IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ニコンの特許一覧

<>
  • 特許-計測装置及び計測方法、並びに露光装置 図1
  • 特許-計測装置及び計測方法、並びに露光装置 図2
  • 特許-計測装置及び計測方法、並びに露光装置 図3
  • 特許-計測装置及び計測方法、並びに露光装置 図4
  • 特許-計測装置及び計測方法、並びに露光装置 図5
  • 特許-計測装置及び計測方法、並びに露光装置 図6
  • 特許-計測装置及び計測方法、並びに露光装置 図7
  • 特許-計測装置及び計測方法、並びに露光装置 図8
  • 特許-計測装置及び計測方法、並びに露光装置 図9
  • 特許-計測装置及び計測方法、並びに露光装置 図10
  • 特許-計測装置及び計測方法、並びに露光装置 図11
  • 特許-計測装置及び計測方法、並びに露光装置 図12
  • 特許-計測装置及び計測方法、並びに露光装置 図13
  • 特許-計測装置及び計測方法、並びに露光装置 図14
  • 特許-計測装置及び計測方法、並びに露光装置 図15
  • 特許-計測装置及び計測方法、並びに露光装置 図16
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-27
(45)【発行日】2022-10-05
(54)【発明の名称】計測装置及び計測方法、並びに露光装置
(51)【国際特許分類】
   G03F 9/00 20060101AFI20220928BHJP
   G01B 11/00 20060101ALI20220928BHJP
【FI】
G03F9/00 A
G01B11/00 G
【請求項の数】 21
(21)【出願番号】P 2019229309
(22)【出願日】2019-12-19
(62)【分割の表示】P 2018095988の分割
【原出願日】2015-12-22
(65)【公開番号】P2020052430
(43)【公開日】2020-04-02
【審査請求日】2019-12-19
(31)【優先権主張番号】P 2014259758
(32)【優先日】2014-12-24
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004112
【氏名又は名称】株式会社ニコン
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100140774
【弁理士】
【氏名又は名称】大浪 一徳
(74)【代理人】
【識別番号】100175824
【弁理士】
【氏名又は名称】小林 淳一
(72)【発明者】
【氏名】上田 哲寛
【審査官】今井 彰
(56)【参考文献】
【文献】特開2012-175103(JP,A)
【文献】特開2012-191177(JP,A)
【文献】特開2009-094512(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03F 7/20-7/24、9/00-9/02
G01B 11/00-11/30
(57)【特許請求の範囲】
【請求項1】
少なくとも第1の方向に移動する物体に対向する対物光学系と、
少なくとも前記第1の方向に移動する物体に設けられた格子マークに対して、前記対物光学系を介して計測光を照射する照射系と、
前記計測光に基づく前記格子マークからの回折光を、前記対物光学系を介して受光するビーム受光系と、
前記計測光を用いた位置計測における計測速度を制御する制御系、を有し、
前記照射系は、前記計測光を少なくとも前記第1の方向に動かしつつ、少なくとも前記第1の方向に移動する前記格子マークを横切るように、前記格子マーク上において前記格子マークよりも小さな前記計測光を照射することが可能であり、
前記計測速度は、前記物体を載置するステージの移動速度であり、
前記制御系は、前記計測速度が第1速度となるように制御すること、および、前記計測速度が前記第1速度よりも速い第2速度となるように制御することが可能である計測装置。
【請求項2】
前記物体に設けられた前記格子マークは第1格子マークおよび第2格子マークを含み、
前記照射系は、前記第1格子マークに前記計測光を照射した後に、前記第2格子マークに前記計測光を照射し、
前記制御系は、前記第1格子マークの位置計測における前記計測速度が前記第1速度となるように制御し、かつ、前記第2格子マークの位置計測における前記計測速度が前記第1速度よりも速い前記第2速度となるように制御する請求項1に記載の計測装置。
【請求項3】
前記照射系は、前記計測光を前記第1の方向に移動させることが可能であり、かつ、前記計測光を前記第1の方向と交差する第2の方向に移動させることが可能である請求項2に記載の計測装置。
【請求項4】
前記制御系は、前記第2の方向に関する位置補正の制御を行うために、前記第1格子マークの位置計測において前記照射系により照射される前記計測光の前記物体上の照射点が前記第1の方向に相対移動しつつ前記第2の方向に相対移動するよう制御し、かつ、前記第2格子マークの位置計測において前記照射系により照射される前記計測光の前記物体上の照射点が前記第1の方向に相対移動するよう制御し、
前記制御系は、前記第2の方向に関する位置補正の制御を行うための前記第1格子マークの位置計測における前記計測速度が前記第1速度となり、かつ、前記第2格子マークの位置計測における前記計測速度が前記第2速度となるよう制御する請求項3に記載の計測装置。
【請求項5】
前記第1格子マークは前記物体に備えられた複数の格子マークのうち最初に計測光が照射される格子マークである請求項2~4のいずれか一項に記載の計測装置。
【請求項6】
前記物体には、複数の格子マークが設けられ、
前記制御系は、前記第1の方向において計測する順番が最後の格子マークにおける位置計測の前記計測速度が前記第1速度となるように制御し、前記最後の格子マークよりも前に計測される格子マークの位置計測の前記計測速度が前記第1速度よりも速い前記第2速度となるように制御する請求項1に記載の計測装置。
【請求項7】
前記物体には、前記複数の格子マークは、少なくとも、前記第1の方向に沿った第1列目と、前記第1の方向に沿った第2列目に設けられ、
前記第2列目は、前記第1の方向と交差する方向において前記第1列目の隣に並べられ、
前記制御系は、
前記第1列目における位置計測の前記計測速度が前記第1速度となるように制御すること、および前記第1列目における位置計測の前記計測速度が前記第2速度となるように制御することを行い、
前記第1列目における位置計測においては前記照射系により照射される前記計測光の前記物体上の照射点が前記第1の方向に沿った向きに相対移動し、前記第2列目における位置計測においては前記計測光の前記物体上の照射点が、前記第1列目における位置計測における前記第1の方向に沿った向きとは逆の向きに相対移動するよう制御する請求項6に記載の計測装置。
【請求項8】
前記制御系は、前記第1列目に関する前記計測光の照射が、前記第2列目に関する前記計測光の照射よりも先に行われるよう制御する請求項7に記載の計測装置。
【請求項9】
前記計測装置は、さらに、前記ビーム受光系により受光される前記回折光に基づいて前記格子マークの位置情報を求める演算系を有する請求項1~4、6~8のいずれか一項に記載の計測装置。
【請求項10】
前記制御系は、さらに、移動する前記物体の移動速度を制御する請求項9に記載の計測装置。
【請求項11】
露光装置であって、
請求項9または10に記載の計測装置と、
前記演算系によって求められた前記位置情報に基づいて前記物体の位置を制御する位置制御装置と、
前記物体にエネルギビームを照射して、前記物体に所定のパターンを形成するパターン形成装置と、
を有する露光装置。
【請求項12】
物体に設けられた格子マークの位置情報を計測する計測方法であって、
少なくとも第1の方向に前記物体を移動させることと、
少なくとも前記第1の方向に移動する前記物体の前記格子マークに対して計測光を対物光学系を介して照射することと、
前記計測光に基づく前記格子マークからの回折光を、前記対物光学系を介してビーム受光系で受光することと、
前記計測光を用いた位置計測における計測速度を制御することを含み、
前記照射することは、前記計測光を少なくとも前記第1の方向に動かしつつ、少なくとも前記第1の方向に移動する前記格子マークを横切るように前記格子マーク上において前記格子マークよりも小さな前記計測光を照射し、
前記計測速度は、前記物体を載置するステージの移動速度であり、
前記制御することは、前記計測速度が第1速度となるように制御を行うことと、前記計測速度が前記第1速度よりも速い第2速度となるように制御を行うことを含む、計測方法。
【請求項13】
前記物体に設けられた前記格子マークは第1格子マークおよび第2格子マークを含み、
前記照射することは、前記第1格子マークに前記計測光を照射した後に、前記第2格子マークに前記計測光を照射することを含み、
前記制御することは、前記第1格子マークの位置計測における前記計測速度が前記第1速度となるように制御し、かつ、前記第2格子マークの位置計測における前記計測速度が前記第1速度よりも速い前記第2速度となるように制御することを含む請求項12に記載の計測方法。
【請求項14】
前記照射することは、前記計測光を前記第1の方向に移動させることが可能であり、かつ、前記計測光を前記第1の方向と交差する第2の方向に移動させることを含む請求項13に記載の計測方法。
【請求項15】
前記制御することは、前記第2の方向に関する位置補正の制御を行うために、前記第1格子マークの位置計測において照射される前記計測光の前記物体上の照射点が前記第1の方向に相対移動しつつ前記第2の方向に相対移動するよう制御し、かつ、前記第2格子マークの位置計測において照射される前記計測光の前記物体上の照射点が前記第1の方向に相対移動するよう制御することを含み、
前記制御することは、前記第2の方向に関する位置補正の制御を行うための前記第1格子マークの位置計測における前記計測速度が第1速度となり、かつ、前記第2格子マークの位置計測における前記計測速度が第2速度となるよう制御することを含む請求項14に記載の計測方法。
【請求項16】
前記第1格子マークは前記物体に備えられた複数の格子マークのうち最初に計測光が照射される格子マークである請求項13~15のいずれか一項に記載の計測方法。
【請求項17】
前記物体には、複数の格子マークが設けられ、
前記制御することは、前記第1の方向において計測する順番が最後の格子マークにおける位置計測の前記計測速度が前記第1速度となるように制御し、前記最後の格子マークよりも前に計測される格子マークの位置計測の前記計測速度が前記第1速度よりも速い前記第2速度となるように制御することを含む請求項12に記載の計測方法。
【請求項18】
前記物体には、前記複数の格子マークは、少なくとも、前記第1の方向に沿った第1列目と、前記第1の方向に沿った第2列目に設けられ、
前記第2列目は、前記第1の方向と交差する方向において前記第1列目の隣に並べられ、
前記制御することは、
前記第1列目における位置計測の前記計測速度が前記第1速度となるように制御することと、
前記第1列目における位置計測の前記計測速度が前記第2速度となるように制御することと、
前記第1列目における位置計測においては照射される前記計測光の前記物体上の照射点が前記第1の方向に沿った向きに相対移動し、前記第2列目における位置計測においては前記計測光の前記物体上の照射点が、前記第1列目における位置計測における前記第1の方向に沿った向きとは逆の向きに相対移動するよう制御することと、を含む請求項17に記載の計測方法。
【請求項19】
前記制御することは、前記第1列目に関する前記計測光の照射が、前記第2列目に関する前記計測光の照射よりも先に行われるよう制御することを含む請求項18に記載の計測方法。
【請求項20】
さらに、前記ビーム受光系により受光される前記回折光に基づいて前記格子マークの位置情報を求めること、を含む請求項12~15、17~19のいずれか一項に記載の計測方法。
【請求項21】
さらに、前記物体の移動速度を制御すること、を含む請求項12~20のいずれか一項に記載の計測方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、計測装置及び計測方法、並びに露光装置に係り、更に詳しくは、物体に設けられた格子マークの位置情報を光学的に計測する計測装置及び計測方法、並びに前記計測装置を有する露光装置に関する。
【背景技術】
【0002】
従来、半導体素子(集積回路等)、液晶表示素子等の電子デバイス(マイクロデバイス)を製造するリソグラフィ工程では、ステップ・アンド・スキャン方式の投影露光装置(いわゆるスキャニング・ステッパ(スキャナとも呼ばれる))などが用いられている。
【0003】
この種の露光装置では、例えばウエハ又はガラスプレート(以下、「ウエハ」と総称する)上に複数層のパターンが重ね合せて形成されることから、ウエハ上に既に形成されたパターンと、マスク又はレチクル(以下「レチクル」と総称する)が有するパターンとを最適な相対位置関係にするための操作(いわゆるアライメント)が行われている。また、この種のアライメントで用いられるアライメントセンサとしては、ウエハに設けられた格子マークに対して計測光を走査する(ウエハWの移動に追従させる)ことにより該格子マークの検出を迅速に行うことが可能なものが知られている(例えば、特許文献1参照)。
【0004】
ここで、重ね合わせ精度を向上させるためにも、格子マークの位置計測は、数多く行うことが望ましく、具体的には、ウエハ上に設定された全ショット領域の格子マークの位置計測を正確且つ高速に行うことが望ましい。
【先行技術文献】
【特許文献】
【0005】
【文献】米国特許第8,593,646号明細書
【発明の概要】
【課題を解決するための手段】
【0006】
第1の態様によれば、第1の方向に移動する物体に対向する対物レンズと、前記第1の方向に移動する物体に設けられた格子マークに対して、前記対物レンズを介して計測光を照射する照射系と、前記計測光に基づく前記格子マークからの回折光を、前記対物レンズを介して受光するビーム受光系と、を有し、前記照射系は、前記計測光を前記第1の方向に動かしつつ、前記第1の方向に移動する前記格子マークに前記計測光を照射する計測装置が、提供される。
【0007】
第2の態様によれば、露光装置であって、前記ビーム受光系により受光される前記回折光に基づいて前記格子マークの位置情報を求める演算系を有する第1の態様に係る計測装置と、前記演算系によって求められた前記位置情報に基づいて前記物体の位置を制御する位置制御装置と、前記物体にエネルギビームを照射して、前記物体に所定のパターンを形成するパターン形成装置と、を有する露光装置が、提供される。
【0008】
第3の態様によれば、物体に設けられた格子マークの位置情報を計測する計測方法であって、第1の方向に前記物体を移動させることと、前記第1の方向に移動する前記物体の前記格子マークに対して計測光を対物レンズを介して照射することと、前記計測光に基づく前記格子マークからの回折光を、前記対物レンズを介してビーム受光系で受光することと、を含み、前記照射することは、前記計測光を前記第1の方向に動かしつつ、前記第1の方向に移動する前記格子マークに前記計測光を照射することを含む、計測方法が、提供される。
【図面の簡単な説明】
【0009】
図1】第1の実施形態に係る露光装置の構成を概略的に示す図である。
図2図2(a)~図2(c)は、ウエハ上に形成された格子マークの一例(その1~その3)を示す図である。
図3図1の露光装置が備えるアライメント系の構成を示す図である。
図4図3のアライメント系が備える読み出し用回折格子の平面図である。
図5図5(a)は、図3のアライメント系が備える検出系の出力に基づいて生成される波形の一例を示す図、図5(b)は、図5(a)の波形の横軸を調整した波形、図5(c)は、ウエハ上の格子マークの位置の求め方の概念図である。
図6】露光装置の制御系を示すブロック図である。
図7図1の露光装置を用いた露光動作を説明するためのフローチャートである。
図8図8(a)~図8(c)は、アライメント計測動作及びフォーカスマッピング動作を説明するための図(その1~その3)である。
図9】アライメント計測動作を説明するためのフローチャートである。
図10】アライメント計測動作時におけるウエハステージとアライメント系の計測光との相対位置関係を説明するための図である。
図11図3のアライメント系が備える可動ミラーの駆動信号の一例を示す図である。
図12図12(a)~図12(d)は、第2の実施形態に係る露光装置におけるアライメント計測動作を説明するための図(その1~その4)である。
図13】第2の実施形態における露光動作を説明するためのフローチャートである。
図14】第2の実施形態におけるアライメント計測動作を説明するためのフローチャートである。
図15図15(a)は、変形例に係るアライメント系から格子マークに入射する計測光及び回折光を示す図、図15(b)及び図15(c)は、対物レンズの瞳面上における計測光及び回折光の位置を示す図(その1及びその2)である。
図16】アライメント系の検出系の変形例を示す図である。
【発明を実施するための形態】
【0010】
《第1の実施形態》
以下、第1の実施形態について、図1図11に基づいて説明する。
【0011】
図1には、第1の実施形態に係る露光装置10の構成が概略的に示されている。露光装置10は、ステップ・アンド・スキャン方式の投影露光装置、いわゆるスキャナである。後述するように本実施形態では、投影光学系16bが設けられており、以下においては、この投影光学系16bの光軸AXと平行な方向をZ軸方向、これに直交する面内でレチクルRとウエハWとが相対走査される方向をY軸方向、Z軸及びY軸に直交する方向をX軸方向とし、X軸、Y軸、及びZ軸回りの回転(傾斜)方向をそれぞれθx、θy、及びθz方向として説明を行う。
【0012】
露光装置10は、照明系12、レチクルステージ14、投影ユニット16、ウエハステージ22を含むウエハステージ装置20、多点焦点位置計測系40、アライメント系50、及びこれらの制御系等を備えている。図1においては、ウエハステージ22上に、ウエハWが載置されている。
【0013】
照明系12は、例えば米国特許出願公開第2003/0025890号明細書などに開示されるように、光源と、オプティカルインテグレータを有する照度均一化光学系、及びレチクルブラインド(いずれも不図示)を有する照明光学系とを含む。照明系12は、レチクルブラインド(マスキングシステム)で設定(制限)されたレチクルR上のX軸方向に長いスリット状の照明領域IARを照明光(露光光)ILによりほぼ均一な照度で照明する。照明光ILとしては、例えばArFエキシマレーザ光(波長193nm)が用いられる。
【0014】
レチクルステージ14上には、回路パターンなどがそのパターン面(図1における下面)に形成されたレチクルRが、例えば真空吸着により固定されている。レチクルステージ14は、例えばリニアモータ等を含むレチクルステージ駆動系32(図1では不図示、図6参照)によって、XY平面内で微少駆動可能であるとともに、走査方向(図1における紙面内左右方向であるY軸方向)に所定の走査速度で駆動可能となっている。レチクルステージ14のXY平面内の位置情報(θz方向の回転量情報を含む)は、例えば干渉計システム(あるいはエンコーダシステム)を含むレチクルステージ位置計測系34によって、例えば0.5~1nm程度の分解能で常時計測される。レチクルステージ位置計測系34の計測値は、主制御装置30(図1では不図示、図6参照)に送られる。主制御装置30は、レチクルステージ位置計測系34の計測値に基づいてレチクルステージ14のX軸方向、Y軸方向及びθz方向の位置を算出するとともに、この算出結果に基づいてレチクルステージ駆動系32を制御することで、レチクルステージ14の位置(及び速度)を制御する。また、図1では不図示であるが、露光装置10は、レチクルR上に形成されたレチクルアライメントマークの検出を行うためのレチクルアライメント系18(図6参照)を備えている。レチクルアライメント系18としては、例えば米国特許第5,646,413号明細書、米国特許公開第2002/0041377号明細書等に開示される構成のアライメント系を用いることができる。
【0015】
投影ユニット16は、レチクルステージ14の図1における下方に配置されている。投影ユニット16は、鏡筒16aと、鏡筒16a内に格納された投影光学系16bと、を含む。投影光学系16bとしては、例えば、Z軸方向と平行な光軸AXに沿って配列される複数の光学素子(レンズエレメント)から成る屈折光学系が用いられている。投影光学系16bは、例えば両側テレセントリックで、所定の投影倍率(例えば1/4、1/5又は1/8など)を有する。このため、照明系12によってレチクルR上の照明領域IARが照明されると、投影光学系16bの第1面(物体面)とパターン面がほぼ一致して配置されるレチクルRを通過した照明光ILにより、投影光学系16b(投影ユニット16)を介してその照明領域IAR内のレチクルRの回路パターンの縮小像(回路パターンの一部の縮小像)が、投影光学系16bの第2面(像面)側に配置される、表面にレジスト(感応剤)が塗布されたウエハW上の前記照明領域IARに共役な領域(以下、露光領域とも呼ぶ)IAに形成される。そして、レチクルステージ14とウエハステージ22との同期駆動によって、照明領域IAR(照明光IL)に対してレチクルRを走査方向(Y軸方向)に相対移動させるとともに、露光領域IA(照明光IL)に対してウエハWを走査方向(Y軸方向)に相対移動させることで、ウエハW上の1つのショット領域(区画領域)の走査露光が行われ、そのショット領域にレチクルRのパターンが転写される。すなわち、本実施形態では照明系12、レチクルR及び投影光学系16bによってウエハW上にパターンが生成され、照明光ILによるウエハW上の感応層(レジスト層)の露光によってウエハW上にそのパターンが形成される。
【0016】
ウエハステージ装置20は、ベース盤28の上方に配置されたウエハステージ22を備えている。ウエハステージ22は、ステージ本体24と、該ステージ本体24上に搭載されたウエハテーブル26とを含む。ステージ本体24は、その底面に固定された不図示の非接触軸受、例えばエアベアリングにより、数μm程度のクリアランス(隙間、ギャップ)を介して、ベース盤28上に支持されている。ステージ本体24は、例えばリニアモータ(あるいは平面モータ)を含むウエハステージ駆動系36(図1では不図示、図6参照)によって、ベース盤28に対して水平面内3自由度(X、Y、θz)方向に駆動可能に構成されている。ウエハステージ駆動系36は、ウエハテーブル26をステージ本体24に対して6自由度方向(X、Y、Z、θx、θy、θz)に微小駆動する微小駆動系を含む。ウエハテーブル26の6自由度方向の位置情報は、例えば干渉計システム(あるいはエンコーダシステム)を含むウエハステージ位置計測系38によって例えば0.5~1nm程度の分解能で常時計測される。ウエハステージ位置計測系38の計測値は、主制御装置30(図1では不図示、図6参照)に送られる。主制御装置30は、ウエハステージ位置計測系38の計測値に基づいてウエハテーブル26の6自由度方向の位置を算出するとともに、この算出結果に基づいてウエハステージ駆動系36を制御することで、ウエハテーブル26の位置(及び速度)を制御する。主制御装置30は、ウエハステージ位置計測系38の計測値に基づいて、ステージ本体24のXY平面内の位置をも制御する。
【0017】
ここで、ウエハW上の各ショット領域には、アライメント系50による検出対象として、図2(a)に示されるような格子マークGMが少なくとも1つ形成されている。なお、格子マークGMは、実際には、各ショット領域のスクライブライン内に形成されている。
【0018】
格子マークGMは、第1格子マークGMaと第2格子マークGMbとを含む。第1格子マークGMaは、XY平面内でX軸に対して45°の角度を成す方向(以下、便宜上、α方向と称する)に延びる格子線が、XY平面内でα方向に直交する方向(以下、便宜上、β方向と称する)に所定間隔(所定ピッチ)で形成された、β方向を周期方向とする反射型の回折格子から成る。第2格子マークGMbは、β方向に延びる格子線がα方向に所定間隔(所定ピッチ)で形成された、α方向を周期方向とする反射型の回折格子から成る。第1格子マークGMaと第2格子マークGMbとは、Y軸方向の位置が同じとなるように、X軸方向に連続して(隣接して)配置されている。なお、図2(a)では、図示の便宜上から、格子のピッチは、実際のピッチに比べて格段に広く図示されている。その他の図における回折格子も同様である。なお、第1格子マークGMaのピッチと第2格子マークGMbのピッチは同じであっても良いし、互いに異なっていても良い。また、図2においては、第1格子マークGMaと第2格子マークGMbとが接しているが、接していなくても良い。
【0019】
図1に戻り、多点焦点位置計測系40は、例えば米国特許第5,448,332号明細書等に開示されるものと同様の構成のウエハWのZ軸方向の位置情報を計測する斜入射方式の位置計測装置である。多点焦点位置計測系40は、投影ユニット16の-Y側に配置されたアライメント系50のさらに-Y側に配置されている。多点焦点位置計測系40の出力は、後述するオートフォーカス制御に用いられることから、以下、多点焦点位置計測系40をAF系40と称する。
【0020】
AF系40は、複数の検出ビームをウエハW表面に対して照射する照射系と、該複数の検出ビームのウエハW表面からの反射光を受光する受光系(いずれも不図示)を備えている。AF系40の複数の検出点(検出ビームの照射点)は、図示は省略されているが、被検面上でX軸方向に沿って所定間隔で配置される。本実施形態では、例えば1行M列(Mは検出点の総数)又は2行N列(Nは検出点の総数の1/2)のマトリックス状に配置される。受光系の出力は、主制御装置30(図6参照)に供給される。主制御装置30は、受光系の出力に基づいて上記複数の検出点におけるウエハW表面のZ軸方向の位置情報(面位置情報)を求める。本実施形態において、AF系40による面位置情報の検出領域(複数の検出点の配置領域)は、図8(a)~図8(c)においてAF系40と同じ符号を付して示されるように、X軸方向に延びる帯状の領域に設定されている。また、AF系40による検出領域のX軸方向の長さは、少なくともウエハW上に設定された1つのショット領域のX軸方向の長さと同等に設定されている。
【0021】
主制御装置30は、露光動作に先だって、AF系40の検出領域に対してウエハWをY軸及び/又はX軸方向に適宜移動させ、そのときのAF系40の出力に基づいてウエハWの面位置情報を求める。主制御装置30は、上記面位置情報の取得をウエハW上に設定された全てのショット領域に対して行い、その結果をウエハテーブル26の位置情報と関連付けて、フォーカスマッピング情報として記憶する。
【0022】
アライメント系50は、図3に示されるように、対物レンズ62を含む対物光学系60、照射系70、及び受光系80を備えている。
【0023】
照射系70は、複数の計測光L1、L2を出射する光源72、計測光L1、L2の光路上に配置された可動ミラー74、可動ミラー74により反射された計測光L1、L2の一部をウエハWに向けて反射し、残りを透過させるハーフミラー(ビームスプリッタ)76、ハーフミラー76を透過(通過)した計測光L1、L2の光路上に配置されたビーム位置検出センサ78などを備えている。
【0024】
光源72は、ウエハW(図1参照)に塗布されたレジストを感光させないブロードバンドな波長の一対の計測光L1、L2を-Z方向に出射する。なお、図3において、計測光L2の光路は、計測光L1の光路に対して紙面奥側に重なっている。本第1の実施形態において、計測光L1、L2としては、例えば白色光が用いられている。
【0025】
可動ミラー74としては、本実施形態では、例えば公知のガルバノミラーが用いられている。可動ミラー74は、計測光L1、L2を反射するための反射面がX軸に平行な軸線回りに回動(回転)可能となっている。可動ミラー74の回動角度は、主制御装置30(図3では不図示、図6参照)により制御される。可動ミラー74の角度制御については、さらに後述する。なお、計測光L1、L2の反射角を制御できれば、ガルバノミラー以外の光学部材(例えばプリズムなど)を用いても良い。
【0026】
ハーフミラー76は、可動ミラー74とは異なり、位置(反射面の角度)が固定されている。可動ミラー74の反射面で反射された計測光L1、L2の一部は、ハーフミラー76により光路が-Z方向に折り曲げられた後、対物レンズ62の中央部を透過(通過)してウエハW上に形成された格子マークGMにほぼ垂直に入射する。なお、図3においては、可動ミラー74がZ軸に対して45°の角度で傾斜しており、可動ミラー74からの計測光L1,L2の一部は、ハーフミラー76でZ軸と平行な方向に反射される。また、図3においては、光源72と対物レンズ62の間の、計測光L1、L2の光路上には、可動ミラー74とハーフミラー76のみが配置されているが、可動ミラー74がZ軸に対して45°以外の角度で傾斜している場合にも、対物レンズ62から射出される計測光L1,L2がウエハW上に形成された格子マークGMにほぼ垂直に入射するように、照射系70が構成される。この場合、光源72と対物レンズ62の間の、計測光L1、L2の光路上に、可動ミラー74,ハーフミラー76とは異なる、他の少なくとも1つの光学部材が配置されていても良い。ハーフミラー76を通過(透過)した計測光L1、L2は、レンズ77を介してビーム位置検出センサ78に入射する。ビーム位置検出センサ78は、例えばPD(Photo Detector)アレイ、あるいはCCD(Charge Coupled Device)などの光電変換素子を有しており、その結像面は、ウエハW表面と共役な面上に配置されている。
【0027】
ここで、図2(a)に示されるように、光源72から出射された計測光L1、L2のうち、計測光L1は、第1格子マークGMa上に照射され、計測光L2は、第2格子マークGMb上に照射されるように、計測光L1、L2の間隔が設定されている。そして、アライメント系50では、可動ミラー74の反射面の角度が変更されると、可動ミラー74の反射面の角度に応じて格子マークGMa、GMb(ウエハW)上における計測光L1、L2それぞれの入射(照射)位置が、スキャン方向(Y軸方向)に変化する(図2(a)中の白矢印参照)。また、計測光L1、L2の格子マークGM上の位置変化と連動して、ビーム位置検出センサ78(図3参照)上における計測光L1、L2の入射位置も変化する。ビーム位置検出センサ78の出力は、主制御装置30(図2(a)では不図示、図6参照)に供給される。主制御装置30は、ビーム位置検出センサ78の出力に基づいて、ウエハW上における計測光L1、L2の照射位置情報を求めることができる。
【0028】
ここで、アライメント系50は、図1に示されるように、上述したAF系40よりも+Y側に配置されていることから、アライメント系50の検出領域(検出点)は、図8(a)~図8(c)においてアライメント系50と同じ符号を付して示されるように、AF系40の検出領域に対して+Y側に配置される。ただし、これに限らず、これらの検出領域は、Y軸方向に関して重複していても良い。
【0029】
対物光学系60は、対物レンズ62、検出器側レンズ64、及び格子板66を備えている。アライメント系50では、対物光学系60の直下に格子マークGMが位置した状態で、第1格子マークGMa(図2(a)参照)に計測光L1が照射されると、第1格子マークGMaから発生した計測光L1に基づく複数の(白色光に含まれる複数波長の光に応じた複数の)±1次回折光±L3が対物レンズ62に入射する。同様に、第2格子マークGMb(図2(a)参照)に計測光L2が照射されると、第2格子マークGMbから発生した計測光L2に基づく複数の±1次回折光±L4が対物レンズ62に入射する。±1次回折光±L3、±L4は、それぞれ対物レンズ62により光路が曲げられ、対物レンズ62の上方に配置された検出器側レンズ64に入射する。検出器側レンズ64は、±1次回折光±L3、±L4それぞれを、該検出器側レンズ64の上方に配置された格子板66上に集光させる。
【0030】
格子板66には、図4に示されるように、Y軸方向に延びる読み出し用回折格子Ga、Gbが形成されている。読み出し用回折格子Gaは、格子マークGMa(図2(a)参照)に対応する、β方向を周期方向とする透過型の回折格子である。読み出し用回折格子Gbは、格子マークGMb(図2(a)参照)に対応する、α方向を周期方向とする透過型の回折格子である。なお本実施形態においては、読み出し用回折格子Gaのピッチは、格子マークGMaのピッチと実質的に同じとなるように設定されている。また、読み出し用回折格子Gbのピッチは、格子マークGMbのピッチと実質的に同じとなるように設定されている。
【0031】
受光系80は、検出器84、及び後述するように計測光L1、L2に基づく回折光(±L3、±L4)同士の干渉により、格子板66(読み出し用回折格子Ga、Gb)上に結像される像(干渉縞)に対応する光を検出器84に導く光学系86などを備えている。
【0032】
読み出し用回折格子Ga、Gb上に結像した像(干渉縞)に対応する光は、光学系86が有するミラー86aを介して検出器84に導かれる。本実施形態のアライメント系50では、計測光L1、L2として白色光が用いられることに対応して、光学系86は、分光プリズム86bを有している。格子板66からの光は、分光プリズム86bを介して、例えば青、緑、及び赤の各色に分光される。検出器84は、上記各色に対応して独立に設けられたフォトディテクタPD1~PD3を有している。検出器84が有するフォトディテクタPD1~PD3それぞれの出力は、主制御装置30(図3では不図示。図6参照)に供給される。
【0033】
フォトディテクタPD1~PD3それぞれの出力からは、一例として、図5(a)に示されるような波形の信号(干渉信号)が得られる。主制御装置30(図6参照)は、上記信号の位相から、格子マークGMa、GMbそれぞれの位置を演算により求める。すなわち、本実施形態の露光装置10(図1参照)では、アライメント系50と主制御装置30(それぞれ図6参照)とにより、ウエハWに形成された格子マークGMの位置情報を求めるためのアライメント装置が構成されている。
【0034】
主制御装置30(図6参照)は、アライメント系50を用いて格子マークGMの位置計測を行う際、図3中の両矢印で示されるように格子マークGM(すなわちウエハW)をアライメント系50に対してY軸方向に駆動しつつ、可動ミラー74を制御することにより、計測光L1、L2を、格子マークGMに追従させてY軸方向に走査する(図2(a)参照)。これにより、格子マークGMと格子板66とがY軸方向に相対移動するので、計測光L1に基づく回折光同士の干渉、及び計測光L2に基づく回折光同士の干渉により、格子板66が有する読み出し用回折格子Ga、Gb上にそれぞれ干渉縞が結像する(形成される)。格子板66上に結像した干渉縞は、前述したように検出器84によって検出される。検出器84の出力は、主制御装置30に供給される。なお、図5(a)に示される波形は、格子マークGMa、GMbと読み出し用回折格子Ga、Gb(図4参照)との相対移動に基づいて生成されるものであり、格子マークGMa、GMb上に照射される計測光L1、L2の位置とは無関係に生成される。従って、格子マークGMa、GMb(すなわちウエハステージ22)の移動と計測光L1、L2の走査とは、必ずしも完全に同期(速度が厳密に一致)していなくても良い。
【0035】
ここで、本実施形態では、格子マークGMをY軸方向に移動させつつ、該格子マークGMに追従するように計測ビームの照射点をY軸方向に移動させることから、以下に説明する手法で格子マークGMのウエハW上での位置の絶対値を求める。なお、従来のごときアライメント系50から照射される計測ビームの照射点のXY平面内の位置が固定である場合においては、アライメント系の出力(図5(a)と同様の波形)の中心に基づいて格子マークGMの位置の絶対値を求めることが可能である。
【0036】
主制御装置30は、図5(a)に示される波形(以下、第1の波形と称する)とは別に、図5(b)に示されるような波形(以下、第2の波形と称する)を生成する。第1の波形及び第2の波形で示される信号は、計測ビームと読み出し用の回折格子Ga、Gbと格子マークGMとの畳込みによって発生する信号である。ここで、第1の波形の横軸がウエハテーブル26のY座標値であるのに対し、第2の波形の横軸は、アライメント系50のビーム位置検出センサ78とウエハステージ位置計測系38の出力とに基づいて求められる、計測ビームのY位置とウエハテーブル26のY座標値との差である。すなわち、第1の波形及び第2の波形は、共に計測ビームが1つの格子マークGMをスキャン方向に横切る際に出力されるものであり、横軸の取り方が互いに異なるものである。このうち第1の波形は、格子マークGMで発生する所定次数の回折光、例えば±1次回折光同士の干渉によって読み出し用の回折格子Ga及びGb上に結像される干渉縞によって得られる周期信号を示しており、強度が一定となる所定の期間(図5(a)中の網掛けされた範囲)は計測ビーム全体が格子マークGM内に位置する(すなわち計測ビームの一部が格子マークGMの端部にかかっていない)ことを示すものである。
【0037】
一方、第2の波形は、計測ビームのビーム位置からウエハステージの位置を減じることにより、格子マークGMに関するある程度の位置とその形状を示しているものである。具体的には、この第2の波形の包絡線が計測ビームとウエハ上の格子マークGMとの重なりを示しており、この包絡線の始点から終点までが格子マークGMの概略位置と形状を示すこととなる。なお、第2の波形の包絡線のうち始点と終点との中間点が、格子マークGMの中央を示すことになる。
【0038】
主制御装置30は、第2の波形の中心位置から格子マークの凡その位置(ラフ位置)を演算により求める。該演算としては、例えば第2の波形の信号強度が上昇するエッジ部分を用いて、スライス法などの公知の手法により求めることができる。
【0039】
次に、主制御装置30は、第1の波形(位相)から、例えば高速フーリエ変換などの公知の手法によりマーク位置を求める。このとき、主制御装置30は、計測ビームが完全に格子マークGM内にあるデータ(図5(a)における網掛けされた範囲内のデータ)のみを用いる。
【0040】
図5(c)は、格子マークGMの絶対値の計算方法の概念図である。図5(c)において、縦軸方向に短い複数の線(短線)は、第1の波形から想定される格子マークGMの位置を意味し、この複数の短線の各々が図5(a)における第1の波形のピークに対応する。なお、図5(c)では、後述の長線に近い6本の短線が代表的に記載されているが、実際はこれより多くの短線が現れる。また、図5(c)において、縦軸方向に1本の長い線(長線)は、第2の波形から求められた格子マークGMのラフ位置(例えば上述した格子マークGMの中央の位置)を意味し、この長線(格子マークのラフ位置)に対して最も近い短線(マーク位置の候補)が、ウエハW上の格子マークGMの絶対値(格子マークGMの中央に関する絶対位置)となる。
【0041】
なお、本実施形態ではアライメント系50が計測ビームをY軸方向に走査することから、上記の手法により、格子マークGMのY軸方向に関する絶対値を求めることができるが、X軸方向に関する絶対値を求めるためには、例えばウエハW(格子マークGM)とアライメント系50とをX軸方向に相対移動させると良い(後述の第2の実施形態においても同様)。
【0042】
具体的には、計測ビームと格子マークGMとを相対的に蛇行(X軸及びY軸と交差する方向(例えばX軸とY軸に対して+45°及び-45°の角度となる方向)への移動を行うこと)させてX軸方向に計測ビームを走査して格子マークGMのエッジ部分を検出する。あるいは、1回だけY軸方向と同様に格子マークGMのエッジ部分を検出できるようにX軸方向に計測ビームと格子マークGMとを相対的に移動させると良い。なお、計測ビームと格子マークGMとを相対的に蛇行させてX軸方向に計測ビームを走査して格子マークGMのエッジ部分を検出する動作は、例えば後述する第1のショット領域に形成されてアライメント系50が最初に計測する格子マークGM(1st格子マーク)を対象として行っても良い。あるいは、1回だけX軸方向に計測ビームを走査して格子マークGMのエッジ部分を検出する動作について、例えば後述する第1のショット領域に形成されてアライメント系50が最初に計測する格子マークGM(1st格子マーク)を対象として行っても良い。なお、一対の格子マークGMa、GMbの周期方向を直交させずに僅かにずらしても良い。
【0043】
次に、図1の露光装置10を用いた露光動作について、図7に示されるフローチャートを用いて説明する。以下説明する露光動作は、主制御装置30(図6参照)の管理の元に行われる。
【0044】
主制御装置30は、ステップS10で露光対象のウエハWをウエハステージ22(それぞれ図1参照)上にローディングする。このとき、ウエハステージ22は、ベース盤28(図1参照)上における所定のローディングポジションに位置決めされている。
【0045】
ウエハローディングが終了すると、主制御装置30は、次のステップS12において、AF系40、及びアライメント系50の1回目のキャリブレーション(較正)を行う。本実施形態において、1回目のキャリブレーションは、図8(a)に示されるように、ウエハステージ22が有する第1計測マーク(フィデューシャルマーク)WFM1を用いて行われる。本実施形態のウエハステージ22において、ウエハWは、ウエハテーブル26(図1参照)の上面中央に配置されたウエハホルダ(不図示)に保持され、第1計測マークWFM1はウエハテーブル26の上面におけるウエハホルダの外側の領域であって、+Y側且つ-X側の位置に配置されている。また、ウエハテーブル26の上面におけるウエハホルダの外側の領域であって、-Y側且つ+X側の位置には、後述する2回目のキャリブレーションを行う際に用いられる第2計測マークWFMが配置されている。
【0046】
第1及び第2計測マークWFM1、WFM2上には、AF系40のキャリブレーションを行うための基準面、及びアライメント系50のキャリブレーションを行うための基準マークがそれぞれ形成されている(それぞれ不図示)。第1及び第2計測マークWFM1、WFM2の構成は、配置が異なる点を除き実質的に同じである。
【0047】
主制御装置30は、1回目のキャリブレーション動作のために、ウエハステージ22を駆動して、第1計測マークWFM1がAF系40、及びアライメント系50の直下に位置するように位置決めする。なお、上記ローディングポジションにウエハステージ22を位置させた状態で、AF系40、及びアライメント系50の直下に第1計測マークWFM1が位置するようにローディングポジションを設定しても良い。
【0048】
本ステップS12におけるキャリブレーション動作において、主制御装置30は、第1計測マークWFM1上の基準面を用いてAF系40のキャリブレーションを行うとともに、アライメント系50に第1計測マークWFM1上の基準マークを計測させる。そして、主制御装置30は、アライメント系50の出力とウエハステージ位置計測系38の出力とに基づいてアライメント系50(の検出中心)のXY平面内の位置情報を求める。アライメント系50のキャリブレーションを行うための基準マークは、ウエハW上に形成されている格子マークGM(図2(a)参照)と実質的に同じである。
【0049】
1回目のキャリブレーションが終了すると、主制御装置30は、次のステップS14において、アライメント計測、及び面位置計測を開始する。このため、主制御装置30は、ウエハステージ22を駆動して、第1のショット領域がAF系40、及びアライメント系50の直下に位置するように位置決めする。ここで、第1のショット領域とは、検出対象の全ショット領域のうち、最初にアライメント計測、及び面位置計測が行われるショット領域を意味し、本実施形態においては、例えば最も-X側に配列された複数のショット領域のうちの、最も+Y側のショット領域である。
【0050】
ここで、本実施形態では、AF系40の検出領域がアライメント系50の検出領域に対して-Y側に配置されていることから、ショット領域内に形成された格子マークGMよりも先に該ショット領域の面位置情報が求められる。そして、主制御装置30は、上記面位置情報と、予めレイヤ毎に求められたオフセット値とに基づいてウエハテーブル26のZ軸方向の位置及び姿勢(θx方向及びθz方向の傾斜)を制御することにより、アライメント系50の対物光学系60を検出対象の格子マークGMに合焦させる。本実施形態において、上記オフセット値は、アライメント系50の信号強度(干渉縞のコントラスト)が最大となるようにウエハテーブル26の位置及び姿勢を調整したときに得られるAF系40の計測値を意味する。このように、本実施形態では、アライメント系50による格子マークGMの検出の直前に得られたウエハWの面位置情報を用いて、ほぼリアルタイムでウエハテーブル26の位置及び姿勢の制御が行われる。なお、格子マークGMの位置計測と並行して、位置計測対象の格子マークGMからの光を受光し、ウエハWの面位置を検出しなくても特に不都合はない。
【0051】
次に、ステップS14で行われるアライメント動作を図9のフローチャートに基づいて説明する。
【0052】
主制御装置30は、ステップS30において、第1ショット領域内に形成された格子マークGM(図2(a)参照)をアライメント系50(図1参照)を用いて計測する。なお、第1ショット領域内に形成された格子マークGMを「第1マーク」とも称する。ここで、上記ステップS10のウエハローディング時にウエハWがウエハステージ22上における所定の設計上の位置に正しく載置されていない場合(回転ずれがある場合を含む)には、アライメント系50が格子マークGMを検出できない。
【0053】
そこで、主制御装置30は、第1ショット領域内の格子マークGMを検出できなかった場合(ステップS32でNo判定)には、ステップS34に進み、ウエハWのサーチアライメント動作を行う。サーチアライメント動作は、例えばウエハWの外周縁部に形成された切り欠き、あるいはウエハW上に形成されたサーチマーク(いずれも不図示)を用いて行われ、主制御装置30は、該サーチアライメント動作の結果に基づいてウエハステージ22の位置(θz方向の回転を含む)を制御してステップS30に戻る。第1ショット領域内の格子マークGMを検出できた場合には、ステップS36に進む。
【0054】
なお、上記ステップS32において、ウエハW上の第1ショット領域内の格子マークGMを検出できなかった場合(ステップS32でNo判定)、当該ウエハWをリジェクトしても良い。この場合、主制御装置30は、ウエハステージ22を所定のアンローディングポジション(ローディングポジションと共通であっても良い)に駆動し、ウエハWをウエハステージ22から取り外すとともに、ステップS10に戻り、該ウエハステージ22上に別のウエハを載置する。
【0055】
なお、ステップS30の前に、例えばアライメント系50を用いてウエハW上の所定(例えば任意の数カ所)のショット領域内の格子マークGMまたは上記サーチマークの位置をラフに(ステップS14のアライメント計測に比して粗い精度で)計測しておいても良い(「事前計測ステップ」と称する)。この事前の処理により、ウエハステージ22にローディングされたウエハWの位置情報を、より精度良く把握することが可能となり、上記ステップS32においてウエハW上の第1ショット領域内の格子マークGMが検出されない事態を抑制することができる。なお、この事前計測ステップにおける格子マークGMまたはサーチマークも、上述した「第1マーク」に含まれることとしても良い。
【0056】
ステップS36において、主制御装置30は、アライメント系50の出力に基づいて、上述した手法(図5(a)~図5(c)参照)を用いて格子マークGMの位置の絶対値を求める。主制御装置30は、該格子マークGMの位置情報と、上記キャリブレーション動作(ステップS12参照)で求めたアライメント系50の位置情報とに基づいて、アライメント系50から照射される計測ビームのX軸方向に関する中心と、格子マークGMのX軸方向に関する中心とのずれ量を求める。
【0057】
ここで、計測ビームのX軸方向に関する中心と、格子マークGMのX軸方向に関する中心との「ずれ量」は、格子マークGMにおける-Y方向の端部での「ずれ量」として求めることが好ましいが、格子マークGMのY軸方向における任意の位置において求めても良い。例えば格子マークGMのY軸方向における中央付近での「ずれ量」として求めても良い。また、計測ビームのX軸方向に関する中心と、格子マークGMのX軸方向に関する中心との「ずれ量」は、格子マークGMにおける+Y方向の端部(すなわち計測ビームが格子マークGMに差し掛かる始点)からの軌跡が考慮されても良い。
【0058】
次いで、主制御装置30は、ステップS36で求めた結果(ずれ量)が所定の許容値よりも大きいか否かをステップS38で判定する。この判定により、ずれ量が許容値以上(ステップS38でNo判定)であれば、ステップS40に進む。これに対し、ずれ量が許容値未満(ステップS38でYes判定)であれば、ステップS42に進む。
【0059】
ステップS42において、主制御装置30は、上記ステップS36で求めたずれ量に応じて、図10に示されるように、ウエハステージ22とアライメント系50から照射される計測ビームのウエハW上の照射点とを、X軸方向に相対移動させることにより、計測ビームの格子マークGM上での照射点の位置を補正しつつ、2番目の検出対象の格子マークGMの位置計測を行う。なお、2番目以降の検出対象の複数の格子マークGMのうちの少なくとも1つが本実施形態では「第2マーク」に対応する。なお、図10における格子マークGMは、実際は上述した図2(a)に示される格子マークGMが用いられるが、X軸とY軸とに直交する図10で示される格子マークGMを用いても良い。
【0060】
このウエハステージ22のX位置を補正する制御は、アライメント系50から出射される計測ビームが、2番目以降の検出対象の格子マークGMの中心とを一致させるようにするために行うものであることから、以下トラッキング制御と称する。ここで、2番目の検出対象の格子マークGMは、第1ショット領域内に形成されていても良いし、他のショット領域内に形成されていても良い。また、主制御装置30は、上記ステップS36で求めたずれ量に応じて、2番目以降の検出対象の格子マークGMの中心位置を推定しても良い。
【0061】
なお、図10では、ウエハWに対して計測ビームが、-X方向及び-Y方向、続いて+X方向及び-Y方向に移動することで計測ビームがウエハWに対して蛇行するように走査することが描かれているが、本実施形態では、実際にはウエハステージ22が計測ビーム(アライメント系50)に対して+X方向又は-X方向に微小移動しつつ、+Y方向に移動する。なお、ウエハステージ22が計測ビーム(アライメント系50)に対してX軸方向に相対移動すれば良いので、アライメント系50をX軸方向に移動可能に構成し、Y軸方向に移動するウエハWに対して、計測ビームが+X方向、又は-X方向に微小駆動しても良いし、ウエハWと計測ビーム(アライメント系50)の双方を適宜+X方向、又は-X方向に微小駆動しても良い。
【0062】
ウエハステージ22を+Y方向に駆動することによって第1列目(最も-X側の列)に含まれる複数のショット領域に形成された格子マークGMの位置計測が終了すると、主制御装置30は、図8(b)に矢印で示されるように、ウエハステージ22をアライメント系50に対して-X方向に1ショット領域分移動させるとともに、ウエハステージ22を-Y方向に移動させる(Y軸方向に関して移動方向を反転させる)ことによって、第2列目のに含まれる複数のショット領域それぞれに形成された格子マークGM(図2(a)参照)の位置計測を行う、以下、ウエハステージ22の-X方向の移動と、+Y又は-Y方向への移動とを適宜切り換えることにより、全ての検出対象の格子マークGMの位置計測を行う。なお、X軸方向、及びY軸方向への移動回数は、ウエハ上に設定されたショット領域の数及び配置に応じて適宜変更が可能である。
【0063】
ここで、検出結果の平均化(いわゆる移動平均)により装置の振動の影響を低減することができることから、格子マークの検出時間は、より長いことが好ましい。これに対し、本実施形態では、ウエハWをアライメント系50(より詳細にはアライメント系50が有する読み出し用回折格子Ga、Gb(図4参照))に対して相対移動させながら格子マークGMの検出を行うことから、検出時間を長く確保することが困難になる。そこで、ウエハステージ22をY軸方向に駆動してひとつの列に含まれる複数の格子マークの位置計測を行う際、主制御装置30は、ウエハステージ22の速度を以下のように制御する。
【0064】
主制御装置30は、第1ショット領域内の格子マークGM(上記位置ずれ量を求めるための格子マークGM)の計測速度(ウエハステージ22の移動速度、及び計測ビームの走査速度)を、以降の格子マークGMの計測速度に比べて遅くする。例えば、主制御装置30は、第1ショット領域内の格子マークGM(第1マークに相当)を計測後にウエハステージ22の移動速度を増加させる制御を行う。より具体的には、ウエハステージ22を第1の速度で移動させつつ第1ショット領域内の格子マークGMを計測した後、+Y側から順番に配列された検出対象の格子マークGM(第2マークに相当)の計測速度を、徐々に早くする。なお、ウエハステージ22を第1の速度で移動させつつ第1ショット領域内の格子マークGM(第1マーク)を計測した後、ウエハステージ22の移動速度を第2の速度まで増加させて、以降の格子マークGM(第2マーク)を計測しても良い。これにより、上記位置ずれ量を求めるための格子マークGMの検出時間を長く確保することができ、上記位置ずれ量をより正確に求めることができると同時に、ウエハステージ22が動く距離を短縮することができるため計測時間を短縮することができる。なお、これに限らず、例えば第1列目のショット領域に含まれる検出対象の格子マークGMの位置計測を行う際の計測速度を、第2列目以降の格子マークGMの位置計測を行う際の計測速度に比べて遅くしても良い。
【0065】
また、各列内に配列された複数の格子マークGMの位置計測時に、計測順が最後の格子マークGM(あるいは最後の格子マークGMを含むいくつかの格子マークGM)の計測速度を、それ以前の格子マークGMの計測速度に比べて遅くしても良い。本実施形態では、上述したように、格子マークGMの位置計測時にウエハステージ22の+Y方向への移動と-Y方向への移動とを切り換えることから、該切替時に必ずウエハステージ22をY軸方向に関して減速させる必要がある。これに併せて、各列における計測順が最後の格子マークGMの計測速度を遅くすることで、該格子マークGMの計測精度を向上させることができると同時に、ウエハステージ22が動く距離を短縮することができるため計測時間を短縮することができる。
【0066】
主制御装置30は、最終列(本実施形態では、最も+X側の列)に含まれる最終ショット領域(列の数が奇数である場合には、最も-Y側のショット領域、列の数が偶数である場合には、最も+Y側のショット領域)に形成された格子マークGMの位置計測が終了すると(ステップS44でYes判定)、図7のステップS16に進み、2回目のキャリブレーションを行う。2回目のキャリブレーションでは、主制御装置30は、ウエハステージ22を適宜駆動して、図8(c)に示されるように、第2計測マークWFM2をAF系40、及びアライメント系50の直下に位置させる。この後、第2計測マークWFM2を用いて多点焦点位置計測系40、及びアライメント系50の2回目のキャリブレーションを行う。
【0067】
なお、上記説明では、ステップS36(図9参照)で第1ショット領域の格子マークGM(すなわち1点の格子マークGM)を用いてずれ量を求め、その結果に基づいて適宜ウエハステージ22のX位置を補正した(ステップS42、及び図10参照)が、これに限らず、第1ショット領域を含む複数のショット領域の格子マークGM(あるいは第1ショット領域内の複数の格子マークGM)の位置を計測し、その結果に基づいてウエハステージ22のX位置を補正しても良い。この場合、例えば格子マークを複数点計測し、その結果に基づいて演算によりウエハステージ22の移動軌跡を関数(例えば1次関数)として求めると良い。
【0068】
また、第1ショット領域の位置は適宜変更が可能であり、必ずしも最も-X側且つ+Y側のショット領域(第1計測マークWFM1の近傍のショット領域)である必要はなく、例えばよりウエハWの内側のショット領域の格子マークを用いても良い。また、例えば第1ショット領域内の格子マークGMの周囲の(例えば所定の半径r内に含まれる)複数の格子マークを用いて演算により、ウエハステージ22の移動軌跡を関数(例えば1次関数)として求めても良い。
【0069】
ここで、上述したウエハW上の格子マークGMの位置計測を行う際、主制御装置30は、ウエハステージ22の+Y又は-Y方向への駆動と連動して複数回(1つの列に含まれる検出対象マークの数に応じて)アライメント系50の可動ミラー74を往復させる。このとき、主制御装置30は、図11に示されるように、可動ミラー74の駆動波形が鋸派状となるように制御する。具体的には、図11において、t~t間、t~t間では、計測ビームを走査するために可動ミラー74を駆動し、t~t間、t~t間では、可動ミラー74を初期位置に戻すために駆動する。このように、計測ビームを格子マークGMに同期してY軸方向に追従させる際の可動ミラー74の速度に比べて、可動ミラー74を戻す際の可動ミラー74の速度を速くする。これにより、検出対象の格子マークGM間の間隔が狭い場合にも対応できる。
【0070】
2回目のキャリブレーションが終了すると、主制御装置30は、ステップS18に進み、ステップS14で取得したAF系40の出力に基づいて各ショット領域の面位置の分布情報を求めるともに、アライメント系50の計測結果に基づいて各ショット領域の配列座標を、例えばエンハンスド・グローバル・アライメント(EGA)などの手法により演算により求める。主制御装置30は、上記面位置情報、及びEGA演算の結果に従ってウエハステージ22を駆動しつつ、各ショット領域に対してステップ・アンド・スキャン方式の露光動作を行う。このステップ・アンド・スキャン方式の露光動作は、従来から行われているものと同様であるので、その詳細な説明は省略するものとする。
【0071】
以上説明した、本第1の実施形態に係る露光装置10によれば、最初の格子マークGMに対するアライメント系50の計測ビームの照射位置のずれに応じて、以降の格子マークGMの計測の際にウエハステージ22の位置を補正するので、検出対象の格子マークGMの位置情報を確実に求めることができる。
【0072】
また、本実施形態に係るアライメント系50は、ウエハW(ウエハステージ22)をY軸方向に移動させつつ、計測光L1、L2を格子マークGM(それぞれ図3参照)に対してY軸方向に走査するので、該格子マークGMの位置計測動作を、例えばウエハステージ22上にウエハWをロードした後に行われる、ウエハステージ22の露光開始位置への移動動作と並行して行うことができる。この場合、ウエハステージ22の移動経路上に予めアライメント系50を配置しておくと良い。これにより、アライメント計測時間を短縮し、全体的なスループットを向上することができる。
【0073】
また、本実施形態に係るアライメント系50は、スキャン方向に移動するウエハW(格子マークGM)に追従するように計測光を走査するので、長時間の計測が可能となる。このため、いわゆる出力の移動平均を取ることが可能なので、装置の振動の影響を低減できる。また、仮にアライメント系の受光系として画像センサ(例えばCCDなど)を用いてラインアンドスペース状のマークを検出する場合、スキャン方向に移動するウエハWに追従させて計測光を走査すると、スキャン方向に完全に平行なライン以外の像は、検出できない(像が潰れる)。これに対し、本実施形態では、格子マークGMからの回折光を干渉させることにより該格子マークGMの位置計測を行うので、確実にマーク検出を行うことができる。
【0074】
また、本実施形態に係るアライメント系50は、検出器84として、白色光である計測光L1,L2に対応して、例えば3つのフォトディテクタPD1~PD3(それぞれ青色光、緑、赤用)を有している。このため、例えばウエハアライメントに先立ってウエハW上に形成された重ね合わせマーク(不図示)を白色光を用いて検出し、干渉縞のコントラストが最も高くなる光の色を予め求めておくことにより、上記例えば3つのフォトディテクタPD1~PD3のうちの何れの出力をウエハアライメントに用いるのが最適かを決定することができる。
【0075】
《第2の実施形態》
次に第2の実施形態に係る露光装置について説明する。本第2の実施形態の露光装置は、前述の第1の実施形態に係る露光装置10とは、ウエハステージ上の計測マークの位置が異なるのみなので、以下相違点に付いてのみ説明し、第1の実施形態と同じ構成、及び機能を有する要素については、第1の実施形態と同一の符号を用いるととともに、その説明を省略する。
【0076】
前述の第1の実施形態では、図8(a)などに示されるように、ウエハステージ22に、例えば2つの計測マークWFM1、WFM2が配置されていたのに対し、図12(a)~図12(d)に示されるように、本第2の実施形態に係るウエハステージ122では、不図示のウエハホルダ(図12(a)~図12(d)ではウエハWと重なっている)の+Y側に1つの計測マークが配置されている。以下、本第2の実施形態における露光動作について図13に示されるフローチャートを用いて説明する。
【0077】
主制御装置30は、ステップS50でウエハステージ122上にウエハWをロードする(図12(a)参照)。上記第1の実施形態では、ウエハWのロードの直後にキャリブレーション動作が行われたのに対し、本第2の実施形態では、ウエハWのロード後、ステップS52に進み、ウエハステージ22をXY平面内で適宜駆動して、検出対象の全ての格子マークGMの位置計測を行う。
【0078】
本第2の実施形態における格子マークGMの位置計測動作においても、第1の実施形態と同様のトラッキング処理が行われる。すなわち、図13のステップS52の具体例を示す図14のフローチャートに示されるように、ステップS70で第1ショットの格子マークGM(第1マークに相当)の位置計測が行われ、その結果、格子マークGMの検出ができなかった場合(ステップS72でNo判定)には、ステップS74に進んでサーチアライメント動作を行い、ステップS70に戻って第1ショットの格子マークGMの位置計測をやり直す。これに対し、第1ショットの格子マークGMの位置計測を行うことができた場合(ステップS72でYes判定)には、ステップS76に進み、計測ビームの格子マークGM上における位置ずれ量を求める。また、ステップS76で求めた位置ずれ量が許容値未満(ステップS78でYes判定)であれば、図13のステップS54に進む。これに対し、位置ずれ量が許容値以上であった場合(ステップS78でNo判定)には、ステップS80に進み、第1ショットの格子マークGMの位置計測をやり直す。
【0079】
図13に戻り、ステップS54では、第1の実施形態と同様、図10に示されるように、計測ビームとウエハWとをX軸方向(上記位置ずれを打ち消す方向)に相対移動させるとともに、ウエハWをY軸方向に駆動する。アライメント系50(図3参照)は、ウエハWのY軸方向への移動に追従するように計測ビームをウエハW上に照射しつつ、検出対象の格子マークGMの位置計測を行う。また、AF系40を用いたウエハWの面位置計測(フォーカスマッピング動作)も並行して行う。
【0080】
次のステップ56において、主制御装置30は、上記格子マークGMの位置計測動作と並行してウエハステージ位置計測系38の出力に基づいて、アライメント系50の検出領域と計測マークWFMとのXY平面内の位置が一致したか否かを判断する。この結果、アライメント系50の検出領域と計測マークWFMとのXY平面内の位置が一致すると、ステップS58に進み、格子マークGMの位置計測動作、及びフォーカスマッピング動作を中断した後、次のステップS60において、AF系40、及びアライメント系50のキャリブレーション動作を行う。
【0081】
そして、キャリブレーション動作が終了するとステップS62に進み、主制御装置30は、格子マークGMの位置計測動作、及びフォーカスマッピング動作を再開する。そして、最終ショットの格子マークGMの位置計測が終了すると(ステップS64でYes判定)、ステップS66においてステップ・アンド・スキャン方式の露光動作を開始する。以上説明した本第2の実施形態でも、上記第1の実施形態と同様の効果を得ることができる。
【0082】
なお、上記第1及び第2の実施形態に係るトラッキング制御を含むウエハステージ22、及びその制御方法は、適宜変更が可能である。例えば、上記第1及び第2の実施形態では、第1ショット領域の格子マークGMが検出できない場合(ステップS32、S72でNo判定)には、サーチアライメントが行われたが、これに限らず、ウエハローディングの後(ステップS10とステップS14との間のいずれかの期間、あるいはステップS50とステップS54との間のいずれかの期間)にサーチアライメントを必ず実行しても良い。また、上記第1及び第2の実施形態において、上述した事前計測ステップを必ず実行することとしても良い。
【0083】
また、上記第1及び第2の実施形態では、図2(a)に示されるように、格子マークGMa、GMbそれぞれに対応する計測光L1、L2が照射されたが、これに限らず、例えば図2(b)に示されるように、X軸方向に延びる(幅広な)単一の計測光L1を格子マークGMa、GMbに照射しても良い。
【0084】
また、上記第1及び第2の実施形態では、図2(a)に示されるように、格子マークGMa、GMbがX軸方向に沿って配列されたが、これに限らず、例えば図2(c)に示されるように、格子マークGMa、GMbがY軸方向に沿って配列されても良い。この場合、単一の計測光L1を格子マークGMa、GMbの順番(あるいはその逆)に走査することにより、格子マークGMのXY平面内の位置を求めることができる。
【0085】
また、上記第1及び第2の実施形態において、アライメント系50から出射した計測光L1、L2は、格子マークGMに対して垂直に入射する構成であったが、これに限らず、格子マークGMに対して所定の角度を成して(すなわち斜めに)入射しても良い。例えば図15(a)に示されるように、格子ピッチpの格子マークGMに対して入射角θで波長λの計測光Lを入射させた場合、格子マークGMからは回折格θの回折光L’が発生する。ここで、λ/p=sin(θ)+sin(θ)が成り立つことから、図15(a)に示される斜入射方式とすることにより、開口数NAが同じ光学系であっても、計測光Lを格子マークGMに垂直に入射させる場合に比べ、より細かいピッチの格子マークGMの位置計測を行うことができる。
【0086】
ここで、上記第1及び第2実施形態では、格子マークGMからの一対の回折光を干渉させることにより格子マークGMの位置計測を行うことから、図15(a)に示される斜射入射方式を用いる場合にも、図15(b)に示されるように、格子マークGM(図15(a)参照)の直交2軸方向の位置計測を行うために、合計で4方向から計測光Lを格子マークGMに照射する。ここで、図15(b)は、対物レンズ62の瞳面での像(光の方向)を示す図である。上述したように、本実施形態の格子マークGM(図2(a)参照)は、X軸及びY軸に、例えば45°の方向を成すα又はβ方向を周期方向とするため、計測光Lの入射方向、及び回折光L’の出射方向も同様に、α又はβ方向となる。なお、計測対象の格子マークの周期方向は、X軸及びY軸に平行な方向であっても良く、この場合には、図15(c)に示されるように、計測光LをX軸及びY軸に平行な方向に入射させる。この場合、回折光L’X軸及びY軸に平行な方向に出射する。
【0087】
また、上記第1の実施形態のアライメント系50の受光系80は、分光プリズム86bにより、白色光を分光したが、これに限らず、図16に示される検出系380のように、複数の分光フィルタ386を用いて白色光を、各色(例えば、青、緑、黄、赤、赤外光)に対応して配置されたフォトディテクタPD1~PD5に向けて分光しても良い。
【0088】
また、照明光ILは、ArFエキシマレーザ光(波長193nm)に限らず、KrFエキシマレーザ光(波長248nm)などの紫外光、あるいはF2レーザ光(波長157nm)などの真空紫外光であっても良い。例えば米国特許第7,023,610号明細書に開示されているように、真空紫外光としてDFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、照明光ILの波長は、100nm以上の光に限らず、波長100nm未満の光を用いても良く、例えば、軟X線領域(例えば5~15nmの波長域)のEUV(Extreme Ultraviolet)光を用いるEUV露光装置にも上記実施形態を適用することができる。その他、電子線又はイオンビームなどの荷電粒子線を用いる露光装置にも、上記実施形態は適用できる。
【0089】
また、上記各実施形態の露光装置における投影光学系は、縮小系のみならず等倍及び拡大系のいずれでも良いし、投影光学系16bは屈折系のみならず、反射系及び反射屈折系のいずれでも良いし、その投影像は倒立像及び正立像のいずれでも良い。また、上記第1の実施形態と第2の実施形態とでそれぞれ詳述した構成を、任意に組み合わせて実施しても良い。
【0090】
また、上記各実施形態においては、光透過性の基板上に所定の遮光パターン(又は位相パターン・減光パターン)を形成した光透過型マスク(レチクル)を用いたが、このレチクルに代えて、例えば米国特許第6,778,257号明細書に開示されているように、露光すべきパターンの電子データに基づいて、透過パターン又は反射パターン、あるいは発光パターンを形成する電子マスク(可変成形マスク、アクティブマスク、あるいはイメージジェネレータとも呼ばれ、例えば非発光型画像表示素子(空間光変調器)の一種であるDMD(Digital Micro-mirror Device)などを含む)を用いても良い。
【0091】
また、露光装置としては、例えば米国特許第8,004,650号明細書に開示されるような、投影光学系と露光対象物体(例えばウエハ)との間に液体(例えば純水)を満たした状態で露光動作を行う、いわゆる液浸露光装置にも上記各実施形態は適用することができる。
【0092】
また、例えば米国特許出願公開第2010/0066992号明細書に開示されるような、ウエハステージを2つ備えた露光装置にも、上記各実施形態は適用することができる。
【0093】
また、例えば国際公開第2001/035168号に開示されているように、干渉縞をウエハW上に形成することによって、ウエハW上にライン・アンド・スペースパターンを形成する露光装置(リソグラフィシステム)にも上記各実施形態を適用することができる。また、ショット領域とショット領域とを合成するステップ・アンド・スティッチ方式の縮小投影露光装置にも上記各実施形態は適用することができる。
【0094】
また、例えば米国特許第6,611,316号明細書に開示されているように、2つのレチクルパターンを、投影光学系を介してウエハ上で合成し、1回のスキャン露光によってウエハ上の1つのショット領域をほぼ同時に二重露光する露光装置にも上記各実施形態を適用することができる。
【0095】
また、上記各実施形態でパターンを形成すべき物体(エネルギビームが照射される露光対象の物体)はウエハに限られるものでなく、ガラスプレート、セラミック基板、フィルム部材、あるいはマスクブランクスなど他の物体でも良い。
【0096】
また、露光装置の用途としては半導体製造用の露光装置に限定されることなく、例えば、角型のガラスプレートに液晶表示素子パターンを転写する液晶用の露光装置、又は有機EL、薄膜磁気ヘッド、撮像素子(CCD等)、マイクロマシンあるいはDNAチップなどを製造するための露光装置にも広く適用できる。また、半導体素子などのマイクロデバイスだけでなく、光露光装置、EUV露光装置、X線露光装置、あるいは電子線露光装置などで使用されるレチクル又はマスクを製造するために、ガラス基板又はシリコンウエハなどに回路パターンを転写する露光装置にも上記各実施形態を適用できる。
【0097】
半導体素子などの電子デバイスは、デバイスの機能・性能設計を行うステップ、この設計ステップに基づいたレチクルを製作するステップ、シリコン材料からウエハを製作するステップ、前述した実施形態に係る露光装置(パターン形成装置)及びその露光方法によりマスク(レチクル)のパターンをウエハに転写するリソグラフィステップ、露光されたウエハを現像する現像ステップ、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去るエッチングステップ、エッチングが済んで不要となったレジストを取り除くレジスト除去ステップ、デバイス組み立てステップ(ダイシング工程、ボンディング工程、パッケージ工程を含む)、検査ステップ等を経て製造される。この場合、リソグラフィステップで、上記実施形態の露光装置を用いて前述の露光方法が実行され、ウエハ上にデバイスパターンが形成されるので、高集積度のデバイスを生産性良く製造することができる。
【0098】
なお、これまでの記載で引用した露光装置などに関する全ての公報、国際公開、米国特許出願公開明細書及び米国特許明細書の開示を援用して本明細書の記載の一部とする。
【産業上の利用可能性】
【0099】
以上説明したように、本発明の計測装置及び計測方法は、所定方向に移動する物体に設けられた格子マークの位置情報を計測するのに適している。また、本発明の露光装置は、物体を露光するのに適している。
【符号の説明】
【0100】
10…露光装置、14…レチクルステージ、20…ウエハステージ装置、30…主制御装置、40…AF系、50…アライメントセンサ、GM…格子マーク、W…ウエハ。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16