IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルム株式会社の特許一覧

<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-08-30
(45)【発行日】2022-09-07
(54)【発明の名称】磁気記録媒体および磁気記録再生装置
(51)【国際特許分類】
   G11B 5/735 20060101AFI20220831BHJP
   G11B 5/738 20060101ALI20220831BHJP
   G11B 5/78 20060101ALI20220831BHJP
【FI】
G11B5/735
G11B5/738
G11B5/78
【請求項の数】 14
(21)【出願番号】P 2019170508
(22)【出願日】2019-09-19
(65)【公開番号】P2021047956
(43)【公開日】2021-03-25
【審査請求日】2021-08-30
(73)【特許権者】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】110000109
【氏名又は名称】特許業務法人特許事務所サイクス
(72)【発明者】
【氏名】佐野 直樹
(72)【発明者】
【氏名】黒川 拓都
(72)【発明者】
【氏名】小沢 栄貴
(72)【発明者】
【氏名】笠田 成人
(72)【発明者】
【氏名】中野 愛
【審査官】中野 和彦
(56)【参考文献】
【文献】特開2019-021365(JP,A)
【文献】特開昭59-201219(JP,A)
【文献】特開2001-084565(JP,A)
【文献】特開2021-047957(JP,A)
【文献】特開2018-181396(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G11B 5/735
G11B 5/738
G11B 5/78
(57)【特許請求の範囲】
【請求項1】
非磁性支持体の一方の表面側に強磁性粉末を含む磁性層を有し、他方の表面側に非磁性粉末を含むバックコート層を有する磁気記録媒体であって、
前記バックコート層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、前記バックコート層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分、S0.5-S13.5、が12nm以上である磁気記録媒体。
【請求項2】
前記差分は、12nm以上50nm以下である、請求項1に記載の磁気記録媒体。
【請求項3】
前記差分は、12nm以上40nm以下である、請求項1または2に記載の磁気記録媒体。
【請求項4】
前記S0.5は、20nm以上90nm以下である、請求項1~3のいずれか1項に記載の磁気記録媒体。
【請求項5】
前記S13.5は、15nm以上40nm以下である、請求項1~4のいずれか1項に記載の磁気記録媒体。
【請求項6】
前記S13.5は、15nm以上29nm以下である、請求項1~5のいずれか1項に記載の磁気記録媒体。
【請求項7】
前記バックコート層は、有機樹脂粒子を含む、請求項1~6のいずれか1項に記載の磁気記録媒体。
【請求項8】
前記バックコート層は、炭素数5以上のアルキル基を含有する化合物を含む、請求項1~7のいずれか1項に記載の磁気記録媒体。
【請求項9】
前記化合物は、有機アミン化合物である、請求項8に記載の磁気記録媒体。
【請求項10】
前記化合物は、有機リン化合物である、請求項8に記載の磁気記録媒体。
【請求項11】
前記バックコート層の厚みは、0.5μm以下である、請求項1~10のいずれか1項に記載の磁気記録媒体。
【請求項12】
前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を有する、請求項1~11のいずれか1項に記載の磁気記録媒体。
【請求項13】
磁気テープである、請求項1~12のいずれか1項に記載の磁気記録媒体。
【請求項14】
請求項1~13のいずれか1項に記載の磁気記録媒体と、
磁気ヘッドと、
を含む磁気記録再生装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録媒体および磁気記録再生装置に関する。
【背景技術】
【0002】
近年、磁気記録媒体について、非磁性支持体の磁性層を有する表面側とは反対の表面側に、バックコート層を設けることが行われている(特許文献1、2参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2005-85305号公報
【文献】特開2011-187129号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
バックコート層を有する磁気記録媒体では、バックコート層の表面の凹凸が磁性層に転写されること(「裏写り」とも呼ばれる。)が性能低下を引き起こし得る(例えば、特許文献1の段落0004、特許文献2の段落0004参照)。裏写りに起因する性能低下の一例としては、ドロップアウト(信号の読み取り不良)の発生が挙げられる。ドロップアウトの発生はエラーレートを増加させてしまうため、ドロップアウトの発生を抑制することが望まれる。
【0005】
本発明の一態様は、バックコート層を有する磁気記録媒体であって、ドロップアウトの発生が抑制された磁気記録媒体を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の一態様は、
非磁性支持体の一方の表面側に強磁性粉末を含む磁性層を有し、他方の表面側に非磁性粉末を含むバックコート層を有する磁気記録媒体であって、
上記バックコート層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、上記バックコート層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分(S0.5-S13.5)が12nm以上である磁気記録媒体、
に関する。以下において、上記差分(S0.5-S13.5)を、単に「差分」とも記載する。また、1atm=101325Pa(パスカル)である。
【0007】
一形態では、上記差分は、12nm以上50nm以下であることができる。
【0008】
一形態では、上記差分は、12nm以上40nm以下であることができる。
【0009】
一形態では、S0.5は、20nm以上90nm以下であることができる。
【0010】
一形態では、S13.5は、15nm以上40nm以下であることができる。
【0011】
一形態では、S13.5は、15nm以上29nm以下であることができる。
【0012】
一形態では、上記バックコート層は、有機樹脂粒子を含むことができる。
【0013】
一形態では、上記バックコート層は、炭素数5以上のアルキル基を含有する化合物を含むことができる。
【0014】
一形態では、上記化合物は、有機アミン化合物であることができる。
【0015】
一形態では、上記化合物は、有機リン化合物であることができる。
【0016】
一形態では、上記バックコート層の厚みは、0.5μm以下であることができる。
【0017】
一形態では、上記磁気記録媒体は、上記非磁性支持体と上記磁性層との間に、非磁性粉末を含む非磁性層を有することができる。
【0018】
一形態では、上記磁気記録媒体は、磁気テープであることができる。
【0019】
本発明の一態様は、上記磁気記録媒体と、磁気ヘッドと、を含む磁気記録再生装置に関する。
【発明の効果】
【0020】
本発明の一態様によれば、バックコート層を有し、ドロップアウトの発生が抑制された磁気記録媒体を提供することができる。また、本発明の一態様によれば、かかる磁気記録媒体を含む磁気記録再生装置を提供することができる。
【発明を実施するための形態】
【0021】
[磁気記録媒体]
本発明の一態様は、非磁性支持体の一方の表面側に強磁性粉末を含む磁性層を有し、他方の表面側に非磁性粉末を含むバックコート層を有する磁気記録媒体であって、上記バックコート層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と、上記バックコート層の表面においてn-ヘキサン洗浄後に光学干渉法により13.5atmの押圧下で測定されるスペーシングS13.5との差分(S0.5-S13.5)が12nm以上である磁気記録媒体に関する。
【0022】
本発明および本明細書において、「n-ヘキサン洗浄」とは、磁気記録媒体から切り出した試料片を液温20~25℃のフレッシュなn-ヘキサン(200g)に浸漬して100秒間超音波洗浄(超音波出力:40kHz)することをいうものとする。洗浄対象の磁気記録媒体が磁気テープの場合には、長さ5cmの試料片を切り出してn-ヘキサン洗浄に付す。磁気テープの幅および磁気テープから切り出される試料片の幅は、通常、1/2インチである。1インチ=0.0254メートルである。1/2インチ幅以外の磁気テープについても、長さ5cmの試料片を切り出してn-ヘキサン洗浄に付せばよい。洗浄対象の磁気記録媒体が磁気ディスクの場合には、5cm×1.27cmのサイズの試料片を切り出してn-ヘキサン洗浄に付す。以下に詳述するスペーシングの測定は、n-ヘキサン洗浄後の試料片を、温度23℃相対湿度50%の環境下に24時間放置した後に行うものとする。
【0023】
本発明および本明細書において、磁気記録媒体の「バックコート層(の)表面」とは、磁気記録媒体のバックコート層側表面と同義である。
【0024】
本発明および本明細書において、磁気記録媒体のバックコート層表面において光学干渉法により測定されるスペーシングとは、以下の方法により測定される値とする。
磁気記録媒体(詳しくは上記の試料片。以下同様。)と透明な板状部材(例えばガラス板等)を、磁気記録媒体のバックコート層表面が透明な板状部材と対向するように重ね合わせた状態で、磁気記録媒体のバックコート層側とは反対側から、0.5atmまたは13.5atmの圧力で押圧部材を押しつける。この状態で、透明な板状部材を介して磁気記録媒体のバックコート層表面に光を照射し(照射領域:150000~200000μm)、磁気記録媒体のバックコート層表面からの反射光と透明な板状部材の磁気記録媒体側表面からの反射光との光路差によって発生する干渉光の強度(例えば干渉縞画像のコントラスト)に基づき、磁気記録媒体のバックコート層表面と透明な板状部材の磁気記録媒体側表面との間のスペーシング(距離)を求める。ここで照射される光は特に限定されるものではない。照射される光が、複数波長の光を含む白色光のように、比較的広範な波長範囲にわたり発光波長を有する光の場合には、透明な板状部材と反射光を受光する受光部との間に、干渉フィルタ等の特定波長の光または特定波長域以外の光を選択的にカットする機能を有する部材を配置し、反射光の中の一部の波長の光または一部の波長域の光を選択的に受光部に入射させる。照射させる光が単一の発光ピークを有する光(いわゆる単色光)の場合には、上記の部材は用いなくてもよい。受光部に入射させる光の波長は、一例として、例えば500~700nmの範囲にあることができる。ただし、受光部に入射させる光の波長は、上記範囲に限定されるものではない。また、透明な板状部材は、この部材を介して磁気記録媒体に光を照射し干渉光が得られる程度に、照射される光が透過する透明性を有する部材であればよい。
上記スペーシングの測定により得られる干渉縞画像を300000ポイントに分割して各ポイントのスペーシング(磁気記録媒体のバックコート層表面と透明な板状部材の磁気記録媒体側表面との間の距離)を求め、これをヒストグラムとし、このヒストグラムにおける最頻値を、スペーシングとする。
同じ磁気記録媒体から試料片を5つ切り出し、各試料片について、n-ヘキサン洗浄後に0.5atmの圧力で押圧部材を押し付けてスペーシングを求め、更に13.5atmの圧力で押圧部材を押し付けてスペーシングを求める。そして5つの試料片についてn-ヘキサン洗浄後に0.5atmの圧力下で求められたスペーシングの算術平均をスペーシングS0.5とし、5つの試料片についてn-ヘキサン洗浄後に13.5atmの圧力下で求められたスペーシングの算術平均をスペーシングS13.5とする。こうして求められたS0.5とS13.5との差分(S0.5-S13.5)を、その磁気記録媒体についての差分(S0.5-S13.5)とする。
以上の測定は、例えばMicro Physics社製Tape Spacing Analyzer等の市販のテープスペーシングアナライザー(TSA;Tape Spacing Analyzer)を用いて行うことができる。実施例におけるスペーシング測定は、Micro Physics社製Tape Spacing Analyzerを用いて実施した。
【0025】
上記磁気記録媒体は、バックコート層の表面においてn-ヘキサン洗浄後に光学干渉法により0.5atmの押圧下で測定されるスペーシングS0.5と13.5atmの押圧下で測定されるスペーシングS13.5との差分(S0.5-S13.5)が12nm以上である。これにより、上記磁気記録媒体によれば、ドロップアウトの発生を抑制することができる。この点に関する本発明者の推察は、以下の通りである。
ドロップアウトの発生原因としては、バックコート層の表面の凹凸が磁性層に転写されること(裏写り)が挙げられる。裏写りは、例えば特許文献1(特開2005-85305号公報)の段落0004および特許文献2(特開2011-187129号公報)の段落0004に記載されているように、磁気記録媒体が、製造時、保管時等にロール状に巻かれた形態となってバックコート層が磁性層と接触する際に発生し得る。バックコート層が磁性層と接触する際、磁性層表面と主に接触する部分は、バックコート層表面に存在する突起と考えられる。本発明者は検討を重ねる中で、磁気記録媒体の製造時、保管時等には、ロール状に巻き取られる過程で磁性層と接触することによりバックコート層表面に圧力が加わり、更に、巻き取られた後には巻き締まりが生じてより高い圧力がバックコート層表面に加わるのではないかと考えた。そして本発明者は、より高い圧力が加わった状態ではバックコート層表面の突起が磁性層表面を強く押圧して磁性層表面を大きく変形させると考え、この状態での裏写りを抑制することが、ドロップアウトの発生を抑えることに寄与すると推察した。このような高い圧力を受けた際のバックコート層表面の状態に着目すべきことは、特許文献1にも特許文献2にも示唆すらされていない。これに対し、本発明者は、上記知見に基づき、バックコート層表面の突起を、より高い圧力が加わった際にバックコート層内部に沈み込み易くすることによって、ドロップアウトの発生を抑制することが可能になるのではないかと推察し、更に鋭意検討を重ねた。その結果、バックコート層表面において測定される差分(S0.5-S13.5)を12nm以上とすることによって、ドロップアウトの発生を抑制することが可能になることを新たに見出した。差分(S0.5-S13.5)が12nm以上と大きいことは、上記のように高い圧力が加わった際にバックコート層表面の突起がバックコート層の内部に沈み込み易いことを示していると考えられる。ただし、以上の推察に本発明は限定されない。また、本明細書に記載されている本発明者のその他の推察にも、本発明は限定されるものではない。上記差分を求めるためのスペーシングの測定における押圧時の圧力13.5atmおよび0.5atmについて、本発明では、上記のようにバックコート層表面により高い圧力が加わった状態に対応し得る例示的な値として13.5atmを採用し、他の状態で磁性層表面と接触する際にバックコート層表面に加わり得る圧力の例示的な値として0.5atmを採用したものであって、製造時、保管時等に上記磁気記録媒体に加わり得る圧力は、これら圧力に限定されるものではない。
以下、上記磁気記録媒体について、更に詳細に説明する。
【0026】
<差分(S0.5-S13.5)>
上記磁気記録媒体のバックコート層表面について測定される差分(S0.5-S13.5)は、12nm以上であり、ドロップアウトの発生をより抑制する観点から、13nm以上であることが好ましく、14nm以上であることがより好ましい。また、上記差分は、詳細を後述する高温高湿下での走行安定性の向上の観点からは、例えば50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、28nm以下であることが更に一層好ましく、25nm以下であることがなお一層好ましい。
【0027】
0.5およびS13.5は、上記差分が12nm以上であれば特に限定されるものではない。S0.5については、本発明者は、上記差分が12nm以上の磁気記録媒体においてS0.5を制御することは、磁気記録媒体の高温高湿下での走行安定性の向上につながると考えている。これは、S0.5の測定時の圧力0.5atmが、高温高湿下での走行において磁気記録再生装置の構成部材(例えばリール等)と接触する際にバックコート層表面の突起に主に加わる圧力を例示し得る圧力と考えられるためである。高温高湿下での走行安定性向上の観点からは、S0.5は、20nm以上であることが好ましく、30nm以上であることがより好ましく、40nm以上であることが更に好ましく、45nm以上であることが一層好ましく、46nm以上であることがより一層好ましい。また、同様の観点から、S0.5は、90nm以下であることが好ましく、80nm以下であることがより好ましく、70nm以下であることが更に好ましく、60nm以下であることが一層好ましく、55nm以下であることがより一層好ましく、53nm以下であることが更に一層好ましく、50nm以下であることがなお一層好ましい。高温とは、例えば30~50℃程度の温度であることができ、高湿とは、例えば相対湿度70~100%程度であることができる。
13.5は、ドロップアウトの発生をより一層抑制する観点からは、40nm以下であることが好ましく、38nm以下であることがより好ましく、35nm以下であることが更に好ましく、32nm以下であることが一層好ましく、29nm以下であることがより一層好ましい。同様の観点から、S13.5は、15nm以上であることが好ましく、20nm以上であることがより好ましく、22nm以上であることが更に好ましく、24nm以上であることが一層好ましい。
【0028】
上記差分、S0.5およびS13.5は、バックコート層に含まれる非磁性粉末の中でバックコート層表面に突起を形成することに主に寄与し得る非磁性粉末(以下、「突起形成剤」と記載する。)の種類、磁気記録媒体の製造条件等によって制御することができる。この点の詳細は後述する。
【0029】
次に、上記磁気記録媒体の磁性層、バックコート層、非磁性支持体、および任意に含まれ得る非磁性層について更に説明する。
【0030】
<磁性層>
(強磁性粉末)
磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を一種または二種以上組み合わせて使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
【0031】
六方晶フェライト粉末
強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
【0032】
本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
【0033】
以下に、六方晶フェライト粉末の一形態である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。
【0034】
六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。
【0035】
「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
【0036】
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
【0037】
六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一形態では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
【0038】
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気記録媒体の走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
【0039】
上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。なお本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として一種の希土類原子のみ含んでもよく、二種以上の希土類原子を含んでもよい。二種以上の希土類原子を含む場合の上記バルク含有率とは、二種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、一種のみ用いてもよく、二種以上用いてもよい。二種以上用いられる場合の含有量または含有率とは、二種以上の合計についていうものとする。
【0040】
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか一種以上であればよい。繰り返し再生における再生出力の低下をより一層抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
【0041】
希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
【0042】
六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気記録媒体の磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
【0043】
磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一形態では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。
【0044】
六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一形態では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一形態では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて一種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。
【0045】
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または二種以上の結晶構造が検出されるものであることができる。例えば一形態では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下をより一層抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一形態では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一形態では、ビスマス原子(Bi)を含まないものであることができる。
【0046】
金属粉末
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
【0047】
ε-酸化鉄粉末
強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄型の結晶構造に帰属される場合、ε-酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気記録媒体の磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
【0048】
ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気記録媒体の作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
【0049】
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
【0050】
磁気記録媒体に記録されたデータを再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一形態では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
【0051】
本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
【0052】
粒子サイズ測定のために磁気記録媒体から試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
【0053】
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
【0054】
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
【0055】
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
【0056】
(結合剤)
上記磁気記録媒体は塗布型磁気記録媒体であることができ、磁性層に結合剤を含むことができる。結合剤とは、一種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、バックコート層および/または後述する非磁性層においても結合剤として使用することができる。
以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。結合剤は、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができる。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
【0057】
また、結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一形態では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一形態では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
【0058】
以上の結合剤および硬化剤に関する記載は、バックコート層および/または非磁性層についても適用することができる。その場合、含有量に関する上記記載は、強磁性粉末を非磁性粉末に読み替えて適用することができる。
【0059】
(添加剤)
磁性層には、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。また、非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(例えば非磁性コロイド粒子等)等が挙げられる。なお後述の実施例に示すコロイダルシリカ(シリカコロイド粒子)の平均粒子サイズは、特開2011-048878号公報の段落0015に平均粒径の測定方法として記載されている方法により求められた値である。研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を、研磨剤の分散性を向上するための分散剤として挙げることができる。例えば、潤滑剤については、特開2016-126817号公報の段落0030~0033、0035および0036を参照できる。非磁性層に潤滑剤が含まれていてもよい。非磁性層に含まれ得る潤滑剤については、特開2016-126817号公報の段落0030、0031、0034、0035および0036を参照できる。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。また、分散剤については、特開2012-133837号公報の段落0061および0071、ならびに特開2017-016721号公報の段落0035も参照できる。磁性層の添加剤については、特開2016-51493号公報の段落0035~0077も参照できる。
分散剤は、非磁性層に含まれていてもよい。非磁性層に含まれ得る分散剤については、特開2012-133837号公報の段落0061を参照できる。
各種添加剤は、所望の性質に応じて市販品を適宜選択して、または公知の方法で製造して、任意の量で使用することができる。
【0060】
以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。
【0061】
<非磁性層>
次に非磁性層について説明する。上記磁気記録媒体は、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に非磁性粉末および結合剤を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機粉末でも有機粉末でもよい。また、カーボンブラック等も使用できる。無機粉末としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の粉末が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
【0062】
非磁性層は、結合剤を含むことができ、添加剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
【0063】
本発明および本明細書において、非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が100Oe以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が100Oe以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
【0064】
<非磁性支持体>
次に、非磁性支持体について説明する。非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、加熱処理等を行ってもよい。
【0065】
<バックコート層>
上記磁気記録媒体は、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有する。バックコート層に含まれる非磁性粉末は、好ましくは、突起形成剤と、他の非磁性粉末の一種以上と、であることができる。
【0066】
(突起形成剤)
突起形成剤としては、有機物質の粒子または無機物質の粒子を用いることができ、差分(S0.5-S13.5)の制御の容易性の観点からは、有機物質の粒子を用いることが好ましく、有機樹脂粒子を用いることがより好ましい。有機樹脂粒子とは、有機樹脂を主成分とする粒子をいうものとする。主成分とは、粒子を構成する成分の中で質量基準で最も多くを占める成分をいうものとし、例えば80質量%~100質量%を占める成分であることができる。有機樹脂粒子を構成する有機樹脂としては、例えば、アクリル樹脂、メラミン樹脂、フッ素樹脂、ベンゾグアナミン樹脂、ビニル樹脂等を挙げることができる。なお、上記のアクリル樹脂には、メタクリル樹脂も包含されるものとする。また、有機樹脂粒子を構成する樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。有機樹脂粒子としては、市販品を使用してもよく、公知の方法で製造したものを使用してもよい。
【0067】
上記のS0.5は、主に突起形成剤の粒子サイズにより制御することができる。突起形成剤の平均粒子サイズは、例えば30nm~4μmであり、好ましくは30nm~2μmであり、より好ましくは40nm~1μmである。S13.5については、突起形成剤の粒子サイズに加えて、バックコート層形成用組成物の調製方法によって制御することができる。この点については後述する。また、突起形成剤の密度は、例えば、0.5~3.0g/cmの範囲であることができ、0.8~2.5g/cmの範囲であることが好ましく、0.8~2.0g/cmの範囲であることがより好ましい。突起形成剤の密度は、ピクノメータ法により求められる値とする。
【0068】
バックコート層における突起形成剤の含有量は、他の非磁性粉末100.0質量部に対して、1.0~4.0質量部であることが好ましく、1.2~3.5質量部であることがより好ましい。バックコート層には、有機樹脂粒子が、他の非磁性粉末100.0質量部に対して1.0~4.0質量部含まれることが更に好ましく、1.2~3.5質量部含まれることが一層好ましい。
【0069】
(他の非磁性粉末)
バックコート層に含まれる他の非磁性粉末については、非磁性層の非磁性粉末に関する上記記載を参照できる。他の非磁性粉末としては、好ましくは、カーボンブラックと、カーボンブラック以外の非磁性粉末と、のいずれか一方または両方を使用することができる。カーボンブラック以外の非磁性粉末としては、非磁性無機粉末を挙げることができる。具体例としては、α-酸化鉄等の酸化鉄、二酸化チタン等のチタン酸化物、酸化セリウム、酸化スズ、酸化タングステン、ZnO、ZrO、SiO、Cr、α-アルミナ、β-アルミナ、γ-アルミナ、ゲーサイト、コランダム、窒化珪素、チタンカーバイト、酸化マグネシウム、窒化ホウ素、二硫化モリブデン、酸化銅、MgCO、CaCO、BaCO、SrCO、BaSO、炭化珪素、炭化チタン等の非磁性無機粉末を挙げることができる。好ましい非磁性無機粉末は、非磁性無機酸化物粉末であり、より好ましくはα-酸化鉄、酸化チタンであり、更に好ましくはα-酸化鉄である。
【0070】
カーボンブラック以外の他の非磁性粉末の形状は針状、球状、多面体状、板状のいずれでもよい。これら非磁性粉末の平均粒子サイズは、5nm~2.00μmの範囲であることが好ましく、10nm~200nmの範囲であることがより好ましい。また、カーボンブラック以外の他の非磁性粉末のBET比表面積は、1~100m/gの範囲であることが好ましく、より好ましくは5~70m/g、更に好ましくは10~65m/gの範囲である。一方、カーボンブラックの平均粒子サイズは、例えば5~80nmの範囲であり、好ましくは10~50nm、更に好ましくは10~40nmの範囲である。また、他の非磁性粉末全量100.0質量部に対するカーボンブラック含有量は、例えば10.0~100.0質量部の範囲とすることができる。他の非磁性粉末全量をカーボンブラックとしてもよい。または、他の非磁性粉末全量を、カーボンブラック以外の非磁性粉末としてもよい。他の非磁性粉末に占めるカーボンブラックの割合を高めるほど、S0.5およびS13.5の値は大きくなる傾向がある。バックコート層における非磁性粉末の含有量(充填率)については、非磁性層の非磁性粉末に関する先の記載を参照できる。
【0071】
バックコート層は、結合剤を含むことができ、添加剤を含むこともできる。バックコート層の結合剤および添加剤については、バックコート層に関する公知技術を適用することもでき、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7029774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
【0072】
バックコート層に含まれ得る添加剤の一例としては、潤滑剤が挙げられる。
例えば潤滑剤としては、脂肪酸、脂肪酸エステルおよび脂肪酸アミドを挙げることができ、脂肪酸、脂肪酸エステルおよび脂肪酸アミドからなる群から選択される一種以上を用いてバックコート層を形成することができる。
脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等を挙げることができ、ステアリン酸、ミリスチン酸、パルミチン酸が好ましく、ステアリン酸がより好ましい。脂肪酸は、金属塩等の塩の形態でバックコート層に含まれていてもよい。
脂肪酸エステルとしては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、ベヘン酸、エルカ酸、エライジン酸等のエステルを挙げることができる。具体例としては、例えば、ミリスチン酸ブチル、パルミチン酸ブチル、ステアリン酸ブチル、ネオペンチルグリコールジオレエート、ソルビタンモノステアレート、ソルビタンジステアレート、ソルビタントリステアレート、オレイン酸オレイル、ステアリン酸イソセチル、ステアリン酸イソトリデシル、ステアリン酸オクチル、ステアリン酸イソオクチル、ステアリン酸アミル、ステアリン酸ブトキシエチル等を挙げることができる。
脂肪酸アミドとしては、上記の各種脂肪酸のアミド、例えば、ラウリン酸アミド、ミリスチン酸アミド、パルミチン酸アミド、ステアリン酸アミド等を挙げることができる。
バックコート層の脂肪酸含有量は、バックコート層に含まれる非磁性粉末100.0質量部あたり、例えば0~10.0質量部であり、好ましくは0.1~10.0質量部であり、より好ましくは1.0~7.0質量部である。バックコート層の脂肪酸エステル含有量は、バックコート層に含まれる非磁性粉末100.0質量部あたり、例えば0.1~10.0質量部であり、好ましくは1.0~5.0質量部である。バックコート層の脂肪酸アミド含有量は、バックコート層に含まれる非磁性粉末100.0質量部あたり、例えば0~3.0質量部であり、好ましくは0~2.0質量部であり、より好ましくは0~1.0質量部である。
【0073】
上記のS0.5およびS13.5は、n-ヘキサン洗浄後に測定される値である。スペーシング測定時に押圧されるバックコート層の表面に潤滑剤の液膜が存在すると、この液膜の厚み分、測定されるスペーシングは狭くなる。これに対し、押圧時に液膜として存在し得る潤滑剤は、n-ヘキサン洗浄によって除去できると推察される。したがって、n-ヘキサン洗浄後にスペーシングを測定することにより、押圧された状態のバックコート層表面の突起の高さと良好に対応する値としてスペーシングの測定値を得ることができると考えられる。
【0074】
<各種厚み>
上記磁気記録媒体における非磁性支持体および各層の厚みについて、非磁性支持体の厚みは、例えば3.0~80.0μmであり、好ましくは3.0~50.0μmの範囲であり、より好ましくは3.0~10.0μmの範囲である。
【0075】
磁性層の厚みは、用いる磁気ヘッドの飽和磁化量やヘッドギャップ長、記録信号の帯域により最適化することができ、例えば10nm~100nmであり、高密度記録化の観点から、好ましくは20~90nmの範囲であり、更に好ましくは30~70nmの範囲である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
【0076】
非磁性層の厚みは、例えば50nm以上であり、好ましくは70nm以上であり、より好ましくは100nm以上である。また、非磁性層の厚みは、800nm以下であることが好ましく、500nm以下であることがより好ましい。
【0077】
バックコート層の厚みは、例えば0.1μm以上であることができる。また、バックコート層の厚みは、0.9μm以下であることが好ましく、0.7μm以下であることがより好ましく、0.5μm以下であることが更に好ましい。
【0078】
磁気記録媒体の各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、磁気記録媒体の厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型電子顕微鏡によって断面観察を行う。断面観察において任意の1箇所において求められた厚み、または無作為に抽出した2箇所以上の複数箇所、例えば2箇所、において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。
【0079】
<製造方法>
磁性層、非磁性層またはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、磁気記録媒体を製造するために一般に使用される各種有機溶媒を用いることができる。中でも、塗布型磁気記録媒体に通常使用される結合剤の溶解性の観点からは、各層形成用組成物には、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、イソホロン、テトラヒドロフラン等のケトン溶媒の一種以上が含まれることが好ましい。各層形成用組成物における溶媒量は特に限定されるものではなく、通常の塗布型磁気記録媒体の各層形成用組成物と同様にすることができる。また、各層形成用組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。また、個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程、および分散後の粘度調整のための混合工程で分割して投入してもよい。磁気記録媒体の製造工程では、従来の公知の製造技術を一部または全部の工程において用いることができる。混練工程では、オープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報および特開平1-79274号公報に記載されている。また、各層形成用組成物を分散させるために、ガラスビーズおよび/またはその他のビーズを用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズは、粒径(ビーズ径)と充填率を最適化して用いることが好ましい。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
【0080】
一形態では、バックコート層形成用組成物を調製する工程において、突起形成剤を含む分散液(以下、「突起形成剤液」と記載する。)を調製した後、この突起形成剤液を他の非磁性粉末等のバックコート層形成用組成物の各種成分と混合することができる。
【0081】
好ましくは、突起形成剤液は、有機化合物を含む有機溶媒中で突起形成剤の分散処理を行うことにより調製することができる。上記有機化合物は、アルキル基含有化合物であることが好ましい。アルキル基含有化合物が有するアルキル基の炭素数は、5以上であることが好ましく、6以上であることがより好ましく、7以上であることが更に好ましく、8以上であることが一層好ましい。また、上記アルキル基の炭素数は、例えば20以下、18以下または16以下であることができる。アルキル基としては、鎖状アルキル基が好ましい。鎖状アルキル基は、直鎖アルキル基であってもよく、分岐を有するアルキル基でもよい。アルキル基含有化合物を含む有機溶媒中で分散処理を行って突起形成剤液を調製することは、主にスペーシングS13.5の値を小さくすることに寄与すると考えられる。これは、アルキル基含有化合物が、バックコート層において突起形成剤(好ましくは有機樹脂粒子)と他の成分(例えば結合剤)との親和性を高める作用を発揮することによりバックコート層中で突起形成剤が動きやすくなる結果、高い圧力が加わった際、バックコート層表面に存在する突起形成剤により形成された突起がバックコート層の内部に沈み込み易くなるからではないかと本発明者は推察している。上記アルキル基は、無置換であってもよく、置換基を有していてもよい。置換基としては、例えば、ヒドロキシ基、アルコキシ基(例えば炭素数1~6のアルコキシ基)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子)、シアノ基、アミノ基、ニトロ基、アシル基、カルボキシ基またはその塩の形態等を挙げることができる。置換基を有するアルキル基について、炭素数とは、置換基を含まない部分の炭素数をいうものとする。また、上記アルキル基含有化合物が有するアルキル基の数は、1つ以上であることができ、2つ以上であることができ、例えば2~3つ程度であることもできる。アルキル基含有化合物が2つ以上のアルキル基を有する場合、2つ以上のアルキル基は同じアルキル基でもよく異なるアルキル基でもよい。アルキル基含有化合物は、例えば一形態では、有機アミン化合物であることができる。有機アミン化合物は、第一級アミン、第二級アミンおよび第三級アミンのいずれであってもよい。アルキル基を含有する第一級アミンはRNH、第二級アミンはRNH、第三級アミンはRNで表すことができ、Rはアルキル基を表し、第二級アミンおよび第三級アミンに複数含まれるアルキル基Rは、同じアルキル基でもよく異なるアルキル基でもよい。また、他の一形態では、アルキル基含有化合物は、有機リン化合物であることができる。有機リン化合物の一例としては、有機ホスホン酸を挙げることができる。アルキル基含有ホスホン酸は、RP(=O)(OH)で表すことができ、Rはアルキル基を表す。突起形成剤液は、例えば、有機化合物(好ましくはアルキル基含有化合物)1.0質量部に対して、2.0~20.0質量部の突起形成剤および5.0~100.0質量部の有機溶媒を含む分散液として調製することができる。分散液の調製は、超音波処理等の公知の分散処理によって行うことができる。例えば、超音波処理は、200cc(1cc=1cm)あたり10~2000ワット程度の超音波出力で1~300分間程度行うことができる。また、分散処理後にろ過を行ってもよい。ろ過に用いるフィルタについては先の記載を参照できる。
【0082】
磁性層は、磁性層形成用組成物を、例えば、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。配向処理を行う形態では、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、配向ゾーンにおいて塗布層に対して配向処理が行われる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。磁気記録媒体の製造のためのその他の各種工程については、特開2010-231843号公報の段落0067~0070を参照できる。
【0083】
上記のように製造された磁気記録媒体には、磁気記録再生装置における磁気ヘッドのトラッキング制御、磁気記録媒体の走行速度の制御等を可能とするために、公知の方法によってサーボパターンを形成することができる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。上記磁気記録媒体は、一形態ではテープ状の磁気記録媒体(磁気テープ)であることができ、他の一形態ではディスク状の磁気記録媒体(磁気ディスク)であることができる。以下では、磁気テープを例にサーボパターンの形成について説明する。
【0084】
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
【0085】
ECMA(European Computer Manufacturers Association)―319に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
【0086】
サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
【0087】
また、一形態では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
【0088】
なお、サーボバンドを一意に特定する方法には、ECMA―319に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
【0089】
また、各サーボバンドには、ECMA―319に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
【0090】
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
【0091】
サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。
【0092】
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
【0093】
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
【0094】
磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。
【0095】
磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻き取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気記録再生装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気記録再生装置側のリールに巻き取られる。磁気テープカートリッジから巻き取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気記録再生装置側のリール(巻き取りリール)との間で、磁気テープの送り出しと巻き取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻き取りリールの両リールが、磁気テープカートリッジ内部に具備されている。磁気テープカートリッジは、単リール型および双リール型のいずれの磁気テープカートリッジであってもよい。磁気テープカートリッジのその他の詳細については、公知技術を適用することができる。
【0096】
[磁気記録再生装置]
本発明の一態様は、上記磁気記録媒体と、磁気ヘッドと、を含む磁気記録再生装置に関する。
【0097】
本発明および本明細書において、「磁気記録再生装置」とは、磁気記録媒体へのデータの記録および磁気記録媒体に記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気記録再生装置は、摺動型の磁気記録再生装置であることができる。摺動型の磁気記録再生装置とは、磁気記録媒体へのデータの記録および/または記録されたデータの再生を行う際に磁性層表面と磁気ヘッドとが接触し摺動する装置をいう。
【0098】
上記磁気記録再生装置に含まれる磁気ヘッドは、磁気記録媒体へのデータの記録を行うことができる記録ヘッドであることができ、磁気記録媒体に記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気記録再生装置は、一形態では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一形態では、上記磁気記録再生装置に含まれる磁気ヘッドは、データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)の両方を1つの磁気ヘッドに備えた構成を有することもできる。以下において、データの記録のための素子および再生のための素子を、「データ用素子」と総称する。再生ヘッドとしては、磁気テープに記録されたデータを感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、AMR(Anisotropic Magnetoresistive)ヘッド、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等の公知の各種MRヘッドを用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気記録再生装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、隣接する2つのサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。
【0099】
上記磁気記録再生装置において、磁気記録媒体へのデータの記録および/または磁気記録媒体に記録されたデータの再生は、磁気記録媒体の磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気記録再生装置は、本発明の一態様にかかる磁気記録媒体を含むものであればよく、その他については公知技術を適用することができる。
【0100】
例えば、サーボパターンが形成された磁気記録媒体へのデータの記録および/または記録されたデータの再生の際には、まず、サーボパターンを読み取って得られるサーボ信号を用いたトラッキングが行われる。すなわち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御される。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
【実施例
【0101】
以下に、本発明を実施例に基づき説明する。ただし、本発明は実施例に示す形態に限定されるものではない。以下に記載の「部」、「%」の表示は、特に断らない限り、「質量部」、「質量%」を示す。eqは当量(equivalent)であり、SI単位に換算不可の単位である。また、以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。
【0102】
[実施例1]
各層形成用組成物の処方を、下記に示す。
【0103】
<磁性層形成用組成物の処方>
(磁性液)
強磁性粉末(表1参照):100.0部
オレイン酸:2.0部
塩化ビニル共重合体(カネカ社製MR-104):10.0部
SONa基含有ポリウレタン樹脂:4.0部
(重量平均分子量70000、SONa基:0.07meq/g)
ポリアルキレンイミン系ポリマー(特開2016-51493号公報の段落0115~0123に記載の方法により得られた合成品):6.0部
メチルエチルケトン:150.0部
シクロヘキサノン:150.0部
(研磨剤液)
α-アルミナ(BET(Brunauer-Emmett-Teller)比表面積19m/g):6.0部
SONa基含有ポリウレタン樹脂:0.6部
(重量平均分子量70000、SONa基:0.1meq/g)
2,3-ジヒドロキシナフタレン:0.6部
シクロヘキサノン:23.0部
(シリカゾル)
コロイダルシリカ(平均粒子サイズ120nm):2.0部
メチルエチルケトン:8.0部
(その他の成分)
ステアリン酸:3.0部
ステアリン酸アミド:0.3部
ステアリン酸ブチル:6.0部
メチルエチルケトン:110.0部
シクロヘキサノン:110.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)L):3.0部
【0104】
<非磁性層形成用組成物の処方>
非磁性無機粉末 α-酸化鉄(平均粒子サイズ10nm、BET比表面積75m/g):100.0部
カーボンブラック(平均粒子サイズ:20nm):25.0部
SONa基含有ポリウレタン樹脂(重量平均分子量70000、SONa基:0.2meq/g):18.0部
ステアリン酸:1.0部
シクロヘキサノン:300.0部
メチルエチルケトン:300.0部
【0105】
<バックコート層形成用組成物の処方>
(突起形成剤液)
突起形成剤(表1参照):1.3部
有機化合物(表1参照):0.3部
メチルエチルケトン:9.0部
シクロヘキサノン:6.0部
(その他の成分)
α-酸化鉄:表1参照
平均粒子サイズ(平均長軸長):150nm
平均針状比:7
BET比表面積:52m/g
カーボンブラック:表1参照
平均粒子サイズ:20nm
塩化ビニル共重合体(カネカ社製MR-104):12.0部
SONa基含有ポリウレタン樹脂:6.0部
フェニルホスホン酸:3.0部
シクロヘキサノン:155.0部
メチルエチルケトン:155.0部
ステアリン酸:3.0部
ステアリン酸ブチル:3.0部
ポリイソシアネート:5.0部
シクロヘキサノン:200.0部
【0106】
<磁性層形成用組成物の調製>
磁性層形成用組成物を、以下の方法によって調製した。
上記磁性液の各種成分をバッチ式縦型サンドミルを用いて24時間分散(ビーズ分散)することにより、磁性液を調製した。分散ビーズとしては、ビーズ径0.5mmのジルコニアビーズを使用した。
研磨剤液は、上記の研磨剤液の各種成分を混合してビーズ径0.3mmのジルコニアビーズとともに横型ビーズミル分散機に入れ、研磨剤液体積とビーズ体積との合計に対するビーズ体積の割合が80%になるように調整し、120分間ビーズミル分散処理を行い、処理後の液を取り出し、フロー式の超音波分散ろ過装置を用いて、超音波分散ろ過処理を施した。こうして研磨剤液を調製した。
調製した磁性液および研磨剤液、ならびに上記のシリカゾルおよびその他の成分をディゾルバー撹拌機に導入し、周速10m/秒で30分間撹拌した後、フロー式超音波分散機により流量7.5kg/分で3パス処理した後に、孔径1μmのフィルタでろ過して磁性層形成用組成物を調製した。
【0107】
<非磁性層形成用組成物の調製>
上記の非磁性層形成用組成物の各種成分をバッチ式縦型サンドミルによりビーズ径0.1mmのジルコニアビーズを使用して24時間分散し、その後、0.5μmの孔径を有するフィルタを用いてろ過することにより、非磁性層形成用組成物を調製した。
【0108】
<バックコート層形成用組成物の調製>
突起形成剤液は、上記突起形成剤液の成分を混合した後に、ホーン式超音波分散機により200ccあたり500ワットの超音波出力で60分間超音波処理(分散処理)して得られた分散液を孔径0.5μmのフィルタでろ過して調製した。
上記のバックコート層形成用組成物のその他成分のうち、潤滑剤(ステアリン酸およびステアリン酸ブチル)、ポリイソシアネートおよび200.0部のシクロヘキサノンを除いた成分を、オープンニーダにより混練および希釈した後、横型ビーズミル分散機によりビーズ径1mmのジルコニアビーズを用い、ビーズ充填率80体積%、ローター先端周速10m/秒で1パス滞留時間を2分間とし、12パスの分散処理に供した。得られた分散液に、潤滑剤(ステアリン酸およびステアリン酸ブチル)、ポリイソシアネートおよび200.0部のシクロヘキサノンを添加してディゾルバーで撹拌した。こうして得られた分散液を突起形成剤液と混合し、混合液を1μmの孔径を有するフィルタを用いてろ過することにより、バックコート層形成用組成物を調製した。
【0109】
<磁気テープの作製>
厚み5.0μmの二軸延伸ポリエチレンナフタレート製支持体の表面上に、乾燥後の厚みが400nmになるように上記で調製した非磁性層形成用組成物を塗布および乾燥させて非磁性層を形成した後、非磁性層の表面上に乾燥後の厚みが70nmになるように上記で調製した磁性層形成用組成物を塗布して塗布層を形成した。この磁性層形成用組成物の塗布層が湿潤(未乾燥)状態にあるうちに、磁場強度0.3Tの磁場を塗布層の表面に対し垂直方向に印加する垂直配向処理を施し、乾燥させた。その後、この支持体の反対面に乾燥後の厚みが0.2μmになるように上記で調製したバックコート層形成用組成物を塗布し、乾燥させた。こうして磁気テープ原反を作製した。
作製された磁気テープ原反に対し、金属ロールのみから構成されるカレンダにより、速度100m/min、線圧300kg/cm、カレンダロールの表面温度100℃でカレンダ処理(表面平滑化処理)し、その後、雰囲気温度70℃の環境で36時間、加熱処理を施した。加熱処理後、磁気テープ原反を裁断機によりスリットし、1/2インチ(0.0127メートル)幅の磁気テープを得た。
作製した磁気テープの磁性層を消磁した状態で、サーボライターに搭載されたサーボライトヘッドによって、LTO(Linear Tape-Open) Ultriumフォーマットにしたがう配置および形状のサーボパターンを磁性層に形成した。こうして、磁性層に、LTO Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを有する磁気テープを得た。
こうして実施例1の磁気テープを得た。
【0110】
[実施例2~11、比較例1~9]
表1に示す項目を表1に示すように変更した点以外、実施例1と同様の方法により磁気テープを得た。比較例1では、突起形成剤液なしでバックコート層形成用組成物を調製した。
【0111】
[突起形成剤]
実施例または比較例の磁気テープの作製のためにバックコート層形成用組成物の調製に使用した突起形成剤は、以下の通りである。
突起形成剤A(有機樹脂粒子):日本触媒社製エポスターMX100W(アクリル系架橋樹脂)、平均粒子サイズ150nm、密度1.2g/cm
突起形成剤B(有機樹脂粒子):日本触媒社製エポスターSS(メラミン・ホルムアルデヒド縮合物)、平均粒子サイズ100nm、密度1.5g/cm
突起形成剤C(有機樹脂粒子):3M社製DyneonTF9207Z(ポリテトラフルオロエチレン(PTFE))、平均粒子サイズ120nm、密度2.0g/cm
突起形成剤D:扶桑化学工業社製クォートロンPL-10L(シリカ粒子の水分散ゾル;突起形成剤液調製のための突起形成剤として、上記水分散ゾルを加熱して溶媒を除去して得られた乾固物を使用)、平均粒子サイズ130nm、密度2.2g/cm
突起形成剤E:旭カーボン社製旭#52(カーボンブラック)、平均粒子サイズ60nm、密度1.8g/cm
【0112】
[強磁性粉末]
表1中、「BaFe」は平均粒子サイズ(平均板径)21nmの六方晶バリウムフェライト粉末を示す。「SrFe1」および「SrFe2」は六方晶ストロンチウムフェライト粉末を示し、「ε-酸化鉄」はε-酸化鉄粉末を示す。
以下に記載の各種強磁性粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁場強度15kOeで測定された値である。
【0113】
<六方晶ストロンチウムフェライト粉末の作製方法1>
表1に示す「SrFe1」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
上記で得られた六方晶ストロンチウムフェライト粉末(表1中、「SrFe1」)の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
【0114】
上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
PANalytical X’Pert Pro回折計、PIXcel検出器
入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
分散スリットの固定角:1/4度
マスク:10mm
散乱防止スリット:1/4度
測定モード:連続
1段階あたりの測定時間:3秒
測定速度:毎秒0.017度
測定ステップ:0.05度
【0115】
<六方晶ストロンチウムフェライト粉末の作製方法2>
表1に示す「SrFe2」は、以下の方法により作製された六方晶ストロンチウムフェライト粉末である。
SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1380℃で溶解し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで急冷圧延して非晶質体を作製した。
得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
得られた六方晶ストロンチウムフェライト粉末(表1中、「SrFe2」)の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
【0116】
<ε-酸化鉄粉末の作製方法>
表1に示す「ε-酸化鉄」は、以下の方法により作製されたε-酸化鉄粉末である。
純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸水溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装填し、4時間の加熱処理を施した。
加熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、加熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.28Co0.05Ti0.05Fe1.62)であった。また、先に六方晶ストロンチウムフェライト粉末の作製方法1について記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄型の結晶構造)を有することを確認した。
得られたε-酸化鉄粉末(表1中、「ε-酸化鉄」)の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
【0117】
[評価方法]
(1)差分(S0.5-S13.5
TSA(Tape Spacing Analyzer(Micro Physics社製))を用いて、以下の方法により、n-ヘキサン洗浄後のスペーシングS0.5およびS13.5を測定し、測定された値から差分(S0.5-S13.5)を算出した。
実施例および比較例の各磁気テープから長さ5cmの試料片を5つ切り出し、各試料片を先に記載した方法によりn-ヘキサン洗浄を行った後、以下の方法によりS0.5およびS13.5を求めた。
磁気テープ(即ち上記試料片)のバックコート層表面上に、TSAに備えられたガラス板(Thorlabs,Inc.社製ガラス板(型番:WG10530))を配置した状態で、押圧部材としてTSAに備えられているウレタン製の半球を用いて、この半球を磁気テープの磁性層表面に0.5atmの圧力で押しつけた。この状態で、TSAに備えられているストロボスコープから白色光を、ガラス板を通して磁気テープのバックコート層表面の一定領域(150000~200000μm)に照射し、得られる反射光を、干渉フィルタ(波長633nmの光を選択的に透過するフィルタ)を通してCCD(Charge-Coupled Device)で受光することで、この領域の凹凸で生じた干渉縞画像を得た。
この画像を300000ポイントに分割して各ポイントのガラス板の磁気テープ側の表面から磁気テープのバックコート層表面までの距離(スペーシング)を求めこれをヒストグラムとし、ヒストグラムの最頻値をスペーシングとして求めた。
同じ試料片を更に押圧し、13.5atmの押圧下で上記と同じ方法によりスペーシングを求めた。
5つの試料片についてn-ヘキサン洗浄後に0.5atmの圧力下で求められたスペーシングの算術平均をスペーシングS0.5とし、5つの試料片についてn-ヘキサン洗浄後に13.5atmの圧力下で求められたスペーシングの算術平均をスペーシングS13.5とした。
【0118】
(2)ドロップアウト
実施例および比較例の磁気テープは、製造時および保管時に、ロール状に巻き取られる状態を経て得られた磁気テープである。こうしたロール状に巻き取られる状態を経た実施例および比較例の各磁気テープについて、ドロップアウトの測定を、ヘッドを固定した1/2インチリールテスターを用いて、以下のように行った。記録ヘッド(MIG(Metal-in-gap)ヘッド、ギャップ長0.15μm、トラック幅1.0μm、1.8T)を用いて線記録密度350kfciで信号を記録し、再生ヘッド(GMR(Giant Magnetoresistive)ヘッド、素子厚み15nm、シールド間隔0.1μm、トラック幅1.0μm)で再生した。単位kfciとは、線記録密度の単位(SI単位系に換算不可)である。平均の出力に対して40%以上の出力落ちで長さが0.25μm以上の信号抜けの個数を検出し、テープ長1m当たり(測定面積1mm(=トラック幅(1.0μm)×テープ長(1m))当たり)の個数をドロップアウトとした。エラーレート低減の観点からは、ドロップアウトが800個/mm以下であることが好ましい。
【0119】
(3)高温高湿下での走行安定性
実施例および比較例の各磁気テープを、内部が温度45℃相対湿度80%に保たれたサーモルームに6時間保管した後、このサーモルームにおいて以下の方法によりPES(Position Error Signal)を求めた。
実施例および比較例の各磁気テープについて、サーボパターンの形成に用いたサーボライター上のベリファイ(verify)ヘッドでサーボパターンを読み取った。ベリファイヘッドは、磁気テープに形成されたサーボパターンの品質を確認するための読取用磁気ヘッドであり、公知の磁気記録再生装置(ドライブ)の磁気ヘッドと同様に、サーボパターンの位置(磁気テープの幅方向の位置)に対応した位置に読取用の素子が配置されている。
ベリファイヘッドには、ベリファイヘッドでサーボパターンを読み取って得た電気信号から、サーボシステムにおけるヘッド位置決め精度をPESとして演算する公知のPES演算回路が接続されている。PES演算回路は、入力された電気信号(パルス信号)から磁気テープの幅方向への変位を随時計算し、この変位の時間的変化情報(信号)に対してハイパスフィルタ(カットオフ:500cycles/m)を適用した値を、PESとして算出した。PESは走行安定性の指標とすることができ、PESの値が小さいほど、走行安定性に優れると評価することができる。
【0120】
以上の結果を、表1に示す。
【0121】
【表1】
【0122】
表1に示す結果から、実施例の磁気テープは、比較例の磁気テープと比べてドロップアウトの発生が抑制されていることが確認できる。
【産業上の利用可能性】
【0123】
本発明の一態様は、各種データストレージ用磁気記録媒体の技術分野において有用である。