IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社堀場製作所の特許一覧

<>
  • 特許-半導体レーザ 図1
  • 特許-半導体レーザ 図2
  • 特許-半導体レーザ 図3
  • 特許-半導体レーザ 図4
  • 特許-半導体レーザ 図5
  • 特許-半導体レーザ 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-22
(45)【発行日】2022-10-03
(54)【発明の名称】半導体レーザ
(51)【国際特許分類】
   H01S 5/125 20060101AFI20220926BHJP
   H01S 5/062 20060101ALI20220926BHJP
   H01S 5/024 20060101ALI20220926BHJP
【FI】
H01S5/125
H01S5/062
H01S5/024
【請求項の数】 8
(21)【出願番号】P 2019558910
(86)(22)【出願日】2018-09-14
(86)【国際出願番号】 JP2018034153
(87)【国際公開番号】W WO2019116657
(87)【国際公開日】2019-06-20
【審査請求日】2020-12-16
(31)【優先権主張番号】P 2017240869
(32)【優先日】2017-12-15
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000155023
【氏名又は名称】株式会社堀場製作所
(74)【代理人】
【識別番号】100121441
【弁理士】
【氏名又は名称】西村 竜平
(74)【代理人】
【識別番号】100154704
【弁理士】
【氏名又は名称】齊藤 真大
(72)【発明者】
【氏名】寺門 知二
(72)【発明者】
【氏名】松濱 誠
(72)【発明者】
【氏名】渋谷 享司
【審査官】右田 昌士
(56)【参考文献】
【文献】特開平11-274652(JP,A)
【文献】特開2004-023029(JP,A)
【文献】特開2013-093414(JP,A)
【文献】特開2015-056660(JP,A)
【文献】特表2015-536576(JP,A)
【文献】特開昭61-078190(JP,A)
【文献】特開昭62-245692(JP,A)
【文献】特開平03-235915(JP,A)
【文献】特開2009-054637(JP,A)
【文献】米国特許第05808314(US,A)
【文献】特表2014-509084(JP,A)
【文献】特開平10-321951(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01S 5/00 - 5/50
(57)【特許請求の範囲】
【請求項1】
活性層及び該活性層と光学的に結合した回折格子層を有するコア層と、該コア層を挟むように配置された一対のクラッド層とを備え、前記コア層に沿って導波路が形成されている半導体レーザにおいて、
導波路に沿って前記回折格子層の終端に連続して設けられた平坦層と、
前記平坦層の温度を、前記回折格子層とは異なる温度に調節するための温調構造とを備え
前記回折格子層と前記平坦層はいずれも、前記導波路に沿って延びる同一構造の前記活性層と一方の前記クラッド層との間に形成されており、
前記導波路の一端に反射面、他端に光導出面が設けられたものにおいて、前記平坦層の端面が前記反射面となっており、
前記平坦層の端面で反射した光の波長が、ストップバンド幅内でλ/4シフト構造レーザと同じ波長を中心として掃引されるように、前記温調構造が前記平坦層を温調することを特徴とする半導体レーザ。
【請求項2】
前記温調構造が、前記平坦層に対応する部位に設けられた温調用電極を備えたものであり、該温調用電極を介して平坦層に電流を流すことにより、平坦層の温度を調節できるように構成してある請求項1に記載の半導体レーザ。
【請求項3】
前記活性層が、複数の井戸層が多段に接続された多重量子井戸構造からなり、その量子井戸中に形成されるサブバンド間の光遷移により光を発生させるものである請求項1に記載の半導体レーザ。
【請求項4】
量子カスケードレーザである請求項1乃至いずれか記載の半導体レーザ。
【請求項5】
請求項1乃至いずれか記載の半導体レーザを駆動制御する駆動制御装置であって、
前記温調構造を制御して前記平坦層の温度を制御する温度制御部と、前記コア層に電流を注入してレーザ発振させるレーザ駆動部とを備えていることを特徴とする駆動制御装置。
【請求項6】
請求項1乃至いずれか記載の半導体レーザの制御方法であって、
前記コア層に電流を注入して一定出力でレーザ発振させる一方で、前記温調構造を利用して平坦層の温度を変化させることにより、出力されるレーザ光の波長を変化させることを特徴とする半導体レーザの制御方法。
【請求項7】
請求項1乃至4のいずれか記載の半導体レーザの制御方法であって、
前記温調構造を利用して平坦層の温度を所定の一定温度に制御し、反射面の位相を所定の一定位相に制御することを特徴とする半導体レーザの制御方法。
【請求項8】
前記所定の一定位相がλ/4である請求項記載の半導体レーザの制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば排ガスの成分分析等に用いられる半導体レーザに関し、特に量子カスケードレーザ等に関するものである。
【背景技術】
【0002】
近時、例えば、排ガスなどのサンプルガスの成分分析に用いられる光源として、中赤外領域のレーザ光を発振する量子カスケードレーザ(以下QCLともいう。)が提案されている。この種のQCLは、非常にシャープな単一波長レーザ光を出力できるので、分析精度の向上を図ることができる。
【0003】
ところで、分析においては波長の掃引など、複数波長光での測定が求められる場合がある。そこで従来のQCLにおいては、注入電流を変化させて波長をチューニングしている。
【0004】
しかしながら、そうすると、ある波長でのレーザ光の強度と別の波長でのレーザ光の強度とが大きく異なる場合が生じ、例えば、それら各波長で濃度定量を行う場合に、レーザ光の強度が異なるので、S/N比が安定しないといった問題が生じ得る。
【0005】
また、例えばDFB構造を有する分布帰還型のQCLにおいては、回折格子における反射端面の位置を、所定の光の位相(λ/4)となるように精度よく形成することによって鋭い共振現象が生じるところ、前記反射端面は劈開によって形成されているため、図6に示すような位相ずれが生じがちで、それによる波長飛びが発生し易い。そのため、良品歩留まりが非常に低い(例えば約30%程度)といった課題もある。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2017-123445号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、前記課題を解決すべくなされたものであって、QCL等の半導体レーザにおいて、レーザ光の強度変動を抑制しながら波長調整できるようにすることをその主たる所期課題としたものである。また、副次的には、良品歩留まりの向上等も所期課題とするものである。
【課題を解決するための手段】
【0008】
すなわち本発明に係る半導体レーザは、活性層及び該活性層と光学的に結合した回折格子層を有するコア層と、該コア層を挟むように配置された一対のクラッド層とを備え、前記コア層に沿って導波路が形成されているものである。そして、前記導波路に沿って、前記回折格子層に連続して設けられた平坦層と、前記平坦層の温度を前記回折格子層とは異なる温度に調節するための温調構造とを備えていることを特徴とする。
【0009】
このようなものであれば、活性層には一定電流を注入して出力されるレーザ光の強度変動を抑制しながら、平坦層の温度調整によりその屈折率を変化させてレーザの発振波長をチューニングすることが可能になる。その結果、例えばガス分析などで各波長での濃度定量を行う場合に、レーザ光の強度変動が抑制されるので、S/N比が安定し、分析精度の向上に資することができるようになる。
【0010】
前記導波路の一端に反射面、他端に光導出面が設けられたものにおいては、前記平坦層の端面が前記反射面となっているものがより好ましい。
【0011】
このようなものであれば、劈開による形成などの原因で前記反射面の位置が所定位置からずれたとしても、温度調整による平坦層の屈折率の調整により、前記反射面で反射した光の位相を例えばλ/4シフトするように事後的に調整できるので、波長飛び発生のほとんどない良品を歩留まりよく製造することができるようになる。
【0012】
前記温調構造の具体的実施態様としては、該温調構造が、前記平坦層に対応する部位に設けられた温調用電極を備えたものであり、該温調用電極を介して平坦層に電流を流すことにより、平坦層の温度を調節できるように構成してあるものを挙げることができる。
【0013】
より好ましくは、前記活性層が、複数の井戸層が多段に接続された多重量子井戸構造からなり、その量子井戸中に形成されるサブバンド間の光遷移により光を発生させるものが好ましい。なお、複数の井戸層は厚さが異なるものであってもよい。
本発明の効果がより顕著となる半導体レーザとしては、量子カスケードレーザを挙げることができる。
【0014】
前記半導体レーザを駆動制御する駆動制御装置としては、前記温調構造を制御して前記平坦層の温度を調節する温度制御部と、前記コア層に電流を注入してレーザ発振させるレーザ駆動部とを備えたものを挙げることができる。
【発明の効果】
【0015】
このように構成した本発明によれば、レーザ光強度の変動を抑制しながら発振波長のチューニングができるので、例えば排ガスなどの成分分析に用いた場合に、その分析精度を向上させることができるようになる。
【0016】
また、平坦層の端面を反射面とする、つまり、回折層の終端に連続して平坦層を設けたものにおいては、例えば劈開による反射面の位相ずれを温調によりキャンセルすることができるので、その位相ずれによって従来生じていた不良品の発生を抑制し、良品歩留まりの飛躍的な向上を図ることができるようになる。
【図面の簡単な説明】
【0017】
図1】本発明の一実施形態における半導体レーザ装置の全体を示す模式図である。
図2】同実施形態の半導体レーザを示す横断面図である。
図3】同実施形態の半導体レーザの駆動方法を説明するための図面である。
図4】同実施形態の半導体レーザの駆動方法を説明するための図面である。
図5】本発明の他の実施形態における半導体レーザ装置の全体を示す模式図である。
図6】従来の分布帰還型QCLにおいて生じていた波長飛びを説明するための図面である。
【符号の説明】
【0018】
100・・・半導体レーザ装置
1・・・分布帰還型半導体レーザ
2・・・駆動制御装置
3、4、6・・・クラッド層
5・・・コア層
51・・・活性層
5a・・・反射面
5b・・・光導出面
8・・・回折格子層
9・・・平坦層
S・・・温調構造
S1・・・温調用電極
【発明を実施するための形態】
【0019】
以下、本発明に係るレーザ装置100の一実施形態について図面を参照して説明する。
【0020】
この実施形態におけるレーザ装置100は、図1に示すように、半導体レーザ1と、この半導体レーザ1を駆動制御する駆動制御装置2とを備えたものである。
【0021】
まず、半導体レーザ1について説明する。
【0022】
この半導体レーザ1は、分布帰還型の量子井戸カスケードレーザ(以下QCLともいう。)であり、図1図2に示すように、例えばn-InPからなる基板3上に、InPからなるバッファ層4、コア層5、InPからなる上部クラッド層6及びInGaAsからなるキャップ層7を、MOCVD法、MBE法などによる結晶成長によって、この順で積層させたものである。なお、前記バッファ層4及び/又は基板3が下部クラッド層としての機能を果たす。
【0023】
また、前記基板3の下面には下部電極T2が、キャップ層7の上面には上部電極T1がそれぞれ設けられており、これら電極T1、T2間に電圧を印加して前記コア層5に閾値以上の電流を注入することにより、コア層5が発光してこの半導体レーザ1はレーザ発振する。
【0024】
前記コア層5は、活性層51と、この活性層51の上下に設けられたガイド層52、53とから構成され、同型(n型又はp型)の半導体層が積層されたユニポーラタイプのものである。
【0025】
前記活性層51は、複数の厚さの異なる井戸層が多段に接続された構造のものであり、この実施形態では、伝導体に存在する準位(サブバンド)間の光遷移により中赤外以上の波長の光が発生するようにしてある。より具体的に説明すると、この活性層51は、発光領域となる半導体層と、注入領域となる半導体層とが所定数交互に積層されて構成されている。この実施形態では、発光領域となる半導体層は、InGaAsとInAlAsとが交互に積層して構成されており、注入領域となる半導体層は、InGaAsとInAlAsとが交互に積層して構成されている。
【0026】
前記ガイド層52、53は、InGaAsからなるものであり、前記活性層52で発生した光を伝搬する導波路としての機能を担う。
【0027】
さらに、この実施形態では、これらガイド層52、53のうち、上部ガイド層52の上面に微細溝加工を施して一次元ストライプ構造を形成することにより、回折格子8aが一定周期Λで並ぶ回折格子層8を形成している。
【0028】
この回折格子層8は、前記活性層52と光学的に結合されており、前記活性層52で発生した光は、各回折格子8aで反射しながら溝方向と直交する方向(以下、導波方向ともいう。)に進行する。このとき、回折格子8aの周期Λで定まる一定波長の光だけが常に回折格子8aの作用を受け、活性層52内に長く留まって増幅されることによりレーザ発振が生じる。
【0029】
なお、この半導体レーザ1において、コア層5の一方の端面(導波方向の終端面)が、劈開によって形成された反射面5aであり、他方の端面は、無反射加工が施されて、レーザ光を導出する光導出面5bとなっている。
【0030】
しかしてこの実施形態では、コア層5における前記回折格子層8に連続して平坦層9が形成されている。
【0031】
この平坦層9は、前記上部ガイド層52における反射面5a側の一定領域に微細溝加工を施さないことによって形成したものであり、したがって、この平坦層9の一端面は回折格子層8に連続しており、他端面が前記反射面5aとなる。なお、見方を変えれば、回折格子層8の一部であって格子周期が他とは異なる部分であるともいえる。
【0032】
さらにこの実施形態では、この平坦層9の温度を回折格子層8とは異なる温度に独立して調整するための温調構造Sが設けられている。この実施形態の温調構造Sは、平坦層9の上部に設けられた温調用電極S1を備えたものである。
【0033】
この温調用電極S1は、平坦層の上方であって前記キャップ層7の上面に設けられたものであり、前記上部電極T1とは導波方向に離間した、電気的に非接続状態で配設されている。そして、この温調用電極S1に電圧を印加して平坦層9に電流を流すことにより、抵抗熱を発生させて該平坦層9の温度を調整できるように構成してある。なお、この温度変化により平坦層9の屈折率が変化するが、この実施形態の半導体レーザ100は、前述したようにコア層5がユニポーラタイプのものなので、電圧による平坦層9の屈折率への影響(量子拘束シュタルク効果による屈折率への影響)は生じない。
【0034】
次に駆動制御装置2について説明する。
【0035】
この駆動制御装置2は、図示しないが、CPU、メモリ、I/Oポートなどからなるデジタル電気回路と、増幅器、バッファなどからなるアナログ電気回路と、それらの間に介在するA/Dコンバータ及びD/Aコンバータ等から構成されたものであり、前記メモリに記憶された所定のプログラムによってCPUとその周辺機器が協働することによって、図1に示すように、半導体レーザ1の動作モードを設定する動作モード設定部21と、前記上部電極T1にレーザ駆動電流Iを供給して活性層51で光を発生させるレーザ駆動部22と、前記温調用電極S1に温調用電流Iを供給して平坦層9の温度を制御する温度制御部23としての機能を発揮する。
【0036】
次に、このように構成された半導体レーザ装置100の動作を説明する。
【0037】
この実施形態では、大きく2種類の動作モードが用意してあり、例えばユーザの入力によって、いずれかの動作モードが選択されると、これを前記動作モード設定部21が受けつけ、選択された動作モードに従って、前記レーザ駆動部22及び温度制御部23が動作する。
【0038】
前記2種類の動作モードのうちの第1動作モードは、前記平坦層9を温調することによってその屈折率を変化させ、平坦層9の端面位相をλ/4に固定的に制御して回折格子8aの光路長で定まるブラッグ波長でレーザ発振させるモードである。
【0039】
より具体的に説明すると、この第1動作モードでは、前記温度制御部23が、QCLの温調用電極S1に電圧を印加して下部電極T2に向かって温調用電流Iを流す。なお、温調用電流Iの値は、レーザ発振する閾値電流Ithより大きくても小さくてもよい。
【0040】
そうすると、その抵抗熱によって、温調用電極S1と下部電極T2との間に位置する平坦層9の温度が変化し、屈折率が変化する。
【0041】
この実施形態では、平坦層9の端面位相がλ/4となる電流が予め測定されており、図3に示すように、温度制御部23は、その電流となる電圧を前記温調用電極S1に印加する。
【0042】
そして、このように、温度制御部23によって平坦層9の端面位相がλ/4に制御された状態で、前記レーザ駆動部22が上部電極T1に電圧を印加し、活性層51に閾値Ith以上の一定のレーザ駆動電流を注入する。なお、図3ではパルス発振の例が記載されているが、連続発振でも構わない。
【0043】
第2動作モードは、レーザ光強度をできる限り変動させないようにして、レーザ光の波長を所望の値に調節するモードである。
【0044】
この第2モードにおいては、まず前記レーザ駆動部22が、上部電極T1に電圧を印加し、活性層51に閾値Ith以上の一定のレーザ駆動電流を連続注入する。このことにより、レーザ光を連続発振させ、その強度変動を抑制する。
【0045】
その状態で、平坦層9の温度を時間的に変化させることによってその屈折率を変化させる。
【0046】
より具体的には、前記温度制御部23が、図4に示すように、温調用電流Iを経時変化させる。このことによって、平坦層9の温度が経時変化し、それに伴って平坦層9の屈折率も時間的に変化する。
【0047】
そうすると、平坦層9の端面位相が時間的に変化し、レーザ発振波長が時間的に変化、すなわち掃引されることになる。ここでは、平坦層9の端面位相を制御して、レーザ光の波長が、λ/4を中心としてその前後のストップバンド幅内で掃引されるようにしてある。
【0048】
なお、同図に示すように、レーザ駆動部22によって、繰り返しパルスでレーザ発振させてもよい。これはレーザ光の疑似的連続発振である。
【0049】
しかして、以上に述べた半導体レーザ装置100によれば、以下のような効果を奏し得る。
【0050】
まず、劈開による反射面5aの位相ずれを温調によりキャンセルすることができるので、その位相ずれによって波長飛びを起こすような不良品の発生を抑制し、良品歩留まりの飛躍的な向上を図ることができるようになる。
【0051】
例えば、第1動作モードにおいて、劈開のずれにかかわらず、反射面5aでの光の位相がλ/4となるように制御されるので、最も有効な帰還を得られ、波長飛びのない単一波長モードでレーザ発振が可能になる。
【0052】
また、第2動作モードのように、レーザ光の強度をできる限り変動しないように保ったまま、レーザ光の発振波長を変化させることができるので、例えばガス分析などで各波長での濃度定量を行う場合に、各波長でのレーザ光の強度が大きく変動しないので、S/N比が安定し、分析精度の向上に資することができるようになる。
【0053】
なお、本発明は前記実施形態に限られない。
【0054】
例えば、図5に示すように、平坦層9を回折格子層8の間に設けてもよい。温調用電極S1及び上部電極T1は、平坦層9の上部及び回折格子層8の上部にそれぞれ分離して設けてある。
【0055】
このような半導体レーザ100は、反射面が設けられておらず、両端面からレーザ光を出力するところ、前記実施形態同様、平坦層9の温度、ひいてはその屈折率を変えることにより、発振波長を制御することができる。
【0056】
また、前記実施形態においては、反射面5aの位相制御を、予め定めた一定電流を温調用電極S1に流すというフィードフォワード的なものとしていたが、例えば、発振波長をモニターしておき、その発振波長がブラッグ波長となるように、温調用電極S1に流す電流(又は電圧)を温度制御部23がフィードバック制御するようにしてもよいし、あるいは、平坦層9の温度を直接ないし間接的に測定するための温度センサを設けておき、その温度センサの温度が所望の温度となるように、温度制御部23が電圧(電流)をフィードバック制御するなどしてもよい。
【0057】
温調構造は電流によるものではなく、ペルチェ素子や冷媒を用いたものなどでも構わない。
さらに、本発明は、量子カスケードレーザのみならず、DBF構造を有するものであれば、その他のタイプの半導体レーザにも適用可能であるし、DBR構造を有する半導体レーザにも適用可能である。
【0058】
その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
【産業上の利用可能性】
【0059】
本発明によれば、レーザ光強度の変動を抑制しながら発振波長のチューニングができるので、例えば排ガスなどの成分分析に用いた場合に、その分析精度を向上させることができるようになる。
図1
図2
図3
図4
図5
図6