(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-24
(45)【発行日】2022-09-01
(54)【発明の名称】ポリプロピレン系樹脂組成物、ペレット、及び成形体
(51)【国際特許分類】
C08L 23/10 20060101AFI20220825BHJP
C08L 57/00 20060101ALI20220825BHJP
C08L 91/00 20060101ALI20220825BHJP
【FI】
C08L23/10
C08L57/00
C08L91/00
(21)【出願番号】P 2019513559
(86)(22)【出願日】2018-04-09
(86)【国際出願番号】 JP2018014884
(87)【国際公開番号】W WO2018193894
(87)【国際公開日】2018-10-25
【審査請求日】2021-02-04
(31)【優先権主張番号】P 2017083873
(32)【優先日】2017-04-20
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2017253421
(32)【優先日】2017-12-28
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000183646
【氏名又は名称】出光興産株式会社
(74)【代理人】
【識別番号】110002620
【氏名又は名称】弁理士法人大谷特許事務所
(72)【発明者】
【氏名】金丸 正実
(72)【発明者】
【氏名】藤井 望
(72)【発明者】
【氏名】南 裕
【審査官】久保 道弘
(56)【参考文献】
【文献】特開2002-080658(JP,A)
【文献】特開2009-062667(JP,A)
【文献】特開2016-151014(JP,A)
【文献】特開2000-281723(JP,A)
【文献】特開2005-232326(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 23/00 - 23/36
C08L 57/00 - 57/12
C08L 91/00 - 91/08
(57)【特許請求の範囲】
【請求項1】
融解吸熱量(ΔH-D)が0J/g以上40J/g以下であり、融点(Tm-D)が観測されないか又は0℃以上90℃未満であるポリプロピレン系樹脂(A)と、
融解吸熱量(ΔH-D)が40J/gを超え125J/g以下であるポリプロピレン系樹脂(B)と
を含有
し、
前記ポリプロピレン系樹脂(B)のメソトリアッド分率[mm]が70モル%以上97モル%以下であり、
下式(F)を満たす、ポリプロピレン系樹脂組成物。
80 ≦ mmA×rA+[mmB]
2
×rB ≦ 1400 (F)
(式中、mmAは、前記ポリプロピレン系樹脂(A)のメソトリアッド分率[mm](単位:モル%)を表し、rAは、前記ポリプロピレン系樹脂(A)及び前記ポリプロピレン系樹脂(B)の合計質量に対する前記ポリプロピレン系樹脂(A)の質量比率を表し、mmBは、前記ポリプロピレン系樹脂(B)のメソトリアッド分率[mm](単位:モル%)を表し、rBは、前記ポリプロピレン系樹脂(A)及び前記ポリプロピレン系樹脂(B)の合計質量に対する前記ポリプロピレン系樹脂(B)の質量比率を表す。)
【請求項2】
前記ポリプロピレン系樹脂(A)を70質量%以上99.5質量%以下含み、前記ポリプロピレン系樹脂(B)を0.5質量%以上30質量%以下含む、請求項1に記載のポリプロピレン系樹脂組成物。
【請求項3】
前記ポリプロピレン系樹脂(A)のメソトリアッド分率[mm]が20モル%以上80モル%以下である、請求項1又は2に記載のポリプロピレン系樹脂組成物。
【請求項4】
前記ポリプロピレン系樹脂(A)のメソペンタッド分率[mmmm]が1モル%以上55モル%以下である、請求項1~3のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項5】
前記ポリプロピレン系樹脂(A)の極限粘度[η]が0.01dL/g以上2.5dL/g以下である、請求項1~4のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項6】
前記ポリプロピレン系樹脂(A)が、エチレン及び炭素数4~30のα-オレフィンからなる群より選ばれる少なくとも1つの構成単位を0モル%を超え20モル%以下含む、請求項1~5のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項7】
前記ポリプロピレン系樹脂(B)の融点(Tm-D)が90℃以上180℃以下である、請求項1~6のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項8】
前記ポリプロピレン系樹脂(B)のメソペンタッド分率[mmmm]が55モル%以上99.5モル%以下である、請求項1~
7のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項9】
前記ポリプロピレン系樹脂(B)の極限粘度[η]が0.01dL/g以上2.5dL/g以下である、請求項1~
8のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項10】
前記ポリプロピレン系樹脂(B)が、エチレン及び炭素数4~30のα-オレフィンからなる群より選ばれる少なくとも1つの構成単位を0モル%を超え15モル%以下含む、請求項1~
9のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項11】
前記ポリプロピレン系樹脂(B)のMwが、50万以下である、請求項1~
10のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項12】
前記ポリプロピレン系樹脂(A)及び/又は前記ポリプロピレン系樹脂(B)の酸価が、10mgKOH/g以上250mgKOH/g以下である、請求項1~
11のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項13】
さらに、石油樹脂(C)を含む、請求項1~
12のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項14】
さらに、オイル(D)を含む、請求項1~
13のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項15】
前記オイル(D)の40℃における動粘度が、5cSt以上800cSt以下である、請求項
14に記載のポリプロピレン系樹脂組成物。
【請求項16】
前記オイル(D)が、鉱物油系炭化水素、パラフィン系プロセスオイル、及びナフテン系プロセスオイルからなる群より選ばれる少なくとも1種である、請求項
14又は
15に記載のポリプロピレン系樹脂組成物。
【請求項17】
半結晶化時間が30分以内である、請求項1~
16のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項18】
融解吸熱量(ΔH-D)が1J/g以上60J/g以下である、請求項1~
17のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項19】
分子量分布(Mw/Mn)が1.5以上4.0以下である、請求項1~
18のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項20】
酸価が5mgKOH/g以上250mgKOH/g以下である、請求項1~
19のいずれか1つに記載のポリプロピレン系樹脂組成物。
【請求項21】
請求項1~
20のいずれか1つに記載のポリプロピレン系樹脂組成物を含むペレット。
【請求項22】
請求項1~
20のいずれか1つに記載のポリプロピレン系樹脂組成物からなる成形体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ポリプロピレン系樹脂組成物、該ポリプロピレン系樹脂組成物を含むペレット、及び該ポリプロピレン系樹脂組成物からなる成形体に関する。
【背景技術】
【0002】
ポリオレフィン系樹脂組成物は、安価で、強度等の種々の物性に優れるため、ホットメルト接着剤や弾性不織布等、様々な製品に利用されている。
ポリオレフィン系樹脂をベースポリマーに用いるホットメルト接着剤は、オープンタイムやセットタイムの調整のため、オイルや石油樹脂、ワックスの配合を工夫している。また、ホットメルト接着剤の性能は、ベースポリマーの物性に大きく依存するため、特にベースポリマーの結晶性を制御することで、種々の用途に適用できるように調整している。
【0003】
例えば、特許文献1には、耐熱クリープ性に優れたホットメルト接着剤を提供することを目的として、エチレン系重合体をベースポリマーとし、特定の引張弾性率及び破断伸びを満たすプロピレン系重合体を改質剤として含有するホットメルト接着剤が開示されている。特許文献2には、溶融時の流動性が高く、PP不織布同士の高い接着強度を示し、更に、PEフィルム-PP不織布の高い接着強度を示すホットメルト接着剤用ベースポリマーが開示されている。また、特許文献3には、固化速度及び接着性を両立したホットメルト接着剤を提供することを目的として、特定の引張弾性率及び半結晶化時間を満たすホットメルト接着剤用ベースポリマーが開示されている。
【0004】
また、弾性不織布用途として、特許文献4には、優れた弾性回復性を有すると共に、べたつきがなく、肌触りが良好な弾性不織布を提供することを目的として、低結晶性ポリプロピレン及び高結晶性ポリプロピレンを含有する結晶性樹脂組成物からなる弾性不織布が開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】国際公開第2014/129301号
【文献】特開2015-183135号公報
【文献】国際公開第2014/192767号
【文献】特開2009-062667号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1及び2に記載のホットメルト接着剤では、用途に合うようにポリオレフィンのベースポリマーを変えることによりホットメルト接着剤の性能を調整している。そのため、より簡便な方法で、ホットメルト接着剤の性能、特に固化速度や耐熱性を制御できる技術が求められている。
また、特許文献3及び4に記載の樹脂組成物に含まれる柔軟性に優れる成分は、造粒性が十分ではなかった。
【0007】
本発明が解決しようとする課題は、固化速度及び耐熱性の制御が可能なポリプロピレン系樹脂組成物、及び該ポリプロピレン系樹脂組成物からなる成形体を提供することにある。また、柔軟性及び造粒性に優れたペレットを提供することにある。
【課題を解決するための手段】
【0008】
本願開示は、以下のポリプロピレン系樹脂組成物、ペレット、及び成形体に関する。
<1>融解吸熱量(ΔH-D)が0J/g以上40J/g以下であり、融点(Tm-D)が観測されないか又は0℃以上90℃未満であるポリプロピレン系樹脂(A)と、融解吸熱量(ΔH-D)が40J/gを超え125J/g以下であるポリプロピレン系樹脂(B)とを含有する、ポリプロピレン系樹脂組成物。
<2>前記ポリプロピレン系樹脂(A)を70質量%以上99.5質量%以下含み、前記ポリプロピレン系樹脂(B)を0.5質量%以上30質量%以下含む、上記<1>に記載のポリプロピレン系樹脂組成物。
<3>前記ポリプロピレン系樹脂(A)のメソトリアッド分率[mm]が20モル%以上80モル%以下である、上記<1>又は<2>に記載のポリプロピレン系樹脂組成物。
<4>前記ポリプロピレン系樹脂(A)のメソペンタッド分率[mmmm]が1モル%以上55モル%以下である、上記<1>~<3>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<5>前記ポリプロピレン系樹脂(A)の極限粘度[η]が0.01dL/g以上2.5dL/g以下である、上記<1>~<4>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<6>前記ポリプロピレン系樹脂(A)が、エチレン及び炭素数4~30のα-オレフィンからなる群より選ばれる少なくとも1つの構成単位を0モル%を超え20モル%以下含む、上記<1>~<5>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<7>前記ポリプロピレン系樹脂(B)の融点(Tm-D)が90℃以上180℃以下である、上記<1>~<6>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<8>前記ポリプロピレン系樹脂(B)のメソトリアッド分率[mm]が70モル%以上99.5モル%以下である、上記<1>~<7>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<9>前記ポリプロピレン系樹脂(B)のメソペンタッド分率[mmmm]が55モル%以上99.5モル%以下である、上記<1>~<8>いずれか1つに記載のポリプロピレン系樹脂組成物。
<10>前記ポリプロピレン系樹脂(B)の極限粘度[η]が0.01dL/g以上2.5dL/g以下である、上記<1>~<9>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<11>前記ポリプロピレン系樹脂(B)が、エチレン及び炭素数4~30のα-オレフィンからなる群より選ばれる少なくとも1つの構成単位を0モル%を超え15モル%以下含む、上記<1>~<10>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<12>前記ポリプロピレン系樹脂(B)のMwが、50万以下である、上記<1>~<11>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<13>前記ポリプロピレン系樹脂(A)及び/又は前記ポリプロピレン系樹脂(B)の酸価が、10mgKOH/g以上250mgKOH/g以下である、上記<1>~<12>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<14>下式(F)を満たす、上記<1>~<13>のいずれか1つに記載のポリプロピレン系樹脂組成物。
80 ≦ mmA×rA+mmB2×rB ≦ 1400 (F)
(式中、mmAは、前記ポリプロピレン系樹脂(A)のメソトリアッド分率[mm](単位:モル%)を表し、rAは、前記ポリプロピレン系樹脂(A)及び前記ポリプロピレン系樹脂(B)の合計質量に対する前記ポリプロピレン系樹脂(A)の質量比率を表し、mmBは、前記ポリプロピレン系樹脂(B)のメソトリアッド分率[mm](単位:モル%)を表し、rBは、前記ポリプロピレン系樹脂(A)及び前記ポリプロピレン系樹脂(B)の合計質量に対する前記ポリプロピレン系樹脂(B)の質量比率を表す。)
<15>さらに、石油樹脂(C)を含む、上記<1>~<14>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<16>さらに、オイル(D)を含む、上記<1>~<15>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<17>前記オイル(D)の40℃における動粘度が、5cSt以上800cSt以下である、上記<16>に記載のポリプロピレン系樹脂組成物。
<18>前記オイル(D)が、鉱物油系炭化水素、パラフィン系プロセスオイル、及びナフテン系プロセスオイルからなる群より選ばれる少なくとも1種である、上記<16>又は<17>に記載のポリプロピレン系樹脂組成物。
<19>半結晶化時間が30分以内である、上記<1>~<18>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<20>融解吸熱量(ΔH-D)が1J/g以上60J/g以下である、上記<1>~<19>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<21>分子量分布(Mw/Mn)が1.5以上4.0以下である、上記<1>~<20>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<22>酸価が5mgKOH/g以上250mgKOH/g以下である、上記<1>~<21>のいずれか1つに記載のポリプロピレン系樹脂組成物。
<23>上記<1>~<22>のいずれか1つに記載のポリプロピレン系樹脂組成物を含むペレット。
<24>上記<1>~<22>のいずれか1つに記載のポリプロピレン系樹脂組成物からなる成形体。
【発明の効果】
【0009】
本発明によれば、固化速度及び耐熱性の制御が可能なポリプロピレン系樹脂組成物、及び該ポリプロピレン系樹脂組成物からなる成形体を提供することができる。また、柔軟性及び造粒性に優れた該ポリプロピレン系樹脂組成物を含むペレットを提供することができる。
【発明を実施するための形態】
【0010】
以下、本発明について詳細に説明する。なお、本明細書において、数値の記載に関する「A~B」という用語は、「A以上B以下」(A<Bの場合)又は「A以下B以上」(A>Bの場合)を意味する。本発明において、好ましい態様の組み合わせは、より好ましい態様である。
【0011】
[ポリプロピレン系樹脂組成物]
本発明のポリプロピレン系樹脂組成物は、融解吸熱量(ΔH-D)が0J/g以上40J/g以下であり、融点(Tm-D)が観測されないか又は0℃以上90℃未満であるポリプロピレン系樹脂(A)と、融解吸熱量(ΔH-D)が40J/gを超え125J/g以下であるポリプロピレン系樹脂(B)とを含有する。
【0012】
<ポリプロピレン系樹脂(A)>
本発明に用いられるポリプロピレン系樹脂(A)は、プロピレン単独重合体及びプロピレンと他のオレフィンとの共重合体から選択される少なくとも1種である。ポリプロピレン系樹脂(A)におけるプロピレンの構成単位の含有量は、樹脂の強度を確保する観点から、好ましくは80モル%以上、より好ましくは81.5モル%以上、更に好ましくは85モル%以上、より更に好ましくは90モル%以上である。
【0013】
ポリプロピレン系樹脂(A)の種類としては、プロピレン単独重合体、プロピレン-エチレンブロック共重合体、プロピレン-ブテンブロック共重合体、プロピレン-α-オレフィンブロック共重合体、プロピレン-エチレンランダム共重合体、プロピレン-ブテンランダム共重合体、プロピレン-α-オレフィンランダム共重合体、又はプロピレン-α-オレフィングラフト共重合体等から選択されるプロピレン系重合体であることが好ましく、プロピレン単独重合体やプロピレン-エチレンランダム共重合体がより好ましく、プロピレン単独重合体が更に好ましい。
【0014】
ポリプロピレン系樹脂(A)が共重合体である場合、構成単位として含まれうるプロピレン以外の他のオレフィンとしては、エチレン及び炭素数4~30のα-オレフィンからなる群より選ばれる少なくとも1つが挙げられる。炭素数4~30のα-オレフィンは、好ましくは炭素数4~24のα-オレフィン、より好ましくは炭素数4~12のα-オレフィン、更に好ましくは炭素数4~8のα-オレフィンである。当該α-オレフィンの具体例としては、1-ブテン,1-ペンテン,4-メチル-1-ペンテン,1-ヘキセン,1-オクテン,1-デセン,1-ドデセン,1-テトラデセン,1-ヘキサデセン,1-オクタデセン,1-エイコセン等が挙げられる。
【0015】
ポリプロピレン系樹脂(A)が共重合体である場合、エチレン及び炭素数4~30のα-オレフィンからなる群より選ばれる少なくとも1つの構成単位の含有量は、低温特性の向上等の観点から、好ましくは0モル%を超え、より好ましくは0.5モル%以上、更に好ましくは1.0モル%以上であり、そして、樹脂の強度を確保する観点から、好ましくは20モル%以下、より好ましくは18.5モル%以下、更に好ましくは15.0モル%以下、更に好ましくは10.0モル%以下である。
【0016】
(融解吸熱量(ΔH-D))
ポリプロピレン系樹脂(A)の融解吸熱量(ΔH-D)は、0J/g以上、好ましくは2J/g以上、より好ましくは3J/g以上、更に好ましくは5J/g以上であり、そして、40J/g以下、好ましくは38J/g以下、より好ましくは37J/g以下である。上記範囲内であれば、本発明のポリプロピレン系樹脂組成物を、べたつきを抑制しながら柔軟にすることができる。また、該ポリプロピレン系樹脂組成物を含むペレットの柔軟性と強度とのバランスを保つことができる。
なお、本発明において、融解吸熱量(ΔH-D)は、示差走査型熱量計(DSC)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブのピークを含むライン部分と熱量変化の無い低温側の点と熱量変化の無い高温側の点とを結んだ線(ベースライン)とで囲まれる面積を求めることで算出される。
【0017】
(融点(Tm-D))
ポリプロピレン系樹脂(A)の融点(Tm-D)は、観測されないか又は0℃以上90℃未満である。観測される場合は、より好ましくは30℃以上、更に好ましくは35℃以上、更に好ましくは40℃以上であり、そして、より好ましくは85℃以下、更に好ましくは80℃以下、更に好ましくは50℃以下である。上記範囲内であれば、本発明のポリプロピレン系樹脂組成物を、べたつきを抑制しながら柔軟にすることができる。また、該ポリプロピレン系樹脂組成物を含むペレットの柔軟性と強度とのバランスを保つことができる。
【0018】
なお、本発明では、示差走査型熱量計(DSC)(パーキン・エルマー社製、「DSC-7」)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップを融点(Tm-D)として定義する。
【0019】
(メソペンタッド分率[mmmm])
メソペンタッド分率[mmmm]は、プロピレン系重合体の立体規則性を表す指標であり、メソペンタッド分率[mmmm]が大きくなると、立体規則性が高くなる。ポリプロピレン系樹脂(A)のメソペンタッド分率[mmmm]は、好ましくは1モル%以上、より好ましくは10モル%以上、更に好ましくは15モル%以上、更に好ましくは25モル%以上であり、そして、好ましくは55モル%以下、より好ましくは52モル%以下、更に好ましくは50モル%以下、更に好ましくは49モル%以下である。上記範囲内であれば、本発明のポリプロピレン系樹脂組成物を、べたつきを抑制しながら柔軟にすることができる。また、該ポリプロピレン系樹脂組成物を含むペレットの柔軟性と強度とのバランスを保つことができる。
【0020】
([rrrr]/(100-[mmmm]))
[rrrr]/(100-[mmmm])の値は、メソペンタッド分率[mmmm]及びラセミペンタッド分率[rrrr]から求められ、プロピレン系重合体の規則性分布の均一さを示す指標である。[rrrr]/(100-[mmmm])のこの値が大きくなると既存触媒系を用いて製造される従来のポリプロピレンのように高立体規則性ポリプロピレンとアタクチックポリプロピレンの混合物となる。[rrrr]/(100-[mmmm])の値が上記範囲内であれば、べたつきをより抑制できる。なお、メソペンタッド分率[mmmm]及びラセミペンタッド分率[rrrr]の単位は、いずれもモル%である。
プロピレン系重合体(A-1)における[rrrr]/(100-[mmmm])の値は、べたつきの観点から、好ましくは0.15以下であり、より好ましくは0.1以下、更に好ましくは0.05以下、更に好ましくは0.04以下である。下限値は特に限定されないが、好ましくは0.001以上、より好ましくは0.01以上である。
【0021】
ここで、メソペンタッド分率[mmmm]及びラセミペンタッド分率[rrrr]は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,6,925(1973)」で提案された方法に準拠し、13C-NMRスペクトルのメチル基のシグナルにより測定されるポリプロピレン分子鎖中のペンタッド単位でのメソ分率及びラセミ分率である。また、後述するメソトリアッド分率[mm]、ラセミトリアッド分率[rr]及びメソラセミトリアッド分率[mr]は、ポリプロピレン分子鎖中のトリアッド単位でのメソ分率、ラセミ分率、及びメソラセミ分率であり、これらのトリアッド分率も上記方法により算出される。
【0022】
(メソトリアッド分率[mm])
メソトリアッド分率[mm]は、プロピレン系重合体のアイソタクチック性を示す立体規則性指標である。ポリプロピレン系樹脂(A)のメソトリアッド分率[mm]は、好ましくは20モル%以上、より好ましくは30モル%以上、更に好ましくは40モル%以上、更に好ましくは50モル%以上であり、そして、好ましくは80モル%以下、より好ましくは76モル%以下、更に好ましくは72モル%以下、更に好ましくは70モル%以下である。上記範囲内であれば、本発明のポリプロピレン系樹脂組成物を、べたつきを抑制しながら柔軟にすることができる。また、該ポリプロピレン系樹脂組成物を含むペレットの柔軟性と強度とのバランスを保つことができる。
【0023】
([mm]×[rr]/[mr]2)
メソトリアッド分率[mm]、ラセミトリアッド分率[rr]及びメソラセミトリアッド分率[mr]から算出される[mm]×[rr]/[mr]2の値は、重合体のランダム性の指標を表し、1に近いほどランダム性が高くなる。なお、メソトリアッド分率[mm]、ラセミトリアッド分率[rr]及びメソラセミトリアッド分率[mr]の単位は、いずれもモル%である。
ポリプロピレン系樹脂(A)における上式の値は、好ましくは2.0以下、より好ましくは1.8以下、更に好ましくは1.6以下である。下限値は特に限定されないが、好ましくは0.5以上である。
【0024】
([mmmm]/([mmrr]+[rmmr]))
メソペンタッド分率[mmmm]、メソメソラセミラセミペンタッド分率[mmrr]及びラセミメソメソラセミペンタッド分率[rmmr]から算出される[mmmm]/([mmrr]+[rmmr])の値は、重合体の立体規則性指数である。なお、メソペンタッド分率[mmmm]、メソメソラセミラセミペンタッド分率[mmrr]及びラセミメソメソラセミペンタッド分率[rmmr]の単位は、いずれもモル%である。
ポリプロピレン系樹脂(A)における上式の値は、好ましくは10以下、より好ましくは7以下、更に好ましくは4以下である。
【0025】
(酸価)
本発明においては、ポリプロピレン系樹脂(A)として、酸変性オレフィン系重合体を用いることもできる。その場合、酸変性オレフィン系重合体の酸価は、極性物質との相溶性や親和性の観点から、好ましくは10mgKOH/g以上、より好ましくは20mgKOH/g以上、更に好ましくは30mgKOH/g以上、更に好ましくは40mgKOH/g以上であり、そして、非極性材料との相溶性や親和性の観点から、好ましくは250mgKOH/g以下、より好ましくは200mgKOH/g以下、更に好ましくは180mgKOH/g以下、更に好ましくは150mgKOH/g以下である。
なお、本発明において、酸価はJIS K2501:2003に基づいて測定される。
【0026】
(極限粘度[η])
ポリプロピレン系樹脂(A)について、テトラリン溶媒中135℃にて測定した極限粘度[η]は、樹脂強度の観点から、好ましくは0.01dL/g以上、より好ましくは0.15dL/g以上、更に好ましくは0.3dL/g以上であり、そして、成形性(扱い易さ)の観点から、好ましくは2.5dL/g以下、より好ましくは1.5dL/g以下、更に好ましくは1.0dL/g以下である。
極限粘度[η]は、135℃のテトラリン中、ウベローデ型粘度計で還元粘度(ηSP/c)を測定し、下記式(ハギンスの式)を用いて算出される。
ηSP/c=[η]+K[η]2c
ηSP/c(dL/g):還元粘度
[η](dL/g):極限粘度
c(g/dL):ポリマー粘度
K=0.35(ハギンス定数)
【0027】
(重量平均分子量(Mw))
ポリプロピレン系樹脂(A)の重量平均分子量(Mw)は、機械的強度の観点から、好ましくは10,000以上、より好ましくは20,000以上、更に好ましくは25,000以上であり、そして、成形性(扱い易さ)の観点から、好ましくは500,000以下、より好ましくは400,000以下、更に好ましくは200,000以下、更に好ましくは100,000以下である。
本発明において、重量平均分子量(Mw)は、ゲルパーミエイションクロマトグラフィ(GPC)法により測定したポリスチレン換算の重量平均分子量である。
【0028】
(分子量分布(Mw/Mn))
ポリプロピレン系樹脂(A)の分子量分布(Mw/Mn)は、機械的強度の観点から、好ましくは3.0未満、より好ましくは2.5以下、更に好ましくは2.2以下であり、そして、好ましくは1.2以上、より好ましくは1.5以上である。
本発明において、分子量分布(Mw/Mn)は、ゲルパーミエイションクロマトグラフィ(GPC)法により測定したポリスチレン換算の重量平均分子量Mw及び数平均分子量Mnより算出した値である。
【0029】
(半結晶化時間)
ポリプロピレン系樹脂(A)の半結晶化時間は、遅い結晶化速度の観点から、3分以上であるか又は示差走査型熱量計(DSC)で測定される結晶化ピークが観測されない。好ましくは10分以上、より好ましくは20分以上である。半結晶化時間が60分を超えるような結晶化速度が遅い場合、明確な結晶化ピークが観測されない場合がある。
なお、本発明における「半結晶化時間」とは、以下に示す測定方法により測定されるものを示す。
【0030】
<半結晶化時間の測定方法>
示差走査型熱量計(DSC)(パーキン・エルマー社製、商品名:「DSC-7」)を用い、下記方法にて測定する。
(1)試料10mgを25℃で5分間保持し、320℃/秒で220℃に昇温し5分間保持した後、320℃/秒で25℃に冷却し、60分間保持することにより、等温結晶化過程における、発熱量の時間変化を測定する。
(2)等温結晶化開始時から結晶化完了時までの発熱量の積分値を100%とした時、等温結晶化開始時から発熱量の積分値が50%となるまでの時間を半結晶化時間として定義する。
【0031】
(ポリプロピレン系樹脂(A)の製造方法)
ポリプロピレン系樹脂(A)は、例えば、WO2003/087172に記載されているようなメタロセン系触媒を使用して製造することができる。特に、配位子が架橋基を介して架橋構造を形成している遷移金属化合物を用いたものが好ましく、なかでも、2個の架橋基を介して架橋構造を形成している遷移金属化合物と助触媒を組み合わせて得られるメタロセン系触媒が好ましい。
【0032】
具体的に例示すれば、
(i)一般式(I)
【化1】
〔式中、Mは周期律表第3~10族又はランタノイド系列の金属元素を示し、E
1及びE
2はそれぞれ置換シクロペンタジエニル基、インデニル基、置換インデニル基、ヘテロシクロペンタジエニル基、置換ヘテロシクロペンタジエニル基、アミド基、ホスフィド基、炭化水素基及び珪素含有基の中から選ばれた配位子であって、A
1及びA
2を介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX、E
1、E
2又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E
1、E
2又はXと架橋していてもよく、A
1及びA
2は二つの配位子を結合する二価の架橋基であって、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、-O-、-CO-、-S-、-SO
2-、-Se-、-NR
1-、-PR
1-、-P(O)R
1-、-BR
1-又は-AlR
1-を示し、R
1は水素原子、ハロゲン原子、炭素数1~20の炭化水素基又は炭素数1~20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1~5の整数で〔(Mの原子価)-2〕を示し、rは0~3の整数を示す。〕
で表される遷移金属化合物、並びに
(ii)(ii-1)該(i)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(ii-2)アルミノキサンからなる群から選ばれる少なくとも一種の成分
を含有する重合用触媒が挙げられる。
【0033】
上記(i)成分の遷移金属化合物としては、配位子が(1,2’)(2,1’)二重架橋型の遷移金属化合物が好ましく、例えば(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロペンチルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリエチルシリルメチルインデニル)ジルコニウムジクロリド、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロプロピルメチルインデニル)ジルコニウムジクロリドが挙げられる。
【0034】
上記(ii-1)成分の化合物の具体例としては、テトラフェニル硼酸トリエチルアンモニウム、テトラフェニル硼酸トリ-n-ブチルアンモニウム、テトラフェニル硼酸トリメチルアンモニウム、テトラフェニル硼酸テトラエチルアンモニウム、テトラフェニル硼酸メチル(トリ-n-ブチル)アンモニウム、テトラフェニル硼酸ベンジル(トリ-n-ブチル)アンモニウム、テトラフェニル硼酸ジメチルジフェニルアンモニウム、テトラフェニル硼酸トリフェニル(メチル)アンモニウム、テトラフェニル硼酸トリメチルアニリニウム、テトラフェニル硼酸メチルピリジニウム、テトラフェニル硼酸ベンジルピリジニウム、テトラフェニル硼酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸テトラ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸テトラエチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸ベンジル(トリ-n-ブチル)アンモニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリフェニル(メチル)アンモニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸ジメチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸トリメチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルピリジニウム、テトラキス(ペンタフルオロフェニル)硼酸ベンジルピリジニウム、テトラキス(ペンタフルオロフェニル)硼酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸ベンジル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸メチル(4-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸トリフェニルホスホニウム、テトラキス〔ビス(3,5-ジトリフルオロメチル)フェニル〕硼酸ジメチルアニリニウム、テトラフェニル硼酸フェロセニウム、テトラフェニル硼酸銀、テトラフェニル硼酸トリチル、テトラフェニル硼酸テトラフェニルポルフィリンマンガン、テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸(1,1’-ジメチルフェロセニウム)、テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸銀、テトラキス(ペンタフルオロフェニル)硼酸トリチル、テトラキス(ペンタフルオロフェニル)硼酸リチウム、テトラキス(ペンタフルオロフェニル)硼酸ナトリウム、テトラキス(ペンタフルオロフェニル)硼酸テトラフェニルポルフィリンマンガン、テトラフルオロ硼酸銀、ヘキサフルオロ燐酸銀、ヘキサフルオロ砒素酸銀、過塩素酸銀、トリフルオロ酢酸銀、トリフルオロメタンスルホン酸銀等を挙げることができる。
【0035】
上記(ii-2)成分のアルミノキサンとしては、公知の鎖状アルミノキサンや環状アルミノキサンが挙げられる。
【0036】
また、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、ジメチルアルミニウムフルオリド、ジイソブチルアルミニウムヒドリド、ジエチルアルミニウムヒドリド、エチルアルミニウムセスキクロリド等の有機アルミニウム化合物を併用して、オレフィン系重合体(A)を製造してもよい。
【0037】
本発明のポリプロピレン系樹脂組成物中に含まれるポリプロピレン系樹脂(A)の含有量は、柔軟性保持の観点から、ポリプロピレン系樹脂組成物100質量%に対して、好ましくは70質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、更に好ましくは93質量%以上であり、そして、固化速度の向上という観点から、好ましくは99.5質量%以下、より好ましくは99質量%以下、更に好ましくは98.5質量%以下、更に好ましくは98質量%以下である。
【0038】
<ポリプロピレン系樹脂(B)>
本発明に用いられるポリプロピレン系樹脂(B)は、プロピレン単独重合体及びプロピレンと他のオレフィンとの共重合体から選択される少なくとも1種である。ポリプロピレン系樹脂(B)におけるプロピレンの構成単位の含有量は、造粒性をより向上させる観点から、好ましくは85モル%以上、より好ましくは88モル%以上、更に好ましくは90モル%以上、より更に好ましくは93モル%以上である。
【0039】
ポリプロピレン系樹脂(B)の種類としては、ポリプロピレン系樹脂(A)の好ましい範囲と同様である。ポリプロピレン系樹脂(B)が共重合体である場合、構成単位として含まれうるプロピレン以外の他のオレフィンとしては、エチレン及び炭素数4~30のα-オレフィンからなる群より選ばれる少なくとも1つが挙げられ、その好ましい範囲はポリプロピレン系樹脂(A)における説明を適用することができる。
【0040】
ポリプロピレン系樹脂(B)が共重合体である場合、エチレン及び炭素数4~30のα-オレフィンからなる群より選ばれる少なくとも1つの構成単位の含有量は、成形温度の低温下の観点から、好ましくは0モル%を超え、より好ましくは0.5モル%以上、更に好ましくは1.0モル%以上であり、そして、固化速度を速める観点から、好ましくは15モル%以下、より好ましくは12モル%以下、更に好ましくは10モル%以下、更に好ましくは7モル%以下である。
【0041】
(融解吸熱量(ΔH-D))
ポリプロピレン系樹脂(B)の融解吸熱量(ΔH-D)は、40J/gを超え、125J/g以下である。固化速度を速める観点から、好ましくは50J/gを超え、より好ましくは55J/gを超え、更に好ましくは60J/gを超え、そして、好ましくは120J/g以下、より好ましくは100J/g以下、更に好ましくは90J/g以下である。
なお、融解吸熱量(ΔH-D)の測定方法については、ポリプロピレン系樹脂(A)に関して説明したとおりである。
【0042】
(融点(Tm-D))
ポリプロピレン系樹脂(B)の融点(Tm-D)は、固化速度向上の観点から、好ましくは90℃以上、より好ましくは95℃以上、更に好ましくは100℃以上、更に好ましくは110℃以上であり、そして、低温成形性の観点から、好ましくは180℃以下、より好ましくは175℃以下、更に好ましくは170℃以下、更に好ましくは165℃以下である。
なお、融点(Tm-D)の測定方法については、ポリプロピレン系樹脂(A)に関して説明したとおりである。
【0043】
(メソペンタッド分率[mmmm])
ポリプロピレン系樹脂(B)のメソペンタッド分率[mmmm]は、固化速度向上の観点から、好ましくは55モル%以上、より好ましくは56モル%以上、更に好ましくは60モル%以上、更に好ましくは64モル%以上であり、そして、低温成形性の観点から、好ましくは99.5モル%以下、より好ましくは98モル%以下、更に好ましくは90モル%以下、更に好ましくは73モル%以下である。
【0044】
(メソトリアッド分率[mm])
ポリプロピレン系樹脂(B)のメソトリアッド分率[mm]は、固化速度向上の観点から、好ましくは70モル%以上、より好ましくは75モル%以上、更に好ましくは78モル%以上、更に好ましくは80モル%以上であり、そして、低温成形性の観点から、好ましくは99.5モル%以下、より好ましくは99モル%以下、更に好ましくは97モル%以下、更に好ましくは85モル%以下である。
なお、メソペンタッド分率[mmmm]及びメソトリアッド分率[mm]の測定方法については、ポリプロピレン系樹脂(A)に関して説明したとおりである。
【0045】
(重量平均分子量(Mw))
ポリプロピレン系樹脂(B)の重量平均分子量(Mw)は、機械的強度の観点から、好ましくは10,000以上、より好ましくは20,000以上、更に好ましくは25,000以上であり、そして、成形性(扱い易さ)の観点から、好ましくは500,000以下、より好ましくは200,000以下、更に好ましくは100,000以下、更に好ましくは60,000以下である。
【0046】
(酸価)
本発明においては、ポリプロピレン系樹脂(B)として、酸変性オレフィン系重合体を用いることもできる。その場合、酸変性オレフィン系重合体の酸価は、極性物質との相溶性や親和性の観点から、好ましくは10mgKOH/g以上、より好ましくは20mgKOH/g以上、更に好ましくは30mgKOH/g以上、更に好ましくは40mgKOH/g以上であり、そして、非極性物質との相溶性や親和性の観点から、好ましくは250mgKOH/g以下、より好ましくは200mgKOH/g以下、更に好ましくは180mgKOH/g以下、更に好ましくは150mgKOH/g以下である。
なお、酸価の測定方法については、ポリプロピレン系樹脂(A)に関して説明したとおりである。
【0047】
(極限粘度[η])
ポリプロピレン系樹脂(B)について、テトラリン溶媒中135℃にて測定した極限粘度[η]は、強度の観点から、好ましくは0.01dL/g以上、より好ましくは0.15dL/g以上、更に好ましくは0.2dL/g以上であり、そして、成形性(取扱い易さ)の観点から、好ましくは2.5dL/g以下、より好ましくは1.5dL/g以下、更に好ましくは0.8dL/g以下である。
なお、極限粘度[η]の測定方法については、ポリプロピレン系樹脂(A)に関して説明したとおりである。
【0048】
(メルトフローレート(MFR)[g/10分])
ポリプロピレン系樹脂(B)について、メルトフローレートは、流動性、成形性の観点から、好ましくは10g/10分以上、より好ましくは15g/10分以上、更に好ましくは40g/10分以上であり、強度の観点から、好ましくは2000g/10分以下、より好ましくは1500g/10分以下、更に好ましくは1000g/10分以下である。
本発明において、ポリプロピレン系樹脂(B)のMFRは、ISO 1133:1997に準拠し、温度230℃、荷重21.18Nの条件で測定される。
【0049】
(ポリプロピレン系樹脂(B)の製造方法)
ポリプロピレン系樹脂(B)の製造方法については特に限定されず、チーグラー触媒やメタロセン触媒等を用いた公知の方法により製造することができる。
【0050】
本発明のポリプロピレン系樹脂組成物中に含まれるポリプロピレン系樹脂(B)の含有量は、固化速度を適度に抑制する観点から、ポリプロピレン系樹脂組成物100質量%に対して、好ましくは0.5質量%以上、より好ましくは1質量%以上、更に好ましくは1.5質量%以上、更に好ましくは2質量%以上であり、そして、柔軟性保持の観点から、好ましくは30質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下、更に好ましくは7質量%以下である。
【0051】
<石油樹脂(C)>
本発明のポリプロピレン系樹脂組成物は、さらに、石油樹脂(C)を含むことが、固化速度の制御に寄与するガラス転移点制御の観点から好ましい。石油樹脂とは、石油ナフサを熱分解して必要な留分を採取した残りの留分のうち、主としてC5及びC9留分から不飽和炭化水素を単離することなく、酸性触媒もしくは熱により重合して室温(25℃)で固化するものをいう。
石油樹脂(C)としては、例えば、脂肪族系石油樹脂、脂環族系石油樹脂、芳香族系石油樹脂、脂肪族成分と芳香族成分との共重合石油樹脂、脂環族系成分と芳香族成分との共重合石油樹脂、脂環族系成分と脂肪族成分との共重合石油樹脂、及び、これらの水添石油樹脂などが挙げられる。中でも、水添石油樹脂が好ましく、脂肪族系石油樹脂の水添石油樹脂、芳香族系石油樹脂の水添石油樹脂、脂環族系成分と芳香族成分との共重合石油樹脂の水添石油樹脂がより好ましい。
【0052】
水添石油樹脂としては、市販品を用いることもできる。例えば、脂環族系成分と芳香族成分との共重合石油樹脂の部分水添石油樹脂としては、出光興産(株)製 商品名「アイマーブ(imarv)S-100(軟化点:100℃)」、及び「アイマーブ(imarv)S-110(軟化点:110℃)」などが挙げられる。また、脂環族系成分と芳香族成分との共重合石油樹脂の完全水添石油樹脂としては、出光興産(株)製 商品名「アイマーブ(imarv)P-90(軟化点:90℃)」、「アイマーブ(imarv)P-100(軟化点:100℃)」、「アイマーブ(imarv)P-125(軟化点:125℃)」、及び「アイマーブ(imarv)P-140(軟化点:140℃)」などが挙げられる。脂肪族系石油樹脂の完全水添石油樹脂としては、イーストマンケミカルジャパン(株)製 商品名「イーストタックH-130W(軟化点:130℃)」、Exxon製 商品名「エスコレッツ(EScorez5300)(軟化点:100℃)」などが挙げられる。脂肪族系石油樹脂の部分水添石油樹脂としては、Exxon製 商品名「エスコレッツ(EScorezS600)(軟化点:100℃)」などが挙げられる。芳香族系石油樹脂の部分水添石油樹脂としては、荒川化学(株)製 商品名「アルコンM-100(軟化点:100℃)」などが挙げられる。芳香族系石油樹脂の完全水添石油樹脂としては、荒川化学(株)製 商品名「アルコンP-100(軟化点:100℃)」、「アルコンP-125(軟化点:125℃)」などが挙げられる。
【0053】
本発明のポリプロピレン系樹脂組成物が石油樹脂(C)を含有する場合、その含有量は、ポリプロピレン系樹脂(A)100質量%に対し、好ましくは10質量%以上、より好ましくは20質量%以上であり、そして、好ましくは50質量%以下、より好ましくは30質量%以下である。
【0054】
<オイル(D)>
本発明のポリプロピレン系樹脂組成物は、さらに、オイル(D)を含むことが、流動性向上および低温特性付与の観点から好ましい。
オイル(D)としては、特に限定されず、パラフィン系プロセスオイル、ナフテン系プロセスオイル、イソパラフィン系オイル等の鉱物油、芳香族系の鉱物油系炭化水素、ポリブテン、ポリブタジエン、ポリ(α-オレフィン)等の低分子量物等の合成樹脂系炭化水素、アルキルベンゼンやひまし油、あまに油、ナタネ油、ヤシ油等の脂肪油系軟化剤、ジブチルフタレート、ジオクチルフタレート、ジオクチルアジペート、ジオクチルセバケート等のエステル系可塑剤などが例示できる。中でも、鉱物油系炭化水素、パラフィン系プロセスオイル、及びナフテン系プロセスオイルからなる群より選ばれる少なくとも1種であることが好ましい。
また、鉱物油系炭化水素の重量平均分子量は50~2,000、特に100~1,500のものが好ましく、流動点は-40~0℃、特に-30~0℃であるのが好ましく、引火点(COC法)は200~400℃、特に250~350℃であることが好ましい。
なお、流動点は、JIS K2269に準拠して測定した値であり、引火点は、JIS K2265に準拠して測定した値である。
【0055】
また、オイル(D)の40℃における動粘度は、5cSt以上800cSt以下であるのが好ましく、10cSt以上500cSt以下であるのがより好ましい。
なお、動粘度は、ISO3104に準拠して測定した値である。
【0056】
本発明のポリプロピレン系樹脂組成物がオイル(D)を含有する場合、その含有量は、ポリプロピレン系樹脂(A)100質量%に対し、好ましくは5質量%以上、より好ましくは8質量%以上であり、そして、好ましくは20質量%以下、より好ましくは15質量%以下である。
【0057】
<ポリプロピレン系樹脂組成物>
本発明のポリプロピレン系樹脂組成物は、ポリプロピレン系樹脂(A)及び(B)、並びに必要に応じて石油樹脂(C)及び/又はオイル(D)を混合することで得ることができる。
本発明のポリプロピレン系樹脂組成物は、固化速度を好ましくは200sec以上、より好ましくは300sec以上、更に好ましくは400sec以上とすることができ、そして、好ましくは2,000sec以下、より好ましくは1,000sec以下、更に好ましくは600sec以下とすることができる。固化速度が上記範囲内であれば、オープンタイムが適切な長さとなり、ホットメルト用途など幅広い用途に使用し易くなる。なお、固化速度は実施例に記載の方法により測定することができる。
また、本発明のポリプロピレン系樹脂組成物の軟化点は、好ましくは90℃以上、より好ましくは100℃以上、更に好ましくは115℃以上、より更に好ましくは130℃以上であり、そして、好ましくは165℃以下である。なお、軟化点は、JAI7-1991に準拠して、Ring and Ball法により測定することができる。
更に、本発明のポリプロピレン系樹脂組成物の粘度は、B型粘度計を用いて測定することができ、190℃で好ましくは30mPa・s以上、より好ましくは1,000mPa・s以上、更に好ましくは5,000mPa・s以上、より更に好ましくは400,000mPa・s以上であり、そして、好ましくは500,000mPa・s以下である。
【0058】
(半結晶化時間)
ポリプロピレン系樹脂組成物の半結晶化時間は、該ポリプロピレン系樹脂組成物を含むペレットのブロッキングを防止する観点から、好ましくは30分以内、より好ましくは20分以内、更に好ましくは15分以内、更に好ましくは10分以内である。
なお、半結晶化時間の測定方法については、ポリプロピレン系樹脂(A)に関して説明したとおりである。
【0059】
(融解吸熱量(ΔH-D))
ポリプロピレン系樹脂組成物の融解吸熱量(ΔH-D)は、該ポリプロピレン系樹脂組成物を含むペレットのブロッキングを防止する観点から、1J/g以上、好ましくは3J/g以上、より好ましくは5J/g以上、更に好ましくは10J/g以上であり、そして、柔軟性の観点から60J/g以下、好ましくは55J/g以下、より好ましくは50J/g以下、更に好ましくは45J/g以下である。
なお、融解吸熱量(ΔH-D)の測定方法については、ポリプロピレン系樹脂(A)に関して説明したとおりである。
【0060】
(メソペンタッド分率[mmmm])
ポリプロピレン系樹脂組成物のメソペンタッド分率[mmmm]は、該ポリプロピレン系樹脂組成物を含むペレットの強度の観点から、好ましくは1モル%以上、より好ましくは10モル%以上、更に好ましくは20モル%以上、更に好ましくは30モル%以上であり、そして、柔軟性の観点から、好ましくは60モル%以下、より好ましくは55モル%以下、更に好ましくは50モル%以下、更に好ましくは45モル%以下である。
【0061】
(メソトリアッド分率[mm])
ポリプロピレン系樹脂組成物のメソトリアッド分率[mm]は、該ポリプロピレン系樹脂組成物を含むペレットの強度の観点から、好ましくは20モル%以上、より好ましくは30モル%以上、更に好ましくは40モル%以上、更に好ましくは50モル%以上であり、そして、柔軟性の観点から、好ましくは80モル%以下、より好ましくは76モル%以下、更に好ましくは72モル%以下、更に好ましくは65モル%以下である。
なお、メソペンタッド分率[mmmm]及びメソトリアッド分率[mm]の測定方法については、ポリプロピレン系樹脂(A)に関して説明したとおりである。
【0062】
(酸価)
本発明においては、ポリプロピレン系樹脂組成物は酸変性ポリプロピレン系樹脂組成物でもよい。その場合、ポリプロピレン系樹脂組成物の酸価は、極性物質との相溶性や親和性の観点から、好ましくは5mgKOH/g以上、より好ましくは10mgKOH/g以上、更に好ましくは20mgKOH/g以上、更に好ましくは40mgKOH/g以上であり、そして、非極性物質との相溶性や親和性の観点から、好ましくは250mgKOH/g以下、より好ましくは200mgKOH/g以下、更に好ましくは180mgKOH/g以下、更に好ましくは150mgKOH/g以下である。
なお、酸価の測定方法については、ポリプロピレン系樹脂(A)に関して説明したとおりである。
【0063】
(重量平均分子量(Mw))
ポリプロピレン系樹脂組成物の重量平均分子量(Mw)は、ブロッキングを防止する観点から、好ましくは10,000以上、より好ましくは20,000以上、更に好ましくは25,000以上であり、そして、成形性(扱い易さ)の観点から好ましくは500,000以下、より好ましくは200,000以下、更に好ましくは100,000以下、更に好ましくは60,000以下である。
【0064】
(分子量分布(Mw/Mn))
ポリプロピレン系樹脂組成物の分子量分布(Mw/Mn)は、成形性(扱い易さ)の観点から、好ましくは1.5以上、より好ましくは1.6以上、更に好ましくは1.8以上、更に好ましくは1.9以上であり、そして、ブロッキングを防止する観点から、好ましくは4.5以下、より好ましくは4.3以下、更に好ましくは4.0以下、更に好ましくは3.8以下である。
なお、Mw及びMw/Mnの測定方法については、ポリプロピレン系樹脂(A)に関して説明したとおりである。
【0065】
(式(F))
本発明のポリプロピレン系樹脂組成物は、下式(F)を満たすことが好ましい。
80 ≦ mmA×rA+mmB2×rB ≦ 1400 (F)
(式中、mmAは、ポリプロピレン系樹脂(A)のメソトリアッド分率[mm](単位:モル%)を表し、rAは、ポリプロピレン系樹脂(A)及びポリプロピレン系樹脂(B)の合計質量に対するポリプロピレン系樹脂(A)の質量比率を表し、mmBは、ポリプロピレン系樹脂(B)のメソトリアッド分率[mm](単位:モル%)を表し、rBは、ポリプロピレン系樹脂(A)及びポリプロピレン系樹脂(B)の合計質量に対するポリプロピレン系樹脂(B)の質量比率を表す。)
【0066】
本発明者らは、樹脂組成物におけるポリプロピレン系樹脂(A)とポリプロピレン系樹脂(B)との含有比を変更することで、該樹脂組成物を含むペレットの柔軟性及び造粒性の両立を試みたが、樹脂の種類によっては同じ含有比であっても異なる結果となることを見出した。本発明者らは、更に鋭意検討を重ねた結果、ポリプロピレン系樹脂(A)のメソトリアッド分率、ポリプロピレン系樹脂(B)のメソトリアッド分率、及び樹脂組成物におけるポリプロピレン系樹脂(A)とポリプロピレン系樹脂(B)との含有比を考慮に入れた上記の式(F)を満たすときに柔軟性と造粒性とを両立したペレットが得られることを見出した。
【0067】
mmAは、ポリプロピレン系樹脂(A)のメソトリアッド分率[mm](単位:モル%)を表し、mmBは、ポリプロピレン系樹脂(B)のメソトリアッド分率[mm](単位:モル%)を表す。ポリプロピレン系樹脂(A)及びポリプロピレン系樹脂(B)のメソトリアッド分率[mm]の好ましい範囲については、それぞれ上述したとおりである。
rAは、ポリプロピレン系樹脂(A)及びポリプロピレン系樹脂(B)の合計質量に対するポリプロピレン系樹脂(A)の質量比率を表し、rBは、ポリプロピレン系樹脂(A)及びポリプロピレン系樹脂(B)の合計質量に対するポリプロピレン系樹脂(B)の質量比率を表す。本発明のポリプロピレン系樹脂組成物中に含まれるポリプロピレン系樹脂(A)及びポリプロピレン系樹脂(B)の含有量の好ましい範囲については、それぞれ上述したとおりである。
【0068】
上記の式(F)は、ポリプロピレン系樹脂(A)のメソトリアッド分率[mm]にポリプロピレン系樹脂(A)の質量比率を掛け合わせた値と、ポリプロピレン系樹脂(B)のメソトリアッド分率[mm]の二乗にポリプロピレン系樹脂(B)の質量比率を掛け合わせた値との合計が、80以上1400以下であることを示す。式(F)を満たすことで、本発明のポリプロピレン系樹脂組成物を含むペレットの柔軟性と造粒性とを両立することができる。
【0069】
本発明のポリプロピレン系樹脂組成物は、より好ましくは下式(F1)を満たし、更に好ましくは下式(F2)を満たす。
200 ≦ mmA×rA+mmB2×rB ≦ 1200 (F1)
300 ≦ mmA×rA+mmB2×rB ≦ 800 (F2)
【0070】
[ペレット]
本発明のペレットは、上述のポリプロピレン系樹脂組成物を含むことから、柔軟性及び造粒性に優れる。
本発明のペレットにおける前記ポリプロピレン系樹脂(A)の含有量は、本発明のペレットの柔軟性の観点から、ペレット100質量%に対して、好ましくは70質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上、更に好ましくは93質量%以上であり、そして、固化速度の向上という観点から、好ましくは99.5質量%以下、より好ましくは99質量%以下、更に好ましくは98.5質量%以下、更に好ましくは98質量%以下である。
また、本発明のペレットにおけるポリプロピレン系樹脂(B)の含有量は、本発明のペレットの造粒性向上の観点から、ペレット100質量%に対して、好ましくは0.5質量%以上、より好ましくは1質量%以上、更に好ましくは1.5質量%以上、更に好ましくは2質量%以上であり、そして、ペレットの柔軟性を確保する観点から、好ましくは30質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下、更に好ましくは7質量%以下である。
【0071】
[成形体]
本発明の成形体は、上述のポリプロピレン系樹脂組成物からなる。
上記ポリプロピレン系樹脂組成物は、公知の成形方法、例えば射出成形、押出し成形、ブロー成形、インフレーション成形、圧縮成形、真空成形等の方法により、所望形状の成形体を得ることができる。
【実施例】
【0072】
次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
【0073】
〔DSC測定〕
(1)融点(Tm-D)及び融解吸熱量(ΔH-D)
示差走査型熱量計(パーキン・エルマー社製、「DSC-7」)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから融解吸熱量(ΔH-D)として求めた。また、得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップから融点(Tm-D)を求めた。
なお、融解吸熱量(ΔH-D)は、熱量変化の無い低温側の点と熱量変化の無い高温側の点とを結んだ線をベースラインとして、示差走査型熱量計(パーキン・エルマー社製、「DSC-7」)を用いた、DSC測定により得られた融解吸熱カーブのピークを含むライン部分と当該ベースラインとで囲まれる面積を求めることで算出される。
【0074】
(2)半結晶化時間
示差走査型熱量計(パーキン・エルマー社製、商品名:「DSC-7」)を用い、試料10mgを25℃で5分間保持し、320℃/秒で220℃に昇温し5分間保持した後、320℃/秒で25℃に冷却し、60分間保持することにより、等温結晶化過程における、発熱量の時間変化を測定した。等温結晶化開始時から結晶化完了時までの発熱量の積分値を100%とした時、等温結晶化開始時から発熱量の積分値が50%となるまでの時間を半結晶化時間として求めた。
【0075】
〔NMR測定〕
以下に示す装置及び条件で、13C-NMRスペクトルの測定を行った。なお、ピークの帰属は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,8,687(1975)」で提案された方法に従った。
装置:日本電子(株)製、「JNM-EX400型13C-NMR装置」
方法:プロトン完全デカップリング法
濃度:220mg/mL
溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
温度:130℃
パルス幅:45°
パルス繰り返し時間:4秒
積算:10000回
【0076】
<計算式>
M=m/S×100
R=γ/S×100
S=Pββ+Pαβ+Pαγ
S:全プロピレン単位の側鎖メチル炭素原子のシグナル強度
Pββ:19.8~22.5ppm
Pαβ:18.0~17.5ppm
Pαγ:17.5~17.1ppm
γ:ラセミペンタッド連鎖:20.7~20.3ppm
m:メソペンタッド連鎖:21.7~22.5ppm
【0077】
メソペンタッド分率[mmmm]、ラセミペンタッド分率[rrrr]、メソメソラセミラセミペンタッド分率[mmrr]及びラセミメソメソラセミペンタッド分率[rmmr]は、エイ・ザンベリ(A.Zambelli)等により「Macromolecules,6,925(1973)」で提案された方法に準拠して求めたものであり、13C-NMRスペクトルのメチル基のシグナルにより測定されるポリプロピレン分子鎖中のペンタッド単位でのメソ分率、ラセミ分率、メソメソラセミラセミ分率及びラセミメソメソラセミ分率である。また、メソトリアッド分率[mm]、ラセミトリアッド分率[rr]及びメソラセミトリアッド分率[mr]も上記方法により算出した。
【0078】
〔重量平均分子量(Mw)、分子量分布(Mw/Mn)測定〕
ゲルパーミエイションクロマトグラフィ(GPC)法により、重量平均分子量(Mw)及び数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求めた。測定には、下記の装置及び条件を使用し、ポリスチレン換算の重量平均分子量及び数平均分子量を得た。分子量分布(Mw/Mn)は、これらの重量平均分子量(Mw)及び数平均分子量(Mn)より算出した値である。
<GPC測定装置>
カラム :東ソー(株)製「TOSO GMHHR-H(S)HT」
検出器 :液体クロマトグラム用RI検出 ウォーターズ・コーポレーション製「WATERS 150C」
<測定条件>
溶媒 :1,2,4-トリクロロベンゼン
測定温度 :145℃
流速 :1.0mL/分
試料濃度 :2.2mg/mL
注入量 :160μL
検量線 :Universal Calibration
解析プログラム:HT-GPC(Ver.1.0)
【0079】
<極限粘度[η]>
粘度計((株)離合社製、商品名:「VMR-053U-PC・F01」)、ウベローデ型粘度管(測時球容積:2~3mL、毛細管直径:0.44~0.48mm)、溶媒としてテトラリンを用いて、0.02~0.16g/dLの溶液を135℃にて測定した。
【0080】
<メルトフローレート(MFR)>
ISO 1133:1997に準拠し、温度230℃、荷重21.18Nの条件で測定した。
【0081】
<酸価>
酸価は、JIS K2501:2003に基づいて測定した。
【0082】
製造例1
[(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド〔下式で表される遷移金属化合物(a1)〕の合成]
【化2】
【0083】
(1-1)5,6-ジメチル-1-インダノンの合成
500mL三口フラスコに塩化アルミニウム150g(1125mmol)とジクロロメタン450mLを入れ、次いで、o-キシレン60.3mL(500mmol)と3-クロロプロピオニルクロリド47.7mL(500mmol)の混合物を25℃で1時間かけて滴下した。反応混合物を25℃で3時間撹拌した後、該反応混合物を氷水500gと濃塩酸50mLの混合液に投入した。次いで、反応混合物をジクロロメタン500mLで抽出し、水、ブラインで洗浄し、無水硫酸マグネシウムで乾燥した後、減圧下で溶媒を留去し、3-クロロ-1-(3,4-ジメチルフェニル)-プロパン-1-オン(94.4g,480mmol)を得た(収率96%)。
三口フラスコに濃硫酸480mLをとり、25℃で3-クロロ-1-(3,4-ジメチルフェニル)-プロパン-1-オン(94.4g,480mmol)を滴下した。90℃で4時間撹拌した後、反応混合物を冷却し、次いで、氷水1000gに投入した。反応混合物をトルエン500mLで抽出し、飽和炭酸水素ナトリウム水溶液、水、ブラインで洗浄後、無水硫酸マグネシウムで乾燥した。次いで、濾過し、減圧下で溶媒を留去した。得られた粗生成物をヘキサン2500mLに溶解、濾過し、4℃で結晶化することにより5,6-ジメチル-1-インダノン14.2gを得た(収率19%)。この操作を3回繰り返し5,6-ジメチル-1-インダノン51.3gを得た。
【0084】
(1-2)5,6-ジメチルインデンの合成
5,6-ジメチル-1-インダノン51.3g(320.1mmol)を脱水メタノール400mLに溶解させ、ウォーターバスで35℃に温めた後、ここに水素化ホウ素ナトリウム12.1g(320.1mmol)を固体のまま少しずつ添加した。添加終了後、60℃で2時間撹拌し、25℃まで冷却した後5%塩酸700mLを加え加水分解した。次いで、反応混合物をジエチルエーテル1000mLで抽出後、分液し有機層を無水硫酸マグネシウムで乾燥し、さらに、溶媒を留去することにより、5,6-ジメチル-1-インダノールをベージュ色固体として51.41g得た(収率99%)。
1H-NMR(500MHz,CDCl3)による測定の結果は、δ1.91,2.44,2.74,2.98(m,-CH2CH2-,4H);2.26(s,-CH3,6H);5.18(s,-CH-,1H),7.03,7.18(s,Ar-H,2H)であった。
得られた5,6-ジメチル-1-インダノール51.41gにトルエン450mLを加え、p-トルエンスルホン酸・ピリジニウム塩3.2gを加え、この混合物を2.5時間加熱還流し、放冷後、水洗し有機層を無水硫酸マグネシウムで乾燥後、トルエンを留去することで、5,6-ジメチルインデンを褐色オイルとして37.02g得た(収率81%)。
1H-NMR(500MHz,CDCl3)による測定の結果は、δ2.30(s,-CH3,6H);3.33(s,-CH2-,2H),6.46,6.81(m,-CH=,2H),7.19,7.24(s,Ar-H,2H)であった。
【0085】
(1-3)5,6-ジメチル-2-ブロモインデンの合成
5,6-ジメチルインデン37.02g(256.7mmol)にジメチルスルホキシド(DMSO)200mLと水9.4mLを加えた。この混合物にN-ブロモスクシンイミド45.8gを固体のまま少しずつ添加し、終夜撹拌した後、水200mLを加えジエチルエーテル500mLで抽出した。有機層を無水硫酸マグネシウムで乾燥し、ジエチルエーテルを留去することで5,6-ジメチル-2-ブロモ-1-インダノールを褐色固体として56.04g(232.4mmol)得た(収率91%)。
1H-NMR(500MHz,CDCl3)による測定の結果は、δ2.28(s,-CH3,6H);3.14,3.49(m,-CH2CH2-,4H),4.24(m,-CH(Br)-,1H);5.25(m,-CH-,1H),6.99,7.11(s,Ar-H,2H)であった。
得られた5,6-ジメチル-2-ブロモ-1-インダノール56.04g(232.4mmol)をトルエン600mLに溶解し、p-トルエンスルホン酸4.5gを加えて加熱還流し、次いで、3時間加熱後トルエンを減圧下で留去すると、黒褐色の固体が得られた。この固体をヘキサンから再結晶化することにより5,6-ジメチル-2-ブロモインデンを褐色粉末として23.8g得た(収率46%)。
1H-NMR(500MHz,CDCl3)による測定の結果は、δ2.26(s,-CH3,6H);3.52(s,-CH2-,2H),6.83(s,-CH=,1H),7.07,7.13(s,Ar-H,2H)であった。
【0086】
(1-4)(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(5,6-ジメチルインデン)の合成
THF100mLに懸濁させたマグネシウム片5.3gを1,2-ジブロモエタン0.1mLで活性化した。ここに5,6-ジメチル-2-ブロモインデン23.8g(106.8mmol)のTHF100mL溶液をゆっくり添加し、25℃で2時間撹拌後、0℃でジクロロジメチルシラン6.4mL(53.4mmol)を加えた。さらに25℃で4時間撹拌後、減圧下でTHFを留去した。次いで、反応混合物を、ヘキサン150mLを用いて4回抽出し、溶媒を留去することにより、ジメチルビス(5,6-ジメチルインデン-2-イル)シランを白色固体として18.4g得た。
1H-NMR(500MHz,CDCl3)による測定の結果は、δ0.44(s,Si-CH3,6H);2.32(s,-CH3,12H);3.41(m,-CH2-,4H);7.21,7.24,7.30(m,-CH=,Ar-H,6H)であった。
【0087】
得られたジメチルビス(5,6-ジメチルインデン-2-イル)シラン18.4g(53.4mmol)にジエチルエーテル120mLを加え-20℃でn-ブチルリチウム(2.66M)のヘキサン溶液を42.2mL滴下し、次いで、25℃で2時間撹拌後静置した。上澄みを濾別し、沈殿部を減圧乾燥した。ここにTHF150mLを加えると黄褐色均一溶液となった。0℃でジクロロジメチルシラン6.4mL(53.4mmol)を加えて55℃で6時間加熱撹拌した。生成した白色沈殿を濾別し、減圧下で乾燥すると(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(5,6-ジメチルインデン)が15.6g得られた(収率73%)。
1H-NMR(500MHz,CDCl3)による測定の結果は、δ-0.71,0.67(s,Si-CH3,12H);2.31(s,-CH3,12H);3.53(2,-CH-,2H);7.18,7.24,7.27(s,-CH=,Ar-H,6H)であった。
【0088】
(1-5)(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリドの合成
(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(5,6-ジメチルインデン)3.34g(8.3mmol)をジエチルエーテル50mLに懸濁させ、-78℃でn-ブチルリチウム(2.65M)6.6mLを滴下し、次いで、25℃まで上げ5時間撹拌後、生成した黄白色沈殿を濾別・乾燥し、THF50mLに溶解させた。-78℃でヨウ化メチルトリメチルシラン2.6mL(17.4mmol)を滴下し、25℃で4時間撹拌後、水50mLを加えて加水分解した。反応混合物をジエチルエーテル100mLで抽出し分液後、無水硫酸マグネシウムで乾燥し、次いで、溶媒を留去すると薄黄色固体が4.71g得られた。この固体をジエチルエーテル50mLに溶解し、-78℃でn-ブチルリチウム(2.65M)6.5mLを滴下し、25℃で3時間撹拌後、生成した沈殿を濾別し、乾燥させた。この固体をトルエン30mLに懸濁し、トルエン15mLに懸濁させた四塩化ジルコニウム1.4g(6.0mmol)を-78℃で添加し、25℃で終夜撹拌すると黄色懸濁液となった。沈殿部を濾別後、ジクロロメタン60mLで抽出し、濾過し、溶媒を留去することにより(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリメチルシリルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリドを黄色固体として1.76g得た(収率40%)。
1H-NMR(500MHz,CDCl3)による測定の結果は、δ-0.11(s,Si(CH3)3,18H);0.88,0.96(s,Si(CH3)2,12H);2.24,2.28(s,-CH3,12H);2.15,2.53(d,-CH2-Si,4H);7.04,7.09(s,Ar-H,4H)であった。
【0089】
製造例2
[(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロペンチルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリド〔下式で表される遷移金属化合物(a2)〕の合成]
【化3】
【0090】
製造例1の(1-5)でヨウ化メチルトリメチルシランの代わりにブロモメチルシクロペンタンを添加した以外は製造例1と同様に合成したところ(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロペンチルメチル-5,6-ジメチルインデニル)ジルコニウムジクロリドを黄色固体として得た(収率22%)。
1H-NMR(500MHz,CDCl3)による測定の結果は、δ0.92,1.02(s,Si(CH3)2,12H);2.28,2.30(s,Ar-CH3,12H);1.14,1.47,1.58,1.85(m,-シクロペンチル基,18H);2.53,3.04(m,-CH2-,4H);7.08,7.22(s,Ar-H,4H)であった。
【0091】
製造例3
[(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリエチルシリルメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物(a3)〕の合成]
300mL三口フラスコに(クロロメチル)トリクロロシラン6.6mL(52.7mmol)及びエーテル100mLを加え、滴下漏斗から室温で臭化エチルマグネシウム163.4mmolのエーテル溶液を滴下した。滴下終了後、7時間加熱還流した。反応溶液を加水分解し、分液・乾燥・エーテル留去により(クロロメチル)トリエチルシラン5.9g(35.8mmol)を得た(収率68%)。これをアセトニトリル100mLに溶解しヨウ化ナトリウム6.4gを添加して82℃で12時間加熱還流した。室温まで冷却後、エーテルを加えて希釈し、濾過・溶媒留去を行った。得られた残渣をヘキサンに溶解し、濾過・濃縮することにより(ヨウ化メチル)トリエチルシラン8.6g(33.6mmol)を得た(収率94%)。
200mLシュレンク瓶に(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(インデン)5.5g(16.0mmol)を取り、エーテル100mLを加えて-20℃に冷却した。ここへn-ブチルリチウム(ヘキサン溶液2.65M)12.7mL(33.7mmol)を滴下し、室温に戻して4時間撹拌した。白色沈殿物を濾別後乾燥しリチウム塩を得た。この固体をTHF50mLに溶解し0℃に冷却した。ここへ(ヨウ化メチル)トリエチルシラン6.4mL(33.6mmol)をゆっくりと滴下し室温で12時間撹拌した。水50mLを加えて分液後、有機相を乾燥し溶媒を除去することにより(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリエチルシリルメチルインデン)9.1g(15.2mmol)を得た(収率95%)。
次に、200mLシュレンク瓶に(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリエチルシリルメチルインデン)を9.1g(15.2mmol)とエーテル80mLを入れた。-20℃に冷却しn-ブチルリチウム(ヘキサン溶液2.65M)を12.0mL(31.8mmol)を加えた後、室温で4時間撹拌した。生成した黄白色固体を濾別、乾燥することによりリチウム塩を得た(収率73%)。
窒素気流下、得られたリチウム塩をトルエン70mLに溶解させた。0℃に冷却し、ここへ予め0℃に冷却した四塩化ジルコニウム2.6g(11.1mmol)のトルエン(30mL)懸濁液を添加した。添加後、室温で6時間撹拌した。反応溶液の溶媒を留去し、得られた黄褐色残渣をジクロロメタン200mLで抽出・再結晶化することにより(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-トリエチルシリルメチルインデニル)ジルコニウムジクロリドを2.2g(2.9mmol)を得た(収率26%)。
1H-NMR(500MHz,CDCl3)による測定の結果は、δ0.38(t,-CH3,18H);0.76(m,-CH2-,12H),0.97,0.90(s,-Si(CH3)3,12H),2.55,2.15(d,-CH2-Si,4H),7.07,7.16,7.27,7.35(Ar-H,8H)であった。
【0092】
製造例4
[(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロプロピルメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物(a4)〕の合成]
製造例3で(ヨウ化メチル)トリエチルシランの代わりにブロモメチルシクロプロパンを添加した以外は製造例3と同様に合成したところ、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(3-シクロプロピルメチルインデニル)ジルコニウムジクロリドを黄色固体として得た(収率31%)。
1H-NMR(500MHz,CDCl3)による測定の結果は、δ0.02,0.17,0.35,0.41,0.83(m,-Cyclopropyl,10H),0.94,1.09(s,=Si(CH3)2,12H),2.55,3.04(dd,-CH2-,4H),7.16,7.24,7.33,7.51(Ar-H,8H)であった。
【0093】
製造例5
[(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(インデニル)ジルコニウムジクロリド〔遷移金属化合物(a5)〕の合成]
特開2000-256411号公報の実施例1に記載の方法によって、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)ビス(インデニル)ジルコニウムジクロリドを合成した。
1H-NMR(500MHz,CDCl3)による測定の結果は、δ0.84,1.07(s,-Si(CH3)3,12H),7.11(s,-CH-,2H)7.21,7.31,7.66(Ar-H,8H)であった。
【0094】
製造例6
[(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド〔遷移金属化合物(a6)〕の合成]
特開2000-256411号公報の実施例9に記載の方法によって、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリドを合成した。
【0095】
製造例7
(ポリプロピレン(A-1)の製造)
加熱乾燥した1Lオートクレーブに、ヘプタン400mL、トリイソブチルアルミニウム0.5mmol、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート2.0μmol、遷移金属化合物(a1)0.5μmolを加え、更に、水素0.05MPaを導入し、プロピレンを導入して全圧を0.7MPaとして、80℃で30分間重合した。重合反応終了後、反応物を減圧下で乾燥させることにより、ポリプロピレン(A-1)76gを得た。
【0096】
製造例8
(ポリプロピレン(A-2)の製造)
製造例7において、遷移金属化合物(a1)に代えて遷移金属化合物(a2)を用い、重合温度を70℃に変更した以外は製造例7と同様にして、ポリプロピレン(A-2)124gを得た。
【0097】
製造例9
(ポリプロピレン(A-3)の製造)
製造例8において、遷移金属化合物(a2)に代えて遷移金属化合物(a3)を用い、全圧を0.55MPa、重合温度を75℃に変更した以外は製造例8と同様にして、ポリプロピレン(A-3)182gを得た。
【0098】
製造例10
(ポリプロピレン(A-4)の製造)
加熱乾燥した1Lオートクレーブに、ヘプタン400mL、トリイソブチルアルミニウム0.5mmol、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート0.8μmol、遷移金属化合物(a6)0.2μmolを加え、更に、水素0.02MPaを導入し、プロピレンを導入して全圧を0.8MPaとして、70℃で30分間重合した。重合反応終了後、反応物を減圧下で乾燥させることにより、ポリプロピレン(A-4)120gを得た。
【0099】
製造例11
(ポリプロピレン(A-5)の製造)
撹拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを20L/hr、トリイソブチルアルミニウムを15mmol/hr、さらに、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、遷移金属化合物(a6)及びトリイソブチルアルミニウムを質量比1:2:20でプロピレンと事前に接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hrで連続供給した。
重合温度75℃で気相部水素濃度を24mol%、反応器内の全圧を1.0MPa・Gに保つようプロピレンと水素とを連続供給した。得られた重合溶液に、酸化防止剤をその含有割合が1000質量ppmになるように添加し、次いで溶媒であるn-ヘプタンを除去することにより、ポリプロピレン(A-5)を得た。
【0100】
製造例12
(ポリプロピレン(A-6)の製造)
撹拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを20L/hr、トリイソブチルアルミニウムを15mmol/hr、さらに、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、遷移金属化合物(a6)及びトリイソブチルアルミニウムを質量比1:2:20でプロピレンと事前に接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hrで連続供給した。
重合温度70℃で気相部水素濃度を15mol%、反応器内の全圧を1.0MPa・Gに保つようプロピレンと水素とを連続供給した。得られた重合溶液に、酸化防止剤をその含有割合が1000質量ppmになるように添加し、次いで溶媒であるn-ヘプタンを除去することにより、ポリプロピレン(A-6)を得た。
【0101】
製造例13
(ポリプロピレン(B-1)の製造)
製造例8において、遷移金属化合物(a2)に代えて遷移金属化合物(a4)を用い、重合温度を75℃に変更した以外は製造例8と同様にして、ポリプロピレン(B-1)70gを得た。
【0102】
製造例14
(ポリプロピレン(B-2)の製造)
製造例8において、遷移金属化合物(a2)に代えて遷移金属化合物(a5)を用い、水素圧を0.01MPa、全圧を0.80MPaに変更した以外は製造例8と同様にして、ポリプロピレン(B-2)92gを得た。
【0103】
また、以下の例において、下記原料を使用した。
ポリプロピレン(B-3):
ホモポリプロピレン[(株)プライムポリマー製、プライムポリプロ(商品名)、「H50000」(グレード名)]
ポリプロピレン(B-4):
無水マレイン酸変性ポリプロピレン[CLARIANT社製、「Licocene PP」(商品名)、「MA7452」(グレード名)、エチレン含有率:1.1モル%]
なお、ポリプロピレン(B-4)のエチレン含有率は、後述するNMR測定により求めた。
ポリプロピレン(B-5):
ホモポリプロピレン[(株)プライムポリマー製、Y2005GP(商品名)]
ポリプロピレン(B-6):
ホモポリプロピレン[(株)プライムポリマー製、Y2045GP(商品名)]
なお、ホモポリプロピレン(B-6)のエチレン含有率は、後述するNMR測定により求めた。
ポリプロピレン(B-7):
ホモポリプロピレン[CLARIANT社製、「Licocene PP」(商品名)、「PP7502」(グレード名)]
【0104】
オイル(D-1):
高粘度オイル[出光興産(株)製、PW380(商品名)、動粘度:380cSt(40℃)]
なお、動粘度は、ISO3104に準拠して測定した値である。
【0105】
(エチレン含有率)
以下に示す装置及び条件で、13C-NMRスペクトルの測定を行った。なお、ピークの帰属は、H.N.Chengにより「Macromolecules,17,1950(1984)」で提案された方法に従った。
装置:ブルカーバイオスピン(株)製、「AVANCE III HD」
プローブ:BBO 10mmφ試料管対応
方法:プロトン完全デカップリング法
濃度:220mg/mL
溶媒:1,2,4-トリクロロベンゼンと重ベンゼンの95:5(容量比)混合溶媒
温度:130℃
パルス幅:45°
パルス繰り返し時間:4秒
積算:500回
【0106】
<計算式>
Tδδ等の記号はC.J.Carman等により「Macromolecules,10,536(1977)」の表記法に従い、Sはメチレン炭素、Tはメチン炭素をそれぞれ表す。
A:33.3ppm付近に観測されるTδδの積分値
B:31.0ppm付近に観測されるTβδの積分値
C:30.4ppm付近に観測されるSγδの積分値
D:30.0ppm付近に観測されるSδδの積分値
E:28.9ppm付近に観測されるTββの積分値
F:27.3ppm付近に観測されるSβδの積分値
G:24.8ppm付近に観測されるSββの積分値
【0107】
ここで、triad分率(mol%)は以下の式から求められる。
[EPE]=A/T×100
[PPE]=B/T×100
[EEE]=(C/4+D/2)/T×100
[PPP]=E/T×100
[PEE]=F/T×100
[PEP]=G/T×100
T=[EPE]+[PPE]+[EEE]+[PPP]+[PEE]+[PEP]
【0108】
triad分率を用いて、エチレン含有率(モル%)は以下の式より算出される。
a=([EPE]+[PEE])×2/3+([PPE]+[PEP])/3+[EEE]
b=([EPE]+[PEE])/3+([PPE]+[PEP])×2/3+[PPP]
TW=a×28+b×42
エチレン含有率(モル%)=a×28/TW×100
【0109】
ポリプロピレン(A-1)~(A-6)及び(B-1)~(B-7)について、上述の測定を行った。結果を表1-1及び1-2に示す。
【0110】
【0111】
【0112】
実施例1
ポリプロピレン(A-4)99質量%及びポリプロピレン(B-6)1質量%を、(株)東洋精機製作所製、「LABO PLASTOMILL 50MR」にて200℃、5分間混練することにより、樹脂組成物を得た。
【0113】
実施例2~8、及び比較例1~4
実施例1において、表2に記載の種類及び配合量の各成分に変更した以外は実施例1と同様にしてそれぞれ樹脂組成物を製造した。
【0114】
各例で得られた各樹脂組成物について、以下の評価を行った。結果を表2に示す。
【0115】
(樹脂組成物のメソトリアッド分率[mm])
樹脂についての測定と同様に、上述のNMR測定を行った。
【0116】
(樹脂組成物の重量平均分子量(Mw)及び分子量分布(Mw/Mn))
樹脂についての測定と同様に、上述のGPC測定を行った。
【0117】
(樹脂組成物の融解吸熱量(ΔH-D))
樹脂についての測定と同様に、上述のDSC測定を行った。
【0118】
(樹脂組成物の半結晶化時間)
樹脂についての測定と同様に、上述の測定を行った。
【0119】
(樹脂組成物の酸価)
樹脂についての測定と同様に、JIS K2501:2003に基づいて測定した。
【0120】
<固化速度>
レオメーター(Anton-PAAR製、MCR301(製品名又は型番))を用いて、150℃から(141×e-0.002×経過時間)℃/minで25℃まで降温した後、25℃を保持した時、降温を開始した時間を0秒とした時、粘度が150,000Pa・sを超える時間を固化時間と定義して求めた。
【0121】
<軟化点>
JAI7-1991に準拠して、Ring and Ball法により測定した。
【0122】
<粘度>
JIS Z 8803(2011)に準拠し、B型粘度計を用いて、190℃の条件で測定した。
【0123】
<式(F)の計算>
ポリプロピレン系樹脂(A)のメソトリアッド分率[mm](単位:モル%)、ポリプロピレン系樹脂(A)及びポリプロピレン系樹脂(B)の合計質量に対するポリプロピレン系樹脂(A)の質量比率、ポリプロピレン系樹脂(B)のメソトリアッド分率[mm](単位:モル%)、ポリプロピレン系樹脂(A)及びポリプロピレン系樹脂(B)の合計質量に対するポリプロピレン系樹脂(B)の質量比率を、式(F)に代入して計算を行った。
【0124】
<べたつき>
プレス成形機(200℃)にて、150mm×150mm×1mmのプレス板を成形し、1日、室温(25℃)条件で放置後、成形品の表面を指で触れて、べたつきの有無を確認した。
【0125】
【0126】
本発明のポリプロピレン系樹脂組成物は、固化速度が200~2000sec、軟化点が90~165℃であり、いずれも所望の範囲内に制御することができている。
【0127】
実施例9
ポリプロピレン(A-1)33.25g及びポリプロピレン(B-2)1.75gを、(株)東洋精機製作所製、「LABO PLASTOMILL 50MR」にて200℃、5分間混練することにより、樹脂組成物を得た。
得られた樹脂組成物を用いて、押出機(東芝機械(株)製、「TEM-2655」、樹脂温度:100℃、ダイス出口温度:90℃)及びダイス出口に設置されたアンダーウォーターカッターシステム(水温20℃)にてペレットを得た。
【0128】
実施例10~17、比較例5~7、並びに参考例1、3~6
実施例9において、ポリプロピレンの種類及び量を表3に示すように変更した以外は実施例9と同様にしてそれぞれペレットを製造した。
【0129】
参考例2
窒素導入管、ジムロート管及び撹拌装置付の0.5Lセパラフラスコに、ポリプロピレン(A-4)29.7g及びポリプロピレン(B-3)0.3g、窒素でバブリングしたトルエン20mLを投入し、窒素雰囲気下で140℃のオイルバスで加熱することで、粘調な均一溶液にした。その後、無水マレイン酸0.3gを加え溶解後、「パーヘキサ25B」(日油(株)製)0.15gを投入し、オイルバスを150℃に昇温後、5時間撹拌した。得られた反応物を加熱減圧下で乾燥することにより樹脂組成物を得た。得られた樹脂組成物を用いた以外は実施例9と同様にしてペレットを製造した。
【0130】
各例で得られた各ペレットについて、以下の評価を行った。結果を表3に示す。
【0131】
(樹脂組成物のメソペンタッド分率[mmmm]及びメソトリアッド分率[mm])
樹脂についての測定と同様に、上述のNMR測定を行った。
【0132】
(樹脂組成物の重量平均分子量(Mw)及び分子量分布(Mw/Mn))
樹脂についての測定と同様に、上述のGPC測定を行った。
【0133】
(樹脂組成物の融解吸熱量(ΔH-D))
樹脂についての測定と同様に、上述のDSC測定を行った。
【0134】
(樹脂組成物の半結晶化時間)
樹脂についての測定と同様に、上述の測定を行った。
【0135】
(樹脂組成物の酸価)
樹脂についての測定と同様に、JIS K2501:2003に基づいて測定した。
【0136】
<硬度>
製造後1日後のペレットのショアーD硬度を、硬度計(西東京精密(株)製、「WR-205D」)を用いて測定した。
【0137】
<造粒性(固化速度)>
鉄板の上にアルミ板、さらにはテフロンシート(「テフロン」は登録商標)を敷き、その上に60mm×60mm×6mmの中心部に40mm×40mm×6mmの孔が空いた金型を敷いた。その金型の孔に約7gのサンプルを詰め、さらにテフロンシート、アルミ板を敷き、プレス機を用い、200℃、1MPa程度の圧力で4分間加熱溶融した。加熱終了後、テフロンシートに挟まれたまま金型を抜出し、そのまま、1Lの氷水中に投入し、冷却した。1分後、氷水中から取り出し、テフロンシートを取り外し、氷水から取り出した時間を0分として、硬度計「WR-104A」(西東京精密(株)製)を用い、経過時間とショアーA硬度との関係を調べた。以下の評価基準に従って評価を行った。
○:5分後のショアーA硬度が25以上である。
×:5分後のショアーA硬度が25未満である。
【0138】
<柔軟性(引張弾性率)>
プレスシートから、JIS K7113-2号 1/2試験片を、サンプリングした。引張試験機((株)島津製作所製、製品名:「オートグラフAG-I」)を用いて、23℃、湿度50%の環境下にて100mm/minの引張速度で引張試験を実施し、引張弾性率を求めた。本発明では、引張弾性率が80MPa以下であれば合格である。
【0139】
<式(F)の計算>
ポリプロピレン系樹脂(A)のメソトリアッド分率[mm](単位:モル%)、ポリプロピレン系樹脂(A)及びポリプロピレン系樹脂(B)の合計質量に対するポリプロピレン系樹脂(A)の質量比率、ポリプロピレン系樹脂(B)のメソトリアッド分率[mm](単位:モル%)、ポリプロピレン系樹脂(A)及びポリプロピレン系樹脂(B)の合計質量に対するポリプロピレン系樹脂(B)の質量比率を、式(F)に代入して計算を行った。
【0140】
【0141】
本発明のポリプロピレン系樹脂組成物を含むペレットは、柔軟性及び造粒性に優れる。一方、ポリプロピレン系樹脂(B)を含まない樹脂組成物を用いた比較例5~7では、十分な造粒性を発現するペレットを得ることができない。また、式(F)の値が80未満又は1400を超える場合、十分な柔軟性及び造粒性を発現するペレットを得ることができない。