(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-22
(45)【発行日】2022-08-30
(54)【発明の名称】シャフト一体型ボンド磁石
(51)【国際特許分類】
H01F 7/02 20060101AFI20220823BHJP
【FI】
H01F7/02 A
H01F7/02 J
H01F7/02 Q
(21)【出願番号】P 2017208174
(22)【出願日】2017-10-27
【審査請求日】2020-09-22
(31)【優先権主張番号】P 2017014382
(32)【優先日】2017-01-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000005083
【氏名又は名称】日立金属株式会社
(74)【代理人】
【識別番号】100114557
【氏名又は名称】河野 英仁
(74)【代理人】
【識別番号】100078868
【氏名又は名称】河野 登夫
(72)【発明者】
【氏名】岡島 弘
【審査官】久保田 昌晴
(56)【参考文献】
【文献】特開2000-012327(JP,A)
【文献】特開2005-038941(JP,A)
【文献】特開2009-098327(JP,A)
【文献】特開昭60-183708(JP,A)
【文献】特開平05-258943(JP,A)
【文献】特開平06-096924(JP,A)
【文献】特開平11-356031(JP,A)
【文献】特表2012-511815(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01F 1/26、7/02、41/02
H02K 1/27
G03G 15/09
B22F 3/00
(57)【特許請求の範囲】
【請求項1】
円柱状のシャフトの周面に樹脂と磁性粉末との混合物からなる円筒状のボンド磁石が一体的に設けられているシャフト一体型ボンド磁石において、
前記ボンド磁石の外周側の密度が、前記ボンド磁石の内周側の密度より大きく、前記外周側及び前記内周側で前記樹脂と前記磁性粉末との混合比率が等し
く、前記外周側の単位体積あたりの前記磁性粉末の量が、前記内周側の単位体積あたりの前記磁性粉末の量より多いことを特徴とするシャフト一体型ボンド磁石。
【請求項2】
前記ボンド磁石の外周から前記シャフトの長さ方向に対して垂直な方向における少なくとも2mmまでの領域の密度を前記ボンド磁石の外周側の密度とし、前記シャフトの最も太い外径から前記シャフトの長さ方向に対して垂直な方向に前記ボンド磁石に向って少なくとも2mmまでの領域の密度を前記ボンド磁石の内周側の密度として、前記ボンド磁石の内周側と外周側との密度差が2%以上5%以下であることを特徴とする請求項1に記載のシャフト一体型ボンド磁石。
【請求項3】
前記ボンド磁石の内周側と外周側との密度差が2%以上3%以下であることを特徴とする請求項2に記載のシャフト一体型ボンド磁石。
【請求項4】
前記ボンド磁石は、磁性粉末と嫌気性樹脂とを含むことを特徴とする請求項1から3のいずれか一項に記載のシャフト一体型ボンド磁石。
【請求項5】
前記シャフトは軸長方向の中央部が両端部よりも太径であり、前記シャフトの前記中央部の全域及び前記両端部の前記中央部側の一部領域を覆って前記ボンド磁石が一体的に設けられていることを特徴とする請求項1から4のいずれか一項に記載のシャフト一体型ボンド磁石。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、各種モータに利用されるシャフト一体型ボンド磁石に関する。
【背景技術】
【0002】
磁性粉末と、該磁性粉末の結合剤としての樹脂とを固化成形してなるボンド磁石は、焼結磁石に比べて、寸法精度が高く、形状自由度が高いという利点がある。このような円筒状のボンド磁石にロータ軸となるシャフトを装入させて一体化したシャフト一体型ボンド磁石は、電子機器、カメラ、自動車などにおける各種モータに利用されている。
【0003】
このようなシャフト一体型ボンド磁石及びその製造方法が、特許文献1に開示されている。特許文献1では、圧縮成形装置の金型内に、ロータ軸が装入されたロータ継鉄からなる支持部材を配設し、支持部材周囲にNd-Fe-B系磁性粉末及びエポキシ系樹脂からなる磁性組成物を供給し、加圧成形して得られるシャフト一体型ボンド磁石が記載されている。
【0004】
特許文献1によれば、磁性粉末と結合剤とを混合してなる磁性組成物における磁性粉末の重量比率及び体積比率を高くしたシャフト一体型ボンド磁石を比較的容易に提供することができる。そのため、モータの小型化、高性能化を図ることが可能である。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1を含めて従来のシャフト一体型ボンド磁石では、ボンド磁石全体にわたって密度が均一に成形されているため、モータに組込んだときに外部磁束に有効に働くことがない部位の磁性粉末が無駄になっているという問題がある。
【0007】
本発明は斯かる事情に鑑みてなされたものであり、ボンド磁石の径方向にわたって密度を変えることにより、十分な磁気特性を維持しながら、軽量化及び低コスト化を図ることができるシャフト一体型ボンド磁石を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明に係るシャフト一体型ボンド磁石は、円柱状のシャフトの周面に樹脂と磁性粉末との混合物からなる円筒状のボンド磁石が一体的に設けられているシャフト一体型ボンド磁石において、前記ボンド磁石の外周側の密度が、前記ボンド磁石の内周側の密度より大きく、前記外周側及び前記内周側で前記樹脂と前記磁性粉末との混合比率が等しく、前記外周側の単位体積あたりの前記磁性粉末の量が、前記内周側の単位体積あたりの前記磁性粉末の量より多いことを特徴とする。
【0009】
本発明にあっては、ボンド磁石の内周側(シャフト側)と外周側とで密度に差があり、外周側の密度が内周側の密度より大きくなっている。モータに組込んだときに外部磁束に有効に働く外周側については密度を大きくして単位体積あたりの磁性粉末の量を多くし、外部磁束に有効に働くことがない内周側については密度を小さくして単位体積あたりの磁性粉末の量を少なくしている。よって、全体を軽量化しても十分な磁気特性が得られる。
【0010】
本発明に係るシャフト一体型ボンド磁石は、前記ボンド磁石の外周から前記シャフトの長さ方向に対して垂直な方向における少なくとも2mmまでの領域の密度を前記ボンド磁石の外周側の密度とし、前記シャフトの最も太い外径から前記シャフトの長さ方向に対して垂直な方向に前記ボンド磁石に向って少なくとも2mmまでの領域の密度を前記ボンド磁石の内周側の密度として、前記ボンド磁石の内周側と外周側との密度差が2%以上5%以下であることを特徴とする。
【0011】
本発明に係るシャフト一体型ボンド磁石は、前記ボンド磁石の内周側と外周側との密度差が2%以上3%以下であることを特徴とする。
【0012】
密度差が小さすぎる場合には、軽量化の効果が得られない。一方、密度差が大きすぎる場合には、境界部分にあって密度差の影響(歪み、割れなど)を受けて磁気特性が劣化する可能性が生じる。よって、本発明にあっては、ボンド磁石の内周側と外周側との密度差を2%以上5%以下として、軽量化の達成と十分な磁気特性の維持との両立を実現する。なお、この両立を実現するためには、密度差が2%以上3%以下であることがより好ましい。
【0013】
本発明に係るシャフト一体型ボンド磁石は、前記ボンド磁石は、磁性粉末と嫌気性樹脂とを含むことを特徴とする。
【0014】
本発明にあっては、ボンド磁石が磁性粉末と嫌気性樹脂とを有している。よって、空気に触れた余分な嫌気性樹脂を洗浄などで容易に除去できるため、高い強度を有した状態で磁性粉末の充填率を高くすることができる。
【0015】
本発明に係るシャフト一体型ボンド磁石は、前記シャフトは軸長方向の中央部が両端部よりも太径であり、前記シャフトの前記中央部の全域及び前記両端部の前記中央部側の一部領域を覆って前記ボンド磁石が一体的に設けられていることを特徴とする。
【0016】
本発明にあっては、軸長方向の中央部が両端部よりも太径である円柱状のシャフトに、シャフトの中央部の全域及び両端部の中央部側の一部領域を覆って円筒状のボンド磁石が一体的に設けられている。よって、シャフトとボンド磁石との結合力が高く、シャフトとボンド磁石との間の軸方向への抜け強度に優れている。
【発明の効果】
【0017】
本発明のシャフト一体型ボンド磁石によれば、シャフト一体型ボンド磁石全体の密度が低くても、モータ特性に寄与する部分の密度だけを選択的に高めることができることから、モータ特性が低下しない十分な磁気特性を維持しながら、軽量化と低コスト化とを図ることができる。
【図面の簡単な説明】
【0018】
【
図1】本発明に係るシャフト一体型ボンド磁石を示す斜視図である。
【
図2】第1の実施形態のシャフト一体型ボンド磁石を示す断面図である。
【
図3】第2の実施形態のシャフト一体型ボンド磁石を示す断面図である。
【
図4】第2の実施形態のシャフト一体型ボンド磁石の作製工程の手順を示す断面図である。
【
図5】第2の実施形態のシャフト一体型ボンド磁石の作製工程の手順を示す断面図である。
【
図6】第2の実施形態のシャフト一体型ボンド磁石の作製工程の手順を示す断面図である。
【
図7】成形圧力と成形体密度との関係を示すグラフである。
【発明を実施するための形態】
【0019】
以下、本発明をその実施の形態を示す図面に基づいて詳述する。
【0020】
図1は、本発明に係るシャフト一体型ボンド磁石を示す斜視図である。シャフト一体型ボンド磁石1は、円柱状のシャフト2と円筒状のボンド磁石3とを一体化して構成されている。シャフト2の形状の違いにより、第1の実施形態と第2の実施形態とが存在する。
【0021】
図2は、第1の実施形態のシャフト一体型ボンド磁石1を示す断面図である。第1の実施形態のシャフト一体型ボンド磁石1におけるシャフト2は、全域が等径である円柱状をなしている。シャフト2の軸長方向の中央部の外周面を覆う態様にて、ボンド磁石3が一体的に設けられている。
【0022】
第1の実施形態のシャフト一体型ボンド磁石1にあって、例えば、シャフト2の長さ、直径はそれぞれ55mm、4mmであり、ボンド磁石3の長さ、外径はそれぞれ18mm、20mmである。なお、本寸法はあくまでも一例であって、シャフト2の長さ及び直径、ならびに、ボンド磁石3の長さ及び外径は、必要な仕様に応じて適宜設定すれば良い。
【0023】
図3は、第2の実施形態のシャフト一体型ボンド磁石1を示す断面図である。第2の実施形態のシャフト一体型ボンド磁石1におけるシャフト2は、全体として円柱状をなしているが、その軸長方向の中央部2aが両端部よりも太径となっている。シャフト2の太径の中央部2aの全域の外周面、ならびに、両端部(一端部2b及び他端部2c)の中央部2a側の一部の領域の外周面を覆う態様にて、ボンド磁石3が一体的に設けられている。
【0024】
第2の実施形態のシャフト一体型ボンド磁石1にあって、例えば、シャフト2の長さ、中央部2aの直径、両端部(一端部2b及び他端部2c)の直径はそれぞれ、55mm、7mm、4mmであり、ボンド磁石3の長さ、外径はそれぞれ18mm、20mmである。また、例えば、
図3におけるLl、L2、L3、L4、L5、L6の長さはそれぞれ、18mm、20mm、2mm、14mm、2mm、17mmである。なお、本寸法はあくまでも一例であって、シャフト2の長さ及び直径、ボンド磁石3の長さ及び外径、ならびに、各部の長さL1~L6は、必要な仕様に応じて適宜設定すれば良い。
【0025】
シャフト2の材料としては、珪素鋼板の積層体、アルミニウム合金、ステンレス鋼などを使用でき、樹脂または樹脂と金属粉末や合金粉末との複合材料を用いても良い。また、シャフト2は、円柱状に限らず角柱状であってもよい。さらに、滑り止め効果を高めるため、ボンド磁石3と接する面に溝があってもよい。
【0026】
ボンド磁石3の磁性粉末として、希土類系磁性粉末、フェライト磁性粉末などを使用することができる。希土類系磁性粉末としては、R-T-B系磁性粉末(Rは少なくとも一種の希土類元素であってNd、Prのいずれか一方を必ず含む、TはFeまたはFeとCo、Bは硼素であって一部をC(炭素)で置換できる)、R-T-N系磁性粉末(Rは少なくとも一種の希土類元素であってSmを必ず含む、Tは鉄族元素、Nは窒素である)などがあげられる。R-T-B系磁性粉末の形状は、好ましくは扁平形状(例えば、粉末粒子の形状アスペクト比=短径/長径が0.3以下)である。扁平形状を有するR-T-B系磁性粉末を用いることにより、材料(磁性粉末及び樹脂の混合物)の圧縮成形の際に、磁性粉末が積層し易くなる。また、成形時に磁性粉末間に空隙または樹脂溜まりができ難くなり、高密充填が可能となる。R-T-B系磁性粉末の平均粒子径は、好ましくは20μm以上300μm以下であり、より好ましくは40μm以上250μm以下である。ここで、平均粒子径は体積分布の算術平均径であり、レーザー回折式粒度分布測定装置を用いて測定する。
【0027】
一方、ボンド磁石3に使用する樹脂は、一般的なボンド磁石に用いられる熱硬化性樹脂であって、好ましい樹脂として、例えばエポキシ樹脂、フェノール樹脂、ポリイミド樹脂などが挙げられる。
【0028】
このような構成をなす本発明に係るシャフト一体型ボンド磁石1では、第1の実施形態及び第2の実施形態の何れにあっても、シャフト2の周面に一体的に設けられている円筒状のボンド磁石3の内周側と外周側とで密度に差があり、外周側部分3aの密度が内周側部分3bの密度より大きい。ボンド磁石3は、材料となる磁性粉末及び樹脂の混合物(磁性組成物:コンパウンド)を圧縮成形して形成されるが、密度の違いは、空隙の割合によって規定される。即ち、外周側部分3aにおける空隙の割合が内周側部分3bにおける空隙の割合よりも小さくなっており、磁性粉末と樹脂との混合比率は、外周側部分3a及び内周側部分3bで同じである。
【0029】
ボンド磁石3の外周側部分3aと内周側部分3bとの密度差は2%以上5%以下、より好ましくは2%以上3%以下である。密度差が2%未満である場合には、本発明の効果である軽量化を達成できない。一方、密度差が5%を超える場合には、境界部分にあって密度差の影響(歪み、割れなど)を受けて磁気特性が劣化することが考えられる。よって、モータに組込んだとき十分な磁気特性を維持しながら軽量化を達成するために、密度差を2%以上5%以下に設定している。ここで、ボンド磁石3の外周側部分3aの密度は、ボンド磁石3の外周からシャフト2の長さ方向に対して垂直な方向における少なくとも2mmまでの領域の密度をいい、ボンド磁石3の内周側部分3bの密度はシャフト2の最も太い外径からボンド磁石3に向って少なくとも2mmまでの領域の密度をいう。密度の測定は、ボンド磁石作製後、切り出してアルキメデス法を用いて行う。
【0030】
具体的には一例として、外周側部分3aの密度は5.5~6.5g/cm3 、内周側部分3bの密度は5.4~6.5g/cm3 であり、好ましくは、外周側部分3aの密度は5.8~6.2g/cm3 、内周側部分3bの密度は5.6~6.0g/cm3 である。
【0031】
本発明のシャフト一体型ボンド磁石1では、ボンド磁石3の内周側(シャフト2側)と外周側とで密度に差があり、ボンド磁石3の外周側部分3aの密度が内周側部分3bの密度より大きくなっている。モータに組込んだときに外部磁束に有効に働く外周側については密度を大きくして単位体積あたりの磁性粉末の量を多くし、外部磁束に有効に働くことがない内周側については密度を小さくして単位体積あたりの磁性粉末の量を少なくしている。よって、全体を軽量化しても十分な磁気特性を得ることが可能である。
【0032】
軸長方向全域にわたってシャフト2の径を同一とした第1の実施形態とは異なり、第2の実施形態では、シャフト2の軸長方向の中央部2aの径を両端部(一端部2b及び他端部2c)の径よりも太くしている。よって、第2の実施形態にあっては、第1の実施形態と比較して、シャフト2とボンド磁石3との結合力が高く、シャフト2とボンド磁石3との間の軸方向への抜け強度に優れている。
【0033】
以下、このような密度に差がある外周側部分3aと内周側部分3bとの具体的な寸法、密度について、第1の実施形態を例として説明する。なお、以下では、
図2に示すように、D1は外周側部分3aの外径(mm)を表し、D2は内周側部分3bの外径(mm)を表している。
【0034】
表1は、外周側部分3aの外径D1が20mmである場合の本発明例(No.2,4,6)を示している。シャフト2の直径は2mmとした。磁極数が多いほど、内部まで磁路が形成されないので、密度を低くした内周側部分3bを大きくしても、十分な磁気特性を得ることができる。また、表1には、ボンド磁石の密度が全域にわたって均一である比較例としてのシャフト一体型ボンド磁石の例(No.1,3,5)も示している。本発明例と比較例とは材料(磁性粉末及び樹脂からなる。磁性粉末はR-T-B系磁性粉末であり、樹脂はエポキシ樹脂である。R-T-B系磁性粉末はMQP-14-9(Molycorp製)の磁性粉末を用いた。MQP-14-9の組成は、16.7質量%のNd、3.8質量%のLa、5.5質量%のPr、1.0質量%のB、および残部Feである。また、MQP-14-9の平均粒径は、100μmである。樹脂は材料全体の2質量%である。)、形状、サイズは同じである。なお、フラックスメータによる磁束量は、ヘルムホルツ型コイルを東洋テクニカ製LakeShoreフラックスメータにつなぎ測定を行った。例えば、本発明例のNo.2では、磁極数が4であり、外周側部分3aの外径D1は20mm、密度は6.1g/cm3 、内周側部分3bの外径D2は7mm、密度は5.9g/cm3 であって、密度差が0.2g/cm3 (3%)であり、全体の重量は33.1gである。No.2に対応する比較例のNo.1では、磁極数が4であり、ボンド磁石の外径D1は20mm、密度は均一の6.1g/cm3 であって、全体の重量は33.2gである。No.1及びNo.2を比較した場合、0.1gの重量削減を図れている。
【0035】
【0036】
また、表2は、外周側部分3aの外径D1が30mmである場合の本発明例(No.8,10,12)と、これらに対応した比較例(No.7,9,11)とを示している。シャフト2の直径は5mmとした。
【0037】
【0038】
以上のことから、本発明例では、比較例と比べて、磁気特性(フラックスメータによる磁束量)は軽微な減少に過ぎず、重量は削減され、コストが低減されることが分かる。
【0039】
次に、第2の実施形態によるシャフト一体型ボンド磁石1(本発明例)と比較例(ボンド磁石全体に密度差が無い場合)との比較について説明する。比較例及び本発明例におけるボンド磁石に使用した磁性粉末及び樹脂はそれぞれ、平均粒径100μmのNd-Fe-B系磁性粉末(MQP-14-9(Molycorp製)の磁性粉末)及び2質量%エポキシ樹脂である。極数は4、形状は
図3に示す通りであり、寸法は前述した通りである。
【0040】
比較例ではボンド磁石全体の密度が6.1g/cm3 と均一であったのに対して、本発明例ではボンド磁石の外周側部分3a(外径20mm)、内周側部分3b(外径7mm)それぞれの密度が6.1g/cm3 、5.9g/cm3 であった。結果として比較例では質量が31gであるのに対して、本発明例では30gであり、3%程度の軽量化を達成していることを確認した。したがって、本発明例では、十分な磁気特性を維持しながら軽量化を図れていることが分かる。
【0041】
本発明例では、振れ精度は±15μmと小さく、また、65000rpmの回転によってもボンド磁石の抜け、割れは発生せず、機械特性も優れている。
【0042】
表3は、本発明例のシャフト一体型ボンド磁石1にあって、外周側部分3aと内周側部分3bとの密度差を変化させた場合(No.14-No.18)の特性を示している。なお、表3では、密度差がない場合(No.13)の特性も比較例として示している。外周側部分3aの外径D1は30mm、内周側部分3bの外径D2は15mmとし、シャフト2の直径は5mmとした。
【0043】
【0044】
密度差が2~5%の範囲であるNo.14-No.16では十分な磁気特性を維持しながら軽量化を図れていることが分かる。
【0045】
これに対して、密度差が10%であるNo.18では、軽量化は顕著であるが、内周側部分3bの密度が5.5g/cm3 と低すぎるため、ボンド磁石3の強度に問題が発生する虞がある。また、密度差が7%であるNo.17では、内周側部分3bの密度が強度を考慮した必要最低限の5.7g/cm3 であるが、量産でのばらつきに伴う密度の低下を考慮した場合には好ましくない。一方、密度差がないNo.13では、当然ながら軽量化は図れない。
【0046】
以上のことから、密度差としては、2%以上5%以下が好ましく、磁気特性と強度を高いレベルで実現する場合には2%以上3%以下がより好ましい。
【0047】
なお、表3に示した各例にあってフラックスメータによる磁束量に大きな差がないのは、外周側部分3aの外径D1に対して内周側部分3bの外径D2が小さくて密度が高い部分の肉厚が大きく、また磁極数が8極と多いため、ボンド磁石3の表面近傍のみが磁化されたことが原因と考えられる。
【0048】
以下、本発明の第2の実施形態によるシャフト一体型ボンド磁石1を作製する手順について、その作製工程の手順を示す
図4-
図6を参照して説明する。第1の実施形態によるシャフト一体型ボンド磁石は、シャフトの形状が第2の実施形態によるシャフト一体型ボンド磁石と異なるが、後述する
図4-
図6の作製工程は第2の実施形態によるシャフト一体型ボンド磁石と同じである。
【0049】
図4Aは、作製工程において使用する成形装置の成形動作の開始位置(以下「定位置」という)を示している。この成形装置は、円筒状のダイ10と、上側金型20と、下側金型30とを備えている。
【0050】
上側金型20は、ダイ10の内径にほぼ等しい外径を有する長尺円筒状の第1上パンチ21と、第1上パンチ21の内径にほぼ等しい外径を有する長尺円筒状の第2上パンチ22と、第2上パンチ22の内径にほぼ等しい直径を有する長尺円柱状の上コア23とを備えた三重構成であり、ダイ10内を上方向から挿通可能である。第1上パンチ21はダイ10内を上下方向に挿通可能であって、第2上パンチ22は第1上パンチ21内を上下方向に挿通可能であり、上コア23は第2上パンチ22内を上下方向に挿通可能である。第1上パンチ21の移動(上昇/下降)と、第2上パンチ22の移動(上昇/下降)と、上コア23の移動(上昇/下降)とは、互いに独立して行える。
【0051】
下側金型30は、ダイ10の内径にほぼ等しい外径を有する長尺円筒状の第1下パンチ31と、第1下パンチ31の内径にほぼ等しい外径を有する長尺円筒状の第2下パンチ32と、第2下パンチ32の内径にほぼ等しい直径を有する長尺円柱状の下コア33とを備えた三重構成であり、ダイ10内を下方向から挿通可能である。第1下パンチ31はダイ10内を上下方向に挿通可能であって、第2下パンチ32は第1下パンチ31内を上下方向に挿通可能であり、下コア33は第2下パンチ32内を上下方向に挿通可能である。第1下パンチ31の移動(上昇/下降)と、第2下パンチ32の移動(上昇/下降)と、下コア33の移動(上昇/下降)とは、互いに独立して行える。
【0052】
まず、
図4Bに示す如く、第1下パンチ31を下降させて第2下パンチ32とダイ10との間に空間41を形成する。次いで、
図4Cに示す如く、この空間41内にボンド磁石3の材料42(磁性粉末及び樹脂の混合物(磁性組成物))を充填する。このときの下降距離d1(空間41の深さ)は、作製されるシャフト一体型ボンド磁石1におけるボンド磁石3の長さ(
図3に示す長さL1)と、後述する圧縮成形工程での材料42の圧縮率とを考慮して決定される。
【0053】
次に、
図4Dに示す如く、下コア33を下降させて第2下パンチ32の内部に開放部43を形成する。このときの下降距離d2(開放部43の長さ)は、シャフト一体型ボンド磁石1において外周面がボンド磁石3で覆われないシャフト2の一端部2bの領域の長さを考慮して決定される。すなわち、
図3に示す長さL5及びL6と前記圧縮率とを考慮して決定される。
【0054】
次いで、
図5Aに示す如く、予め準備しておいたシャフト2の一端部2bの一部を、開放部43に挿入する。この際、シャフト2は、シャフト2の一端部2bの一端面が下コア33に当接するまで下降させる。シャフト2は、自重によって下降させてもよいし、手動あるいは専用治具(専用装置)などを用いて下降させてもよい。
【0055】
次に、
図5Bに示す如く、第1上パンチ21、第2上パンチ22及び上コア23を下降させる。上コア23はシャフト2の他端部2cの一端面に当接するまで下降させて上コア23及び下コア33によってシャフト2を挟持する。また、第1上パンチ21及び第2上パンチ22は、シャフト2の他端部2cの一部の領域を覆う位置まで下降させる。第1上パンチ21及び第2上パンチ22の下降位置は、シャフト一体型ボンド磁石1において外周面がボンド磁石3で覆われないシャフト2の他端部2cの領域の長さを考慮して決定される。すなわち、
図3に示す長さL2及びL3と前記圧縮率とを考慮して決定される。
【0056】
なお、
図4Dから
図5Aに基づく前記実施の形態に代えて、
図4Dにおいて、下コア33を下降させて第2下パンチ32の内部に開放部43を形成する際、その下降距離d2(開放部43の長さ)を、シャフト一体型ボンド磁石1において外周面がボンド磁石3で覆われないシャフト2の一端部2bの領域の長さ(
図3に示す長さL6)と外周面がボンド磁石3で覆われる領域の長さ(
図3に示す長さL5)との合計に対応する長さとしても良い。このとき、
図5Aにおいて、シャフト2の一端部2bの全部が開放部43に挿入されることとなり、結果として、シャフト2の一端部2b及び中央部2aの境界と、充填した材料42の上面と、第2下パンチ32の上面と、ダイ10の上面とは、上下方向で同じ位置になる。
【0057】
次いで、
図5Cに示す如く、第2下パンチ32、上コア23及び下コア33を連動して下降させる。このとき、第1上パンチ21及び第2上パンチ22をさらに連動して下降させる。そして、
図5Dに示す如く、シャフト2の一端部2bの一部、中央部2a及び他端部2cの一部を材料42中に埋没させる。このときの上コア23及び下コア33ならびに第1上パンチ21及び第2上パンチ22の下降距離(
図5Bの上コア23及び下コア33ならびに第1上パンチ21及び第2上パンチ22の位置から
図5Dの上コア23及び下コア33ならびに第1上パンチ21及び第2上パンチ22の位置までの距離)は、シャフト2の一端部2b及び他端部2cの外周面がボンド磁石3で覆われる領域の長さ(
図3に示す長さL3及びL5)、及び前記圧縮率を考慮して決定される。
【0058】
図5Dに示す如く、第1上パンチ21及び第2上パンチ22は、材料42の上面に当接するまで、もしくはダイ10の上面まで下降させる。この結果、シャフト2及び材料42は、上側金型20と下側金型30とで封止された状態となる。
【0059】
なお、
図5Bから
図5Dに基づく前記実施の形態においては、第2下パンチ32を下降させる際、第1下パンチ31の下降位置まで下降(
図4Bに示す下降距離d1だけ下降)させているが、シャフト一体型ボンド磁石1の形状などに応じて、第2下パンチ32の下降位置を、第1下パンチ31の下降位置よりも上または下に位置させてもよい。
【0060】
また、
図5Bから
図5Dに基づく前記実施の形態において、予め上コア23と下コア33によってシャフト2を挟持して、第2下パンチ32を下降させながら、上コア23及び下コア33を連動して下降させて、シャフト2の一端部2bの一部、中央部2a及び他端部2cの一部を材料42中に埋没させる工程に代えて、予め上コア23と下コア33によってシャフト2を挟持せず、第2下パンチ32を下降させながら、下コア33のみを下降させて、下コア33上にシャフト2が載置された状態で自重によって下降させてもよい。また、シャフト2の下降は手動あるいは専用治具(専用装置)などを用いて行ってもよい。
【0061】
次いで、
図6Aに示す如く、ダイ10及び第1下パンチ31を下降させるとともに、第2上パンチ22を下降させる。ダイ10及び第1下パンチ31の下降によって、第2下パンチ32が相対的に上昇することになる。
【0062】
その後、
図6Bに示す如く、ダイ10を下降させるとともに、上コア23と下コア33によってシャフト2を挟持しながら上コア23、下コア33、第1上パンチ21及び第2上パンチ22を下降させる。ここで、第1上パンチ21と第2上パンチ22の材料42と接する面の高さ位置が同じになるよう、第1上パンチ21と第2上パンチ22の下降量を調整する。また、第1下パンチ31と第2下パンチ32の材料42と接する面の高さ位置が同じになるよう、第1下パンチ31と第2下パンチ32の上昇量を調整する。ダイ10の下降によって、第1下パンチ31及び第2下パンチ32が相対的に上昇することになる。そして、第1上パンチ21及び第2上パンチ22と第1下パンチ31及び第2下パンチ32とにより材料42を、下方向と上方向との2方向から圧縮して、シャフト2及び材料42を一体化して成形する。
【0063】
なお、ダイ10を下降させることしたが、第1下パンチ31及び第2下パンチ32を、直接上昇させるようにしても良い。
図6A,
図6Bに基づく前記実施形態において、ダイ10の下降距離と上コア23と下コア33の下降距離は同じであってもよいし、異なっていてもよい。ダイ10、上コア23と下コア33、第1上パンチ21及び第2上パンチ22の下降距離、あるいは第1下パンチ31及び第2下パンチ32を上昇させる場合の上昇距離などは、後述する成形品44の形状などを考慮して決定すればよい。
【0064】
次に、
図6Cに示す如く、ダイ10、第1上パンチ21、第2上パンチ22、上コア23、第1下パンチ31、第2下パンチ32、及び下コア33を全て上昇させる。この際、ダイ10、第1下パンチ31、及び第2下パンチ32が定位置に戻るまで、上昇動作を行う。次いで、
図6Dに示す如く、第1上パンチ21、第2上パンチ22及び上コア23を更に上昇させて定位置まで戻す。その後、成形品44をダイ10から取り出して、成形処理を終了する。なお、
図6Aから
図6Dに基づく前記実施の形態に代えて、ダイ10のみを下降させて成形品44をダイ10から取り出した後、ダイ10、第1上パンチ21、第2上パンチ22、上コア23、第1下パンチ31、第2下パンチ32、及び下コア33の全てを定位置に戻るように動作させてもよい。
【0065】
取り出した成形品44に対して、200℃で1時間の熱処理を施し、樹脂を硬化させる。これにより、所望の密度、形状を有するシャフト一体型ボンド磁石1が得られる。
【0066】
上述した成形工程では、
図5Cに示す如く、第2下パンチ32、上コア23及び下コア33を連動して下降させることで、ダイ10の上面と同じ高さであった第2下パンチ32が下降して空間が広がり、第1下パンチ31、ダイ10で囲まれた空間に収容されていた磁性組成物(材料42)がシャフト2側へ流動する。また、
図6Aに示す如く、ダイ10及び第1下パンチ31を下降させるとともに第2上パンチ22を下降させることで、第1下パンチ31に対して、第2下パンチ32が相対的に上昇することになり、ダイ10のキャビティに充填された磁性組成物は、第1上パンチ21及び第1下パンチ31間へ流動する。第1上パンチ21及び第1下パンチ31間における磁性組成物の充填深さが第2上パンチ22及び第2下パンチ32間よりも大きいため、
図3に示すような外周側部分3aと内周側部分3bの長さが同じであるボンド磁石3を成形するとき、第1上パンチ21及び第1下パンチ31の間に存する磁性組成物の圧縮率が第2上パンチ22及び第2下パンチ32の間に存する磁性組成物の圧縮率よりも大きくなる。これにより、第1上パンチ21と第1下パンチ31との間の成形圧力の印加により密度が大きい外周側部分3aを成形し、第2上パンチ22と第2下パンチ32との間の成形圧力の印加により密度が小さい内周側部分3bを成形している。
【0067】
図7は、印加する成形圧力と得られる成形体密度との関係を示すグラフである。
図7にあって、横軸は成形圧力(t/cm
2 )を表し、縦軸は成形体密度(g/cm
3 )を表しており、
図7には条件(使用する材料)を変えた2つの例を示している。成形圧力と成形体密度とはリニアな関係性を呈しており、上述した成形工程にあって成形圧力を調整することにより、ボンド磁石3の外周側部分3aと内周側部分3bとでそれぞれ所望の密度を得ることができる。
【0068】
なお、上述した第2の実施形態とは逆に、シャフトは軸長方向の中央部が両端部よりも細径であり、シャフトの中央部の全域及び両端部の中央部側の一部領域を覆ってボンド磁石が一体的に設けられているような構成のシャフト一体型ボンド磁石にも、本発明を適用できる。この構成でも、第2の実施形態と同様に、シャフトとボンド磁石との結合力が高く、シャフトとボンド磁石との間の軸方向への抜け強度に優れている。
【0069】
なお、上述した実施の形態では、ボンド磁石3の2つの部分(外周側部分3aと内周側部分3b)に関して密度の差があることとしたが、外周側が内周側より密度が大きくなるように、3つ以上の部分で密度に差をつけるようにしても良い。
【0070】
上述した実施の形態では、ボンド磁石3が磁性粉末と熱硬化性樹脂との混合物(コンパウンド)にて構成されていることとしたが、ボンド磁石3が磁性粉末と嫌気性樹脂とを含有するように構成されても良い。この場合のシャフト一体型ボンド磁石1の作製手順について、以下に簡単に説明する。
【0071】
上述したような
図4-
図6に示した手順にて、磁性粉末をシャフト2に一体的に圧縮成形してなる成形体を作製する。ここで、空間41内に充填する材料42として、磁性粉末及び樹脂の混合物(コンパウンド)に代えて、例えばR-T-N系の磁性粉末を用いることだけが異なるだけであって、他の手順は上述した手順と同様であるので、その説明は省略する。
【0072】
圧縮成形後の成形体に対して、含侵法を用いて、低粘度の嫌気性樹脂を浸み込ませて放置する。放置後、余分な嫌気性樹脂を洗浄にて除去する。ここで、嫌気性を有するため、内部及び表層部の嫌気性樹脂のみが硬化するので、それ以外の空気に触れた余分な嫌気性樹脂は洗浄にて容易かつ迅速に除去できる。次いで、嫌気性樹脂を含侵させた成形体に、150~180℃程度の熱処理を施して、嫌気性樹脂を完全に硬化させ、磁性粉末及び嫌気性樹脂を含むボンド磁石3を有するシャフト一体型ボンド磁石1を作製する。含侵は、減圧法、加圧法等公知の方法を適用すれば良い。
【0073】
このような磁性粉末及び嫌気性樹脂を含む構成では、磁性粉末の充填率が高くて強度のばらつきが少ないシャフト一体型ボンド磁石1を提供でき、磁気特性の向上を図ることができる。
【0074】
上述したシャフト一体型ボンド磁石1の作製手順にあって、磁性粉末と熱硬化性樹脂との混合物、または、磁性粉末のみである材料42に、潤滑剤を添加するようにしても良い。このような潤滑剤を加えることにより、材料42とダイ10との摩擦が和らげられて、成形装置の長寿命化を図れる。
【0075】
開示された実施の形態は、全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上述の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
【符号の説明】
【0076】
1 シャフト一体型ボンド磁石
2 シャフト
2a 中央部
2b 一端部
2c 他端部
3 ボンド磁石
3a 外周側部分
3b 内周側部分