(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-21
(45)【発行日】2022-09-30
(54)【発明の名称】シロキサン及びその製造方法
(51)【国際特許分類】
C08F 30/08 20060101AFI20220922BHJP
C08F 290/06 20060101ALI20220922BHJP
C07F 7/08 20060101ALI20220922BHJP
A61L 27/16 20060101ALI20220922BHJP
【FI】
C08F30/08
C08F290/06
C07F7/08 X CSP
A61L27/16
(21)【出願番号】P 2019106366
(22)【出願日】2019-06-06
【審査請求日】2021-05-21
(73)【特許権者】
【識別番号】000002060
【氏名又は名称】信越化学工業株式会社
(74)【代理人】
【識別番号】100085545
【氏名又は名称】松井 光夫
(74)【代理人】
【識別番号】100118599
【氏名又は名称】村上 博司
(74)【代理人】
【識別番号】100160738
【氏名又は名称】加藤 由加里
(74)【代理人】
【識別番号】100114591
【氏名又は名称】河村 英文
(72)【発明者】
【氏名】岡村 薫
【審査官】今井 督
(56)【参考文献】
【文献】特開昭54-055455(JP,A)
【文献】特開昭56-022325(JP,A)
【文献】特開2004-182724(JP,A)
【文献】特表2009-542674(JP,A)
【文献】国際公開第2020/045225(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08F 30/08
C08F 290/06
A61L 27/00- 27/60
C07F 7/00- 7/30
CAPlus/Registry(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(1)で表されるシロキサン
【化1】
(式中、R
1は水素原子又はメチル基であり、R
2は炭素数1~6の一価炭化水素基であり、Lは、エーテル結合を含んでよい炭素数2~10の二価炭化水素基であり、Aは下記式(2)または(3)で表される基であり、
【化2】
【化3】
上記式(2)においてnは1~100の整数であり、上記式(3)においてaは0~10の整数であり、bは0~10の整数であり、cは0~10の整数であり、ただしa+b+cは2以上であり、Rは、互いに独立に炭素数1~10の1価炭化水素基である)。
【請求項2】
Lが下記式(4)で表される二価の基である、請求項1記載のシロキサン
【化4】
(式(4)において、pは1~2の整数であり、qは1~4の整数であり、*は式(1)における炭素原子との結合箇所であり、**は式(1)におけるAとの結合箇所である)。
【請求項3】
Lが上記式(4)で表され、pが1であり、qが2である、請求項2記載のシロキサン。
【請求項4】
式(1)においてAが上記式(2)で表され、nが2~20の整数である、請求項1~3のいずれか1項記載のシロキサン。
【請求項5】
式(1)においてAが上記式(3)で表され、aが1であり、bが1であり、cが0である、請求項1~3のいずれか1項記載のシロキサン。
【請求項6】
式(1)においてR
2がメチル基である、請求項1~5のいずれか1項記載のシロキサン。
【請求項7】
式(2)及び(3)において、Rが互いに独立に、炭素数1~6のアルキル基、又はフェニル基である、請求項1~6のいずれか1項記載のシロキサン。
【請求項8】
Rが互いに独立にメチル基、n-ブチル基、又はt-ブチル基である、請求項7記載の
シロキサン。
【請求項9】
請求項1~8のいずれか1項記載のシロキサンの(メタ)アクリル基の重合から導かれる繰り返し単位を含むポリマー。
【請求項10】
前記繰り返し単位の質量割合がポリマーの全質量に対し10質量%以上である、請求項9記載のポリマー。
【請求項11】
請求項9または10記載のポリマーを含むハイドロゲル。
【請求項12】
請求項9または10記載のポリマーを含む医療用材料。
【請求項13】
下記式(1)で表されるシロキサン
【化5】
(式中、R
1は水素原子又はメチル基であり、R
2は炭素数1~6の一価炭化水素基であり、Lは、エーテル結合を含んでよい炭素数2~10の二価炭化水素基であり、Aは下記式(2)または(3)で表される基であり、
【化6】
【化7】
上記式(2)においてnは1~100の整数であり、上記式(3)においてaは0~10の整数であり、bは0~10の整数であり、cは0~10の整数であり、ただしa+b+cは2以上であり、Rは、互いに独立に炭素数1~10の1価炭化水素基である)の製造方法であって、
下記式(5)で表される末端不飽和基含有化合物
【化8】
(R
1及びR
2は上記の通りであり、R
3は水素原子又はメチル基であり、L’は単結合、又は、エーテル結合を含んでよい、炭素数1~8の二価炭化水素基である)
と、下記式(6)または(7)で表されるハイドロジェンシロキサン
【化9】
【化10】
(R、n、a、b、及びcは上記の通りである)
とをヒドロシリル化反応させて上記式(1)で表されるシロキサンを得る工程を含む、前記製造方法。
【請求項14】
前記ハイドロジェンシロキサンに対する前記
末端不飽和基含有化合物のモル比が1.0~3.0である、請求項13記載の製造方法。
【請求項15】
Lが下記式(4)で表される二価の基である、請求項13又は14記載の製造方法。
【化11】
(式(4)において、pは1~2の整数であり、qは1~4の整数であり、*は式(1)における炭素原子との結合箇所であり、**は式(1)におけるAとの結合箇所である)。
【請求項16】
Aが上記式(2)で表され、nは2~20の整数である、請求項13~15のいずれか1項記載の製造方法。
【請求項17】
Aが上記式(3)で表され、aは1であり、bは1であり、cは0である、請求項13~15のいずれか1項記載の製造方法。
【請求項18】
R
2がメチル基である、請求項13~17のいずれか1項記載の製造方法。
【請求項19】
Rが互いに独立に、炭素数1~6のアルキル基、又はフェニル基である、請求項13~18のいずれか1項記載の製造方法。
【請求項20】
Rが互いに独立に、メチル基、n-ブチル基、又はt-ブチル基である、請求項19記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はシロキサンに関する。詳細には、医療用材料に好適なシロキサン及びその製造方法を提供する。
【背景技術】
【0002】
従来、眼科用デバイスをはじめとした医療用材料に用いられる化合物として、シロキサンを有するモノマーが知られている。例えば、3-[トリス(トリメチルシロキシ)シリル]プロピルメタクリレート(TRIS)は、眼科用デバイス用モノマーとして広く用いられている。このTRISと親水性モノマーであるN,N-ジメチルアクリルアミドやN-ビニル-2-ピロリドンを共重合して得られるポリマーは高酸素透過性であるという有益な特長を有する。しかし、疎水性の高いシロキサンモノマーはこれらの親水性モノマーとの相溶性が高いとは言えず、医療用材料となるハイドロゲルを作製した際に相分離が起こり、白濁してしまうという問題がある。
【0003】
特許文献1、2、3、4には、下記式(a)、(a’)、(b)(b’)で示されるグリセロールメタクリレートを有するシロキサンが記載されている。
【化1】
【化2】
該化合物は、分子内に水酸基を有するために良好な親水性を発現する。そのため、親水性モノマーとの相溶性に優れるという利点を有している。
【先行技術文献】
【特許文献】
【0004】
【文献】特開昭54-55455号公報
【文献】特開昭56-22325号公報
【文献】特開2004-182724号公報
【文献】特開2013-231046号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、上述したような(ポリ)シロキサンと重合性基とが連結する部分に第一級水酸基または第二級水酸基を有する化合物を用いてハイドロゲルを作製する場合、分子内に存在する反応性の高い水酸基によって望ましくない結果をもたらす場合がある。例えば、存在する水酸基にラジカルが付加し、ヒドロキシラジカルによる架橋構造の形成が引き起こされる恐れがある。それにより、予期せぬ硬度の増加や水酸基の減少による親水性の低下が引き起こされる。そのため、従来のシロキサン化合物では、有益な親水性や十分な強度を有する医療用材料を提供することができない。そこで、これらの欠点を克服する化合物及び組成物に対する需要が依然として存在する。
【0006】
本発明は医療用材料に好適なシロキサン及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者らは上記課題を解決する為に鋭意検討し、末端に(ポリ)シロキサン構造を有し、かつ(ポリ)シロキサンと重合性基とが連結する部分に第三級水酸基を有する(ポリ)シロキサンモノマーは、他の親水性モノマーとの相溶性に優れ、且つ、該(ポリ)シロキサンモノマー及び親水性モノマーの(共)重合体において予期せぬ架橋構造の形成を引き起こさないことを見出した。
【0008】
即ち、本発明は、下記式(1)で表されるシロキサン
【化3】
(式中、R
1は水素原子又はメチル基であり、R
2は炭素数1~6の一価炭化水素基であり、Lは、エーテル結合を含んでよい炭素数2~10の二価炭化水素基であり、Aは下記式(2)または(3)で表される基であり、
【化4】
【化5】
上記式(2)においてnは1~100の整数であり、上記式(3)においてaは0~10の整数であり、bは0~10の整数であり、cは0~10の整数であり、ただしa+b+cは2以上であり、Rは、互いに独立に炭素数1~10の1価炭化水素基である)。
さらに本発明は、該シロキサン化合物の製造方法、該化合物から導かれる繰り返し単位を含むポリマー、及び該ポリマーを含む医療用材料、特には眼科用デバイスを提供する。
【発明の効果】
【0009】
本発明のシロキサンは第三級水酸基を有することにより、親水性モノマーとの相溶性に優れ、且つ、本発明の化合物から導かれる繰返し単位を含む(共)重合体において好ましい強度を提供する。本発明の化合物は、医療用材料用モノマーとして有用である。
【発明を実施するための形態】
【0010】
以下、本発明のシロキサンについて、詳細に説明する。
【0011】
本発明は上記式(1)で表されるシロキサンである。該シロキサンは末端(ポリ)シロキサン構造(Aで示される部分)、末端(メタ)アクリロイル基、及び、該(ポリ)シロキサンと(メタ)アクリロイル基との連結基に第三級水酸基を有することを特徴とする。本発明のシロキサンにおいて親水基となる水酸基は第三級であり、副反応を抑制できる。これらの特徴により、親水性モノマーとの相溶性を保ちつつ、本発明のシロキサンから導かれる繰返し単位を含む(共)重合体において好ましい強度を提供できる。
【0012】
上記式(1)において、R1は水素原子又はメチル基であり、好ましくはメチル基である。
【0013】
上記式(1)において、R2は炭素数1~6の一価炭化水素基である。一価炭化水素基としては、メチル基、エチル基、プロピル基、n-ブチル基、t-ブチル基、ペンチル基、ヘキシル基等のアルキル基;シクロペンチル基、及びシクロヘキシル基等のシクロアルキル基;フェニル基等のアリール基等が挙げられる。R2は、好ましくは炭素数1~4のアルキル基であり、更に好ましくはメチル基である。
【0014】
上記式(1)において、Lはエーテル結合を含んでよい、炭素数2~10の二価炭化水素基であり、好ましくは炭素数4~10の二価炭化水素基である。該二価炭化水素基としては、例えば、エチレン、1,3-プロピレン、1-メチルプロピレン、1,1-ジメチルプロピレン、2-メチルプロピレン、1,2-ジメチルプロピレン、1,1,2-トリメチルプロピレン、1,4-ブチレン、2-メチル-1,4-ブチレン、2、2-ジメチル-1,4-ブチレン、3-メチル-1,4-ブチレン、2,2-ジメチル-1,4-ブチレン、2,3-ジメチル-1,4-ブチレン、2,2,3-トリメチル-1,4-ブチレン、1,5-ペンチレン、1,6-ヘキサニレン、1,7-ヘプタニレン、1,8-オクタニレン、1,9-ノナニレン、及び1,10-デカニレン等が挙げられる。
【0015】
また、エーテル結合を含む、炭素数2~10の、好ましくは炭素数4~10の二価炭化水素基としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエチレン-プロピレンオキサイド等のポリアルキレンオキサイドが挙げられる。好ましくは下記式(4)で表される基であるのがよい。
【化6】
(式(4)において、pは1~2の整数であり、qは1~4の整数であり、好ましくはqは2~4の整数であり、より好ましくはqは2である。*は式(1)における炭素原子との結合箇所であり、**は式(1)におけるAとの結合箇所である)
該式(4)で表される基として、好ましくは-CH
2OC
3H
6-、または-CH
2OC
2H
4OC
3H
6-である。
【0016】
Aは上記式(2)または(3)で表されるポリシロキサンであり、nは1~100の整数であり、aは0~10の整数であり、bは0~10の整数であり、cは0~10の整数であり、ただしa+b+cは2以上である。好ましくは、nは2~20の整数である。また、式(3)においてaが1であり、bが1であり、及びcが0であるのが好ましい。
【0017】
Rは、互いに独立に、炭素数1~10の、好ましくは炭素数1~6の一価炭化水素基である。一価炭化水素基としては、メチル基、エチル基、プロピル基、n-ブチル基、t-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基;シクロペンチル基、及びシクロヘキシル基等のシクロアルキル基;フェニル基、及びトリル基等のアリール基等が挙げられる。Rは、好ましくは炭素数1~10の、より好ましくは炭素数1~6のアルキル基又はフェニル基であり、更に好ましくはRがメチル基、n-ブチル基、又はt-ブチル基である。
【0018】
以下、上記式(1)で示される化合物の製造方法を説明する。
本発明の製造方法は、下記式(5)で表される、末端に不飽和基を含有する化合物、
【化7】
(R
1及びR
2は上記の通りであり、R
3は水素原子又はメチル基であり、L’は単結合、又は、エーテル結合を含んでよい、炭素数1~8の二価炭化水素基である)
と、下記式(6)または(7)で表されるハイドロジェンシロキサン化合物
【化8】
【化9】
(R、n、a、b、及びcは上記の通りである)
とをヒドロシリル化反応させて、上記式(1)で表される化合物を得る工程を含む。
【0019】
本発明の製造方法は、末端に不飽和結合を有し、かつ第三級水酸基を有する化合物(式(5))を原料として用いることを特徴とする。本発明の製造方法において上記式(5)で表される原料化合物が有する水酸基は第三級であるため、ヒドロシリル化反応において水酸基が望ましくない副反応を起こすことを抑制できる。これにより本発明の化合物を高純度にて得ることができる。
【0020】
上記式(5)においてR3は水素原子又はメチル基であり、好ましくは水素原子である。
【0021】
上記式(5)においてL’は単結合、又は、エーテル結合を含んでよい、炭素数1~8の二価炭化水素基であり、好ましくはエーテル結合を含む炭素数2~8の二価炭化水素基である。
【0022】
炭素数1~8の二価炭化水素基としては、前述した例に加え、例えば、メチレン等が挙げられる。エーテル結合を含む基としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリエチレン-プロピレンオキサイド等のポリアルキレンオキサイドが挙げられる。特に好ましくは、下記式(4’)又は(4’’)で表される基である。
【化10】
(式(4’)において、pは1~2の整数であり、q’は0~2の整数であり、好ましくはq’は0又は1であり、より好ましくはq’は0である。式(4’)及び(4’’)において、*は式(5)における炭素原子との結合箇所であり、**は式(1)におけるAとの結合箇所である)
好ましくは-CH
2OCH
2-、または-CH
2OC
2H
4OCH
2-である。
【0023】
上記ヒドロシリル化反応は従来公知の方法に従い行えばよい。例えば、式(6)または(7)で表されるハイドロジェンシロキサン化合物に式(5)で表される不飽和化合物1モル当量以上を添加して反応させればよい。反応温度は特に制限されるものでないが、使用する溶媒の沸点を超えない程度の温度が好ましい。例えば、約0℃から約120℃の温度で行われるのがよい。該反応は溶媒、ヒドロシリル化触媒、又は安定剤の存在下で行ってもよい。溶媒及びヒドロシリル化触媒及び安定剤は従来公知のものであればよく特に制限されるものでない。
【0024】
該反応において不飽和化合物は、ハイドロジェンシロキサン化合物に対して1モル当量以上を添加することが好ましい。より好ましくは1.0~3.0モル当量であり、更に好ましくは1.1~2.0モル当量であり、特に好ましくは1.2~1.5モル当量である。ハイドロジェンシロキサン化合物に対して不飽和化合物を当量以上添加することでハイドロジェンシロキサン化合物の残存および副反応の抑制ができる。また、上限値は制限されないが、不飽和化合物の添加量が多いと収率や経済性の点から好ましくない。
【0025】
ヒドロシリル化触媒は、例えば、貴金属触媒、特には塩化白金酸から誘導される白金触媒が好ましい。特に、塩化白金酸の塩素イオンを重曹で完全中和して白金触媒の安定性を向上させるのがよい。例えば1,1,3,3-テトラメチル-1,3-ジビニルジシロキサンと塩化白金酸の重曹中和物との錯体(カルステッド触媒)がより好ましい。
【0026】
ヒドロシリル化触媒の添加量は上記反応を進行させるための触媒量であればよい。例えば、1,1,3,3-テトラメチル-1,3-ジビニルジシロキサンと塩化白金酸の重層中和物との錯体を、式(6)または(7)で表されるハイドロジェンシロキサン化合物の質量に対し、白金換算量で1ppm~80ppmとなる量で使用すればよい。
【0027】
溶媒は、例えば、メチルセロソルブ、エチルセロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル及びポリエチレングリコールジメチルエーテル等のグリコールエーテル溶媒;酢酸エチル、酢酸ブチル、酢酸アミル、乳酸エチル及び安息香酸メチル等のエステル系溶媒;直鎖ヘキサン、直鎖ヘプタン及び直鎖オクタン等の脂肪族炭化水素系溶媒;シクロヘキサン及びエチルシクロヘキサン等の脂環式炭化水素系溶媒;アセトン、メチルエチルケトン及びメチルイソブチルケトン等のケトン系溶媒;ベンゼン、トルエン及びキシレン等の芳香族炭化水素溶媒;並びに石油系溶媒等;及び、メチルアルコール、エチルアルコール、直鎖プロピルアルコール、イソプロピルアルコール、直鎖ブチルアルコール、イソブチルアルコール、tert-ブチルアルコール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール及びポリエチレングリコールなどのアルコール系溶媒が挙げられる。前記溶媒は1種を単独で使用しても、2種以上を組合せて使用してもよい。
【0028】
安定剤は、例えば、フェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤、及びイオウ系酸化防止剤等が挙げられる。フェノール系酸化防止剤としては、特に限定するものではないが、例えば、p-メトキシフェノール、ジ-tert-ブチル-p-クレゾール、ピロガロール、tert-ブチルカテコール、4,4-チオビス(3-メチル-6-tert-ブチルフェノール)、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)、フェノール樹脂類、及びクレゾール樹脂類からなる群より選択される化合物等が挙げられる。リン系酸化防止剤としては、特に限定するものではないが、例えば、トリス[2-[[2,4,8,10-テトラキス(1,1-ジメチルエチル)ジベンゾ[d,f][1,3,2]ジオキサホスフェピン-6-イル]オキシ]エチル]アミン、トリス[2-[(4,6,9,11-テトラ-tert-ブチルジベンゾ[d,f][1,3,2]ジオキサホスフェピン-2-イル)オキシ]エチル]アミン、および亜リン酸エチルビス(2,4-ジtert-ブチル-6-メチルフェニル)等が挙げられる。アミン系酸化防止剤としては、特に限定するものではないが、例えば、トリ又はテトラC1-3アルキルピペリジン又はその誘導体、ビス(2,2,6,6-テトラメチル-4-ピペリジル)オギサレート、1,2-ビス(2,2,6,6-テトラメチル-4-ピペリジルオキシ)エタン、フェニルナフチルアミン、N,N′-ジフェニル-1,4-フェニレンジアミン、N-フェニル-N′-シクロヘキシル-1,4-フェニレンジアミン等が挙げられる。イオウ系酸化防止剤としては、特に限定するものではないが、例えば、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等が挙げられる。前記安定剤は1種を単独で使用しても、2種以上を組合せて使用してもよい。
【0029】
上記の反応において、反応終点は、従来公知の方法に従い、例えば、薄層クロマトグラフィー(TCL)、高速液体クロマトグラフィー(HPLC)又はガスクロマトグラフィー(GC)等によって原料化合物のピークが消失したことで確認できる。反応終了後は、従来公知の方法に従い精製すればよい。例えば、有機層を水で洗浄した後、溶媒を除去することにより生成物を単離することができる。また減圧蒸留や活性炭処理などを使用してもよい。
【0030】
尚、上記式(5)で表される不飽和基含有化合物の製造方法は特に制限されるものでないが、例えば、下記式(a)で表されるエポキシ化合物と
【化11】
(R
2、R
3、及びL’は上記の通りである)
(メタ)アクリル酸とを反応させて得ることができる。
さらに上記式(a)で表される化合物の製造方法は従来公知の方法に方法に従うことができるが、例えば上記式(a)で表されL’がエーテル結合を含む炭素数2~8のエポキシ化合物の製造方法としては、下記式(4)で表されるアルコール化合物と
【化12】
(R
3は上記の通りであり、L’’は単結合、又はエーテル結合を含んでよい、炭素数1~6の二価炭化水素基である)
下記式(5)で表されるエポキシ化合物とを反応させて得ることができる。
【化13】
(R
2は上記の通りであり、Xはハロゲン原子である)
【0031】
上記アルコール化合物とエポキシ化合物の反応は、従来公知の方法に従い行うことができる。例えば、アルコール化合物に1モル当量以上のエポキシ化合物を添加して反応させればよい。反応温度は特に制限されるものでないが、使用する溶媒の沸点を超えない程度の温度が好ましい。例えば、約0℃から約120℃の温度で行われるのがよい。該反応は溶媒や触媒の存在下で行ってもよい。溶媒及び触媒は従来公知のものであればよく、特に制限されるものでない。
【0032】
上記式(a)で表されるエポキシ化合物と(メタ)アクリル酸との反応も、従来公知の方法に従い、行えばよい。例えばエポキシ化合物に(メタ)アクリル酸1モル当量以上を添加して反応させればよい。反応温度は特に制限されるものでないが、使用する溶媒の沸点を超えない程度の温度が好ましい。例えば、約0℃から約110℃の温度で行われるのがよい。該反応は溶媒や触媒、安定剤の存在下で行ってもよい。溶媒、触媒、及び安定剤は従来公知のものであればよく特に制限されるものでない。溶媒は前述したものが使用できる。
【0033】
触媒は、例えば、有機金属触媒、塩基性化合物、有機リン系化合物、アミン触媒、及びルイス酸等が挙げられる。安定剤は、例えば、フェノール系酸化防止剤、リン系酸化防止剤、アミン系酸化防止剤、及びイオウ系酸化防止剤等が挙げられ、上記にて例示したものが挙げられる。
【0034】
本発明の製造方法の一例としては、式(6)または(7)で表されるハイドロジェンシロキサン化合物1モル当量と上記式(5)で表される不飽和化合物1.5モル当量、塩化白金酸重曹中和物・ビニルシロキサン錯体のトルエン溶液(白金含有量0.5wt%)をポリシロキサン化合物の質量に対し白金換算量で10ppm、トルエンをハイドロジェンシロキサン化合物に対して0.1質量%を添加し、窒素雰囲気下80℃で加熱撹拌を行う。2時間程度反応させることにより反応は完結する。また、その際に不飽和化合物あるいは生成する化合物をGC測定等でモニタリングすることで反応の進行を確認できる。反応の完結後、n-ヘキサンをハイドロジェンシロキサン化合物に対して100質量%を添加し、有機層をメタノール水(メタノール:水=4:1)で洗浄し、有機層に存在する溶媒、未反応の原料を減圧留去することで上記式(1)で表されるシロキサン化合物を得ることができる。
【0035】
本発明の化合物は(メタ)アクリル基の付加重合から導かれる繰り返し単位を有する重合体を与えることができる。本発明の化合物は、(メタ)アクリル基などの重合性基を有する他の化合物(以下、重合性モノマー、または親水性モノマーという)との相溶性が良好である。そのため、重合性モノマーと共重合することにより無色透明の共重合体を与えることができる。また、単独で重合することも可能である。
【0036】
本発明の化合物と他の重合性(親水性)モノマーとの重合から導かれる繰返し単位を含む共重合体の製造において、本発明の化合物の配合割合は、ポリマー全体の質量に対して本発明の化合物から導かれる繰り返し単位の質量割合が10%以上であればよい。より詳細には、本発明の化合物と重合性(親水性)モノマーとの合計100質量部に対して本発明の化合物を好ましくは10~80質量部、より好ましくは10~60質量部となる量がよい。上記繰り返し単位の質量割合が10%未満であると、本発明の化合物の特性が表れにくい。
【0037】
重合性モノマーとしては、例えば、(メタ)アクリル酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、(ポリ)エチレングリコールジメタクリレート、ポリアルキレングリコールモノ(メタ)アクリレート、ポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2,3―ジヒドロキシプロピル(メタ)アクリレート等のアクリル系モノマー;N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-アクリロイルモルホリン、N-メチル(メタ)アクリルアミド等のアクリル酸誘導体;N-ビニルピロリドン等、その他の不飽和脂肪族もしくは芳香族化合物、例えばクロトン酸、桂皮酸、ビニル安息香酸;及び(メタ)アクリル基などの重合性基を有するシロキサンモノマーが挙げられる。これらは1種単独でも、2種以上を併用してもよい。
【0038】
本発明の化合物と上記他の重合性モノマーとの共重合は従来公知の方法により行えばよい。例えば、熱重合開始剤や光重合開始剤など既知の重合開始剤を使用して行うことができる。該重合開始剤としては、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、ベンゾイルパーオキサイド、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、2,2'-アゾビス(2-メチルプロピオンアミジン)2塩酸塩などがあげられる。これら重合開始剤は単独でまたは2種以上を混合して用いることができる。重合開始剤の配合量は、重合成分の合計100質量部に対して0.001~2質量部、好ましくは0.01~1質量部であるのがよい。
【0039】
本発明の化合物から導かれる繰返し単位を含む重合体は、親水性に優れる。また、該重合体から得られるハイドロゲルは透明性および強度が高い。従って、本発明の化合物は、医療用材料、例えば、眼科デバイス、コンタクトレンズ、眼内レンズ、人工角膜を製造するのに好適である。該重合体を用いた医療用材料の製造方法は特に制限されるものでなく、従来公知の医療用材料の製造方法に従えばよい。例えば、コンタクトレンズ、眼内レンズなどレンズの形状に成形する際には、切削加工法や鋳型(モールド)法などを使用できる。
【実施例】
【0040】
以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。下記実施例において、1H-NMR分析はJEOL製のECS400を用い、測定溶媒として重クロロホルムを使用して実施した。またガスクロマトグラフ(GC)測定は、すべて下記の条件で行われた。
測定装置:Agilent社ガスクロマトグラフィー(FID検出器)
キャピラリーカラム:J&W社HP-5MS(0.25mm×30m×0.25μm)
昇温プログラム:50℃(5分)→10℃/分→250℃(保持)
注入口温度250℃、検出器温度FID300℃
キャリアガス:ヘリウム(1.0ml/分)
スプリット比:50:1 注入量:1μL
【0041】
下記実施例および比較例に使用した化合物は以下の通りである。
AHMPM:3-(アリロキシ)-2-ヒドロキシ-2-メチルプロピルメタクリレート
【化14】
AHPM:3-(アリロキシ)-2-ヒドロキシプロピルメタクリレート
【化15】
SiGMA:メチルビス(トリメチルシロキシ)シリルプロピルグリセロールメタクリレート
【化16】
【0042】
実施例1
ジムロート、温度計を付けた300mLの三口ナスフラスコに、窒素雰囲気下で1,1,1,3,5,5,5-ヘプタメチルトリシロキサン50.0g、AHMPM72.0g(ハイドロジェンシロキサン化合物に対する不飽和化合物のモル比=1.5)、塩化白金酸重曹中和物・ビニルシロキサン錯体のトルエン溶液(白金含有量0.5wt%)0.03gを添加し、80℃まで加熱し、4時間熟成した。反応後にn-ヘキサンを50.0g添加し、メタノール水溶液(メタノール:水=4:1)で5回洗浄し、内温80℃で溶媒および未反応の原料などを減圧留去することで無色透明液体を得た。収量62.5g。
1H-NMRから式(9)で表される化合物であることを確認した。
【化17】
以下に
1H-NMRデータを示す。
0.0-0.1ppm(21H)、0.4ppm(2H)、1.2ppm(3H)、1.6ppm(2H)、2.0ppm(3H)、3.3-3.4ppm(4H)、4.1ppm(2H)、5.6ppm(1H)、6.1ppm(1H)。
【0043】
実施例2
実施例1において1,1,1,3,5,5,5-ヘプタメチルトリシロキサンを下記式(10A)で表されるハイドロジェンシロキサン化合物50.0g、AHMPM51.4g(ハイドロジェンシロキサン化合物に対する不飽和化合物のモル比=1.5)に替えた他は実施例1を繰り返して無色透明液体を得た。収量69.0g。
1H-NMRにより下記式(10B)で表される化合物であることを確認した。
【化18】
【化19】
以下に
1H-NMRデータを示す。
0.0-0.1ppm(30H)、0.5ppm(4H)、0.9ppm(3H)、1.2ppm(3H)、1.3ppm(4H)、1.6ppm(2H)、2.0ppm(3H)、3.3-3.4ppm(4H)、4.1ppm(2H)、5.6ppm(1H)、6.1ppm(1H)。
【0044】
実施例3
実施例1において1,1,1,3,5,5,5-ヘプタメチルトリシロキサンを下記式(11A)で表されるハイドロジェンシロキサン化合物50.0g、AHMPM10.6g(ハイドロジェンシロキサン化合物に対する不飽和化合物のモル比=1.5)に替えた他は実施例1を繰り返して無色透明液体を得た。収量70.5g。
1H-NMRにより下記式(11B)で表される化合物であることを確認した。
【化20】
【化21】
以下に
1H-NMRデータを示す。
0.0-0.1ppm(120H)、0.5ppm(4H)、0.9ppm(3H)、1.2ppm(3H)、1.3ppm(4H)、1.6ppm(2H)、2.0ppm(3H)、3.3-3.4ppm(4H)、4.1ppm(2H)、5.6ppm(1H)、6.1ppm(1H)。
【0045】
原料不飽和基含有化合物の反応性評価
実施例4~9、比較例1
上記式(10A)で表されるハイドロジェンシロキサン化合物と、下記に示すAHMPM(第三級水酸基含有化合物)、又は下記に示すAHPM(第二級水酸基含有化合物)と、塩化白金酸重曹中和物・ビニルシロキサン錯体のトルエン溶液(白金含有量0.5wt%)とを、下記表1に示す配合比で添加し、窒素雰囲気下80℃まで加熱し、4時間熟成した。反応後にGC測定を行い、目的物の純度を面積%から算出した。ただし、原料のハイドロジェンシロキサン化合物、AHMPA,AHPMは除外した。結果を表1に示す。
AHMPM:3-(アリロキシ)-2-ヒドロキシ-2-メチルプロピルメタクリレート
【化22】
AHPM:3-(アリロキシ)-2-ヒドロキシプロピルメタクリレート
【化23】
【0046】
【0047】
表1に示す通り、第三級水酸基を含有する不飽和基含有化合物(AHMPM)とハイドロジェンシロキサンとの付加反応において、ハイドロジェンシロキサン化合物に対するAHMPMのモル比が1.0以上であると目的化合物の純度が特に大きく向上する。また、ヒドロシリル化反応の際の副反応が抑制されることから、より高い純度で製造することが可能である。一方、第二級水酸基を有する不飽和基含有化合物(AHPM)とハイドロジェンシロキサンとの付加反応から得られる比較例1の化合物は、モル比が同じである実施例7の結果と対比すると純度が低い。これは、ヒドロシリル化反応の際に副反応が起きているためである。
【0048】
[実施例10~14及び比較例2~4]
ハイドロゲルの製造例
上記実施例1~3で得た各化合物、下記式で表されるSiGMA、下記式で表される3-[トリス(トリメチルシロキシ)シリル]プロピルメタクリレート(TRIS)、2-ヒドロキシエチルメタクリレート(HEMA)、N、N-ジメチルアクリルアミド(DMA)、エチレングリコールジメタクリレート(EGDMA)、イルガキュア1173(Irg1173)を、表2又は3に示す組成及び配合比で混合し、均一な溶液になるまで撹拌した。撹拌後N
2によるバブリング5分間を行い、十分に脱気を行った後、ポリプロピレン製の鋳型へと封入した。高圧水銀ランプを用いてUV照射を行い、硬化した。硬化後、イソプロパノール、50%イソプロパノール水溶液、脱イオン水の順にそれぞれ数秒浸漬させることで洗浄を行い、ハイドロゲルフィルムを得た。得られたフィルムの各物性値を下記に示す方法に従い測定した。結果を表2及び3に示す。
SiGMA:メチルビス(トリメチルシロキシ)シリルプロピルグリセロールメタクリレート
【化24】
TRIS:3-[トリス(トリメチルシロキシ)シリル]プロピルメタクリレート
【化25】
【0049】
[平衡含水率]
フィルムを脱イオン水に25℃で48時間浸漬させた後、表面の水分を拭き取り、水和したフィルムの質量を計測した。次に水和したフィルムを50℃のオーブンで48時間、25℃のオーブンで24時間乾燥させ、乾燥フィルムの質量を計測した。平衡含水率は以下の式により算出した。
平衡含水率(%)=100×(水和フィルムの質量-乾燥フィルムの質量)/水和フィルムの質量
【0050】
[透明性]
フィルムを脱イオン水に25℃で48時間浸漬させた後、表面の水分を拭き取り、水和したフィルムを作成した。その外観を目視により観察し、下記の指標により評価した。
A:均一かつ透明であった
B:不均一あるいは白濁していた
【0051】
[弾性率]
フィルムを脱イオン水に25℃で48時間浸漬させた後、表面の水分を拭き取り、水和したフィルムを作成した。該水和したフィルムのヤング弾性率をインストロン5943を用いて測定した。0.8cm×4.0cmに切断されたフィルムを50Nのロードセル、1cm/分のヘッド速度で測定を行い、縦軸に得られる応力、横軸にひずみををとった応力-ひずみ曲線の初期(直線部)の傾きを算出し、ヤング弾性率(MPa)とした。
【0052】
【0053】
【0054】
表3に示す通り、比較化合物としてTRISを用いたハイドロゲルは透明性に難がある(比較例2)。また、比較化合物としてSiGMAを用いたハイドロゲルは弾性率が高い(比較例3及び4)。一方、表2に示す通り、本発明のシロキサン化合物を用いたハイドロゲルは、透明性に優れ、適度な弾性率を有する。すなわち、本発明の化合物を用いたハイドロゲルは、有益な親水性や十分な強度を有する材料を提供する。
【産業上の利用可能性】
【0055】
本発明のシロキサン化合物は親水性や強度に優れるハイドロゲルを与える。本発明のシロキサン化合物は、医療用材料、例えば、眼科用デバイス、コンタクトレンズ、眼内レンズ、人工角膜、及び眼鏡レンズ製造用モノマーとして有用である。