(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-29
(45)【発行日】2022-10-07
(54)【発明の名称】高速可変焦点距離レンズを含む撮像システムにおける焦点探索範囲の拡大
(51)【国際特許分類】
G01B 11/00 20060101AFI20220930BHJP
G02B 7/36 20210101ALI20220930BHJP
G02B 21/00 20060101ALI20220930BHJP
【FI】
G01B11/00 H
G02B7/36
G02B21/00
(21)【出願番号】P 2017219476
(22)【出願日】2017-11-14
【審査請求日】2020-10-06
(32)【優先日】2016-11-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】000137694
【氏名又は名称】株式会社ミツトヨ
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】ポール ジェラード グラドニック
【審査官】國田 正久
(56)【参考文献】
【文献】特開2000-316120(JP,A)
【文献】特開2015-104136(JP,A)
【文献】特開平10-144975(JP,A)
【文献】特開2017-21025(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01B 11/00
G02B 7/36
G02B 21/00
(57)【特許請求の範囲】
【請求項1】
撮像システムを制御するための方法であって、
前記撮像システムは、高速可変焦点距離(VFL)レン
ズと、
前記VFLレンズの駆動を制御するレンズ制御部と、前記撮像システムの画像を提供するように構成されたカメラと、を備え、
前記方法は、
前記レンズ制御部に拡大焦点範囲要求信号を与えることと、
前記拡大焦点範囲要求信号に応答して、前記VFLレンズ
を第1の動作共振周波数で動作させて
第1の振幅で周期的に変更される第1の光学パワー変動を与え、これによって前記撮像システムに第1の焦点範囲を与える
モードとなるように、前記レンズ制御部を構成することと、
前記レンズ制御部に高精度画像要求信号を与えることと、
前記高精度画像要求信号に応答して、前記VFLレンズ
を第2の動作共振周波数で動作させて前記
第1の振幅より小さい第2の振幅で周期的に変更される第2の光学パワー変動を与え、これによって前記撮像システムに前記第1の焦点範囲より小さい第2の焦点範囲を与える
モードとなるように、前記レンズ制御部を構成することと、
を備え、
前記撮像システムは、
前記VFLレンズを前記第2の動作共振周波数で動作させることで前記第2の光学パワー変動を与え、これによって、前記第2の焦点範囲と、低収差画像と、を与え、
前記VFLレンズを前記第1の動作共振周波数で動作させることで前記第1の光学パワー変動を与え、これによって、前記第1の焦点範囲と、前記低収差画像より収差が大きい画像と、を与える、
ように構成される、
方法。
【請求項2】
前記撮像システムの視野(FOV)内にワークピース要素を位置決めすることと、
自動合焦探索動作を実行するよう前記撮像システムを動作させて、
前記レンズ制御部に前記拡大焦点範囲要求信号を与えることと、
前記拡大焦点範囲要求信号に応答して、前記VFLレンズを前記第1の動作共振周波数で周期的に動作させ、前記撮像システムの焦点が前記第1の焦点範囲にわたって周期的に変更されるように、前記レンズ制御部を構成することと、
前記撮像システムの前記焦点を前記第1の焦点範囲にわたって周期的に変更している間に取得された焦点信号を解析することと、
前記焦点信号に基づいて前記ワークピース要素の位置又は高さを決定することと、
により、前記ワークピース要素の位置又は高さを決定することと、
を更に含む、請求項1に記載の方法。
【請求項3】
前記ワークピース要素が前記第2の焦点範囲内に配置されるように、前記ワークピース要素の前記決定された位置又は高さに基づいて、前記ワークピース要素と前記撮像システムとの間の距離を調整することを更に含む、請求項2に記載の方法。
【請求項4】
前記レンズ制御部に前記高精度画像要求信号を与えることと、
前記高精度画像要求信号に応答して、前記VFLレンズを前記第2の動作共振周波数で周期的に動作させ、前記撮像システムの前記焦点が前記第2の焦点範囲にわたって周期的に変更されるように、前記レンズ制御部を構成することと、
前記撮像システムの前記焦点を前記第2の焦点範囲にわたって周期的に変更しながら、前記ワークピース要素の低収差画像を与えるように前記撮像システムを動作させることと、
を更に含む、請求項3に記載の方法。
【請求項5】
前記自動合焦探索動作を実行するよう前記撮像システムを動作させて、前記ワークピース要素の位置又は高さを決定するステップが所定レートで自動的に繰り返されるモードで、前記撮像システムを動作させることを更に含む、請求項2に記載の方法。
【請求項6】
前記ワークピース要素の前記決定された位置又は高さが前記第2の焦点範囲内にある場合、前記方法は、
前記レンズ制御部に前記高精度画像要求信号を与えることと、
前記高精度画像要求信号に応答して、前記VFLレンズを前記第2の動作共振周波数で周期的に動作させ、前記撮像システムの前記焦点が前記第2の焦点範囲にわたって周期的に変更されるように、前記レンズ制御部を構成することと、
前記撮像システムの前記焦点を前記第2の焦点範囲にわたって周期的に変更しながら、前記ワークピース要素の低収差画像を与えるように前記撮像システムを動作させることと、
を含む自動動作を更に含む、請求項5に記載の方法。
【請求項7】
前記ワークピース要素の前記決定された位置又は高さが前記第2の焦点範囲内にない場合、前記方法は、
前記ワークピース要素が前記第2の焦点範囲内に配置されるように、前記ワークピース要素の前記決定された位置又は高さに基づいて、前記ワークピース要素と前記撮像システムとの間の距離を調整すること、
を含む、請求項5に記載の方法。
【請求項8】
前記焦点信号を解析することは、前記撮像システムの前記焦点を前記第1の焦点範囲にわたって周期的に変更している間に取得された画像スタックに基づいてコントラスト尺度を解析することを含む、請求項2に記載の方法。
【請求項9】
前記焦点信号は、光学焦点監視構成に含まれる光検出器からの信号を含む、請求項2に記載の方法。
【請求項10】
前記拡大焦点範囲要求信号は、前記撮像システムに関連付けられたユーザインタフェースにおける拡大範囲ワークピース探索又は拡大範囲自動合焦動作に対応したユーザ入力の結果として提供される、請求項1に記載の方法。
【請求項11】
前記撮像システムは、前記ユーザインタフェースを含むマシンビジョン検査システムに組み込まれている、請求項10に記載の方法。
【請求項12】
前記撮像システムは、プログラマブルマシンビジョン検査システムに組み込まれ、
前記拡大焦点範囲要求信号及び前記高精度画像要求信号は、前記プログラマブルマシンビジョン検査システムにおいて実行されるプログラマブル命令の結果である、請求項1に記載の方法。
【請求項13】
前記撮像システムは、プログラマブルマシンビジョン検査システムに組み込まれ、
前記拡大焦点範囲要求信号及び前記高精度画像要求信号は、前記プログラマブルマシンビジョン検査システムにおいて実行されるプログラマブル命令の結果であり、
前記高精度画像要求信号が有効である場合には、精密計測検査動作を実行するため用いられる画像の取得に関連したプログラマブル命令のみが実行される、
請求項1から請求項12のいずれか一項に記載の方法。
【請求項14】
前記VFLレンズは可変音響式屈折率分布型(TAG)レンズであり、
前記第1の動作共振周波数は、前記第2の動作共振周波数より低い、請求項1に記載の方法。
【請求項15】
前記第1の動作共振周波数は125KHzより低く、前記第2の動作共振周波数は125KHzより高い、請求項
14に記載の方法。
【請求項16】
前記拡大焦点範囲要求信号が前記レンズ制御部に与えられていない場合、自動的に前記高精度画像要求信号が前記レンズ制御部に与えられる、請求項1に記載の方法。
【請求項17】
前記拡大焦点範囲要求信号は、前記レンズ制御部における有効時間を有し、該有効時間が終了した後、自動的に前記高精度画像要求信号が前記レンズ制御部に与えられる、請求項
16に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、マシンビジョン検査システムを用いた精密計測に関し、より詳細には、マシンビジョン検査システムにおいて検査対象のワークピースを望ましい焦点範囲内に位置させるために近似的な調整距離を自動的に決定することに関する。
【背景技術】
【0002】
精密マシンビジョン検査システム(又は略して「ビジョンシステム」)のような精密非接触計測システムは、物体の精密な寸法測定値を得ると共に他の様々な物体の特徴を検査するために使用可能であり、コンピュータと、カメラと、光学システムと、ワークピースの走査及び検査を可能とするために移動する精密ステージと、を含み得る。汎用の「オフライン」精密ビジョンシステムとして特徴付けられる1つの例示的な従来技術のシステムは、イリノイ州オーロラに位置するMitutoyo America Corporation(MAC)から入手可能なQUICK VISION(登録商標)シリーズのPCベースのビジョンシステム及びQVPAK(登録商標)ソフトウェアである。QUICK VISION(登録商標)シリーズのビジョンシステム及びQVPAK(登録商標)ソフトウェアの機能及び動作については、概ね、例えば2003年1月に発表されたQVPAK 3D CNCビジョン測定機ユーザガイド、及び、1996年9月に発表されたQVPAK 3D CNCビジョン測定機動作ガイドに記載されている。このタイプのシステムは、顕微鏡型の光学システムを利用し、小型又は比較的大型のワークピースの検査画像を提供するようにステージを移動させる。
【0003】
汎用の精密マシンビジョン検査システムは一般に、自動化ビデオ検査を行うようにプログラム可能である。このようなシステムは通常、「非専門家」の作業者が動作及びプログラミングを実行できるように、GUI機能及び既定の画像解析「ビデオツール」を含む。例えば米国特許第6,542,180号は、様々なビデオツールを使用する自動化ビデオ検査を利用したビジョンシステムを教示している。
【0004】
精密マシンビジョン検査システムでは、マルチレンズ可変焦点距離(VFL)光学システムを利用することができる。これは例えば、米国特許第9,143,674号に開示されている。そのようなVFL光学システムを使用する様々な用途では、マルチレンズ光学システムに含まれるVFLレンズの有効径(clear aperture)は一般に、光学システムに求められる精密検査画像において過剰な口径食又は収差を生じないようなサイズに形成されている。しかしながら、いくつかのVFLレンズ(例えば、とりわけ可変音響式屈折率分布型(TAG:tunable acoustic gradient)レンズ等)では、有効径(例えば歪みのない中央開口寸法)は、VFLレンズのVFL変更周波数及び変更振幅に応じ、VFLレンズ動作周波数(又は変更周波数)及び変更振幅は、少なくとも部分的にこの設計上の考慮要件に基づいて決定及び/又は限定されている。いくつかのVFLレンズ(例えば、とりわけTAGレンズ)において、上述のように制約された動作周波数は、これに伴って、VFLレンズ(例えばTAGレンズ)の他の周波数依存特性を決定及び/又は限定する。他の周波数依存特性の例としては、VFL変更周波数の周期サイクル全体にわたって提供できる焦点範囲又は光学パワーの変動が挙げられる。これに関連した考察及び教示は例えば、本発明の譲受人に譲渡された同時係属中のGladnickに対する米国特許出願第14/795,409号で見ることができる。
【発明の概要】
【発明が解決しようとする課題】
【0005】
精密マシンビジョン検査システムのユーザに周知であるように、光学システムがVFLレンズを含む場合であっても、ワークピース表面が光学システムの焦点範囲の外側に位置決めされる可能性がある。ワークピースと光学システムとの間の空間の機械的調整に基づいてそのようなワークピース表面上での自動合焦を「探索する」及び/又は試みることは、「探索」移動中にレンズがワークピースに衝突する可能性があるため、低速である及び/又は危険を伴うことがある。探索移動中にレンズがワークピースに衝突する危険を排除すると同時に、そのようなワークピース表面上で、拡大された探索範囲にわたって自動合焦を探索する及び/又は試みるための高速動作が必要とされている。
【課題を解決するための手段】
【0006】
この概要は、以下で「発明を実施するための形態」において更に記載するいくつかの概念を簡略化した形態で紹介するために提示する。この概要は、特許請求される主題の重要な特徴を識別することを意図しておらず、特許請求される主題の範囲の決定に役立てるため用いることも意図していない。
【0007】
撮像システムを制御するための方法を開示する。撮像システムは、高速可変焦点距離(VFL)レンズであって、第1の振幅で周期的に変更される第1の光学パワー変動を与える第1の動作共振周波数、及び、前記第1の振幅より小さい第2の振幅で周期的に変更される第2の光学パワー変動を与える第2の動作共振周波数で動作するVFLレンズと、レンズ制御部と、撮像システムの画像を提供するように構成されたカメラと、を備えている。この方法は、レンズ制御部に拡大焦点範囲要求信号を与えることと、拡大焦点範囲要求信号に応答して、VFLレンズを第1の動作共振周波数で動作させて第1の光学パワー変動を与え、これによって撮像システムに第1の焦点範囲を与えるように、レンズ制御部を構成することと、レンズ制御部に高精度画像要求信号を与えることと、高精度画像要求信号に応答して、VFLレンズを第2の動作共振周波数で動作させて第2の光学パワー変動を与え、これによって撮像システムに前記第1の焦点範囲より小さい第2の焦点範囲を与えるように、レンズ制御部を構成することと、を備えている。
【0008】
第2の動作共振周波数における動作は、VFLレンズを「正常」撮像モードで動作させることとして特徴付けることができる。このモードでは、VFLは、撮像システム内の他の光学構成要素と調和した所望の光学特性(例えば有効径、低収差等に関して)を与えるように動作される。これに対して、第1の動作共振周波数で動作している場合、主な目的又は唯一の目的は比較的大きい第1の焦点範囲を与えることであり得る(例えば、大きい自動合焦探索範囲を可能とするため)。様々な実施において、これはVFLレンズを異常撮像モードで動作させることとして特徴付けることができる。このモードでは、大きい光学パワー変動及び焦点範囲の達成を重視するため、撮像システムにおける他の光学構成要素とあまり調和しないいくつかの望ましくない光学特性(例えば有効径サイズ、低収差等に関して)を招き得る。このためいくつかの実施では、このモードにおいて撮像システムが提供できるのは、精密計測検査動作に適さない比較的収差のある画像又はぼけた画像だけである。それにもかかわらず、本明細書に開示する原理によれば、そのような画像は著しい有用性を有する。例えばそのような画像は、拡大範囲にわたって自動合焦探索動作を実行するために使用することができ、この場合、撮像システムを機械的に再構成する必要も移動させる必要もない。
【図面の簡単な説明】
【0009】
【
図1】汎用の精密マシンビジョン検査システムの種々の典型的な構成要素を示す図である。
【
図2】
図1のものと同様の、本発明に開示する特徴を含むマシンビジョン検査システムの制御システム部及びビジョン構成要素部のブロック図である。
【
図3】マシンビジョン検査システム等の精密非接触計測システムに適合されると共に本明細書に開示する原理に従って動作することができる撮像システムの概略図である。
【
図4】可変焦点距離レンズの1つのタイプのレンズ性能対共振周波数を示すグラフである。
【
図5】可変焦点距離レンズを含む撮像システムを動作させるためのルーチンの1つの例示的な実施を示すフロー図である。
【発明を実施するための形態】
【0010】
図1は、本明細書に開示する方法に従って使用可能である1つの例示的なマシンビジョン検査システム10のブロック図である。マシンビジョン検査システム10は画像測定機12を含み、これは、制御コンピュータシステム14とデータ及び制御信号を交換するように動作可能に接続されている。制御コンピュータシステム14は更に、モニタ又はディスプレイ16、プリンタ18、ジョイスティック22、キーボード24、及びマウス26と、データ及び制御信号を交換するように動作可能に接続されている。モニタ又はディスプレイ16は、マシンビジョン検査システム10の動作の制御及び/又はプログラミングに適したユーザインタフェースを表示することができる。様々な実施において、タッチスクリーンタブレット等が、コンピュータシステム14、ディスプレイ16、ジョイスティック22、キーボード24、及びマウス26のいずれか又は全ての機能の代用となり得ること及び/又はこれらの機能を冗長的に与え得ることは認められよう。
【0011】
制御コンピュータシステム14は一般に、任意のコンピューティングシステム又はデバイスから構成可能であることは当業者には認められよう。適切なコンピューティングシステム又はデバイスには、パーソナルコンピュータ、サーバコンピュータ、ミニコンピュータ、メインフレームコンピュータ、上記のいずれかを含む分散型コンピューティング環境等が含まれ得る。このようなコンピューティングシステム又はデバイスは、本明細書に記載する機能を実現するためにソフトウェアを実行する1つ以上のプロセッサを含み得る。プロセッサには、プログラマブル汎用又は特殊用途マイクロプロセッサ、プログラマブルコントローラ、特定用途向け集積回路(ASIC)、プログラマブル論理デバイス(PLD)等、又はそのようなデバイスの組み合わせが含まれる。ソフトウェアは、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、フラッシュメモリ等のメモリ、又はそのようなコンポーネントの組み合わせに記憶することができる。また、ソフトウェアは、光学ベースのディスク、フラッシュメモリデバイス、又はデータを記憶するための他のいずれかのタイプの不揮発性記憶媒体のような1つ以上の記憶デバイスに記憶することができる。ソフトウェアは、特定のタスクを実行するか又は特定の抽象データ型を実装するルーチン、プログラム、オブジェクト、コンポーネント、データ構造等を含む1つ以上のプログラムモジュールを含み得る。分散型コンピューティング環境では、プログラムモジュールの機能性は、有線又は無線のいずれかの構成において、多数のコンピューティングシステム又はデバイス間で組み合わせるか又は分散させ、サービスコールを介してアクセスすることができる。
【0012】
画像測定機12は、可動ワークピースステージ32と、ズームレンズ又は交換可能レンズを含み得る光学撮像システム34と、を含む。ズームレンズ又は交換可能レンズは一般に、光学撮像システム34によって得られる画像に様々な倍率を与える。マシンビジョン検査システム10は、本発明の譲受人に譲渡された米国特許第7,454,053号、第7,324,682号、第8,111,905号、及び8,111,938号にも記載されている。
【0013】
図2は、
図1のマシンビジョン検査システムと同様の、本明細書に記載する特徴を含むマシンビジョン検査システム100の制御システム部120及びビジョン構成要素部200のブロック図である。以下で詳述するように、制御システム部120を用いてビジョン構成要素部200を制御する。ビジョン構成要素部200は、光学アセンブリ部205と、光源220、230、及び240と、中央の透明部212を有するワークピースステージ210と、を含む。ワークピースステージ210は、ワークピース20を位置決めすることができるステージの表面に対して概ね平行な面内にあるx軸及びy軸に沿って制御可能に移動させることができる。
【0014】
光学アセンブリ部205は、カメラシステム260、交換可能対物レンズ250、可変焦点距離(VFL:Variable Focal Length)レンズ270を含み、更に、レンズ286と288を有するターレットレンズアセンブリ280も含む場合がある。ターレットレンズアセンブリの代わりに、固定もしくは手作業で交換可能な倍率可変レンズ(magnification-altering lens)、又はズームレンズ構成等を含んでもよい。様々な実施において、様々なレンズは、光学アセンブリ部205の可変倍率レンズ部の一部として含まれ得る。様々な実施において、交換可能対物レンズ250は、可変倍率レンズ部の一部として含まれる固定倍率対物レンズのセット(例えば、0.5倍、1倍、2倍又は2.5倍、5倍、10倍、20倍又は25倍、50倍、100倍等の倍率に対応した対物レンズのセット)から選択することができる。
【0015】
光学アセンブリ部205は、制御可能モータ294を用いることで、x軸及びy軸に概ね直交したz軸に沿って制御可能に移動させることができる。制御可能モータ294はアクチュエータを駆動して、ワークピース20の画像の焦点を変えるために光学アセンブリ部205をz軸に沿って動かす。制御可能モータ294は信号ライン296を介して入出力インタフェース130に接続されている。以下で詳述するように、VFLレンズ270も、焦点位置を周期的に変更するように動作させることができる。マシンビジョン検査システム100を用いて撮像されるワークピース20、又は複数のワークピース20を保持しているトレイもしくは固定具は、ワークピースステージ210上に配置されている。ワークピースステージ210は、光学アセンブリ部205に対して移動するように制御され、交換可能対物レンズ250がワークピース20上の複数の位置間で及び/又は複数のワークピース20間で移動できるようになっている。
【0016】
透過照明光源220、落射照明光源230、及び斜め照明光源240(例えばリング光)の1つ以上が、それぞれ光源光222、232、及び/又は242を発して、1つ又は複数のワークピース20を照明することができる。落射照明光源230は、ミラー290を含む経路に沿うように光232を発することができる。光源光はワークピース光255として反射又は透過され、撮像のため用いられるこのワークピース光は、交換可能対物レンズ250、ターレットレンズアセンブリ280、及びVFLレンズ270を通過して、カメラシステム260によって集光される。カメラシステム260によりキャプチャされたワークピース(複数のワークピース)20の画像は、制御システム部120への信号ライン262に出力される。光源220、230、及び240は、それぞれ信号ライン又はバス221、231、及び241を介して制御システム部120に接続することができる。制御システム部120は、画像の倍率を変更するため、ターレットレンズアセンブリ280を軸284に沿って回転させることで、信号ライン又はバス281を介してターレットレンズを1つ選択することができる。
【0017】
図2に示すように、種々の例示的な実施において制御システム部120は、制御部125、入出力インタフェース130、メモリ140、ワークピースプログラム生成器及び実行器170、及び電源部190を含む。これらの構成要素及び以下で説明する追加の構成要素の各々は、1つ以上のデータ/制御バス及び/又はアプリケーションプログラミングインタフェースによって、又は様々な要素間の直接接続によって、相互接続することができる。入出力インタフェース130は、撮像制御インタフェース131、移動制御インタフェース132、照明制御インタフェース133、及びレンズ制御インタフェース134を含む。レンズ制御インタフェース134は、レンズ合焦動作回路及び/又はルーチン等を含むレンズ制御部を含むことができる。レンズ制御インタフェース134は、焦点範囲要求調整モード部(回路又はルーチン)134rを含むことができ、これは、概ね本明細書に開示される原理に従って、及び/又は
図3に示す焦点範囲要求調整部(回路又はルーチン)334rを参照して以下で詳述するように、動作可能である。いくつかの実施形態では、これら2つはマージされる及び/又は区別できない場合がある。移動制御インタフェース132は、位置制御要素132a、及び速度/加速度制御要素132bを含み得るが、これらの要素はマージされる及び/又は区別できない場合もある。照明制御インタフェース133は、照明制御要素133a、133n、及び133flを含むことができ、これらは、マシンビジョン検査システム100の様々な対応する光源について、例えば選択、パワー、オン/オフ切り換え、及びストロボパルスタイミングを適用可能な場合に制御する。
【0018】
メモリ140は、画像ファイルメモリ部141、エッジ検出メモリ部140ed、1つ以上のパートプログラム等を含み得るワークピースプログラムメモリ部142、及びビデオツール部143を含むことができる。ビデオツール部143は、対応する各ビデオツールのためのGUIや画像処理動作等を確定するビデオツール部143a及び他のビデオツール部(例えば143n)、並びに関心領域(ROI:region of interest)生成器143roiを含む。関心領域生成器143roiは、ビデオツール部143内に含まれる様々なビデオツールにおいて動作可能である様々なROIを規定する自動、半自動、及び/又は手動の動作をサポートする。ビデオツール部は、例えば焦点高さ測定動作のためのGUIや画像処理動作等を確定する自動合焦ビデオツール143afも含む。様々な実施において、自動合焦ビデオツール143afは更に、
図3に示すハードウェアを用いて高速で焦点高さを測定するために利用可能である高速焦点高さツールも含むことができる。これについては、同時係属中の、本発明の譲受人に譲渡された米国特許公報第2014/0368726号に詳述されている。様々な実施において、高速焦点高さツールは、これ以外の場合には従来の自動合焦ビデオツールに従って動作する自動合焦ビデオツール143afの特別モードとしてもよく、又は、自動合焦ビデオツール143afの動作は高速焦点高さツールの動作のみを含んでもよい。
【0019】
本開示のコンテキストにおいて、当業者に既知であるように、「ビデオツール」という言葉は概ね、マシンビジョンユーザが、ビデオツールに含まれる動作の段階的シーケンスを生成することなく、また汎用のテキストベースのプログラミング言語等に頼ることもなく、比較的シンプルなユーザインタフェース(例えばグラフィカルユーザインタフェース、編集可能パラメータウィンドウ、メニュー等)を介して実施可能である比較的複雑な自動化又はプログラミングされた動作セットのことである。例えばビデオツールは、あらかじめプログラミングされた複雑な画像処理動作セット及び計算を含み、これらの動作及び計算を規定する少数の変数及びパラメータを調整することによって特定のインスタンスでこれらを適用及びカスタム化することができる。ビデオツールは、このような基礎をなす動作及び計算の他に、ビデオツールの特定のインスタンス向けにそれらのパラメータをユーザが調整することを可能とするユーザインタフェースも備えている。例えば、多くのマシンビジョンビデオツールによってユーザは、マウスを用いたシンプルな「ハンドルドラッグ」動作を行ってグラフィックの関心領域(ROI)インジケータを構成して、ビデオツールの特定のインスタンスの画像処理動作で解析対象となる画像サブセットの位置パラメータを定義することができる。場合によっては、目に見えるユーザインタフェース機能がビデオツールと称され、基礎をなす動作は暗黙的に含まれることに留意すべきである。
【0020】
透過照明光源220、落射照明光源230、及び斜め照明光源240のそれぞれの信号ライン又はバス221、231、及び241は全て、入出力インタフェース130に接続されている。カメラシステム260からの信号ライン262及び制御可能モータ294からの信号ライン296も、入出力インタフェース130に接続されている。信号ライン262は、画像データの伝達に加えて、画像の取得を開始する制御部125からの信号も伝達することができる。
【0021】
1つ以上のディスプレイデバイス136(例えば
図1のディスプレイ16)及び1つ以上の入力デバイス138(例えば
図1のジョイスティック22、キーボード24、及びマウス26)も、入出力インタフェース130に接続することができる。ディスプレイデバイス136及び入力デバイス138を用いて、様々なグラフィカルユーザインタフェース(GUI)機能を含み得るユーザインタフェースを表示することができる。それらの機能は、検査動作の実行、及び/又はパートプログラムの生成及び/又は修正、カメラシステム260によってキャプチャされた画像の閲覧、及び/又はビジョン構成要素部200の直接制御のために使用可能である。ディスプレイデバイス136は、(例えば自動合焦ビデオツール143af等に関連付けて)ユーザインタフェース機能を表示することができる。
【0022】
種々の例示的な実施において、ユーザがマシンビジョン検査システム100を用いてワークピース20のためのパートプログラムを生成する場合、ユーザは、マシンビジョン検査システム100を学習モードで動作させて所望の画像取得訓練シーケンスを提供することによって、パートプログラム命令を発生させる。例えば訓練シーケンスは、代表的ワークピースの特定のワークピース要素を視野(FOV:Field of View)内に位置決めし、光レベルを設定し、合焦又は自動合焦を行い、画像を取得し、(例えばそのワークピース要素でビデオツールのうち1つのインスタンスを用いて)画像に適用される検査訓練シーケンスを提供することを含み得る。学習モードの動作では、このシーケンス(複数のシーケンス)がキャプチャ又は記録されて、対応するパートプログラム命令に変換されるようになっている。パートプログラムが実行された場合、これらの命令は、マシンビジョン検査システムに訓練した画像取得を再現させると共に、検査動作を行わせて、パートプログラムの生成時に用いた代表的ワークピースと合致する実行モード(run mode)の1つ又は複数のワークピース上の特定のワークピース要素(すなわち対応位置での対応する要素)を自動的に検査させる。
【0023】
図3は、ビジョンシステムに適合させることができ、本明細書に開示する原理に従って動作することができるVFLレンズシステム300(撮像システム300とも称する)の概略図である。以下で別段の記載がない限り、
図3の3XXと付番されたいくつかの構成要素は、
図2の2XXと同様に付番された構成要素に対応し得る及び/又は同様の動作を有し得ることは認められよう。
図3に示すように、VFLレンズシステム300は、光源330、対物レンズ350、チューブレンズ351、リレーレンズ352、VFLレンズ370、リレーレンズ386、レンズ制御部334、カメラ/検出器360、光学焦点監視部376、及び任意選択的な焦点監視信号(FMS:Focus Monitoring Signal)較正部373を含む。様々な実施において、様々な構成要素は、直接接続によって、又は1つ以上のデータ/制御バス(例えばシステム信号及び制御バス395)、及び/又はアプリケーションプログラミングインタフェースによって、相互接続することができる。
【0024】
動作において、
図3に示す実施では、光源330は「落射照明(coaxial)」光源又は他の光源であり、(例えばストロボ又は連続照明を用いた)光源光332を、ビームスプリッタ390を含む経路に沿って対物レンズ350を介してワークピース320の表面へと発するように構成することができる。対物レンズ350は、ワークピース320に近接した焦点位置FPで集束されたワークピース光355を受光し、ワークピース光355をチューブレンズ351に出力する。チューブレンズ351はワークピース光355を受光し、これをリレーレンズ352に出力する。他の実施では、同様の光源によって視野を非同軸に照明することも可能である。例えば、リング光源によって視野を照明することができる。様々な実施において、対物レンズ350は交換可能対物レンズとすることができ、チューブレンズ351はターレットレンズアセンブリの一部として含めることができる(例えば
図2の交換可能対物レンズ250及びターレットレンズアセンブリ280と同様のもの)。様々な実施において、本明細書で言及する他のレンズの任意のものは、個別のレンズ、複合レンズ等から形成するか、又はそれらのレンズと連携して動作することができる。
【0025】
リレーレンズ352はワークピース光355を受光し、これをVFLレンズ370に出力する。VFLレンズ370はワークピース光355を受光し、これをリレーレンズ386に出力する。リレーレンズ386はワークピース光355を受光し、これをカメラ/検出器360に出力する。様々な実施において、カメラ/検出器360は画像露光期間中にワークピース320の画像をキャプチャし、この画像データを制御システム部に提供することができる。
【0026】
図3の例では、リレーレンズ352及び386並びにVFLレンズ370は4f光学構成に含まれるものとして示され、リレーレンズ352及びチューブレンズ351はケプラー式望遠鏡構成に含まれるものとして示され、チューブレンズ351及び対物レンズ350は顕微鏡構成に含まれるものとして示されている。ここに示す構成は全て単なる例示であり、本開示に対する限定でないことは理解されよう。様々な実施において、図示の4f光学構成は、VFLレンズ370(例えばTAGレンズのような開口数(NA)の小さいデバイスであり得る)を、対物レンズ350のフーリエ面FPLに配置することを可能とする。この構成は、ワークピース320におけるテレセントリシティ(telecentricity)を維持すると共に、尺度変化及び画像歪みを最小限に抑えることができる(例えば、ワークピース320の各Z高さ及び/又は焦点位置FPで一定の倍率を与えることを含む)。ケプラー式望遠鏡構成(例えばチューブレンズ351及びリレーレンズ352を含む)は、顕微鏡構成と4f光学構成との間に含めることができ、画像収差を最小限に抑える等のため、VFLレンズの位置において対物レンズ有効径の望ましいサイズの投影を与えるように構成可能である。
【0027】
様々な実施において、光学焦点信号処理部375は、カメラ/検出器360からデータを入力し、(例えばワークピース320の)撮像表面領域がいつ焦点位置にあるか判定するために使用されるデータ又は信号を提供することができる。例えばカメラ/検出器360がカメラを含む実施では、このカメラによって取得された1つ以上の画像(例えば画像スタック)を、既知の「最大コントラスト」解析を用いて解析して、ワークピース320の撮像表面領域がいつ焦点位置にあるか判定することができる。そのような解析のための例示的な技法が、米国特許第6,542,180号及び第9,060,117号に教示されている。これらの各々は本発明の譲受人に譲渡される。別の実施では、光学焦点監視部376が、VFLレンズ370を通過してビームスプリッタ346’から光学焦点監視部376へと偏向した画像光345から導出される焦点監視信号(例えば光検出器からの信号)を提供することができる。一実施形態では、光学焦点監視部376は共焦点光学検出器構成を備え得る。しかしながら、より一般的には、他の任意の適切な既知の焦点検出構成を用いればよい。いくつかの実施では、ほぼリアルタイムで周期的な焦点変更を直接示す焦点監視信号を決定することができる。
【0028】
いずれにせよ、焦点信号処理部375又は光学焦点監視部376は、VFLレンズ370の光学パワーの周期的な変更中に画像光を入力し、撮像システム300の焦点位置FPがいつワークピース320の撮像表面と一致するかを示す信号を、Z高さに対する焦点監視信号較正部373に出力することができる。様々な実施において、Z高さに対する焦点監視信号較正部373は、各Z高さを各焦点監視信号値に関連付けるZ高さに対する焦点監視信号値特徴付けを行うことができる。一般的には、Z高さに対する焦点監視信号較正部373は、記録された較正データを含む。このため、別個の要素として示す
図3の表現は単に概略的なものであり、限定ではない。様々な実施形態において、関連する記録された較正データは、レンズ制御部334、又は光学焦点監視部376、又はシステム信号及び制御バス395に接続されたホストコンピュータシステムとマージされる及び/又は区別できない場合もある。
【0029】
様々な実施において、ビジョンシステムは、VFLレンズシステム300の焦点位置を周期的に変更するため、レンズ制御部334と連携して動作するか又は他の方法でVFLレンズ370を制御するように構成可能である制御システム(例えば
図2の制御システム部120)を備えることができる。いくつかの実施では、VFLレンズ370は迅速に焦点位置を周期的に調整又は変更することができる。様々な実施において、レンズ制御部334は、VFLレンズ光学パワーをある光学パワー範囲にわたって動作周波数で周期的に変更するため、共振周波数でVFLレンズ370(例えばTAGレンズ)を駆動するよう動作可能である。様々な実施において、周期的に変更されたVFLレンズ光学パワーは、撮像システム300の周期的な焦点変更を規定することができる。様々な実施において、VFLレンズ370の制御の調整は、VFLレンズ370の周期的な変更の振幅、周波数、又は位相の少なくとも1つを調整することを含み得る。様々な実施では、300Hz、又は3kHz、又は70kHz、又は250kHz等の周期的な変更を使用可能である。もっと低速の周期的焦点位置調整を用いる実施では、VFLレンズ370は制御可能流体レンズ(fluid lens)等を含み得る。
【0030】
様々な実施において、VFLレンズ370は可変音響式屈折率分布型(「TAG」:tunable acoustic gradient index of refraction)レンズとすることができる。可変音響式屈折率分布型レンズは、流体媒質中で音波を用いて焦点位置を変更する高速VFLレンズであり、焦点距離範囲を数百kHzの周波数で周期的にスイープすることができる。このようなレンズは、論文「High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens」(Optics Letters、Vol.33、No.18、2008年9月15日)の教示によって理解することができる。可変音響式屈折率分布型レンズ及びこれに関連した制御可能信号生成器は、例えばTAG Optics, Inc.(ニュージャージー州プリンストン)から入手可能である。例えば、モデルTL2.B.xxxシリーズのレンズは最大で約600kHzの変更が可能である。
【0031】
一実施形態において、レンズ制御部334は市販の制御可能信号生成器とすればよい。いくつかの実施では、レンズ制御部334は、(例えば
図2を参照して先に概説したようなレンズ制御インタフェース134を介して)ユーザ及び/又は動作プログラムによって構成又は制御され得る。いくつかの実施では、これらは2つマージされる及び/又は区別できない場合もある。様々な実施において、レンズ制御部334は駆動信号生成部335を含み得る。駆動信号生成部335は、(例えばタイミングクロック335’と連携して)動作して、TAGレンズ等の高速VFLに周期駆動信号を与えることができる。様々な実施において、周期信号は、周期的に変更されるVFLレンズ光学パワーと同一の動作周波数を有することができ、従来技術のTAGレンズでは、TAGレンズの近似焦点高さ又はZ高さは、駆動信号の同時状態に基づいて決定される。
【0032】
様々な実施において、レンズ制御部334は、本明細書に開示される原理に従って動作可能である焦点範囲要求調整部(回路又はルーチン)334rを含むことができる。いくつかの実施形態では、これら2つはマージされる及び/又は区別できない場合もある。いずれの場合であっても、焦点範囲要求調整部334rは、焦点範囲要求調整部334rに入力される焦点範囲要求信号に応じて、レンズ制御部334がVFLレンズ370を駆動する際の動作周波数を変えるように動作可能である。一実施形態では、焦点範囲要求調整部334rは、拡大焦点範囲要求モード部337及び高精度画像要求モード部338を備えている。拡大焦点範囲要求モード部337は、(例えば信号及び制御バス395を介した)拡大焦点範囲要求信号の生成及び/又は入力に応じて、レンズ制御部334を拡大焦点範囲モードで動作させるように構成する。このモードでは、VFLレンズ370は、比較的大きい振幅(第1の振幅)で周期的に変更される第1の光学パワー変動を与える第1の動作共振周波数で動作し、これによって比較的大きい第1の焦点範囲を撮像システム300に与える。高精度画像要求モード部338は、(例えば信号及びバス395を介した)高精度画像要求信号の生成及び/又は入力に応じて、レンズ制御部334を高精度撮像モードで動作させるように構成する。このモードでは、VFLレンズ370は、比較的小さい振幅(すなわち、第1の振幅より小さい第2の振幅)で周期的に変更される第2の光学パワー変動を与える第2の動作共振周波数で動作する。これによって、比較的小さい(すなわち、第1の焦点範囲より小さい)第2の焦点範囲を撮像システム300に与えるが、更に重要なことは、第2の動作周波数が、精密計測検査動作に適した低収差画像を得るようにVFLレンズを動作させるためにも選択されることである。これについて以下で更に詳しく説明する。
【0033】
図3に示すように、第1の光学パワー変動を用いて、焦点位置FP1’と焦点位置FP2’によって画定される自動合焦探索範囲R
src内で撮像システム300の焦点位置FPを動かすことができる。第2の光学パワー変動を用いて、焦点位置FP1と焦点位置FP2によって画定される自動合焦探索範囲R
acc内で焦点位置FPを動かすことができる。撮像システムは、VFLレンズが第2の動作共振周波数で動作して第2の光学パワー変動を与える場合、これによって比較的小さい第2の焦点範囲を与え、更に、精密計測検査動作に適した低収差画像を与えるように構成され得ることは認められよう。様々な実施において、これはVFLレンズを「正常」撮像モードで動作させることとして特徴付けることができる。このモードでは、VFLは、既知の光学設計原理に従って、撮像システム内の他の光学構成要素と調和した所望の光学特性(例えば有効径、低収差等に関して)を与えるように動作される。これに対して、撮像システムは、VFLレンズが第1の動作共振周波数で動作して第1の光学パワー変動を与える場合、その主な目的又は唯一の目的が比較的大きい第1の焦点範囲を与えることである(例えば、大きい自動合焦探索範囲を可能とするため)ように構成され得る。様々な実施において、これはVFLレンズを異常撮像モードで動作させることとして特徴付けることができる。このモードでは、大きい光学パワー変動及び焦点範囲の達成を重視するので、撮像システム内の他の光学構成要素とあまり調和しないいくつかの望ましくない光学特性(例えば有効径サイズ、低収差等に関して)を許容することが必要となる。(このような周波数依存光学特性については
図4を参照して以下で詳述する。)結果として、このモードにおいて撮像システムが提供できるのは、本明細書で概説した自動合焦検査動作を実行するためには使用できるが精密計測検査動作には適さない(また、場合によってはユーザの観察にも適さない)比較的収差のある画像(例えば、いくつかの実施形態では、大きくぼけて歪んだ画像)だけである。常にぼけているか又は収差のある撮像システムによって得られた最良のワークピース画像(例えば、ワークピースが撮像システムのベストフォーカス位置にある)を含む画像スタックは、既知の方法に従ってワークピースの位置又は距離を識別するピークを有するコントラスト曲線を構築するために使用され得るが、これは、その最良のワークピース画像が画像スタック内の他の画像よりもぼけが少ない(コントラストが高い)場合に限られる。同様に、常にぼけているか又は収差のある撮像システムによって、ワークピースがベストフォーカス位置にある場合に光学焦点監視構成から最良の光検出器信号を得ることができ、この信号は既知の方法に従ってワークピースの位置又は距離を識別するため使用され得るが、これは、その最良の光検出器信号が、ワークピースがベストフォーカス位置から離れた位置にある時に得られた光検出器信号よりも良好である場合に限られる。
【0034】
一般に、
図3の例に関して、図示する寸法のいくつかは一定の縮尺通りに描かれていない場合があることは認められよう。例えば、VFLレンズ370は図示するものと異なる比例的寸法を有し得る(例えば、所望の量の屈折力(lensing power)等を与えるため、いくつかの用途では幅がもっと狭く長さが50mm以上であり得る)。
【0035】
図4は、例示的な1組のVFLレンズ光学特性対共振動作周波数を示すグラフ400である。この特定の例では、VFLレンズは市販のTAGレンズである。ライン410は、共振周波数に対してプロットしたVFL TAGレンズの有効径を表す。TAGレンズでは、有効径は、任意の特定の動作周波数におけるTAGレンズ屈折プロファイルを特徴付けるベッセル関数の一次リング(first ring)の内側の直径に概ね相当し得る。ライン410では、周波数はx軸上にkHzで示され、有効径はy軸上に示されるようにミリメートルで(グラフ400の左側のスケールに従って)測定されている。ライン410は、共振周波数が上昇するにつれてどのように有効径が低減するかを示す。より具体的には、実際の有効口径(effective aperture)は、70kHzの動作周波数で約11mmで開始し、約370kHzの動作周波数で約2mmに至るまでの範囲にわたって低下することが示されている。様々な実施において、それ未満では画像品質が悪影響を受けると判断され得る望ましい最小有効径レベル415を設定することができる。例えば
図4の例によると、望ましい最小有効径レベル415が約10mmである場合、これに対応した最大動作周波数は約70kHzである。望ましい最小有効径レベルが約6mmである場合、これに対応した最大動作周波数は約125kHzである。
【0036】
有効径に関して、VFLレンズ(例えばTAGレンズ)の外側の光学システム(例えば
図3に示す光学システム300)の要素が、撮像システムの限界開口(limiting aperture)を画定し得ることは認められよう。高精度の回折限界低収差画像を得るには、VFL(TAG)レンズの有効径が、VFL(TAG)レンズ有効径の位置に投影された撮像システムの残り部分によって画定される限界開口と同程度の大きさでなければならない。前述のことに基づき、いくつかの実施では、VFLレンズをTAGレンズとすることができる。第1の動作共振周波数は比較的低い周波数とし、第2の動作共振周波数は比較的高い周波数とすればよい。一例では、いくつかの実施において、少なくとも6ミリメートルの有効径が望ましく、第1の動作共振周波数は125KHzより低く、第2の動作共振周波数は125KHzより高くすればよい。
【0037】
図4に更に示すように、第2のライン420は、共振動作周波数に対してプロットしたVFL TAGレンズの相対的な最大光学パワーを表す。ライン420では、周波数はx軸上にkHzで示され、相対光学パワーはy軸上に示された70kHzでの光学パワーの倍数で(グラフ400の右側のスケールに従って)測定されている。従って、ライン410及び420は、y軸上の異なる種類の単位でプロットされ(例えばミリメートルと光学パワーの倍数)、周波数の上昇と同時に生じる様々な光学特性を示す目的でのみ同一グラフ上に提示されているに過ぎないことは認められよう。ライン420に関して、相対光学パワーは、周波数が上昇するにつれて増大することが示されている。より具体的には、相対光学パワーは、70kHzの動作周波数で1の値で開始し、約370kHzの動作周波数で約25の値に至るまでの範囲にわたって増大することが示されている。
【0038】
既知のTAGレンズを用いた1つの特定の例示的な実施形態では、撮像システムが低NAの対物レンズ及び光学部品を備えている(例えば低倍率向け)場合、TAGレンズの大きい有効径(例えば
図4に示すように少なくとも10ミリメートル)を与えて回折限界画像を得るには、TAGレンズにおいて70kHzの第2の動作共振周波数が必要となり得る。これに対して、大きい光学パワー変動(大きい焦点範囲)を得るには、TAGレンズにおいて189kHzの第1の動作共振周波数を使用できる(例えば、約8の相対光学パワー、又は70kHzで得られる焦点範囲の約8倍を与える)。ライン(曲線)410で示されるように、これによって、この周波数におけるTAGレンズ屈折プロファイルを特徴付けるベッセル関数の一次リングがはるかに小さくなり、実際、撮像システムの残り部分によって画定される限界開口内に1つ以上の追加のベッセルリング(例えば二次ベッセルリング(second Bessel ring))が位置付けられる可能性がある(例えば、撮像システムの残り部分が固定のままであると仮定した場合)。このため、TAGによって得られる画像は著しい収差を有し得る(例えば、非常にぼけて見えることがある)。しかしながら、それらは、本明細書に開示される原理に従ってワークピースの名目位置又はワークピースまでの距離を決定するためには依然として使用可能である。概して、二次ベッセルリング(環状レンズを近似する)の焦点に対応して変更された焦点特性は、一次ベッセルリングのものと一致しないことは認められよう。特に、二次ベッセルリングに関連した光学パワーは、一次ベッセルリングに関連した光学パワーよりも著しく小さいことがある。いくつかの実施では、これにより、一次ベッセルリングに関連した所望の信号に対して信号のコンタミネーション又はノイズが加わることがある。従っていくつかの実施形態では、二次ベッセルリングに関連した焦点信号成分を抑えるため、第1の動作共振周波数に関連する画像データに対してローパス及び/又はハイパス空間周波数フィルタリングを実行することができる(例えば、フーリエ解析及び/又はフーリエ領域におけるフィルタリングのような既知の方法に従って)。効果的な空間フィルタリング及び/又は信号処理のパラメータは、一次及び二次のベッセルリングに関連した異なる光学特性(例えば関連した開口数等)に基づき、空間フィルタリングパラメータの有効性は、既知の方法に従って解析又は実験により決定することができる。
【0039】
この特定の例では、撮像システム300の一実施形態において、189kHzの第1の動作共振周波数が、比較的大きい約8.0mmの第1の焦点範囲を与え得る。70kHzの第2の動作共振周波数が、比較的小さい約0.64mmの第2の焦点範囲を与え得る。
【0040】
図5は、VFLレンズと、レンズ制御部と、撮像システムの画像を提供するように構成されたカメラと、を備えた撮像システムを動作させるためのルーチン500の1つの例示的な実施を示すフロー図である。様々な実施において、VFLレンズは、比較的大きい振幅で周期的に変更された第1の光学パワー変動を与える第1の動作共振周波数を有し、更に、比較的小さい振幅で周期的に変更された第2の光学パワー変動を与えると共に撮像システムにおいて比較的低収差を与える第2の動作共振周波数を有する高速VFLレンズとすることができる。先に概説したように、例えばVFL TAGレンズが、そのような動作特性を与えることができる。
【0041】
ブロック510では、レンズ制御部に拡大焦点範囲要求信号を与える。
【0042】
ブロック520では、拡大焦点範囲要求信号に応答して、レンズ制御部は、VFLレンズを第1の動作共振周波数で動作させて第1の光学パワー変動を与え、これによって撮像システムに比較的大きい第1の焦点範囲を与えるように構成されている。
【0043】
ブロック530では、レンズ制御部に高精度画像要求信号を与える。
【0044】
ブロック540では、高精度画像要求信号に応答して、レンズ制御部は、VFLレンズを第2の動作共振周波数で動作させて第2の光学パワー変動を与え、これによって撮像システムに比較的小さい第2の焦点範囲と低収差画像を与えるように構成されている。
【0045】
いくつかの実施では、拡大焦点範囲要求信号がレンズ制御部に与えられていない場合、自動的に高精度画像要求信号をレンズ制御部に与えることができる。いくつかの実施では、与えられた拡大焦点範囲要求信号は、レンズ制御部における有効時間を有し、この有効時間が終了した後、自動的に高精度画像要求信号をレンズ制御部に与えることも可能である。
【0046】
ルーチン500は、比較的小さい焦点範囲にわたって所望の検査画像を取得する低収差撮像モードを与えるため使用可能な動作を含み、更に、比較的大きい焦点範囲(例えば数ミリメートル)にわたってワークピース要素の位置又は高さを決定する自動合焦検査動作を実行するのに適した拡大焦点範囲モードを与えるため使用可能な動作を含むことは認められよう。撮像システムを機械的に再構成することなく、また、比較的大きい検査範囲を得るため撮像システムとワークピース要素との間の相対移動を必要とすることもなく、(例えば1秒よりも大幅に短い)高速で、自動合焦探索動作を実行することができる。自動合焦探索動作では、焦点の合った画像を与えるために必ずしも撮像システム又はワークピース要素をアクティブに又は自動的に調整する必要はない(が、いくつかの実施ではこの調整を行うこともある)。場合によっては、自動合焦探索動作は、調整を実行することなく、ワークピース要素の現在位置又はワークピース要素までの距離を単に識別すればよい。
【0047】
すなわち、いくつかの実施では、撮像システムの視野(FOV)内にワークピース要素を位置決めし、自動合焦探索動作を実行するよう撮像システムを動作させてワークピース要素の位置又は高さを決定することによって、自動合焦探索はルーチン500を含むシステムと連携して実行され得る。自動合焦探索動作は、(S1)レンズ制御部に拡大焦点範囲要求信号を与えること、(S2)拡大焦点範囲要求信号に応答して、VFLレンズを第1の動作共振周波数で周期的に変更し、撮像システムの焦点を第1の焦点範囲にわたって周期的に変更するようにレンズ制御部を構成すること、(S3)撮像システムの焦点を第1の焦点範囲にわたって周期的に変更している間に取得された焦点信号を解析すること、及び(S4)焦点信号に基づいてワークピース要素の位置又は高さを決定すること、を含み得る。いくつかの実施において、焦点信号を解析することは、撮像システムの焦点を第1の焦点範囲にわたって周期的に変更している間に取得された画像スタックに基づいてコントラスト尺度を解析することを含み得る(例えば、
図3で光学焦点信号処理部375を参照して先に概説した通り)。いくつかの実施において、焦点信号は、光学焦点監視構成に含まれる光検出器からの信号を含み得る(例えば、
図3で要素376を参照して先に概説した通り)。
【0048】
いくつかの実施では、(例えば前述のような)ワークピース要素の決定された位置又は高さに基づいて、第2の動作共振周波数に対応する比較的小さい第2の焦点範囲内にワークピース要素が配置されるように、ワークピース要素と撮像システムとの間の距離を手作業で又は自動的に調整することができる。そのような場合、ワークピース要素の観察又は検査では、(Ai1)レンズ制御部に高精度画像要求信号を与えること、(Ai2)高精度画像要求信号に応答して、(Ai3)VFLレンズを第2の動作共振周波数で周期的に変更し、撮像システムの焦点を第2の焦点範囲にわたって周期的に変更するようにレンズ制御部を構成すること、(Ai4)撮像システムの焦点を第2の焦点範囲にわたって周期的に変更しながら、ワークピース要素の低収差画像を得るように撮像システムを動作させること、を含む動作を利用することができる。
【0049】
いくつかの実施では、(例えばステップS1~S4で上述したように)自動合焦探索動作を実行するよう撮像システムを動作させてワークピース要素の位置又は高さを決定することが所定のレートで自動的に繰り返されるモードで、撮像システムを動作させることができる。上述した自動合焦探索は、極めて短い(例えば、いくつかの実施形態では1秒よりもはるかに短い)時間で実行可能であり、従って、いくつかの実施形態では間欠的な背景動作としてユーザを邪魔することなく実行され得ることは認められよう。いくつかの実施では、自動合焦探索動作によってワークピース要素の位置又は高さが第2の焦点範囲内にあると判定された場合、上述した観察及び/又は撮像動作(Ai1)~(Ai4)を自動的に実行できる。いくつかの実施では、自動合焦探索動作によってワークピース要素の位置又は高さが第2の焦点範囲内にないと判定された場合、ワークピース要素が比較的小さい第2の焦点範囲内に配置されるように、ワークピース要素の決定された位置又は高さに基づいて、ワークピース要素と撮像システムとの間の距離を手作業で、半自動で、又は自動的に調整することができる(例えば撮像システムに関連付けられた移動制御システムによって)。
【0050】
様々な実施において、拡大焦点範囲要求信号は、撮像システムに関連付けられたユーザインタフェースにおける拡大範囲ワークピース探索又は拡大範囲自動合焦動作に対応したユーザ入力の結果として提供できる。いくつかの実施形態では、ユーザインタフェースを含むマシンビジョン検査システムに撮像システムを組み込むことができる。
【0051】
先に開示したように、いくつかの実施形態において、撮像システムをプログラマブルマシンビジョン検査システムに組み込むことができる。そのような実施において、拡大焦点範囲要求信号及び高精度画像要求信号は、プログラマブルマシンビジョン検査システムにおいて実行されるプログラマブル命令の結果であり得る。上記のように、VFLレンズが第1の動作共振周波数で動作して比較的大きい第1の焦点範囲を与えている場合、これによって、本明細書に概説した自動合焦探索動作を実行するためには使用できるが精密計測検査動作には適さない、ぼけた画像が得られる可能性がある。従って、いくつかのそのような実施では、プログラマブルマシンビジョン検査システム及び/又はそれに関連付けられたプログラム生成及び実行システムは、高精度画像要求信号が有効である(operative)場合には、(例えばビデオツールを用いて実施される)検査動作を実行するため用いられる画像の取得に関連したプログラマブル命令のみを実行できるように構成することができる。
【0052】
1つの動作例において、撮像システムは、第2の動作共振周波数から第1の動作共振周波数に切り換わるように、また、様々な撮像システムにおいて約1秒以下で安定した動作を行うように動作させることができる。画像スタックに基づく自動合焦探索の実行において、比較的大きい8.0mmの第1の焦点範囲でストロボ照明を用いて37の画像をキャプチャする60Hzカメラを用い、215μmのスタック刻みを与えることができる。約600msで、自動合焦尺度を用いてコントラスト曲線を規定し、曲線のピークに対応したベストフォーカス位置(ワークピース位置)を決定できる。ベストフォーカス位置が第2の焦点範囲と一致するように、撮像システムに対するワークピース位置を調整すればよい。第2の焦点範囲内でワークピースの高精度検査画像を与えるため、撮像システムを第1の動作共振周波数から第2の動作共振周波数に切り換えることができる。
【0053】
本明細書に開示する様々な原理は、VFLレンズがTAGレンズである実施で使用する場合に特に有利であるが、これらの原理は、VFLレンズが別のタイプのレンズを含むいくつかの実施で使用してもよい。1つの追加例として、流体充填膜レンズ(fluid filled membrane lens)又は他のタイプのVFLレンズを様々な共振周波数で動作させて、撮像システムで周期的な焦点変更を与えることも可能である。そのような実施では、大きい焦点範囲を与える第1の動作共振周波数を第2の動作共振周波数よりも低くすることができる。これは、多くの機械的システムにおいて、より低い周波数は共振時により大きい変形振幅(例えば、大きいレンズ曲率を得るため用いられる)に対応するからである。更に、第1の動作共振周波数で周期的な焦点変更を与えるため用いられる駆動信号は、所望の大きい焦点範囲を与えるため、第2の動作共振周波数に用いるものよりも大きくすることができる。従って、第2の動作共振周波数における変形(レンズ曲率)をより小さくすれば、収差の軽減と画像の向上のためにいっそう理想的な膜曲率を与えることができる。
【0054】
本開示の好適な実施について図示及び記載したが、本開示に基づいて、図示及び記載した特徴の構成及び動作のシーケンスにおける多数の変形が当業者には明らかであろう。種々の代替的な形態を用いて本明細書に開示した原理を実施してもよい。更に、上述の様々な実施を組み合わせて別の実施を提供することも可能である。これらの様々な特許及び出願の概念を用いて更に別の実施を提供するために必要な場合は、上述の実施の態様は変更可能である。
【0055】
前述の記載に照らして、実施に対してこれら及び他の変更を行うことができる。一般に、以下の特許請求の範囲において、用いる用語は本明細書及び特許請求の範囲に開示される特定の実施に特許請求の範囲を限定するものとして解釈されず、そのような特許請求の範囲の権利が与えられる均等物の全範囲に加えて全ての可能な実施を包含するものとして解釈されなければならない。
【符号の説明】
【0056】
10 マシンビジョン検査システム
12 画像測定機
14 制御コンピュータシステム
16 ディスプレイ
18 プリンタ
20 ワークピース
22 ジョイスティック
24 キーボード
26 マウス
32 可動ワークピースステージ
34 光学撮像システム
100 マシンビジョン検査システム
120 制御システム部
125 制御部
130 入出力インタフェース
131 撮像制御インタフェース
132 移動制御インタフェース
132a 位置制御要素
132b 加速度制御要素
133 照明制御インタフェース
133a 照明制御要素
134 レンズ制御インタフェース
134r ルーチン
136 ディスプレイデバイス
138 入力デバイス
140 メモリ
140ed エッジ検出メモリ部
141 画像ファイルメモリ部
142 ワークピースプログラムメモリ部
143 ビデオツール部
143af 自動合焦ビデオツール
143roi 関心領域生成器
170 実行器
190 電源部
200 ビジョン構成要素部
205 光学アセンブリ部
210 ワークピースステージ
212 透明部
220 透過照明光源
221,281 バス
222,232,242 光源光
230 落射照明光源
240 斜め照明光源
250 交換可能対物レンズ
255 ワークピース光
260 カメラシステム
262,296 信号ライン
270,286,288 レンズ
280 ターレットレンズアセンブリ
284 軸
290 ミラー
294 制御可能モータ
300 VFLレンズシステム(撮像システム)
320 ワークピース
330 光源
332 光源光
334 レンズ制御部
334r 焦点範囲要求調整部
335 駆動信号生成部
337 拡大焦点範囲要求モード部
338 高精度画像要求モード部
345 画像光
346 ビームスプリッタ
350 対物レンズ
351 チューブレンズ
352 リレーレンズ
355 ワークピース光
360 カメラ/検出器
370 レンズ
375 光学焦点信号処理部
376 光学焦点監視部
386 リレーレンズ
390 ビームスプリッタ
395 バス