形態では、二様態プロセスガス組成は、それぞれフッ素及び炭素ではないエッチャント種及び堆積種を含むことができることが理解されるべきである。例えば、一部の実施形態では、二様態プロセスガス組成は、酸素ベースのエッチャント種と、ケイ素ベースの堆積種とを含むことができる。総じて、二様態プロセスガス組成は、対応するプラズマが或る主要プラズマ電力レベルでは基板に対して堆積優位の効果を示し、別の(異なる)主要プラズマ電力レベルでは基板に対してエッチング優位の効果を示す限り、尚且つプラズマを生成するのに適していて基板101上のマスク材料154及び標的材料のそれぞれと所定の形で反応できる限り、任意のタイプのエッチャント種と、任意のタイプの堆積種とを含むことができる。
【0038】
図3Aは、本発明の一部の実施形態にしたがった、低い主要プラズマ電力ではエッチング優位な効果を及び高い主要プラズマ電力では堆積優位の効果を提供するように構成された二様態プロセスガス組成の例における堆積種及びエッチャント種について、主要プラズマ電力に対して解離速度を記したグラフを示している。
図3Aに示されるように、低い主要プラズマ電力におけるエッチャント種及び堆積種の相対解離速度は、対応するプラズマが、領域301で示されるように、基板に対してエッチング優位の効果を見せるような速度である。また、高い主要プラズマ電力におけるエッチャント種及び堆積種の相対解離速度は、対応するプラズマが、領域303によって示されるように、基板に対して堆積優位の効果を見せるような速度である。したがって、低い主要プラズマ電力レベルでは、二様態プロセスガス組成を使用して生成されたプラズマは、標的材料152をエッチングする働きをする。そして、高い主要プラズマ電力レベルでは、二様態プロセスガス組成を使用して生成されたプラズマは、マスク材料154を修復/再構築し、低い主要プラズマ電力レベルでの標的材料152のエッチング中に生じたマスク材料154の喪失を補うことができるように、マスク材料154の上に材料を堆積する働きをする。
【0039】
図3Bは、本発明の一部の実施形態にしたがった、高い主要プラズマ電力ではエッチング優位な効果を及び低い主要プラズマ電力では堆積優位の効果を提供するように構成された二様態プロセスガス組成の例における堆積種及びエッチャント種について、主要プラズマ電力に対して解離速度を記したグラフを示している。
図3Bに示されている解離速度の振る舞いは、基本的に、
図3Aに示されているものの逆である。
図3Bは、低い主要プラズマ電力におけるエッチャント種及び堆積種の相対解離速度が、対応するプラズマが、領域305で示されるように、基板に対して堆積優位の効果を見せるような速度であることを示している。また、高い主要プラズマ電力におけるエッチャント種及び堆積種の相対解離速度は、対応するプラズマが、領域307によって示されるように、基板に対してエッチング優位の効果を見せるような速度である。したがって、高い主要プラズマ電力レベルでは、二様態プロセスガス組成を使用して生成されたプラズマは、標的材料152をエッチングする働きをする。そして、低い主要プラズマ電力レベルでは、二様態プロセスガス組成を使用して生成されたプラズマは、マスク材料154を修復/再構築し、高い主要プラズマ電力レベルでの標的材料152のエッチング中に生じたマスク材料154の喪失を補うことができるように、マスク材料154の上に材料を堆積する働きをする。
【0040】
図4Aは、本発明の一部の実施形態にしたがった、標的材料のプラズマエッチングで二様態プロセスガス組成を使用するための方法のフローチャートである。
図2を参照し、方法は、基板101がプラズマエッチングプロセスを受けるためにプロセスモジュール100内で基板ホルダ102の上に配置される動作401を含む。
図1Aに例示されるように、基板101は、標的材料152を覆って配置されたマスク材料154を含み、標的材料152は、マスク材料154内の開口を通して部分的に露出している。方法は、また、基板101を覆っているプラズマ生成領域104Aに二様態プロセスガス組成を供給するための動作402を含む。方法は、また、第1の期間にわたり、基板101を覆っているプラズマ生成領域104A内の二様態プロセスガス組成に低い主要プラズマ電力(RF電力)を供給することによって、基板101に浴びせるプラズマを生成するための、動作403を含む。一部の実施形態では、動作403の最中に供給される低主要プラズマ電力は、約100Wから約1000Wに及ぶ範囲内である。一部の実施形態では、動作403の最中に供給される低主要プラズマ電力は、約300Wから約600Wに及ぶ範囲内である。一部の実施形態では、動作403の最中に供給される低主要プラズマ電力は、約500Wである。また、一部の実施形態では、第1の期間の持続時間は、約0.1ミリ秒(ms)から約1000msに及ぶ範囲内である。
【0041】
動作403は、標的材料152がエッチングされるエッチング優位のプロセス状態である第1のプロセス状態に対応する。動作403のエッチング優位のプロセス状態では、マスク材料154に対する標的材料152のエッチング選択性が低めであるゆえに、一部のマスク材料154が除去される可能性が高い。一部の実施形態では、二様態プロセスガス組成は、動作403の最中に、エッチングフロント、即ち露出した標的材料152における活性化エネルギが基本的にゼロであるように構成される。
【0042】
動作403の完了後、方法は、第2の期間にわたり、基板101を覆っているプラズマ生成領域104A内の二様態プロセスガス組成に高い主要プラズマ電力(RF電力)を供給することによって、基板101に浴びせるプラズマを生成するための、動作405に続く。なお、動作405で存在する二様態プロセスガス組成は、動作403で存在する二様態プロセスガス組成と同じであることが理解されるべきである。したがって、
図4Aの方法は、プロセスガス組成がプロセスパルス間で変更されるMMP方法ではない。一部の実施形態では、動作405の最中に供給される高主要プラズマ電力は、約750Wから約6000Wに及ぶ範囲内である。一部の実施形態では、動作405の最中に供給される高主要プラズマ電力は、約1000Wから約4000Wに及ぶ範囲内である。一部の実施形態では、動作405の最中に供給される高主要プラズマ電力は、約2500Wである。また、一部の実施形態では、第2の期間の持続時間は、約0.1msから約1000msに及ぶ範囲内である。
【0043】
動作405は、動作403のエッチング優位のプロセス状態中に除去されたマスク材料154を修復/再構築するためにマスク材料154の上に材料が堆積される堆積優位のプロセス状態である、第2のプロセス状態に対応する。一部の実施形態では、二様態プロセスガス組成は、動作405の最中に、エッチングフロント、即ち露出した標的材料152における活性化エネルギが動作403中におけるその値と比べて増加するように構成される。動作405から、方法は、基板101を覆っているプラズマ生成領域104A内の二様態プロセスガス組成に再び低い主要プラズマ電力(RF電力)を供給し、標的材料152がエッチングされるエッチング優位のプロセス状態に基板101を曝すために、矢印411によって示されるように、動作403に戻る。終結動作409に向かう矢印407によって示されるように、プラズマエッチングプロセスは、標的材料152の所望のエッチングが達成されたときに、動作403の最中、又は動作403の終了時、又は動作405の最中、又は動作405の終了時のいずれかの任意の時点で終結できる。
【0044】
図4Bは、本発明の一部の実施形態にしたがった、
図4Aの方法にしたがって供給主要プラズマ電力を時間の関数として記したグラフである。グラフは、動作403が実施され、プラズマがエッチング優位のプロセス状態である第1のプロセス状態にある、第1の期間の持続時間を示している。グラフは、また、動作405が実施され、プラズマが堆積優位のプロセス状態である第2のプロセス状態にある、第2の期間の持続時間も示している。この特定の例では、エッチング優位のプロセス状態に対応する第1の期間は、堆積優位のプロセス状態に対応する第2の期間よりも短い。このタイプのエッチング対堆積デューティーサイクルは、エッチング優位のプロセス状態時に基板レベルにバイアス電圧が印加されるときのように、マスク材料154の除去速度がエッチング優位のプロセス状態時に大きい処理用途で利用できる。幾つかの例の実施形態では、エッチング優位のプロセス状態に対応する第1の期間は、堆積優位のプロセス状態に対応する第2の期間の約3分の1であってよい。しかしながら、その他の実施形態では、エッチング優位のプロセス状態に対応する第1の期間及び堆積優位のプロセス状態に対応する第2の期間のそれぞれの持続時間は、十分な量のマスク材料154を保存/維持して標的材料152に対して所望のエッチング結果を実現するために必要とされる基本的にあらゆる形に設定できる。
【0045】
図5Aは、本発明の一部の実施形態にしたがった、バイアス電圧の使用と併せて標的材料のプラズマエッチングで二様態プロセスガス組成を使用するための方法のフローチャートを示している。
図2を参照にし、方法は、基板101がプラズマエッチングプロセスを受けるためにプロセスモジュール100内で基板ホルダ102の上に配置される動作501を含む。
図1Aに例示したように、基板101は、標的材料152を覆って配置されたマスク材料154を含み、標的材料152は、マスク材料154内の開口を通して部分的に露出している。方法は、また、基板101を覆っているプラズマ生成領域104Aに二様態プロセスガス組成を供給するための動作502を含む。方法は、また、第1の期間にわたり、基板101を覆っているプラズマ生成領域104A内の二様態プロセスガス組成に低い主要プラズマ電力(RF電力)を供給することによって、基板101に浴びせるプラズマを生成するための、動作503を含む。また、動作503は、第1の期間にわたり、低い主要プラズマ電力を二様態プロセスガス組成に供給することと併せて、基板101レベルにバイアス電圧を印加することも含む。一部の実施形態では、バイアス電圧は、動作503において、最大で約5000Vに及ぶ電圧範囲内で印加される。一部の実施形態では、バイアス電圧は、動作503において、最大で約3000Vに及ぶ電圧範囲内で印加される。一部の実施形態では、バイアス電圧は、動作503において、約100Vから約5000Vに及ぶ電圧範囲内で印加される。一部の実施形態では、バイアス電圧は、動作503において、約200Vから約3000Vに及ぶ電圧範囲内で印加される。動作503で印加されるバイアス電圧は、プラズマのイオン/荷電成分を更に直接的に基板101に向かって引き付ける働きをする、及びプラズマから基板101に移動するイオン/荷電成分の運動エネルギを増加させる働きをする、及び基板101近くにおけるプラズマ内のイオン/荷電成分の密度を増加させる働きをする。
【0046】
一部の実施形態では、動作503の最中に供給される低主要プラズマ電力は、約100Wから約1000Wに及ぶ範囲内である。一部の実施形態では、動作503の最中に供給される低主要プラズマ電力は、約300Wから約600Wに及ぶ範囲内である。一部の実施形態では、動作503の最中に供給される低主要プラズマ電力は、約500Wである。また、一部の実施形態では、第1の期間の持続時間は、約0.1msから約1000msに及ぶ範囲内である。動作503は、標的材料152がエッチングされるエッチング優位のプロセス状態である第1のプロセス状態に対応する。動作503のエッチング優位のプロセス状態では、マスク材料154に対する標的材料152のエッチング選択性が低めであるゆえに、及び基板101レベルにバイアス電圧が印加されるゆえに、一部のマスク材料154が除去される可能性が高い。一部の実施形態では、二様態プロセスガス組成は、動作503の最中に、エッチングフロント、即ち露出した標的材料152における活性化エネルギが基本的にゼロであるように構成される。
【0047】
動作503の完了後、方法は、第2の期間にわたり、基板101を覆っているプラズマ生成領域104A内の二様態プロセスガス組成に高い主要プラズマ電力(RF電力)を供給することによって、基板101に浴びせるプラズマを生成するための、動作505に続く。また、動作505は、第2の期間にわたり、高い主要プラズマ電力を二様態ガス組成に供給することと併せて、基板101レベルにおけるバイアス電圧を引き下げる/排除することも含む。一部の実施形態では、動作505において基板レベルに印加されるバイアス電圧は、マスク材料154の除去に必要とされる閾値バイアス電圧未満である。一部の実施形態では、動作505において基板レベルに印加されるバイアス電圧は、ゼロである。なお、動作505で存在する二様態プロセスガス組成は、動作503で存在する二様態プロセスガス組成と同じであることが理解されるべきである。したがって、
図5Aの方法は、プロセスガス組成がプロセスパルス間で変更されるMMP方法ではない。一部の実施形態では、動作505の最中に供給される高主要プラズマ電力は、約750Wから約6000Wに及ぶ範囲内である。一部の実施形態では、動作505の最中に供給される高主要プラズマ電力は、約1000Wから約4000Wに及ぶ範囲内である。一部の実施形態では、動作505の最中に供給される高主要プラズマ電力は、約2500Wである。また、一部の実施形態では、第2の期間の持続時間は、約0.1msから約1000msに及ぶ範囲内である。
【0048】
動作505は、動作503のエッチング優位のプロセス状態中に除去されたマスク材料154を修復/再構築するためにマスク材料154の上に材料が堆積される堆積優位のプロセス状態である、第2のプロセス状態に対応する。一部の実施形態では、二様態プロセスガス組成は、動作505の最中に、エッチングフロント、即ち露出した標的材料152における活性化エネルギが動作503の最中におけるその値と比べて増加するように構成される。動作505から、方法は、基板101を覆っているプラズマ生成領域104A内の二様態プロセスガス組成に再び低い主要プラズマ電力(RF電力)を供給し、標的材料152がエッチングされるエッチング優位のプロセス状態に基板101を曝すために、矢印511によって示されるように、動作503に戻る。終結動作509に向かう矢印507によって示されるように、プラズマエッチングプロセスは、標的材料152の所望のエッチングが達成されたときに、動作503の最中、又は動作503の終了時、又は動作505の最中、又は動作505の終了時のいずれかの任意の時点で終結できる。
【0049】
図5Bは、本発明の一部の実施形態にしたがった、
図5Aの方法にしたがって供給主要プラズマ電力を時間の関数として記したグラフである。グラフは、動作503が実施され、プラズマがエッチング優位のプロセス状態である第1のプロセス状態にあり、基板レベルにバイアス電圧が印加される、第1の期間の持続時間を示している。グラフは、また、動作505が実施され、プラズマが堆積優位のプロセス状態である第2のプロセス状態にあり、バイアス電圧が引き下げられる/排除される、第2の期間の持続時間も示している。この特定の例では、エッチング優位のプロセス状態に対応する第1の期間は、堆積優位のプロセス状態に対応する第2の期間未満である。このタイプのエッチング対堆積デューティーサイクルは、動作503のエッチング優位のプロセス状態時に基板レベルにバイアス電圧が印加されるときのように、マスク材料154の除去速度がエッチング優位のプロセス状態時に大きい処理用途で利用できる。幾つかの例の実施形態では、エッチング優位のプロセス状態に対応する第1の期間は、堆積優位のプロセス状態に対応する第2の期間の約3分の1であってよい。しかしながら、その他の実施形態では、エッチング優位のプロセス状態に対応する第1の期間及び堆積優位のプロセス状態に対応する第2の期間のそれぞれの持続時間は、十分な量のマスク材料154を保存/維持して標的材料152に対して所望のエッチング結果を実現するために必要とされる基本的にあらゆる形に設定できる。
【0050】
実施形態の一例では、
図5Aの方法は、sccmを標準立方センチメートル毎分流量として、80sccmCHF
3+20sccmNF
3の二様態プロセスガス組成を使用して適用される。この二様態プロセスガス組成の例によって、プラズマは、低い主要プラズマ電力ではエッチング優位の効果及び高いプラズマ電力では堆積優位の効果を見せる。より具体的に言うと、低い主要プラズマ電力では、NF
3成分の解離速度が高く、したがって、NF
3が支配的であり、基板に対する支配的な効果はエッチングである。そして、高い主要プラズマ電力では、CHF
3成分の解離速度が高く、したがって、CHF
3が支配的であり、基板に対する支配的な効果は堆積である。
【0051】
図5Cは、本発明の一部の実施形態にしたがった、様々な供給主要プラズマ電力に応じて印加バイアス電圧の関数としてブランケット酸化物エッチング速度を示したグラフの一例を示している。
図5Cの例のグラフを作成するために使用されたプラズマは、80sccmCHF
3+20sccmNF
3の二様態プロセスガス組成を使用して、10ミリトールで生成された。動作503で供給された低主要プラズマ電力は、500Wであり、対応するエッチング速度対バイアス電圧応答は、500W TCP曲線で示された。動作505で供給された高主要プラズマ電力は、2500Wであり、対応するエッチング速度対バイアス電圧応答は、2500W TCP曲線で示された。
図5Cは、動作503において低い主要プラズマ電力が供給されると、ゼロの印加バイアス電圧でエッチングが発生することを示している。したがって、動作503において低い主要プラズマ電力が供給されると、所要の活性化エネルギはゼロであり、酸化物はプラズマの存在下で自然発生的にエッチングされ、バイアス電圧の印加によって更にもっとエッチングされる。この意味で、80sccmCHF
3+20sccmNF
3の二様態プロセスガス組成は、低い主要プラズマ電力において痩せ傾向の化学剤を表している。しかしながら、動作505において高い主要プラズマ電力が供給されると、エッチングが発生するために約33Vの活性化閾値が必要である。この約33Vの活性化閾値未満では、エッチングは発生せず、したがって、堆積の発生が可能になる。この意味では、80sccmCHF
3+20sccmNF
3の二様態プロセスガス組成は、高い主要プラズマ電力において非痩せ傾向の化学剤を表している。
【0052】
図5Cの例では、動作503において主要プラズマ電力が低いときは、ブランケット酸化物のエッチングが発生し、バイアス電圧は、エッチングの指向性を高めるために印加される。次いで、動作505において主要プラズマ電力が高いときは、ブランケット酸化物上に材料の堆積が発生し、バイアス電圧は、材料堆積との干渉を回避するためにオフにされる。したがって、
図5Cは、適切な構成の二様態プロセスガス組成を使用すれば、動作503のような、バイアス電圧の引き上げと併せた低主要プラズマ電力の使用によって、ARDEを向上できることを示している。そして、動作505のような、低い/ゼロのバイアス電圧と併せた高主要プラズマ電力の使用は、マスク材料154を修復/再構築するためにマスク材料154上に材料(ポリマ材料など)を堆積させることができる。なお、
図5Cに関連して開示されたような、80sccmCHF
3+20sccmNF
3の二様態プロセスガス組成は、例として提供されたものであり、本明細書で開示される方法を制限するとみなされるべきではないことが理解されるべきである。
【0053】
様々な実施形態において、二様態プロセスガス組成は、結果として得られるプラズマが、或る主要プラズマ電力レベルではエッチング優位の効果を見せる一方で、別の異なる主要プラズマ電力レベルでは堆積優位の効果を見せる限り、基本的にあらゆる組成として調合して利用できる。また、
図4B及び
図5Bの例は、プラズマが、低い主要プラズマ電力レベルではエッチング優位の効果を及び高い主要プラズマ電力レベルでは堆積優位の効果を見せることを示しているが、この関係は、他の二様態プロセスガス組成では逆転してもよいことが理解されるべきである。具体的に言うと、二様態プロセスガス組成によっては、プラズマが、高い主要プラズマ電力レベルではエッチング優位の効果を及び低い主要プラズマ電力レベルでは堆積優位の効果を見せるものがある。例えば、10sccmSiCl
4+1000sccmO
2の二様態プロセスガス組成を使用して生成されたプラズマは、約100Wの低い主要プラズマ電力レベルでは堆積優位の効果を見せ、約3000Wの高い主要プラズマ電力レベルではエッチング優位の効果を見せる。繰り返し述べるが、ここで言及された10sccmSiCl
4+1000sccmO
2の二様態プロセスガス組成は、例として提供されたものであり、本明細書で開示される方法を制限するとみなされるべきではないことが理解されるべきである。
【0054】
本明細書で開示される方法は、1つの二様態プロセスガス組成が、第1の主要プラズマ電力レベルでは痩せ傾向の化学剤(ゼロ活性化エネルギ)のプラズマの生成を提供し、第1の主要プラズマ電力レベルとは異なる第2の主要プラズマ電力レベルではそのプラズマを重合化学剤(非ゼロ活性化エネルギ)に推移させる、プラズマエッチングプロセスを提供する。一部の実施形態では、第1の主要プラズマ電力レベルが、低い主要プラズマ電力レベルであり、第2の主要プラズマ電力レベルが、高い主要プラズマ電力レベルである。一部の実施形態では、第1の主要プラズマ電力レベルが、高い主要プラズマ電力レベルであり、第2の主要プラズマ電力レベルが、低い主要プラズマ電力レベルである。第1の主要プラズマ電力レベルと第2の主要プラズマ電力レベルとの間での高速切り替えは、エッチング優位のプラズマ状態と堆積優位のプラズマ状態との間での高速切り替えを可能にする。なお、本明細書で開示される方法にしたがうと、エッチング優位のプラズマ状態と堆積優位のプラズマ状態との間での推移は、同じ二様態プロセスガス組成を使用しつつ、供給される主要プラズマ電力を変化させることによって、プラズマ状態の推移を引き起こすためにプロセスガス組成が変更されるMMPプロセスを使用して可能であるもっとずっと遅い推移能力と比較して、非常に高速になされえる。したがって、MMP手法と比較して、本明細書で開示される方法は、基板処理のスループットを高めることができる。また、本明細書で開示される方法は、例えば
図2及び
図5Bに関連して論じられたように、RF電源107及び125を使用して主要プラズマ電力をパルス方式で印加バイアス電圧レベルに同期させることによって、更に優れたプロセス制御を提供できる。
【0055】
本明細書で開示される方法は、複数の異なるプロセスガス組成を使用する必要なくマスク保護を提供することによって、上を覆っているマスク材料154に対する標的材料152のエッチング選択性に関係する問題に対処している。本明細書で開示される方法は、また、主要プラズマ電力レベル及びバイアス電圧レベルを同期方式で切り替えることによって、既存の「痩せ傾向」又は「ポリマに富む」プロセスによる自然な選択性向上も見せている。本明細書で開示される方法は、エッチングフロントにおけるイオンエネルギが減少する及び最終的にはイオンエネルギがHAR特徴の底のエッチングを活性化するのに十分でなくなることを原因として、通常のエッチング化学剤(選択性が限られ、非常に重合作用が強い)がエッチングを減速させる又は停止するような、非常にHARである特徴(例えば、30:1又は30:1を上回るアスペクト比を有する特徴)のエッチングにおいて、利益をもたらす。しかしながら、本明細書で開示される方法は、HAR特徴のエッチングに限られず、プラズマエッチングプロセス中にマスク材料154を修復/再構築することが関心を持たれている/必要とされている基本的にあらゆるプラズマエッチング用途において、利益をもたらすことができる。
【0056】
以上の実施形態は、理解を明確にする目的で幾分詳細に説明されてきたが、添付の特許請求の範囲内で特定の変更及び修正がなされえることが明らかである。したがって、これらの実施形態は、例示的であって限定的ではないと見なされ、本発明は、本明細書で与えられた詳細に限定されず、説明された実施形態の範囲内及び均等物の範囲内で変更されてよい。例えば以下の適用例として実施可能である。
[適用例1]半導体製造において標的材料をプラズマエッチングするための方法であって、
(a)標的材料を覆うマスク材料を含み、前記標的材料の少なくとも一部分は、前記マスク材料内の開口を通して露出している基板を、プロセスモジュール内で基板ホルダの上に配置し、
(b)前記基板を覆っているプラズマ生成領域に二様態プロセスガス組成を供給し、
(c)前記基板に浴びせるプラズマを生成するために、第1の期間にわたり、前記プラズマ生成領域内の前記二様態プロセスガス組成に第1の高周波数電力を、前記第1の高周波数電力の供給を通じて生成されたプラズマが、エッチング優位の効果を前記基板に対して引き起こすように、供給し、
(d)前記基板に浴びせるプラズマを生成するために、前記第1の期間の終了後の第2の期間にわたり、前記プラズマ生成領域内の前記二様態プロセスガス組成に供給される第2の高周波数電力であって、前記第2の高周波数電力を、前記第1の高周波数電力に代わって、前記第2の高周波数電力の供給を通じて生成されたプラズマが、堆積優位の効果を前記基板に対して引き起こすように、供給し、
(e)前記基板上で露出している前記標的材料を所要の量だけ除去するために必要とされる全期間にわたり、動作(c)と動作(d)とを交互に且つ連続して繰り返す、
方法。
[適用例2]適用例1に記載の方法であって、
前記二様態プロセスガス組成は、エッチャント種と堆積種とを含み、前記エッチャント種は、動作(c)の前記第1の期間中に前記エッチング優位の効果を前記基板に対して提供するように構成され、前記堆積種は、動作(d)の前記第2の期間中に前記堆積優位の効果を前記基板に対して提供するように構成される、方法。
[適用例3]適用例2に記載の方法であって、
前記二様態プロセスガス組成は、動作(c)の前記第1の期間中は前記エッチャント種の解離速度が前記堆積種の解離速度よりも高いように構成され、前記二様態プロセスガス組成は、動作(d)の前記第2の期間中は前記堆積種の解離速度が前記エッチャント種の解離速度よりも高いように構成される、方法。
[適用例4]適用例1に記載の方法であって、
動作(c)の前記第1の期間中に供給される前記第1の高周波数電力は、動作(d)の前記第2の期間中に供給される前記第2の高周波数電力よりも小さい、方法。
[適用例5]適用例1に記載の方法であって、
動作(c)の前記第1の期間中に供給される前記第1の高周波数電力は、動作(d)の前記第2の期間中に供給される前記第2の高周波数電力よりも大きい、方法。
[適用例6]適用例1に記載の方法であって、
前記第1の高周波数電力及び前記第2の高周波数電力のうちの低い方は、約100ワット(W)から約1000Wに及ぶ範囲内である、又は約300Wから約600Wに及ぶ範囲内である、又は約500Wである、方法。
[適用例7]適用例6に記載の方法であって、
前記第1の高周波数電力及び前記第2の高周波数電力のうちの高い方は、約750ワット(W)から約6000Wに及ぶ範囲内である、又は約1000Wから約4000Wに及ぶ範囲内である、又は約2500Wである、方法。
[適用例8]適用例1に記載の方法であって、
前記第1の期間の持続時間は、前記第2の期間の持続時間よりも短い、方法。
[適用例9]適用例1に記載の方法であって、
前記第1の期間の持続時間は、前記第2の期間の持続時間の約3分の1である、方法。
[適用例10]適用例1に記載の方法であって、
前記プラズマへの前記第1の高周波数電力の供給によって引き起こされる前記基板に対する前記エッチング優位の効果は、前記マスク材料内の前記開口を通して露出している前記標的材料の前記少なくとも一部分のエッチングと、前記マスク材料の一部の除去とを含み、前記プラズマへの前記第2の高周波数電力の供給によって引き起こされる前記基板に対する前記堆積優位の効果は、前記マスク材料上へのポリマ材料の堆積を含む、方法。
[適用例11]半導体製造において標的材料をプラズマエッチングするための方法であって、
(a)標的材料を覆うマスク材料を含み、前記標的材料の少なくとも一部分は、前記マスク材料内の開口を通して露出している基板を、プロセスモジュール内で基板ホルダの上に配置し、
(b)前記基板を覆っているプラズマ生成領域に二様態プロセスガス組成を供給し、
(c)前記基板に浴びせるプラズマを生成するために、第1の期間にわたり、前記プラズマ生成領域内の前記二様態プロセスガス組成に第1の高周波数電力を供給し、かつ高いバイアス電圧レベルに対応する第1のバイアス電圧設定で、前記基板ホルダにバイアス電圧を印加することで、前記第1の高周波数電力の供給を通じて生成されたプラズマが、エッチング優位の効果を前記基板に対して引き起こすようにし、
(d)前記基板に浴びせるプラズマを生成するために、前記第1の期間の終了後の第2の期間にわたり、前記プラズマ生成領域内の前記二様態プロセスガス組成に第2の高周波数電力を供給し、かつ前記基板ホルダにおける前記バイアス電圧を、低いバイアス電圧レベルに対応する第2のバイアス電圧設定に引き下げることにより、前記第2の高周波数電力が、前記第1の高周波数電力に代わって供給されて、前記第2の高周波数電力の供給を通じて生成されたプラズマが、堆積優位の効果を前記基板に対して引き起こすようにし、
(e)前記基板上で露出している前記標的材料を所要の量だけ除去するために必要とされる全期間にわたり、動作(c)と動作(d)とを交互に且つ連続して繰り返す
方法。
[適用例12]適用例11に記載の方法であって、
前記高いバイアス電圧レベルに対応する前記第1のバイアス電圧設定は、最大で約5000ボルト(V)に及ぶ範囲内である、又は最大で約3000Vに及ぶ範囲内である、又は約100Vから約5000Vに及ぶ範囲内である、又は約200Vから約3000Vに及ぶ範囲内である、方法。
[適用例13]適用例12に記載の方法であって、
前記低いバイアス電圧レベルに対応する前記第2のバイアス電圧設定は、前記マスク材料の除去に必要とされる閾値バイアス電圧未満である、方法。
[適用例14]適用例12に記載の方法であって、
前記低いバイアス電圧レベルに対応する前記第2のバイアス電圧設定は、ゼロである、方法。
[適用例15]適用例11に記載の方法であって、更に、
前記二様態プロセスガス組成は、エッチャント種と堆積種とを含み、前記エッチャント種は、動作(c)の前記第1の期間中に前記エッチング優位の効果を前記基板に対して提供するように構成され、前記堆積種は、動作(d)の前記第2の期間中に前記堆積優位の効果を前記基板に対して提供するように構成される、方法。
[適用例16]適用例15に記載の方法であって、
前記二様態プロセスガス組成は、動作(c)の前記第1の期間中は前記エッチャント種の解離速度が前記堆積種の解離速度よりも高いように構成され、前記二様態プロセスガス組成は、動作(d)の前記第2の期間中は前記堆積種の解離速度が前記エッチャント種の解離速度よりも高いように構成される、方法。
[適用例17]適用例11に記載の方法であって、
動作(c)の前記第1の期間中に供給される前記第1の高周波数電力は、動作(d)の前記第2の期間中に供給される前記第2の高周波数電力よりも小さい、方法。
[適用例18]適用例11に記載の方法であって、
動作(c)の前記第1の期間中に供給される前記第1の高周波数電力は、動作(d)の前記第2の期間中に供給される前記第2の高周波数電力よりも大きい、前記方法。
[適用例19]適用例11に記載の方法であって、
前記第1の期間の持続時間は、前記第2の期間の持続時間よりも短い、方法。
[適用例20]適用例11に記載の方法であって、
前記プラズマへの前記第1の高周波数電力の供給によって引き起こされる前記基板に対する前記エッチング優位の効果は、前記マスク材料内の前記開口を通して露出している前記標的材料の前記少なくとも一部分のエッチングと、前記マスク材料の一部の除去とを含み、前記プラズマへの前記第2の高周波数電力の供給によって引き起こされる前記基板に対する前記堆積優位の効果は、前記マスク材料上へのポリマ材料の堆積を含む、方法。