(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-20
(45)【発行日】2022-09-29
(54)【発明の名称】超純水製造システムの微粒子管理方法
(51)【国際特許分類】
C02F 1/42 20060101AFI20220921BHJP
C02F 1/32 20060101ALI20220921BHJP
B01D 61/00 20060101ALI20220921BHJP
C02F 1/44 20060101ALI20220921BHJP
C02F 1/58 20060101ALI20220921BHJP
C02F 9/04 20060101ALI20220921BHJP
C02F 9/12 20060101ALI20220921BHJP
G06M 11/00 20060101ALI20220921BHJP
【FI】
C02F1/42 B
C02F1/32
B01D61/00
C02F1/44 J
C02F1/58 H
C02F9/04
C02F9/12
G06M11/00 A
(21)【出願番号】P 2018019853
(22)【出願日】2018-02-07
【審査請求日】2020-11-09
【前置審査】
(73)【特許権者】
【識別番号】000001063
【氏名又は名称】栗田工業株式会社
(74)【代理人】
【識別番号】100108833
【氏名又は名称】早川 裕司
(74)【代理人】
【識別番号】100162156
【氏名又は名称】村雨 圭介
(72)【発明者】
【氏名】宮地 みどり
(72)【発明者】
【氏名】宮▲崎▼ 洋一
【審査官】河野 隆一朗
(56)【参考文献】
【文献】国際公開第2017/164361(WO,A1)
【文献】特開2010-069460(JP,A)
【文献】国際公開第2015/050125(WO,A1)
【文献】特開2010-227886(JP,A)
【文献】特開平09-029251(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C02F 1/42
C02F 1/44
B01D 61/00 - 61/58
C02F 1/32
C02F 1/58
C02F 9/04
C02F 9/12
G06M 7/00 - 15/00
G01N 15/00 - 15/14
(57)【特許請求の範囲】
【請求項1】
一次純水システムで製造した一次純水を非再生型混床式イオン交換装置及び微粒子除去膜装置をこの順に備えたサブシステムで処理する超純水製造システムの微粒子管理方法であって、
前記微粒子除去膜装置の出口の超純水W1中の微粒子数と、前記非再生型混床式イオン交換装置の処理水W2中の微粒子数とを微粒子数計測手段により計測して、前記超純水W1中の微粒子数が1個/mL以下で
あり、
かつ、前記処理水W2中の微粒子数が10個/mLを超えたら、前記サブシ
ステムの運転を一旦停止し、前記非再生型混床式イオン交換装置を交換する、
超純水製造システムの微粒子管理方法。
【請求項2】
前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備える、請求項1に記載の超純水製造システムの微粒子管理方法。
【請求項3】
前記サブシステムが低圧紫外線(UV)照射酸化装置、触媒樹脂(過酸化水素除去)装置、膜式脱気装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備える、請求項1に記載の超純水製造システムの微粒子管理方法。
【請求項4】
前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置、膜式脱気装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備える、請求項1に記載の超純水製造システムの微粒子管理方法。
【請求項5】
前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の処理水W2中の微粒子数と前記微粒子除去膜装置の出口の超純水W1中の微粒子数とを1台の微粒子計を切り替えることで計測する、請求項1~4のいずれか一項に記載の超純水製造システムの微粒子管理方法。
【請求項6】
前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の出口側及び前記微粒子除去膜装置の出口側にそれぞれ微粒子計を設けて、前記非再生型混床式イオン交換装置の処理水W2中の微粒子数及び前記微粒子除去膜装置の出口の超純水W1中の微粒子数をそれぞれ計測する、請求項1~4のいずれか一項に記載の超純水製造システムの微粒子管理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超純水製造システムの微粒子管理方法に関し、特に超純水中の微粒子数を低減化した状態に維持することの可能な超純水製造システムの微粒子管理方法に関する。
【背景技術】
【0002】
電子産業分野で使用される超純水の製造装置は大きく分けて、工業用水や水道水など通常の水から濁質等を除去する前処理装置と、前処理装置の処理水を精製して大部分の不純物を除去した純水を製造する一次純水装置と、一次純水をさらに高度に精製して不純物をほぼ完全に除去した超純水を製造する二次純水装置(サブシステム)とからなる。
【0003】
このうち、二次純水装置(サブシステム)は、基本的には有機物を分解する低圧紫外線(UV)照射酸化装置、イオン性不純物を吸着除去するイオン交換樹脂を充填した非再生型の混床式イオン交換装置及び微粒子を完全に除去するための限外濾過膜(UF膜)分離装置を基本構成として備え、水の純度をより一層高めて超純水にする。ここで、低圧UV照射酸化装置では、低圧UVランプより出される波長185nmの紫外線によりTOCを有機酸さらにはCO2にまで分解する。分解された有機酸及びCO2は後段のイオン交換樹脂で除去される。UF膜分離装置では、イオン交換樹脂の流出粒子などの微小粒子が除去される。このように従来は、サブシステムの末端にUF膜等の微粒子除去膜を設置することで、ナノメートルサイズの微粒子除去処理を行っていたが、近年、半導体製品の高性能化、微細化の進展に伴い、微粒子管理が厳しくなっており、例えば、半導体工場ではφ50nm以上の粒子が1個/mL以下に管理値が設定されることも多い。このためサブシステムのUF膜分離装置の出口で超純水中の微粒子数を測定し、管理することが行われている。
【0004】
このサブシステムの代表的な例を
図5に示す。
図5において、サブシステム21は、一次純水Wを貯留するためのサブタンク22と、このタンク22に貯留した一次純水Wの供給ライン23の基端部に設けられたポンプ24と、このポンプ24の後段に設けられた熱交換器25、低圧UV照射酸化装置26、非再生型混床式イオン交換装置27及びUF膜分離装置28とを有する。そして、UF膜分離装置28の出口側にオフラインモニターとしての微粒子計(PC)29が設けられている。
【0005】
上述したようなサブシステム21の運転中は、ポンプ24を稼動して、サブタンク22内の一次純水Wを熱交換器25、低圧UV照射酸化装置26、非再生型混床式イオン交換装置27及びUF膜分離装置28に順次通水し、得られた超純水W1をユースポイントPOUに送る。一方、ユースポイントPOUで使用されなかった超純水W1は循環ライン23Aを経てサブタンク22に返送され、再度処理される。
【発明の概要】
【発明が解決しようとする課題】
【0006】
従来の
図5に示すようなサブシステム21では、超純水W1中の微粒子数をUF膜分離装置28の出口側の微粒子計29により管理する一方、非再生型混床式イオン交換装置27は、その出口側のイオン負荷を導電率計や比抵抗計などにより計測し、これが所定の値よりも大きくなったら定期的に交換していた。しかしながら、このような管理方法によっても超純水W1中に微粒子がリークし、超純水W1中の微粒子数を低減化した状態に維持することができないことがある、という問題点があった。
【0007】
本発明は上記問題点に鑑みてなされたものであり、超純水中の微粒子数を低減化した状態に維持することの可能な超純水製造システムの微粒子管理方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的に鑑み本発明は、一次純水システムで製造した一次純水を非再生型混床式イオン交換装置及び微粒子除去膜装置をこの順に備えたサブシステムで処理する超純水製造システムの微粒子管理方法であって、前記微粒子除去膜装置の出口の超純水中の微粒子数を微粒子数計測手段により計測することで監視する一方、前記非再生型混床式イオン交換装置の処理水の微粒子数を微粒子数計測手段により計測して、前記非再生型混床式イオン交換装置の処理水の微粒子数が所定の値を超えたら前記非再生型混床式イオン交換装置を交換する、超純水製造システムの微粒子管理方法を提供する(発明1)。
【0009】
かかる発明(発明1)によれば、非再生型混床式イオン交換装置の処理水の微粒子数を微粒子数計測手段により計測して管理することにより、微粒子除去膜装置の出口の超純水中の微粒子数を安定して低減化することが可能となる。これは以下のような理由によると推測される。すなわち、超純水中の微粒子を微粒子除去膜装置の出口側のみで管理した場合、微粒子除去膜装置から微粒子がリークした時点で微粒子の増加を検知することができるが、これでは基準値よりも微粒子数が増加した超純水が供給されるのを未然に防止することができない。そこで、本発明者らが非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置で処理して得られる超純水中の微粒子数の関連性を調査した結果、非再生型混床式イオン交換装置の処理水の微粒子数が増加すると、微粒子除去膜装置の出口の超純水に微粒子がリークしやすいことがわかった。そこで、この非再生型混床式イオン交換装置の処理水の微粒子の増加を管理するとともに、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、得られる超純水中の微粒子数を低減化した状態で安定して供給することができる。
【0010】
上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明2)。また、上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、触媒樹脂(過酸化水素除去)装置、膜式脱気装置、非再生型混床式イオン交換装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明3)。さらに、上記発明(発明1)においては、前記サブシステムが低圧紫外線(UV)照射酸化装置、非再生型混床式イオン交換装置、膜式脱気装置及び前記微粒子除去膜装置としての限外濾過膜(UF膜)分離装置をこの順に備えることが好ましい(発明4)。
【0011】
かかる発明(発明2~4)によれば、限外濾過膜(UF膜)分離装置の前段に配置された非再生型混床式イオン交換装置は、ナトリウムや塩素などのイオンに比べてコロイダルシリカなどの微粒子が破過しやすく、この微粒子が限外濾過膜(UF膜)分離装置の破断部分から流出して超純水中の微粒子数の増加をきたすので、非再生型混床式イオン交換装置の処理水の微粒子数を管理して該微粒子数が所定の値を上回ったら、非再生型混床式イオン交換装置を交換して、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、微粒子数が増加した超純水が供給されるのを未然に防止することができる。
【0012】
上記発明(発明1~4)においては、前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の処理水の微粒子数と前記微粒子除去膜装置の出口の超純水中の微粒子数とを1台の微粒子計を切り替えることで計測することが好ましい(発明5)。
【0013】
かかる発明(発明5)によれば、1台の微粒子計で非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置の出口の超純水中の微粒子数とを計測することができる。
【0014】
上記発明(発明1~4)においては、前記微粒子数計測手段が微粒子計であり、前記非再生型混床式イオン交換装置の出口側及び前記微粒子除去膜装置の出口側にそれぞれ微粒子計を設けて、前記非再生型混床式イオン交換装置の処理水の微粒子数及び前記微粒子除去膜装置の出口の超純水中の微粒子数をそれぞれ計測することが好ましい(発明6)。
【0015】
かかる発明(発明6)によれば、非再生型混床式イオン交換装置の処理水の微粒子数と微粒子除去膜装置の出口の超純水中の微粒子数をそれぞれ独立して計測することができる。
【発明の効果】
【0016】
本発明は、非再生型混床式イオン交換装置の処理水の微粒子数を計測して、該微粒子数が所定の値を超えたら非再生型混床式イオン交換装置を交換して、微粒子除去膜装置の出口の超純水中の微粒子数を確認することで、微粒子数が増加した超純水が供給されるのを未然に防止することができる。
【図面の簡単な説明】
【0017】
【
図1】本発明の第一の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。
【
図2】本発明の第二の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。
【
図3】本発明の第三の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。
【
図4】本発明の第四の実施形態による超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。
【
図5】従来の超純水製造システムの微粒子管理方法を適用可能な超純水製造システムを示す概略図である。
【発明を実施するための形態】
【0018】
以下、本発明の第一の実施形態による超純水製造システムの微粒子管理方法について
図1を参照にして詳細に説明する。
【0019】
本実施形態の超純水製造システムの微粒子管理方法を適用可能なサブシステムは、前述した
図5に示すものと基本的には同じ構成を有する。すなわち、
図1において、サブシテム1は、一次純水Wを貯留するためのサブタンク2と、このサブタンク2に貯留した一次純水Wの供給ライン3の基端部に設けられたポンプ4と、このポンプ4の後段に設けられた熱交換器5、低圧UV照射酸化装置6、非再生型混床式イオン交換装置7及び微粒子除去膜装置としての限外濾過膜(UF膜)分離装置8とを有する。そして、UF膜分離装置8の出口側と非再生型混床式イオン交換装置7の出口側にそれぞれ切替可能に微粒子数を計測する手段である微粒子計(PC)9が接続されている。この微粒子計9としては、栗田工業社製「K-LAMIC」(商品名)、PMS社製「UDI-50」(商品名)などを用いることができる。
【0020】
上述したようなサブシステム1の運転時には、ポンプ4を稼動してサブタンク2内の一次純水Wを熱交換器5、低圧UV照射酸化装置6、非再生型混床式イオン交換装置7に順次通水し、非再生型混床式イオン交換装置7の処理水W2をUF膜分離装置8に通水して超純水W1を得る。そして、得られた超純水W1をユースポイントPOUに供給する。一方、ユースポイントPOUで使用されなかった超純水W1は循環ライン3Aを経てサブタンク2に返送され、再度処理される。
【0021】
なお、本実施形態における超純水W1としては、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、水温:25±2℃のものが好適である。
【0022】
次にこのような超純水製造システムの微粒子管理方法について説明する。
[通常時運転]
上述したような超純水の製造工程において、微粒子計9をUF膜分離装置8の出口側と非再生型混床式イオン交換装置7の出口側とにそれぞれ所定のタイミングで適宜切り替えることで、UF膜分離装置8の出口側の超純水W1の微粒子数と、非再生型混床式イオン交換装置7の処理水W2の微粒子数を測定する。そして、超純水W1の微粒子数が1個/mL以下であり、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mL以下であれば、サブシテム1の運転を継続して、超純水W1をユースポイントPOUへ供給する。
【0023】
[微粒子数管理運転]
一方、オフラインモニターである微粒子計9で計測されたUF膜分離装置8の出口側の超純水W1の微粒子数が1個/mL以下であっても、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mLを超えたら、サブシテム1の運転を一旦停止し、非再生型混床式イオン交換装置7を交換する。これによりUF膜分離装置8の出口側の超純水W1の微粒子数を1個/mL以下に保持することができ、微粒子数が基準値を超えた超純水W1がユースポイントPOUへ供給されるのを未然に防止することができる。なお、このような管理を行ってもUF膜分離装置8の出口側の超純水W1の微粒子数が1個/mLを超える場合には、UF膜分離装置8に破断が生じたと判断して、UF膜分離装置8を交換するなどすればよい。
【0024】
<作用機構>
このような効果が得られるのは以下のような作用機構による。すなわち、一般にイオン交換装置では、溶解性シリカは非常に除去しやすいのに対し、コロイダルシリカはホウ素よりも非常に除去しにくい(破過しやすい)ことが報告されている(「UPW Micro 2017,UPW IRDS and SEMI update」Slava Libmanら)。そして、このホウ素は、一次純水W中に含まれているナトリウムイオン(Na+)、塩素イオン(Cl-)あるいは炭酸イオン(HCO3
-)よりも非常に除去しにくい(破過しやすい)。すなわち、コロイダルシリカは、ナトリウムイオン(Na+)、塩素イオン(Cl-)、炭酸イオン(HCO3
-)よりもはるかに破過しやすいことになる。
【0025】
そこで、本発明者らが検討した結果、非再生型混床式イオン交換装置7の出口側、すなわちUF膜分離装置8の入口側における微粒子数の増加は、主にコロイダルシリカ粒子に起因することがわかった。従来、非再生型混床式イオン交換装置7は、その出口側に導電率計や比抵抗計などのイオン負荷を計測する手段を設けてイオン負荷を計測し、これが所定の値よりも大きくなったら定期的に交換していたが、これではコロイダルシリカの微粒子はUF膜分離装置8に流入してしまう。これに対し本実施形態のように非再生型混床式イオン交換装置7の処理水の微粒子数に視点をおいて管理することで、微粒子がUF膜分離装置8の出口に到達する前に非再生型混床式イオン交換装置7を交換することができるので、UF膜分離装置8の出口における超純水W1の微粒子数の安定化を図ることができる。そして、超純水W1の微粒子数が増加しないことを微粒子計9により計測して確認すればよい。
【0026】
以上、本発明の第一の実施形態について添付図面を参照して説明してきたが、本発明は前記実施形態に限らず種々の変更実施が可能である。例えば、
図2に示すようにUF膜分離装置8の出口側に第一の微粒子計9Aを設けるとともに非再生型混床式イオン交換装置7の出口側に第二の微粒子計9Bを設けて、非再生型混床式イオン交換装置7の処理水W2の微粒子数と、UF膜分離装置8の出口の超純水W1の微粒子数とをそれぞれ独立して計測する構成としても良い。また、微粒子数計測手段は、微粒子計9などはオフラインモニターでなく、遠心ろ過法を利用したオンラインモニターとしても良い。
【0027】
また、サブシステム1としては、前述した第一及び第二の実施形態のものに限らず種々のサブシステムに適用可能である。例えば、
図3に示すように低圧紫外線(UV)照射酸化装置6の後段に白金族金属などを担持したイオン交換樹脂を充填した触媒樹脂(過酸化水素除去)装置10、膜式脱気装置11を設け、その後段に非再生型混床式イオン交換装置7及び限外濾過膜(UF膜)分離装置8をこの順に備えるものにも好適に適用可能である。さらに、サブシステム1として、例えば、
図4に示すように非再生型混床式イオン交換装置7と限外濾過膜(UF膜)分離装置8の間に膜式脱気装置12を設けたものにも好適に適用可能である。この場合、微粒子計9などの微粒子数計測手段は、非再生型混床式イオン交換装置7の出口側でUF膜分離装置8より前であれば、膜式脱気装置12などの他のエレメントが介在していてもよく、その場合、他のエレメントの出口側で微粒子数を計測してもよいし、非再生型混床式イオン交換装置7の直後で計測してもよい。
【実施例】
【0028】
以下の具体的実施例により本発明をさらに詳細に説明する。
【0029】
[実験例1]
図1に示す超純水製造システムにより、市水を原水として超純水の製造を行った。なお、サブシステム1を構成する低圧UV照射酸化装置6としては日本フォトサイエンス社製品を、非再生型混床式イオン交換装置7としては栗田工業社製「KR-FM」を、UF膜分離装置8としては栗田工業社製「KU-1510-HP-H」を、微粒子計9としては栗田工業社製「K-LAMIC」をそれぞれ使用した。
【0030】
上記超純水の製造システムでの超純水の製造工程において、非再生型混床式イオン交換装置7の処理水W2及びUF膜分離装置8の出口の超純水W1の微粒子数を監視し、非再生型混床式イオン交換装置7の処理水W2の微粒子数が10個/mLを超えたら、非再生型混床式イオン交換装置7を交換する作業を繰り返した結果、UF膜分離装置8の出口の超純水W1の微粒子数が1個/mLを超えることはなかった。これはUF膜分離装置8への流入する処理水W2中のコロイダルシリカなどに起因する微粒子数を抑制することができるためであると考えられる。
【0031】
[比較例1]
実施例1において、非再生型混床式イオン交換装置7の処理水W2の微粒子数を計測することなく、比抵抗計により比抵抗値を測定し、この比抵抗値からイオン負荷を判断し、イオン負荷が所定の値を超えたら非再生型混床式イオン交換装置7を交換する作業を繰り返した結果、UF膜分離装置8の出口の超純水W1の微粒子数が時間の経過とともに1個/mLを超える傾向を示した。これはUF膜分離装置8の経時劣化により部分的に破断が生じ、コロイダルシリカがリークしたためであると考えられる。
【符号の説明】
【0032】
1 サブシテム
2 サブタンク
3 供給ライン
3A 循環ライン
4 ポンプ
5 熱交換器
6 低圧紫外線(UV)照射酸化装置
7 非再生型混床式イオン交換装置
8 限外濾過膜(UF膜)分離装置(微粒子除去膜装置)
9,9A,9B 微粒子計(微粒子数計測手段)
POU ユースポイント
W 一次純水
W1 超純水
W2 非再生型混床式イオン交換装置の処理水