(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-12
(45)【発行日】2022-09-21
(54)【発明の名称】観測装置、観測方法及びプログラム
(51)【国際特許分類】
F01D 25/00 20060101AFI20220913BHJP
【FI】
F01D25/00 W
F01D25/00 V
(21)【出願番号】P 2018079096
(22)【出願日】2018-04-17
【審査請求日】2021-02-12
(73)【特許権者】
【識別番号】503361400
【氏名又は名称】国立研究開発法人宇宙航空研究開発機構
(73)【特許権者】
【識別番号】000125370
【氏名又は名称】学校法人東京理科大学
(74)【代理人】
【識別番号】110003339
【氏名又は名称】特許業務法人南青山国際特許事務所
(74)【代理人】
【識別番号】100104215
【氏名又は名称】大森 純一
(74)【代理人】
【識別番号】100196575
【氏名又は名称】高橋 満
(74)【代理人】
【識別番号】100168181
【氏名又は名称】中村 哲平
(74)【代理人】
【識別番号】100117330
【氏名又は名称】折居 章
(74)【代理人】
【識別番号】100160989
【氏名又は名称】関根 正好
(74)【代理人】
【識別番号】100168745
【氏名又は名称】金子 彩子
(74)【代理人】
【識別番号】100176131
【氏名又は名称】金山 慎太郎
(74)【代理人】
【識別番号】100197398
【氏名又は名称】千葉 絢子
(74)【代理人】
【識別番号】100197619
【氏名又は名称】白鹿 智久
(72)【発明者】
【氏名】西澤 敏雄
(72)【発明者】
【氏名】賀澤 順一
(72)【発明者】
【氏名】後藤田 浩
(72)【発明者】
【氏名】小林 大晃
(72)【発明者】
【氏名】林 優人
(72)【発明者】
【氏名】八條 貴誉
【審査官】高吉 統久
(56)【参考文献】
【文献】特表2005-507056(JP,A)
【文献】特開2007-309250(JP,A)
【文献】特開2008-014679(JP,A)
【文献】特開2018-080621(JP,A)
【文献】国際公開第2017/142707(WO,A1)
【文献】特開2018-197543(JP,A)
【文献】特開2008-223624(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01D 25/00
F02C 7/00
F23R 3/00
(57)【特許請求の範囲】
【請求項1】
ターボ機械に配置され、時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサを有する検出部と、
前記1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出する演算部と、
前記不安定作動を検知するパラメータに基づき、前記不安定作動の予兆又は発生を判定する判定部と
を具備
し、
前記演算部は、前記不安定作動を検知するパラメータを、前記時系列データから乱雑さと回帰性の変化を定量的に評価することにより算出するものであり、
前記時系列データから乱雑さと回帰性の変化を定量的に評価することにより算出される前記不安定作動を検知するパラメータを2種類以上算出し、同時に2種類以上の前記不安定作動の予兆又は発生を判定するために、前記検出部、前記演算部及び前記判定部を2種類以上有する
観測装置。
【請求項2】
請求項1に記載の観測装置であって、
前記判定部により前記不安定作動の予兆又は発生の判定結果が出力されたとき、前記ターボ機械の運転制御装置に作動条件を変更する信号及び/又は前記ターボ機械の運転操作に対して警告を発するための信号を出力する制御部
を更に具備する観測装置。
【請求項3】
請求項1又は2に記載の観測装置であって、
前記1又は2以上のセンサは、前記ターボ機械の回転部、静止部、流路中又は流路に接する壁面に配置されている
観測装置。
【請求項4】
請求項1~3のうちいずれか1項に記載の観測装置であって、
前記検出部、前記演算部及び前記判定部を2系統以上有する観測装置。
【請求項5】
ターボ機械に時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサを取り付け、
前記1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出し、
前記不安定作動を検知するパラメータに基づき、前記不安定作動の予兆又は発生を判定する
観測方法であって、
前記不安定作動を検知するパラメータは、前記時系列データから乱雑さと回帰性の変化を定量的に評価することにより算出するものであり、
前記時系列データから乱雑さと回帰性の変化を定量的に評価することにより算出される前記不安定作動を検知するパラメータを2種類以上算出し、同時に2種類以上の前記不安定作動の予兆又は発生を判定するために、前記1又は2以上のセンサの群、前記算出するステップ及び前記判定するステップ部を2種類以上有する
観測方法。
【請求項6】
ターボ機械に配置され、時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出するステップと、
前記不安定作動を検知するパラメータに基づき、前記不安定作動の予兆又は発生を判定するステップと
をコンピュータに実行させるプログラム
であって、
前記不安定作動を検知するパラメータは、前記時系列データから乱雑さと回帰性の変化を定量的に評価することにより算出するものであり、
前記時系列データから乱雑さと回帰性の変化を定量的に評価することにより算出される前記不安定作動を検知するパラメータを2種類以上算出し、同時に2種類以上の前記不安定作動の予兆又は発生を判定するために、前記1又は2以上のセンサの群からの入力、前記算出するステップ及び前記判定するステップ部を2種類以上有する
コンピュータに実行させるプログラム。
【請求項7】
請求項1に記載の観測装置であって、
前記演算部は、前記パラメータを、前記時系列データの乱雑さを定量評価する指標であるサンプルエントロピーとして算出するものであり、
前記時系列データを{x(t
i)},i=1,2,・・・,Nとしたとき、前記時系列データ{x(t
i)}をDとD+1次元の位相空間に埋め込み、D次元で近傍であった点がD+1次元においても近傍である条件付確率を負の自然対数で定義し、
前記サンプルエントロピーをS
Eとしたとき、前記サンプルエントロピーS
Eを以下の式により算出する
ここで、
rは所定の閾値
観測装置。
【請求項8】
請求項1に記載の観測装置であって、
前記演算部は、前記パラメータを、前記時系列データを粗視化し、前記粗視化した時系列データの乱雑さを定量評価する指標である、マルチスケール性を考慮に入れたサンプルエントロピーとして算出するものであり、
前記時系列データをx(t
i)としたとき、以下の式を用いた非重複平均によって前記時系列データx(t
i)の時間平均をとり、時系列データy(t
j)を得て、
ここで、
前記時系列データy(t
j)を用いてサンプルエントロピーを算出する
観測装置。
【請求項9】
請求項1に記載の観測装置であって、
前記演算部は、前記パラメータを、前記時系列データを位相空間に埋め込み、前記位相空間内の前記時系列データの各点の相関関係を視覚化した指標であるリカレンスプロットとして算出するものであり、
前記時系列データをx(t
i)とし、前記相空間内の前記時系列データの各点の相関関係を下記の式による演算を行い、演算結果をプロットして可視化してリカレンスプロットを
得る
ここで、
Θ:ヘビサイド関数
ε:位置ベクトル間の距離の閾値
N
p :位相空間内の総データ点数
D:位相空間の次元
τ:遅れ時間
観測装置。
【請求項10】
請求項1に記載の観測装置であって、
前記演算部は、前記パラメータを、前記時系列データを位相空間に埋め込み、前記位相空間内の前記時系列データの各点の相関関係を視覚化した指標であるリカレンスプロットとして算出するものであり、
前記判定部は、前記得られたリカレンスプロットにおいて、前記不安定作動の予兆又は発生を判定する指標をDETとしたとき、以下の式により指標DETを算出する
ここで、
l:リカレンスプロットでの斜線の長さ
l
min:リカレンスプロットでの斜線と定義する最小長さ
P(l):リカレンスプロットでの長さlの斜線の度数分布関数
観測装置。
【請求項11】
請求項1に記載の観測装置であって、
前記演算部は、前記パラメータを、前記時系列データの乱雑さを定量評価する指標である順列エントロピーとして算出するものであり、
前記時系列データを所定の順列パターンに分類し、各前記順列パターンの存在確率をシャノンの情報エントロピーに適用し、前記順列エントロピーを算出し、
前記シャノンの情報エントロピーを、事象の確率変数の離散確率分布pを用いて以下の式で表し、
ここで、
N=D!
D:位相空間の次元
前記順列エントロピーをh
pとしたとき、前記順列エントロピーh
pを以下の式により算出する
観測装置。
【請求項12】
請求項1に記載の観測装置であって、
前記判定部は、前記不安定作動を検知するパラメータを所定の閾値と比較し、前記不安定作動の予兆又は発生の判定結果をリアルタイムに出力する
観測装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、航空機、船舶用又は自動車用ガスタービンエンジンや発電用ガスタービン、蒸気タービンなどの様々な技術分野に適用可能な観測装置、観測方法及びプログラムに関する。
【背景技術】
【0002】
航空機用エンジンやガスタービンを構成するターボ機械(ファン、圧縮機、タービン)は作動流体(作動空気)を圧縮または膨張させる機能を有している。通常は、多数の翼が円周上に配置された回転翼と静止翼を交互に組み合わせた構成となっており、これらの翼の間の環状の流路に作動流体を通過させることにより、圧縮や膨張をさせることができる。
ターボ機械には、流体力学的な不安定作動(サージ、ストール)や流体構造連成による不安定作動(フラッタ)が発生することが古くから知られているが、これらの不安定作動が発生した場合、ターボ機械を中心とするエンジンの大きな振動や回転翼を含む部品の損傷、さらには、燃焼器からの逆流によるエンジン火災(航空機の飛行中を含む)などの重大な事故につながる場合がある。
【0003】
ターボ機械の運転時には、前記の不安定作動が突発的に発生する場合が多く、運転者は発生後に初めてそれを認知し、エンジン等の緊急停止(航空機の飛行中を含む)などの措置を取らざるを得ないのが現状である。
一般にターボ機械の運転時には、不安定作動が発生しにくいように設定された設計作動線上の安定作動条件に限定して運転し、不安定作動の発生を回避制御する手法により、前記のリスクを回避している。
【0004】
設計段階では、不安定作動による損傷を回避するため、翼の厚みや幅などを最適形状より増やしたり、圧縮性能や膨張性能をやや低くめに抑えたりする安全設計とすることにより、安全性を高める手法がとられている。
航空エンジンやガスタービンの高出力化および高効率化の要求を満足するため、ターボ機械(ファン、圧縮機、タービン)の翼として、長大(大口径)で薄型(低抵抗)の翼形状を用いることが必要となってきており、前記の安全設計や運転制御だけでは制約が厳しくなっている。
最近では、ターボ機械の不安定作動がいつどのような条件で発生するかについて、基礎実験や数値解析の応用により、設計段階での予測を可能にすべく基礎研究がなされているが、厳密な発生条件は解明できていない。
【0005】
例えば、運転中に取得した時系列データから位相空間上でアトラクタを描き、その並進誤差を演算することにより、燃焼器の不安定作動(吹き消え等)の発生をリアルタイムに観測および制御する手法について、基礎研究が進められている。
遠心圧縮機の不安定作動についても、同様なパラメータで観測および制御を試みる基礎研究が行われている(以上、非特許文献1~8を参照のこと)。
【0006】
また、特許文献1には、ガスタービンモデル燃焼器の燃焼室内の圧力変動を圧力トランスデューサが検出し、圧力変動信号として出力し、出力された圧力変動信号の波形を、位相空間上の軌道に変換し、軌道から並進誤差を演算し、並進誤差を閾値と比較することで吹き消えの発生を推定し、2次燃料流量の目標値を設定し、得られた目標値に近づけるように2次燃料流量を制御することで、燃焼状態を制御する技術が記載されている。
特許文献2には、時間的に変化する物理現象の物理量を検出する検出部と、検出した各時刻の物理量をノードとして設定し、複数のノードを一定の条件にしたがってエッジにより接続した複雑ネットワークを経時的に生成する生成部と、複雑ネットワークにおける所定の特徴量(平均次数)を求める演算部と、特徴量に基づいて物理現象の状態を推定する推定部とを備えた観測装置が記載されている。
【0007】
しかし、ターボ機械の不安定作動の発生について、検出パラメータとして並進誤差や平均次数を用いる方法では判定できない場合がある、と考えられる。
【先行技術文献】
【特許文献】
【0008】
【文献】特開2013-238365号公報
【文献】特開2016-173211号公報
【非特許文献】
【0009】
【文献】第49期定時社員総会および年会講演会講演集、(一社)日本航空宇宙学会、2018.4.19発行予定、「サポートベクトルマシンを用いた低圧タービン部における翼列フラッタの検知」、八條貴誉、小林大晃、林優人、後藤田浩、西澤敏雄、賀澤順一.
【文献】第47回燃焼シンポジウム講演論文集、日本燃焼学会、2009.12.2、希薄予混合ガスタービン燃焼の圧力変動の非線形時系列解析、新木本寛之、後藤田浩、 宮野尚哉、 立花繁.
【文献】関西支部講演会講演論文集、No.1120、日本機械学会、2013.3、希薄予混合ガスタービンモデル燃焼器で発生する振動燃焼の検知手法の開発:力学系理論の導入、小林 将紀, 浮田 遼, 篠田 雄太, 奥野 佑太, 後藤田 浩, 立花 繁.
【文献】日本燃焼学会誌、第57巻181号、日本燃焼学会、2015.8、力学系理論を用いた燃焼不安定の非線形特性の解明と工学的応用、後藤田浩.
【文献】日本燃焼学会誌、第57巻181号、日本燃焼学会、2015.8、ガスタービンエンジンの燃焼不安定に関する研究、立花繁.
【文献】Proceedings of the International Gas Turbine Congress 2003 Tokyo, TS-038、日本ガスタービン学会、2003.11.2、Prediction and Active Control of Surge Inception of a Centrifugal Compressor、Naoto HAGINO, Kazufumi UDA and Yasushige KASHIWABARA.
【文献】Journal of Fluid Engineering, Transaction of the ASME, Vol.9, 米国機械学会、2007.6、Observation of Centrifugal Compressor Stall and Surge in Phase Portraits of Pressure Time Traces at Impeller and Diffuser Wall、Chunwei GU, Kazuo YAMAGUCHI, Toshio NAGASHIMA, Hirotaka HIGASHIMORI.
【文献】RTO AVT Symposium on "Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles(RTO MP-051)、2000.5.8、PERSPECTIVES of PHASE-PORTRAITS in the DETECTION of COMPRESSOR INSTABILITIES - INCEPTION of STALL、M. D'ISCHIA, F.A.E. BREUGELMANS.
【発明の概要】
【発明が解決しようとする課題】
【0010】
以上のような事情に鑑み、本発明の目的は、ターボ機械の不安定作動の予兆又は発生を観測することができる観測装置、観測方法及びプログラムを提供することにある。
【0011】
本発明の別の目的は、できる限り少ない数のセンサで計測された物理量により、ターボ機械の不安定作動を観測することができる観測装置、観測方法及びプログラムを提供することにある。
【0012】
本発明の更に別の目的は、既存の航空機エンジンや発電用ガスタービンへ適用することができる観測装置、観測方法及びプログラムを提供することにある。
【課題を解決するための手段】
【0013】
上記目的を達成するため、本発明の一形態に係る観測装置は、ターボ機械に配置され、時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサを有する検出部と、前記1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出する演算部と、前記不安定作動を検知するパラメータを所定の閾値と比較し、前記不安定作動の予兆又は発生の判定結果をリアルタイムに出力する判定部とを具備する。
【0014】
本発明では、ターボ機械に配置され、時間応答性が高く非定常変動を観測する1又は2以上のセンサの出力信号から取得する時系列データに、不安定作動を検知するパラメータ、典型的には複雑系科学に基づく観測手法を適用した検知パラメータの演算をリアルタイムに行い、不安定作動(フラッタ、サージ、ストール)が発生する予兆又は発生直後の変化を判定することが可能となる。すなわち、本発明は、ターボ機械に発生する不安定作動(フラッタ、サージ、ストール)の発生時に生じる変動や振動が、独自の周期性を含む現象であることに着目し、時系列データから乱雑さと回帰性の変化を定量的に評価することにより、発生の過程を早期に判定する。本発明に係る観測装置は、好ましくは、前記判定部により前記不安定作動の予兆又は発生の判定結果が出力されたとき、前記ターボ機械の運転制御装置に作動条件を変更する信号及び/又は前記ターボ機械の運転操作に対して警告を発するための信号を出力する制御部を有する。
【0015】
ここで、前記の検知パラメータの算出法として、サンプルエントロピー、マルチスケール性を考慮に入れたサンプルエントロピー、リカレンスプロット、順列エントロピーという指標を用いて検知パラメータを算出する手法を用いることが有効である。
【0016】
前記1又は2以上のセンサは、前記ターボ機械の回転部、静止部、流路中又は流路に接する壁面に配置されていてもよい。
【0017】
本発明に係る観測装置は、前記検出部、前記演算部及び前記判定部を2系統以上有していてもよく、前記検出部、前記演算部及び前記判定部を2種類以上有していてもよい。
【0018】
本発明の一形態に係る観測方法は、ターボ機械に時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサを取り付け、前記1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出し、前記不安定作動を検知するパラメータを所定の閾値と比較し、前記不安定作動の予兆又は発生の判定結果をリアルタイムに出力する。
【0019】
本発明の一形態に係るプログラムは、ターボ機械に配置され、時間応答性が高く前記ターボ機械の非定常変動を観測する1又は2以上のセンサから出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、前記ターボ機械の不安定作動を検知するパラメータをリアルタイムに算出するステップと、前記不安定作動を検知するパラメータを所定の閾値と比較し、前記不安定作動の予兆又は発生の判定結果をリアルタイムに出力するステップとをコンピュータに実行させる。
【0020】
ここで、不安定作動の一つであるフラッタは、正常な稼動状態では翼の振動は微小な振幅のままであったり、直ぐに減衰したりするのに対し、翼自体の固有振動数と流体から受ける外力とが連成することにより、振幅が急激に増幅し、翼の強度限界を超えると破損に至る危険のある現象である。フラッタ発生時には、ターボ機械において環状に配置された翼(回転翼、静止翼)はそれぞれ固有振動数で振動しつつ、隣接翼とほぼ一定の位相差(0度を含む)を持っており、翼振動の位相が円周方向に伝わりながら増幅するのが特徴である。翼取り付け部などによる構造的な減衰などを十分大きくできれば、フラッタの発生を防ぐことができる。一定の振幅で増幅が止まったリミットサイクルに至る場合もあるが、長時間の振動により翼が疲労破壊する危険性があるので、安全性の問題は解決されない。フラッタは、圧縮機では流量の少ない側(高負荷側)の安定作動限界付近で発生しやすく、タービンでは流量の多い側(低負荷側)の安定作動限界付近で発生しやすい。
【0021】
ストールは、回転翼や静止翼の間を通過する作動流体が正常な圧縮や膨張が出来なくなる状態である。通常は、翼面に沿う境界層の流れが剥離し、大きなエネルギー損失を生じるようになり、このため設計通りの圧縮や膨張とならなくなる。翼の振動を必ずしも伴わない流体力学的な不安定作動の現象である。ストールは、圧縮機の圧縮過程のほうがより発生しやすく、流量の少ない側(高負荷側)の安定作動限界付近で発生しやすい。その特徴は、翼周辺の流れの状態は円周方向の全翼で同じでなく(あるいは同位相ではなく)、隣接翼との間に位相差を持った状態で周期的に変動する。流れの変動の位相が円周方向に伝わり、回転翼の回転方向に回転速度より遅い速度で伝わるのが特徴である。流れの変動振幅は、ストールの発生初期には増幅するが、一定の振幅に達するとリミットサイクルに至るのが通常である。
【0022】
サージは、ターボ機械を通過する流れ場全体が軸方向に大きく変動し始め、ターボ機械の流量そのものの大変動に至るのが特徴である。また、その変動周波数は、フラッタやストールの周波数に比べて小さい(遅い)のも特徴である。サージの発生時に、翼部のフラッタや流れのストールを同時または事前に併発したという報告もあるが、必ずしも併発するわけではなく、どういう条件で併発するかは解明されていない。
【0023】
ターボ機械に不安定作動現象が発生すると、大きな翼振動や流れ変動を伴うことになるが、その変動はいずれも一定の周期性を有しており、フラッタとストールでは環状方向に位相が伝播しつつ一定の時間後には元の状態に回帰するという特徴がある。正常作動時の翼振動や流れ変動は振幅が非常に小さいものであるが、それぞれはランダムな変動であり、一定の周期性や回帰性は見られない。このため、高応答の変動センサから得られる時系列データについて、ランダムか規則的かを明確に表す指標を演算することによって、不安定作動の予兆や発生を直ちに判定することが可能となる。
【発明の効果】
【0024】
本発明により、センサ信号の観測を行うことにより、不安定作動が発生する予兆や発生後の変化をリアルタイムに判別することができるようになるため、予兆を検知後直ちに不安定作動を回避したり、発生を検知後に重大な事態に至る前に安全に運転停止したりすることが可能となる。
【0025】
事前に発生条件が判明していない想定外の不安定作動が発生した場合にも検知が可能となるため、航空エンジンやガスタービンの安全性や信頼性を向上させる。
【0026】
必要以上に翼形状の厚みや幅を増やした安全設計を行うことが不要となるため、航空エンジンやガスタービンの高出力化や高効率化を更に進めることが可能となり、燃料にかかるコスト削減に資する効果は大きい。
必要なセンサ信号は極少数に限られるため、既存の航空機エンジンや発電用ガスタービンに、追加的に装備することが容易である。そのため新製品に限らず広く普及させることが可能である。
【0027】
必要なセンサ信号は極少数に限られるため、少し増やすだけで冗長系を構築することができるので、観測装置の信頼性を高めることが容易である。
【図面の簡単な説明】
【0028】
【
図1】本発明の一実施形態に係る観測装置を示すブロック図である。
【
図2】本発明の一実施形態に係るセンサがターボ機械に配置された例を示す概略図である。
【
図3】サンプルエントロピーを説明するための時系列データの配置例を示すグラフである。
【
図4】サンプルエントロピーにおいてD=1の場合の時系列データの配置例を示すグラである。
【
図5】サンプルエントロピーにおいてD=2の場合の時系列データの配置例を示すグラである。
【
図6】マルチスケール性を考慮に入れた粗視化した時系列データを得る方法の説明図である。
【
図7】マルチスケール性を考慮に入れたサンプルエントロピーにおいてターボ機械の羽根のひずみ変動を用いて演算を行った結果を示すグラフである。
【
図8】リカレンスプロットを説明するための圧力変動の時系列データの一例を示すグラフである。
【
図9】
図8に示す時系列データを位相空間に埋め込んだ例を示すグラフである。
【
図11】
図10に示す位相空間内の各点の相関関係をリカレントプロットしたグラフである。
【
図12】本実施形態における各流量とリカレンスプロットのDETとの関係を示すグラフである。
【
図13】流量q=6kg/sにおけるリカレントプロットの関係図である。
【
図14】流量q=8.5kg/sにおけるリカレントプロットの関係図である。
【
図15】流量q=9.5kg/sにおけるリカレントプロットの関係図である。
【
図16】本実施形態における各流量とリカレンスプロットのDETとの関係からフラッタを把握するための説明図である。
【
図17】順列エントロピーを説明するための時系列データの一例を示すグラフである。
【
図18】
図17に示す時系列データを順列パターンに分類した図である。
【
図19】
図18に示す順列パターンの存在確率を示すグラフである。
【
図20】順列エントロピーによりフラッタを把握するための説明図である。
【
図21】順列エントロピーの時間的変化の一例を示すグラフである。
【
図22】本発明の他の実施形態に係る観測装置を示すブロック図である。
【
図23】本発明の更に別の実施形態に係る観測装置を示すブロック図である。
【発明を実施するための形態】
【0029】
以下、図面を参照しながら、本発明の実施形態を説明する。
【0030】
<観測装置の構成>
図1は、本発明の一実施形態に係る観測装置を示すブロック図である。
【0031】
図1に示すように観測装置1は、検出部10と、演算部20と、判定部30と、制御部40とを有する。
【0032】
検出部10は、ターボ機械2に配置され、時間応答性が高くターボ機械2の非定常変動を観測する1又は2以上のセンサを有する。
【0033】
検出部10は、
図2に示すように、ターボ機械2の回転部である羽根2aに取り付けられたセンサ11や羽根2aの先端と対面する静止部としての壁面2bに取り付けられたセンサ12等を有する。このような検出部10のセンサは、流路中や流路に接する壁面に配置されていてもよい。
センサ11は、例えば羽根のひずみをリアルタイムに検出するひずみゲージからなり、センサ12は、例えば流体の圧力をリアルタイムに検出する非定常圧力センサからなり、この実施形態においては、これらのセンサ11、12は、不安定作動の一つであるフラッタを観測するためのものである。センサ12は例えば流路中や流路に接する壁面に配置してもよい。不安定作動であるストールやサージを観測するためには、同様にセンサを配置すればよい。
【0034】
演算部20は、センサ11やセンサ12から出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、時系列データから乱雑さと回帰性の変化を定量的に評価することにより、ターボ機械2の不安定作動を検知するパラメータをリアルタイムに算出する。
例えば、演算部20は、センサ11から出力信号を時々刻々と入力し、所定期間分の時系列データを蓄積し、フラッタを検知するパラメータをリアルタイムに算出する。
【0035】
判定部30は、不安定作動を検知するパラメータを所定の閾値と比較し、不安定作動の予兆又は発生の判定結果をリアルタイムに出力する。
【0036】
制御部40は、判定部30により不安定作動の予兆又は発生の判定結果が出力されたとき、ターボ機械2の運転制御装置3に作動条件を変更する信号を出力する。また、制御部40は、判定部30により不安定作動の予兆又は発生の判定結果が出力されたとき、報知部4にターボ機械2の運転操作に対して警告を発するための信号を出力する。
運転制御装置3は、作動条件を変更する信号を受けると、例えばターボ機械2の運転を停止するようにターボ機械2を制御する。
報知部4は、警告に係る信号を受けると、例えば航空機の場合であれば、パイロットや運転操作員に手動制御を行うべきアラーム信号を発信する。
【0037】
ここで、演算部20における検知パラメータの算出法として、サンプルエントロピー、マルチスケール性を考慮に入れたサンプルエントロピー、リカレンスプロット、順列エントロピーという指標を用いて検知パラメータを算出する手法を用いることが有効である。以下、これらの指標を用いて検知パラメータを算出する手法を説明する。
【0038】
(サンプルエントロピー)
サンプルエントロピーとは、時系列データの乱雑さを定量評価した指標である。具体的には、時系列データ{x(ti)},i=1,2,・・・,NをDとD+1次元の位相空間に埋め込み、D次元で近傍であった点がD+1次元においても近傍である条件付確率を負の自然対数で定義する。
サンプルエントロピーSEは
【0039】
【0040】
そして、例えば
図3に示すように、X
D(t
i)を中心とするD次元立方体内にX
D(t
j)が存在する場合には、Θ(・)=1とし、X
D(t
i)を中心とするD次元立方体内にX
D(t
j)が存在しない場合には、Θ(・)=0とする。
【0041】
ここで、例えば
図4に示すように、D=1で◇点を基準とした場合、△点2点、▽点2点をカウントする。
【0042】
図5に示すように、D=2で◇点を基準とした場合、△点2点のみカウントする。▽点は次元を拡張することにより、D次元立方体の外に移動したため、D=2においてはカウントしない。
【0043】
同様な手順を時系列データの全離散点で行いサンプルエントロピーSEを計算する。
【0044】
この実施形態では、閾値rは標準偏差の0.15倍とし、D=2とした。閾値を適宜設定することでターボ機械2の不安定作動現象の予兆や発生を捉えることが可能である。
【0045】
(マルチスケール性を考慮に入れたサンプルエントロピー)
マルチスケール性を考慮に入れたサンプルエントロピーとは、時系列データを粗視化してサンプルエントロピーを用いた指標である。具体的には、下記の非重複平均によって時系列データx(t
i)の時間平均をとり、
図6に示すような新たな時系列データy(t
j)を得る。
【0046】
【0047】
そして、この新たな時系列データを前記の定義式に代入することよりサンプルエントロピーS
Eを算出する。
マルチスケール性を考慮に入れたサンプルエントロピーにおいては、粗視化することにより異なる時間スケールの影響を知ることが可能である。
【0048】
この実施形態では、xとして、センサ11から検出される羽根2aの周方向のひずみ変動εを用いて演算を行った。その例を
図7に示す。
【0049】
図7のAに示すように、流量q=9.0kg/sにおいてS
f=15以降の低周波領域でS
Eが減少している。S
f(=15)×(2次の固有振動数)はサンプリング周波数とほぼ一致し、2次の固有振動数の周波数特性を捉えている。従って、これを検出することでフラッタの予兆を捉えることが可能である。
【0050】
また、q=9.5kg/sにおいてSEが全領域で低くなっている。従って、これを検出することでフラッタの発生を捉えることが可能である。
【0051】
(リカレンスプロット)
リカレンスプロットとは、位相空間内の各点間の相関関係を視覚化した指標である。例えば、まず、
図8に示す圧力変動の時系列を
図9に示すように位相空間に埋め込んでいく。次に、
図10に示す位相空間内の各点の相関関係を下記の式による演算を行い
図11のようにプロットする。
ここで、
【0052】
【0053】
リカレンスプロットにおいて、決定論性を表す指標DETは以下の式により算出される。
【0054】
【0055】
以上の式において、
Θ:ヘビサイド関数
ε:位置ベクトル間の距離の閾値
Np :位相空間内の総データ点数
D:位相空間の次元(本実施形態ではD = 5とする)
τ:遅れ時間(本実施形態では相互情報量より求める)
l:斜線の長さ
lmin:斜線と定義する最小長さ
P(l):長さlの斜線の度数分布関数
である。
【0056】
各流量におけるリカレンスプロット関係を
図12~
図15に示す。
【0057】
図13と
図14とを比較すると、
図14に示すq=8.5kg/sの場合の方が
図13に示すq=6kg/sの場合に比べて回帰点が増加していることがわかる。また、
図15に示すq=9.5kg/sの場合にはフラッタ発生に伴い強い周期性が見られる。従って、リカレントプロットによって、フラッタの予兆および発生を捉えることが可能であることがわかる。
【0058】
図16において、フラッタが発達しているStc0、Stc1、Stc2の結果を解析する。Stc0、Stc1、Stc2は羽根2aのひずみをリアルタイムに検出するひずみゲージのチャンネル名である。
図16のCに示すように、フラッタ発生以前のq=8.5kg/sにおいて前記の指標DETが増加する。このような僅かなDETの増加を検出することでフラッタの予兆を検出することが可能である。また、この後のqの増加に伴い、波形の周期性が増加するためDETも増加している(
図16のD)。これを検出することで、フラッタの発生を捉えることが可能である。
【0059】
(順列エントロピー)
順列エントロピーとは、時系列データの乱雑さを定量評価する指標である。
図17に示す時系列データを
図18に示すように所定の順列パターンに分類し、
図19に示すように各順列パターンの存在確率pを求める。pをシャノンの情報エントロピーに適用し、順列エントロピーを算出する。一般的に、シャノンの情報エントロピーは、事象の確率変数の離散確率分布pを用いて次式で表される。このとき、N=D!となる。
【0060】
ここで、最大エントロピー(=log
2D!)により順列エントロピーを正規化する。つまり、順列エントロピーh
pは以下の演算で求める。
【0061】
【0062】
ここで、順列エントロピーhpは1に近いほど乱雑で、0に近いほど周期性を有することとなる。
【0063】
Stc0~Stc8での処理結果を
図20に示す。Stc0~Stc8とは、それぞれ羽根2aのひずみをリアルタイムに検出するひずみゲージのチャンネル名である。
図20のE及びFから、qの増加に伴い波形の周期性が増加するため順列エントロピーは減少している。これを検出することで、フラッタの発生を捉えることが可能であることがわかる。
【0064】
【0065】
図21において、
Q:空気流量の時間変化
ε:ひずみ変動の時間変化
ε
rms:ひずみ変動の二乗平均平方根の時間変化
である。
【0066】
図21のGから、ε
rmsが急激に増加する以前のt≒8.2sにおいて順列エントロピーh
p≒0.85~0.7に減少していることがわかる。
図21のHから、ε
rmsが急激に増加するt≒10sにおいて順列エントロピーh
p≒0.85~0.45に急激に減少していることがわかる。
【0067】
よって、εrmsではフラッタの予兆および発生を捉えることが難しいが,順列エントロピーの変化を検知することで、フラッタの予兆および発生を捉えることが可能であることがわかる。
【0068】
<その他>
本発明は、上記の実施形態に限定されず、本発明の技術思想の範囲において様々に変形して或いは応用して実施することが可能である。そのような実施の範囲も本発明の技術的範囲に属する。
【0069】
例えば、
図22に示すように、観測装置100が、検出部10、演算部20及び判定部30を2系統以上有していてもよい。このように不安定作動の観測を冗長系に変更することで、信頼性を向上させることができる。
【0070】
また、
図23に示すように、観測装置100が、検出部10a~10d、演算部20a~20d及び判定部30a~30dを2種類以上有していてもよい。これにより、同時に検知可能な不安定作動の種類を増やし、信頼性を向上させることができる。
【0071】
更に、2種類以上のセンサ、演算部及び判定部を用い、これをターボ機械における適切な円周方向の位置や軸方向の位置に取り付けることにより、発生する不安定作動の種類を判定できる。
【0072】
本発明に係る演算部、判定部及び制御部はコンピュータにより実行可能であり、これら演算部、判定部及び制御部をコンピュータにより実行可能なプログラムとして把握してもよい。
【0073】
本発明は、航空機用、船舶用のガスタービンエンジンに適用し、運航中の安全性を向上することができる。また、発電用ガスタービン、蒸気タービン、発電用風車に適用し、運転中の作動安定性を監視し、電力供給の信頼性向上をはかることができる。
【符号の説明】
【0074】
1 :観測装置
2 :ターボ機械
2a :羽根
2b :壁面
3 :運転制御装置
4 :報知部
10 :検出部
11、12 :センサ
20 :演算部
30 :判定部
40 :制御部
100 :観測装置