(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-03
(45)【発行日】2022-10-12
(54)【発明の名称】連続的およびパルスモード動作のための一体化されたRF電力供給単一入力複数出力制御
(51)【国際特許分類】
H05H 1/46 20060101AFI20221004BHJP
H03F 3/20 20060101ALI20221004BHJP
【FI】
H05H1/46 R
H03F3/20
【外国語出願】
(21)【出願番号】P 2021015691
(22)【出願日】2021-02-03
(62)【分割の表示】P 2019146463の分割
【原出願日】2016-07-07
【審査請求日】2021-02-17
(32)【優先日】2015-07-13
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】508240030
【氏名又は名称】エムケーエス インストゥルメンツ,インコーポレイテッド
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】デイヴィッド・ジェイ・クーモウ
(72)【発明者】
【氏名】ロス・ラインハート
(72)【発明者】
【氏名】ユーリー・エルナー
(72)【発明者】
【氏名】ダニエル・エム・ギル
【審査官】中尾 太郎
(56)【参考文献】
【文献】特開平11-008095(JP,A)
【文献】特開平11-205044(JP,A)
【文献】特開平11-233285(JP,A)
【文献】特開2005-015884(JP,A)
【文献】特表2015-501518(JP,A)
【文献】米国特許出願公開第2014/0118031(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H05H 1/46
H03F 3/20
(57)【特許請求の範囲】
【請求項1】
無線周波数(RF)制御システムのためのコントローラであって、前記RF制御システムは、パルスRF信号を出力するように構成された電力増幅器を有するRF生成器を含み、前記RF生成器は、マッチングネットワークへの出力信号を生成するように構成され、前記マッチングネットワークは、負荷へのパルスRF出力信号を提供するように構成され、前記マッチングネットワークは、前記パルスRF信号のパルスエッジを変動させるように構成されたインピーダンス調整要素を含み、前記コントローラは、前記マッチングネットワークへパルスエッジ制御信号を通信するように構成され、前記マッチングネットワークは、前記パルスエッジ制御信号に従って、前記インピーダンス調整要素を制御
し、
前記コントローラはさらに、
前記パルスRF信号を生成するように構成されたパルスモジュールと、
前記パルスモジュールと通信し、比制御信号を生成するように構成された比制御モジュールと、
前記パルスエッジ制御信号の特性を判定するように構成されたエッジ制御信号とを備える、コントローラ。
【請求項2】
前記パルスエッジの立ち上がりまたは立ち下がりに従って変動する信号を受信するように構成されたエッジコントローラをさらに備え、前記エッジコントローラは、前記受信した信号に従って、前記パルスエッジの前記立ち上がりまたは前記立ち下がりを各々調節する信号を生成するように構成された、請求項1に記載のコントローラ。
【請求項3】
前記パルスエッジ制御信号は、前記RF生成器と前記マッチングネットワークとの間のインピーダンスを変動させる、請求項2に記載のコントローラ。
【請求項4】
前記パルスエッジの遷移に従って変動する信号を受信するように構成されたエッジコントローラをさらに備え、前記エッジコントローラは、前記受信した信号に従って、前記パルスエッジのインクリメント変化のレベルまたは持続時間を制御する信号を生成するようにさらに構成された、請求項1に記載のコントローラ。
【請求項5】
前記パルスエッジの立ち上がりまたは立ち下がりに従って変動する信号を受信するように構成されたエッジコントローラをさらに備え、前記エッジコントローラは、前記受信した信号に従って、前記パルスエッジの前記立ち上がり、前記パルスエッジの前記立ち下がり、または、前記パルスエッジのインクリメント変化のレベルまたは持続時間のうちの少なくとも1つを制御する信号を生成するようにさらに構成された、請求項1に記載のコントローラ。
【請求項6】
前記パルスエッジ制御信号は、パルスコントローラへ通信され、前記パルスコントローラは、前記インピーダンス調整要素を変動させるように前記マッチングネットワークへ指示するコマンドを生成するように構成された、請求項1に記載のコントローラ。
【請求項7】
前記パルスエッジ制御信号は、前記RF生成器と前記マッチングネットワークとの間のインピーダンスを変動させる、請求項1に記載のコントローラ。
【請求項8】
前記コントローラは、
前記パルスRF出力信号のサンプルを、受信バッファに記憶し、
前記記憶されたサンプルを、あらかじめ定義された伝達関数に従って、再構築バッファ内のあらかじめ選択されたビンへ伝達し、
前記再構築バッファにおける前記記憶されたサンプルに従って、前記RF出力信号を再構築する、請求項1に記載のRF制御システム。
【請求項9】
前記再構築バッファにおける選択されたビンが、1つよりも多くのサンプルを記憶しているのであれば、前記コントローラは、前記選択されたビンにおける前記サンプルの平均を決定するように構成された、請求項8に記載のRF制御システム。
【請求項10】
前記コントローラは、
第1のビンのセットに従って、前記パルスRF出力信号の立ち上がり時間、
第2のビンのセットに従って、前記パルスRF出力信号のうちの前記少なくとも1つのパルスRF出力信号の立ち下がり時間、および、
第3のビンのセットに従って、前記パルスRF出力信号の振幅のうちの少なくとも1つを判定するように構成された、請求項9に記載のRF制御システム。
【請求項11】
無線周波数(RF)システムを制御するための方法であって、マッチングネットワークへのパルスRF信号の生成を制御し、前記マッチングネットワークへパルスエッジ制御信号を通信するステップを備え、前記マッチングネットワークは、前記パルスRF信号のパルスエッジを変動させるために、前記パルスエッジ制御信号に従って、インピーダンス調整要素を制御
し、
前記複数のパルスRF信号のうちの少なくとも1つのパルスRF信号のサンプルを、受信バッファに記憶するステップと、
あらかじめ定義された伝達関数に従って、再構築バッファ内のあらかじめ選択されたビンへ伝達するステップと、
前記再構築バッファにおける前記記憶されたサンプルに従って、前記パルスRF信号を再構築するステップとをさらに備える、方法。
【請求項12】
前記パルスエッジの立ち上がりまたは立ち下がりに従って変動する信号を受信し、前記受信した信号に従って、前記パルスエッジの前記立ち上がりまたは立ち下がり各々を調節するステップをさらに備える、請求項
11に記載の方法。
【請求項13】
前記パルスエッジ制御信号は、RF生成器と前記マッチングネットワークとの間のインピーダンスを変動させる、請求項
12に記載の方法。
【請求項14】
前記パルスエッジの遷移に従って変動する信号を受信し、前記受信した信号に従って、前記パルスエッジにおけるインクリメント変化のレベルまたは持続時間を調節するステップをさらに備える、請求項
12に記載の方法。
【請求項15】
前記パルスエッジの立ち上がりまたは立ち下がりに従って変動する信号を受信し、前記受信した信号に従って、前記パルスエッジの前記立ち上がり、前記パルスエッジの前記立ち下がり、または、前記パルスエッジのインクリメント変化のレベルまたは持続時間のうちの少なくとも1つを調節するステップをさらに備える、請求項
11に記載の方法。
【請求項16】
前記パルスエッジ制御信号は、パルスコントローラへ通信され、前記パルスコントローラは、前記インピーダンス調整要素を変動させるように前記マッチングネットワークへ指示するコマンドを生成する、請求項
11に記載の方法。
【請求項17】
前記パルスエッジ制御信号は、RF生成器と前記マッチングネットワークと間のインピーダンスを変動させるか、または、前記マッチングネットワークによって出力される電力を変動させる、請求項
11に記載の方法。
【請求項18】
前記再構築バッファにおける選択されたビンが、1つよりも多くのサンプルを記憶しているのであれば、前記選択されたビンにおける前記サンプルの平均を決定する、請求項
11に記載の方法。
【請求項19】
第1のビンのセットに従って、前記パルスRF信号の立ち上がり時間、
第2のビンのセットに従って、前記パルスRF信号の立ち下がり時間、および、
第3のビンのセットに従って、前記パルスRF信号の振幅のうちの少なくとも1つを判定するステップ、をさらに備える請求項
18に記載の方法。
【請求項20】
無線周波数(RF)制御システムを制御するための方法であって、マッチングネットワークへ比制御信号を通信するステップを備え、前記マッチングネットワークは、比制御信号に従って比調整要素を制御し、前記マッチングネットワークは、RF信号を受信し、1つまたは複数のプラズマチャンバの複数の電極のそれぞれへの複数のRF出力信号を生成し、前記マッチングネットワークは、前記比制御信号に従って、第1の前記複数のRF出力信号と、第2の前記複数のRF出力信号との電力の比を変動させ、
前記マッチングネットワークへ調整制御信号を通信することによって、RF生成器の出力におけるインピーダンスを変動させるステップをさらに備え、前記マッチングネットワークは、前記調整制御信号に従って、マッチ調整要素を制御し、
動作のためのパルスモードでRF生成器を動作させるステップと、
前記パルスモードの動作を制御するパルス波形のサンプルを、受信バッファに記憶するステップと、
前記記憶されたサンプルを、あらかじめ定義された伝達関数に従って、再構築バッファ内のあらかじめ選択されたビンへ伝達するステップと、
前記再構築バッファに記憶されたサンプルを使用して、前記パルス波形を再構築するステップとをさらに備える、方法。
【請求項21】
各々のRF出力信号の特性を示す特性信号をRF生成器へ通信するステップをさらに備える、請求項
20に記載の方法。
【請求項22】
前記特性信号を受信し、前記特性信号に従って、前記比制御信号を生成するステップをさらに備える、請求項
21に記載の方法。
【請求項23】
前記再構築バッファにおける選択されたビンが、1つよりも多くのサンプルを記憶しているのであれば、前記選択されたビンにおける前記サンプルの平均を決定する、請求項
20に記載の方法。
【請求項24】
前記再構築バッファの第1のデータシーケンスに従って、前記複数のRF出力信号のうちの前記少なくとも1つのRF出力信号の立ち上がり時間、
前記再構築バッファの第2のデータシーケンスに従って、前記複数のRF出力信号のうちの前記少なくとも1つのRF出力信号の立ち下がり時間、および、
前記再構築バッファの第3のデータシーケンスに従って、前記複数のRF出力信号のうちの前記少なくとも1つのRF出力信号の振幅のうちの少なくとも1つを判定するステップ、をさらに備える請求項
23に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、無線周波数(RF)インピーダンスマッチングネットワークのRF電力供給システムおよび集中制御に関する。
【背景技術】
【0002】
本明細書で提供される背景説明は、本開示のコンテキストを一般的に提示する目的のためである。本明細書で名前を連ねている発明者の業績は、この背景技術のセクションのみならず、詳細説明の態様において、出願時における先行技術として別に見なされないことが説明されており、明示的または黙示的を問わず、本開示に対する先行技術として認められない。
【0003】
プラズマエッチングは、半導体製造において頻繁に使用される。プラズマエッチングでは、基板上に露出した表面をエッチングするために、イオンが電界によって加速される。電界は、無線周波数(RF)電力システムのRF生成器によって生成されたRF電力信号に基づいて生成される。RF生成器によって生成されたRF電力信号は、プラズマエッチングを効率的に実行するように正確に制御されねばならない。
【0004】
RF電力システムは、RF生成器、マッチングネットワーク、および負荷(たとえば、プラズマチャンバ)を含み得る。RF生成器は、RF電力信号を生成する。RF電力信号は、マッチングネットワークにおいて受信される。マッチングネットワークは、RF生成器とマッチングネットワークとの間の伝送路の特性インピーダンスに、マッチングネットワークの入力インピーダンスをマッチさせる。このインピーダンスマッチングは、マッチングネットワークへ伝送される電力の量(「フォワード電力」)を最大化し、マッチングネットワークからRF生成器へ反射して戻る電力の量(「リバース電力」)を最小化する際における支援を行う。マッチングネットワークの入力インピーダンスが、伝送路の特性インピーダンスにマッチする場合、フォワード電力は最大化され得、リバース電力は最小化され得る。
【0005】
RF電源の分野では、典型的に、RF信号を負荷へ適用するために、2つのアプローチが存在する。第1の、より伝統的なアプローチは、連続波信号を負荷へ適用することである。連続波モードでは、連続波信号は、典型的に、電源によって負荷へ連続的に出力されるシヌソイド波である。連続波アプローチでは、RF信号は、シヌソイド出力を仮定し、シヌソイド波の振幅および/または周波数は、負荷へ適用される出力電力を変動させるために、変動され得る。
【0006】
負荷へRF信号を適用する第2のアプローチは、連続波を負荷へ適用するのではなく、RF信号をパルス化することを含む。パルス動作モードでは、RFシヌソイド信号は、変調されたシヌソイド信号のためのエンベロープを定義するために、変調信号によって変調される。従来のパルス変調スキームでは、RFシヌソイド信号は、典型的に、一定の周波数および振幅で出力される。負荷へ供給される電力は、シヌソイドRF信号を変動させるのではなく、変調信号を変動させることによって変動される。
【0007】
典型的なRF電源構成では、負荷へ適用される出力電力は、フォワード電力および反射された電力、または、負荷へ適用されるRF信号の電圧および電力を測定するセンサを使用することによって判定される。これらの信号のいずれかのセットが、典型的なフィードバックループにおいて分析される。この分析は、典型的には、負荷へ適用される電力を変動させるために、RF電源の出力を調節するために使用される電力値を決定する。RF電力供給システムでは、負荷はプラズマチャンバであり、適用される電力は、部分的に、負荷のインピーダンスの関数であるので、負荷のインピーダンスが変動することは、負荷へ適用される対応する変動電力を引き起こす。
【0008】
プラズマシステムが進化すると、連続波とパルスRF制御との両方のための重要な製造仕様を満足することを要求される仕様を満足するための、多くの新たなチャレンジが現れる。1つの進歩は、RF生成器からの単一出力を、マッチングネットワークへ適用することと、様々なプラズマパラメータの増加された制御を考慮するために、多数のRFフィードをプラズマチャンバへ提供することとを含む。例示的な構成では、RF生成器は、マッチングネットワークへの単一入力を提供し、マッチングネットワークは、1つまたは多数のプラズマチャンバの、対応する多数の電極へ、多数のRFフィードを提供する。
【0009】
さらに、連続波RF電力供給システムからパルスRF電力供給システムへの遷移は、追加のチャレンジを提示する。典型的なプラズマシステムでは、プラズマにおいて消滅する電力は、プラズマのインピーダンスに依存する。インピーダンスが、RFパルス(典型的に1kHz~10kHzの範囲)の時間スケールに関して変動するのであれば、パルスイベント間のプラズマを消滅させないように、マッチングネットワークおよび生成器におけるセンサおよびアクチュエータは、最適な電力結合を、プラズマ負荷へ提供するために、同様の時間スケールで応答しなければならない。さらに、インピーダンスの時間応答は、プラズマに依存し、化学、圧力、および電力結合のような要因に従って変動する。さらにまた、RF結合アンテナまたはマッチングシステムのおける抵抗損失のような、プラズマ外部の様々な寄生要素が、パルスサイクル中、時間変動電力結合効率を提示する。なぜなら、これら寄生要素は、時間変動インピーダンス負荷に直列した不変の散逸インピーダンスであるからである。さらにまた、伝送され反射された電力センサおよびRF生成器は、典型的には、マッチした終端のために較正されるので、インピーダンスミスマッチによる電力補償は、電力供給における増加した変動に寄与し得る。
【0010】
現在の従来の制御アプローチでは、RF電源およびマッチングネットワークは、独立して機能する。RF電源は、マッチングネットワークへのRF出力を制御し、マッチングネットワークは、インピーダンスマッチを提供するために、マッチ素子の調整を独立的に制御する。マッチング回路はまた、1つまたは多数のプラズマチャンバの各々の多数の電極へ適用されるマッチングネットワークからの多数の出力間の相対的な出力を制御する。
【0011】
従来のアプローチは、連続波とパルスモード動作との両方に関連する様々なコストおよび複雑さの制限を有する。たとえば、インピーダンスマッチングデバイスの入力および出力のためのRF計測学要件が増加される。さらに、周波数調整システムのために、インピーダンスマッチングネットワークのRF計測学は、エイリアシングおよび制御レイテンシ問題を緩和するために、サンプルされたRFを動作周波数へスケールするための周波数トラッキングと、RF生成器との同期とを必要とする。従来のアプローチはまた、マッチングネットワークが、無線制御機能を実行するためのコンピューティングリソースを含むことをも必要とし、コストおよび複雑さを加える。さらにまた、さらにコストおよび複雑さを加えることに、望ましくないRF遷移を最小化するために、RF生成器およびマッチングネットワークは、適切なRF電力制御のために調整されねばならない。現在、従来のシステムはまた、RF出力測定の同期を必要とする。これは、典型的には、マッチングネットワークで生じる。上記チャレンジはさらに、パルスモード動作に関して増加される。
【発明の概要】
【課題を解決するための手段】
【0012】
このセクションは、本開示の一般的な要約を提供し、その全範囲またはその特徴のすべての包括的な開示ではない。
【0013】
無線周波数(RF)信号を出力する電力増幅器を含むRF生成器を有するRF制御システム。第1のコントローラをも含むRF生成器。RF信号を受信するマッチングネットワーク。マッチングネットワークは、複数の負荷への複数のRF出力信号を生成する。第1の複数のRF出力信号と、第2の複数のRF出力信号との電力の比、または、複数のRF出力信号のうちの選択されたRF出力信号から取得される値を変動させる比調整要素を含むマッチングネットワーク。第1のコントローラは、比制御信号を、マッチングネットワークへ通信し、マッチングネットワークは、比制御信号に従って、比調整要素を制御する。
【0014】
無線周波数(RF)制御システムは、RF信号を出力する電力増幅器を有するRF生成器を含む。RF生成器は、RF信号を受信するマッチングネットワークへのRF出力信号を生成する。マッチングネットワークは、複数の負荷へ、複数のRF出力信号を提供する。マッチングネットワークは、第1の複数のRF出力信号と、第2の複数のRF出力信号との電力の比、または、複数のRF出力信号のうちの選択されたRF出力信号から取得される値を変動させる比調整要素を含む。コントローラは、比制御信号を、マッチングネットワークへ通信し、マッチングネットワークは、比制御信号に従って、比調整要素を制御する。
【0015】
マッチングネットワークへ無線周波数(RF)信号を出力する電力増幅器を含むRF生成器を有するRF制御システムのためのコントローラ。マッチングネットワークは、複数の負荷への複数のRF出力信号を生成する。マッチングネットワークは、第1の複数のRF出力信号と、第2の複数のRF出力信号との電力の比、または、複数のRF出力信号のうちの選択されたRF出力信号から取得される値を変動させる比調整要素を含む。コントローラは、比制御信号をマッチングネットワークへ通信する。マッチングネットワークは、比制御信号に従って、比調整要素を制御する。
【0016】
無線周波数(RF)信号を出力する電力増幅器を有するRF生成器を含むRF制御システムのためのコントローラ。RF生成器は、マッチングネットワークへ出力信号を提供する。マッチングネットワークは、負荷へのRF出力信号を生成する。マッチングネットワークは、パルスRF信号のパルスエッジを変動させるためのインピーダンス調整要素を含む。コントローラは、マッチングネットワークへパルスエッジ制御信号を通信する。マッチングネットワークは、パルスエッジ制御信号に従って、インピーダンス調整要素を制御する。
【0017】
無線周波数(RF)制御システムを制御するための方法は、マッチングネットワークへ比制御信号を通信することを含む。マッチングネットワークは、比制御信号に従って比調整要素を制御する。マッチングネットワークは、RF信号を受信し、複数の負荷への複数のRF出力信号を生成する。マッチングネットワークは、比制御信号に従って、第1の複数のRF出力信号と、第2の複数のRF出力信号との電力の比を変動させる。
【0018】
無線周波数(RF)システムを制御するための方法は、マッチングネットワークへパルスエッジ制御信号を通信することを含む。マッチングネットワークは、パルスRF信号のパルスエッジを変動させるために、パルスエッジ制御信号に従って、インピーダンス調整要素を制御する。マッチングネットワークは、RF信号を受信し、パルスエッジ制御信号に従って、第1の複数のRF出力信号と、第2の複数のRF出力信号との電力の比、または、複数のRF出力信号のうちの選択されたRF出力信号から取得される値を変動させるために、複数のRF出力信号を生成する。
【0019】
適用可能性のさらなる領域は、本明細書において提供される詳細説明から明らかになるであろう。この概要における説明および具体例は、例示のみの目的のために意図され、本開示の範囲を限定することは意図されていない。
【0020】
本明細書において説明された図面は、選択された実施形態の例示的な目的のみのためであり、可能なすべての実施のためではなく、本開示の範囲を限定することは意図されていない。
【図面の簡単な説明】
【0021】
【
図1】本開示に従って、一体化されたRF電力供給単一入力複数出力制御を組み込んだRF電力供給制御システムの機能ブロック図である。
【
図2】本開示に従って再構築されるべき例示的な出力パルスの波形である。
【
図3】パルスと、パルス動作モードにおけるRF生成器の動作に従ってパルスによってバウンドされた例示的な波形とを描写する図である。
【
図4】
図2の出力パルスの例示的なエイリアスされた波形である。
【
図5】拡張された時間スケールを有する
図4の波形である。
【
図6】出力パルスおよびパルスモードRF電力供給システムを再構築するための一体化されたRF電力供給単一入力複数出力制御を組み込んだRF電力供給制御システムの一部の状態図である。
【
図7】RF出力パルス信号を再構築するための受信バッファおよび再構築バッファを描写する図である。
【
図8】
図6の状態図に図示された方法を使用する
図3の波形からの波形再構築の単一のサイクルを描写する図である。
【
図9】
図1のRFコントローラの制御部分の拡張ブロック図である。
【
図10】パルス波形のより一般化された構成に関連する使用のため
図7の再構築バッファのより一般化された表現を示す図である。
【
図11】サンプルパルス波形と再構築バッファとの関係を実証するために、再構築バッファを説明するために使用されるマルチレベルパルス波形量を描写する図である。
【発明を実施するための形態】
【0022】
対応する参照番号は、図面のいくつかの見地を通じて対応する部分を示し、参照番号は、類似および/または同一の要素を識別するために再使用され得る。
【0023】
例示的な実施形態がここで、添付図面を参照してより完全に説明されるであろう。
【0024】
この開示が完全に、そして、その範囲を、当業者へ十分に伝えることができるように、例示的な実施形態が提供される。具体的な構成要素、デバイス、および方法の例のように、本開示の実施形態の完全な理解を提供するために、多くの具体的な詳細が述べられる。具体的な詳細が適用される必要はないこと、例示的な実施形態が多くの異なる形式で具体化され得ること、および、いずれも本開示の範囲を限定するように解釈されるべきではないことが当業者へ明らかになるであろう。いくつかの例示的な実施形態では、周知の処理、周知のデバイス構成、および周知の技術は、詳細に説明されない。
【0025】
本明細書で使用される用語は、特定の例示的な実施形態を説明する目的のためであり、限定することは意図されていない。本明細書において使用されるように、単数形である「a」、「an」、および「the」は、そうではないとコンテキストが明確に示していないのであれば、複数形も同様に含むことが意図され得る。「備える」、「備えている」、「含んでいる」、および「有している」という用語は、包括的であり、したがって、述べられた特徴、完全体、ステップ、動作、要素、および/または、構成要素の存在を明示するが、1つまたは複数の他の特徴、完全体、ステップ、動作、要素、構成要素、および/または、そのグループの存在または追加を排除しない。本明細書で説明された方法ステップ、処理、および動作は、パフォーマンスの順序として具体的に識別されていないのであれば、議論または例示された特定の順序におけるパフォーマンスを必ず必要とすると解釈されるべきではない。追加のまたは代替のステップが適用され得ることもまた理解されるべきである。
【0026】
要素またはレイヤが、別の要素またはレイヤ「の上」、「へ係合された」、「へ接続された」、または「へ結合された」と称される場合、それは、直接的に、他の要素またはレイヤの上であり得るか、他の要素またはレイヤへ係合され得るか、他の要素またはレイヤへ接続され得るか、または他の要素またはレイヤへ結合され得るか、または、介在する要素またはレイヤが存在し得る。対照的に、要素が、別の要素またはレイヤ「の直接上」、「へ直接係合された」、「へ直接接続された」、または「へ直接結合された」こととして称される場合、介在する要素またはレイヤは存在しないことがあり得る。要素間の関係を説明するために使用される他の単語は、同様に(たとえば、「の間」と「直接~の間」、「隣接する」と「直接隣接する」等)解釈されるべきである。本明細書において使用されるように、「および/または」という用語は、関連付けられたリストされた項目の1つまたは複数のうちのいずれかまたはすべての組合せを含む。
【0027】
第1、第2、第3等の用語は、様々な要素、構成要素、領域、レイヤ、および/または、セクションを説明するために使用され得るが、これら要素、構成要素、領域、レイヤ、および/または、セクションは、これら用語によって限定されるべきではない。これら用語は、1つの要素、構成要素、領域、レイヤ、または、セクションを、別の領域、レイヤ、またはセクションと区別するためにのみ使用され得る。本明細書において使用される場合、「第1」、「第2」、および他の数的用語のような用語は、コンテキストによって明確に示されていないのであれば、シーケンスまたは順序を示唆しない。したがって、以下に議論される第1の要素、構成要素、領域、レイヤ、または、セクションは、例示的な実施形態の技術から逸脱することなく、第2の要素、構成要素、領域、レイヤ、または、セクションと称され得る。
【0028】
「内部」、「外部」、「真下」、「下側」、「下部」、「上側」、「上部」等のような空間的に相対的な用語は、本明細書では、説明の容易のために、図面に例示されるように、別の要素または特徴に対する1つの要素または特徴の関係を説明するために使用され得る。空間的に相対的な用語は、図面に描写される方位に加えて、使用または動作におけるデバイスの異なる方位を含むことが意図され得る。たとえば、図面におけるデバイスが反転されると、他の要素または特徴の「下側」または「真下」として説明される要素は、他の要素または特徴の「上側」に方位され得る。したがって、例示的な「下側」という用語は、上側と下側との両方の方位を包含し得る。デバイスは、逆に方位付けられ(90度回転され、または、他の方位にあり)、本明細書で使用される空間的に相対的な説明は、それに従って解釈され得る。
【0029】
図1では、RF制御または電力システム10を含むRF電力システムが図示される。RF電力システム10は、RF生成器12、マッチングネットワーク14、および、マッチングネットワーク14の複数の負荷16a,16b,...,16n(集合的に負荷16と称される)を含む。RF生成器12は、RF電力信号18を生成する。RF電力信号18は、マッチングネットワーク14へ提供される。マッチングネットワーク14は、マッチングネットワーク14の入力インピーダンスを、RF生成器12とマッチングネットワーク14との間の伝送路の特性インピーダンスへマッチさせる。言い換えれば、マッチングネットワーク14は、負荷16のインピーダンスを、RF生成器12の出力によって見られるようなインピーダンスへマッチさせる。マッチングネットワーク14および負荷16は、RF生成器12上の負荷として考慮され得る。負荷16a,16b,...,16nは、たとえば、プラズマチャンバ、または、1つまたは多数のプラズマチャンバの1つまたは多数の電極のような他のRF負荷であり得る。負荷16のインピーダンスは、静的(すなわち、経時的に変化しない)、または動的(すなわち、経時的に変化する)であり得る。
【0030】
RF生成器12は、RF電源または電力増幅器20と、第1のすなわち内部フィードバックループ22aと、第2のすなわち外部フィードバックループ22bとを含む。電力増幅器20は、RF電力信号18を生成する。RF電力信号18は、マッチングネットワーク14へ出力される。電力増幅器20は、電力増幅器20の外部の電源(図示せず)から受信した電力信号に基づいて、RF電力信号18を生成し得る。電源は、RF生成器12の外部にあり得る。電源は、たとえば、直流(DC)電源であり得る。
【0031】
第1すなわち内部フィードバックループ22aは、電力増幅器20のコントローラ28へ入力される信号XおよびY(また30)を生成する1つまたは複数のセンサ(第1のセンサ)26を含む。内部フィードバックループ22aはまた、スケーリングモジュール32、加算器36、および電力制御モジュール40を含む。センサ26は、電圧センサ、電流センサ、および/または、方向性結合器センサを含み得る。センサ26は、(i)電力増幅器20の電圧Vおよび電流I出力、および/または、(ii)電力増幅器20および/またはRF生成器12から出たフォワード(すなわち、ソース)電力PFWDと、マッチングネットワーク14から受信したリバース(すなわち、反射)電力PREVを検出し得る。電圧V、電流I、フォワード電力PFWD、およびリバース電力PREVが、電力増幅器20の出力の実際の電圧、電流、フォワード電力、および、リバース電力のスケールされたバージョン、および/または、フィルタされたバージョンであり得る。センサ26は、アナログセンサおよび/またはデジタルセンサであり得る。デジタル実施では、センサ26は、アナログ-デジタル(A/D)変換器と、対応するサンプリングレートを有する信号サンプリング構成要素とを含み得る。信号XおよびYは、電圧Vおよび電流I、または、フォワード(すなわち、ソース)電力PFWDおよびリバース(すなわち、反射)電力PREVのいずれかを表し得る。
【0032】
センサ26は、センサ信号X,Yを生成する。センサ信号X,Yは、スケーリングモジュール32によって受信される。スケーリングモジュール32は、センサ信号30をスケールし、電力フィードバック信号34を生成する。電力フィードバック信号34は、センサ信号30およびスケーリング行列に基づいて生成される。電力フィードバック信号34は、たとえば、電力供給を平準化するフォワード電力のためのフォワード電力を表し得る。電力フィードバック信号34は、マッチングネットワーク14へ伝達されたRF電力、または、負荷電力Pdを表し得、式(1)によって表され得る。ここで、Vは、電力増幅器20および/またはRF生成器12の電圧出力であり、Iは、電力増幅器20および/またはRF生成器12からの電流であり、Θは、電力増幅器20の電圧出力Vと電流出力Iとの位相差である。
Pd=|V||I|cos(Θ)=PFWD-PREV (1)
【0033】
加算器36は、電力フィードバック信号34を、電力設定点モジュール(図示せず)によって生成され得る、あらかじめ決定された電力設定点信号38と加算する。電力フィードバック信号34は、誤り信号efbを生成するために、あらかじめ決定された電力設定点信号38から引かれる。
【0034】
電力制御モジュール40は、誤り信号efbを受信し、電力増幅器20からの電力を規制するために、電力制御信号
【0035】
【0036】
を生成する。電力制御信号
【0037】
【0038】
は、電力増幅器20へ提供される。電力増幅器20は、電力制御信号
【0039】
【0040】
に基づいて、RF電力信号18を調節する。RF電力信号18は、連続的な波形またはパルス波形であり得る。電力制御モジュール40は、比例積分微分(PID)コントローラまたはその部分集合、および/または、直接デジタル合成(DDS)構成要素を含み得る。様々な実施では、電力制御モジュール40は、第1のPIDコントローラ、または、
【0041】
【0042】
として識別される関数を有するその部分集合である。電力制御信号
【0043】
【0044】
は、駆動信号であり得、DCオフセットまたはレール電圧、周波数、および位相を有し得る。
【0045】
マッチングネットワーク14は、調整および比アクチュエータ48およびマッチコントローラ50を含む。調整ネットワークおよび比アクチュエータ48は、負荷16における変動に応答するために、および、RF生成器12の出力における安定したインピーダンスを維持するために、RF生成器12の出力におけるインピーダンスを変動させるための調整要素を含む。調整ネットワークおよび比アクチュエータ48はたとえば、第1のマッチ調整要素56と第2のマッチ調整要素58とのうちの1つまたは両方を含み、これらの各々は、マッチ条件を維持するために、マッチングネットワーク14におけるインピーダンスを変動させるために調節可能である。様々な実施形態において、調整ネットワークおよび比アクチュエータ48は、第1の調整要素56に対応する負荷キャパシタンスと、第2の調整要素58に対応する調整キャパシタンスとのうちの1つまたは両方を含む。調整キャパシタンスおよび負荷キャパシタンスの各々は、マッチ条件へ調整するため、および、マッチ条件を維持するために、マッチングネットワーク14におけるインピーダンスを変動させるために調節可能である。調整ネットワークおよび比アクチュエータ48はまた、1つまたは複数の比調整要素59を含む。比要素59は、より詳細に説明されるように、調整ネットワークおよび比アクチュエータ48が、あらかじめ決定されたターゲット比を達成するために、各々の負荷16a,16b,...,16nへ適用される、選択された伝送路52a,52b,...,52nへ出力されるRF電力の出力を変動できるようにする。
【0046】
マッチングネットワーク14はまた、調整ネットワークおよび比アクチュエータ48によって出力されたRF電力の各々の特性を感知するために、伝送路52a,52b,...,52nに関して関連付けられた複数のRFセンサ54a,54b,...,54c(集合的にセンサ54と称される)をも含む。RFセンサ54は、RF生成器12のRFセンサ26に関して説明されたように同様に動作する。RFセンサ54a,54b,...,54cは、各々の伝送路52a,52b,...,52cへ適用されたRF電力に従って変動する信号を生成し、これら信号は、マッチコントローラ50へ入力される。マッチコントローラ50は、各々のRFセンサ54によって感知された情報に従って変動する特性信号を、通信リンク23を介してRF生成器12のコントローラ28へ通信する。
【0047】
動的負荷(すなわち、変動インピーダンスを有する負荷)を備えたRF電力システムにおける最適な電力伝達を最大化することを含む様々な技術が、本明細書で開示される。第1の技術は、マッチングネットワーク14へ接続されたRF電力増幅器20を含む。マッチングネットワーク14は、選択された任意の2つの負荷16a,16b,...,16nの間の比制御と、RF生成器12とマッチネットワーク14との間のインピーダンスマッチングとの1つまたは両方を有効化するために、インピーダンスマッチングネットワークおよび比アクチュエータ48を含み得る。
【0048】
たとえば、調整ネットワークおよび比アクチュエータ48は、可変キャパシタのような2つ以上の可変調整要素56,58を含む。可変調整要素56,58は、「L」-構成(RF生成器12と並列した1つの負荷キャパシタンスと、負荷16と直列した1つの調整キャパシタンス)にあり得る。可変調整要素56,58は、マッチングネットワーク14の調整および負荷パラメータを調節し、関連付けられた調整入力および負荷入力を各々有し得る。調整および負荷パラメータは、可変調整要素を介して、マッチングネットワーク14において実行されるインピーダンス調節を称する。例として、調節パラメータおよび負荷パラメータが、マッチングネットワーク14におけるキャパシタの各々のキャパシタンスに関連付けられ得る。様々な実施形態では、第2の技術は、可変周波数調節を電力増幅器20へ導入し、第1の技術の代わりに、または、第1の技術と組み合わせて使用され得る。第2の技術を使用する場合、調整および負荷パラメータは各々、固定、離散的に選択可能、および/または、調節可能であり得る。
【0049】
第1および第2の両方の技術では、電力増幅器20からマッチングネットワーク14へ伝達されるRF電力Pdは、最大化される。これは、マッチングネットワーク14へのフォワード電力PFWDが、最大化された場合、および/または、マッチングネットワークからのリバース電力PREVが最小化された場合に生じ得る。伝達されたRF電力Pdは、式(2)によって表され得る。伝達された最大RF電力PMAXは、式(3)によって表され得る。
Pd=|V||I|cos(Θ) (2)
PMAX=max(|V||I|cos(Θ))=max(PFWD)-min(PREV) (3)
【0050】
電力を反応的な負荷または反応的なインピーダンス(たとえば、負荷16)へ提供するRF電力システム10のために系統的に達成可能なように、伝送されるRF電力Pdは、位相Θがゼロに近い場合に最大化される。反応的なインピーダンスは、変動するインピーダンスを有する負荷を称する。第1および第2の技術は、マッチングネットワーク14の調整および負荷パラメータを調節することによって、位相Θを最小化する。位相Θは、反応的なインピーダンスに依存するので、位相Θにおける減少は、電力増幅器20の周波数fの関数である。その結果、位相減少は、周波数fの関数として実行され得るか、言い換えると、位相Θは、電力増幅器20の周波数f、すなわち、電力増幅器20の出力周波数fを調節することによって、0またはほとんど0へ低減され得る。
【0051】
上述したように、RF生成器12はまた、第2の、すなわち、外部フィードバックループ22bを含む。第2のフィードバックループ22bは、センサ54、マッチコントローラ50と、コントローラ28の電力制御モジュール40とを含む。上述したように、センサ54は、RFセンサ26によって出力されたXおよびYに類似した信号を生成する。センサ54によって出力された信号は、マッチコントローラ50へ入力される。マッチコントローラ50は、受信した信号を処理し、信号の情報特性を、RF生成器12のコントローラ28へ出力する。マッチコントローラ50によって出力された情報は、デジタルフォーマットでコントローラ28へ出力される。
【0052】
従来の構成では、マッチングネットワークは、RF生成器と独立して動作し、決定されたマッチ条件に従って各々の調整要素を調節するための回路を含む。同様に、従来の構成では、マッチングネットワークは、各々の負荷16a,16b,...,16nへ適用された出力の所望されるあらかじめ決定された比に関するコマンドを外部ソースから受信するであろう。マッチングネットワークは、各々の負荷16a,16b,...,16nへ適用される出力の特性を独立して決定し、ターゲット比を達成するために、適切な調節を決定するであろう。この上記説明した従来の構成は、上記の背景技術のセクションで説明されたいくつかのチャレンジを表す。
【0053】
しかしながら、本開示で説明された様々な実施形態では、RF生成器12は、調整要素56,58と出力比要素59との両方を、RF生成器12のコントローラ28によって、一体化された方式で制御する。第1の調整要素56および第2の調整要素58の制御は、Power Distortion-Based Servo Control Systems for Frequency Tuning RF Power Sourcesと題され、2013年11月5日に許可され、本願の譲受人に譲渡された米国特許第8,576,013号に説明されている。第1の調整要素56および第2の調整要素58の制御は、コントローラ28が、第1の調整要素56と第2の調整要素58各々の調整を有効化するために、調整制御信号をマッチコントローラ50へ通信した場合に生じ得る。様々な実施形態では、コントローラ28の電力制御モジュール40は、各々の負荷16a,16b,...,16nへ適用される、マッチングネットワーク14から出力されるRFの電力比を制御する。
【0054】
コントローラ28の電力制御モジュール40は、RFセンサ54から受信され、第2のフィードバックループ22bで、マッチコントローラ50から受信した情報を利用する。マッチコントローラ50は、様々な実施形態において、出力を特性付ける情報を負荷16へ提供するために、固定されたデータレートおよびリンクレイテンシで、コントローラ28と通信する。これら値から、RF生成器12は、式(4)に説明されるように、すべての出力の総和に対する(1つまたは複数の負荷16a,16b,...,16nのような)特定の出力yr(i)のための比を計算する。
【0055】
【0056】
ここで、mは、マッチングネットワーク14からの第1の出力であり、nは、マッチングネットワーク14からのn番目の出力であり、ξは、n個の出力のうちの対応するマッチングネットワークmに関する、所望される出力比xrに関するi番目の電圧または電流値である。他の様々な実施形態では、RF生成器12は、式(5)に説明されるような、第2の出力に対する特定の出力に対する比σr(i)を計算する。
【0057】
【0058】
ここで、m、n、およびξは、上述した通りである。
【0059】
電力制御モジュール40は、式(6)に説明されるように、誤りe(i)に基づいてアクチュエータ位置λを反復的に計算するために、デジタルコントローラ
【0060】
【0061】
を利用する。
e(i)=xr-σr(i) (6)
ここで、xrおよびσr(i)は、上述した通りである。様々な実施形態では、電力制御モジュール40は、アクチュエータ位置λを決定するために比例的な制御アプローチを実施する。アクチュエータ位置λの計算のための比例的制御は、式(7)に図示されるように説明され得る。
λ(i+1)=λ(i)+Ge(i) (7)
ここで、λ(i+1)は、新たに計算されたλの値であり、λ(i)は、前に計算されたλの値であり、Gは、比例的または利得制御式のための変数または定数パラメータである。増加される制御は、式(8)に説明されるような高次の比例積分微分制御アプローチを使用して達成され得る。
λ(i+1)=λ(i)+G[αe(i)+βe(i-1)+γe(i-2)] (8)
ここで、λ(i+1)、λ(i)、およびGは、上述した通りであり、e(i-1)およびe(i-2)は、第1および第2の各々の前の誤り項でありα、β、およびγは、制御式のための変数または定数項である。
【0062】
上述された一体化された比制御アプローチは、RF生成器12の連続波とパルスモード動作との両方へ一般化され得る。しかしながら、パルスモード動作は、一体化された比制御を効率的に実施するために対処されねばならない他の考慮を導入する。負荷16へ適用されるRF出力の波形のサンプリングと、マッチコントローラ50からコントローラ28へ通信されるべき情報とが、
図2~
図9に関して考慮される。RF生成器12からの出力がパルス化された場合、センサ54からのサンプリングされた信号は、電力増幅器20からのRF出力に対して非同期である。伝送路52へのマッチングネットワーク14の出力においてパルス信号から再構築される信号は、RF生成器12からのパルス出力に関して位相シフトされるであろう。したがって、
図2~
図9は、コントローラ28が、再構築の非同期的性質を考慮しながら、マッチングネットワーク14から出力されたパルスモード信号を再構築するアプローチを説明した。
【0063】
図2は、伝送路52において出力され得るようなパルス波形60を描写する。
図3は、パルス波形60の一般的な表現を描写する。
図3において見られ得るように、パルス波形60は、シヌソイド電圧信号V(t)およびシヌソイド電流信号I(t)のためのエンベロープを提供し、これによって、波形60がオンである場合、シヌソイド信号V(t)およびI(t)は、波形60によってバウンドされ、出力され得る。波形60がオフである(ゼロの振幅を有する)場合、出力は発生せず、シヌソイド信号V(t)およびI(t)はともにゼロである。1つの限定しない例では、
図2に図示されるように、パルス波形60は、500kHzの周波数またはパルス反復周波数(PRF)、または、200μsのパルスレート時間(tp)を有する。それは、tp=PRF-1である。パルス波形60が、1110Hzのサンプリングレート(すなわち、サンプリング時間ts=1/1110s)でサンプルされるのであれば、
図4および
図5の波形において図示されるように、パルス波形60のエイリアスされた表現62は、
図4および、
図4の拡張された時間スケールを図示する
図5の波形に図示されるような結果となる。
図2に図示されるパルス波形60は、矩形波として表現されるが、パルス波形60は、正方形、鋸歯、三角形、二層レベルまたはマルチレベル、および他の波形であり得る。パルス波形60は、様々な実施形態において周期的である。
【0064】
図6の状態
図66は、パルス波形60を再構築するための様々な実施形態を描写する。この再構築は、
図4および
図5に図示されるように、サンプル波形におけるレイテンシと、波形60のエイリアスされた表現62の性質とを考慮する。処理は、初期設定が生じる状態68において始まる。コントローラは、状態70へ進む。状態70は、パルストリガエッジに従って初期サンプリングを同期させるための待機状態である。パルストリガエッジが検出されると、処理は状態72へ進み、ここでは、サンプリングが、サンプリング時間ts(または、1110Hzのサンプリングレート)において生じ、サンプルは、受信バッファRxに配置される。受信バッファRxの例が、
図7に図示される。
図7に見られるように、受信バッファRxは、ts秒毎に生じるN個のサンプルを備え、Ts=Nts秒の合計長さを有する。各サンプルは、ts=0に対するサンプリングの特定の時間に従って受信バッファRxにおける適切な位置に配置される。受信バッファRxに記憶されたサンプルは、
図7にも図示されるように、再構築バッファRconのビンへ再分配される。受信バッファRxにおける各位置からの値は、再構築バッファRconの適切なN個のビンへ再分配される。各々の受信バッファRxおよびバッファRconバッファのビンは、異なる幅からなる。再構築バッファRconは、N個のビンを備えるが、TPRF=Ntp秒の幅を有する。本明細書で説明された例に関し、受信バッファRxは、Ts=Nts秒の長さを有し、tp=200μsである一方ts=901μsであることを思い出されたい。したがって、再構築バッファRconおよび受信バッファRxのビンは、異なるサイズである。
【0065】
再構築バッファRconを埋めることが、状態74において生じる。モジュロ関数のようなあらかじめ定義された伝達関数は、式(9)に従って受信バッファRxから再構築バッファRconへのマッピングを提供する。
tm(n)=mod(ts(n),tp)、tsからなるn個のサンプルすべてについて (9)
tm(n)をソートすることは、受信バッファRxにおける受信データを、再構築バッファRconの適切な時間ベースのビンへ割り当てるためのインデクスを提供する。あるいは、tmへts-1を適用することによって、時間ベースのビンが、インデクスビン表現の観点から構築される。獲得されたパルスレートおよびN個のサンプルの数に基づいて、再構築バッファRconにおけるビンは既にデータ値を含み得る。再構築バッファRconにおけるビンが既にデータ値を含んでいる場合、データは、各々のビン内に蓄積される。すべてのデータが受信された後、制御は状態76へ進み、ここでは、再構築バッファRconの各ビンにおけるデータが、各ビンに蓄積されたサンプルの数によって規格化される。規格化は、各ビンのための平均を計算することによって生じ得る。N個全体のサンプルの獲得が完了した後、制御は、再構築状態74へ戻り、ここでは、波形が再構築される。
図8は、
図6の状態図に従って再構築された波形88を描写する。再構築バッファRconが埋められると、制御は状態78へ進み得、再構築処理の結果がレポートされる。
【0066】
図7の再構築バッファRconのさらなるレビューは、再構築バッファRconと波形60との異なる部分間の対応を認識することを容易にする。より具体的には、yrによって示される再構築バッファRconのビンは、再構築されている波形60の立ち上がり部分に対応し、波形60の立ち上がり時間Δtrを得るために処理される。同様に、yfによって示される再構築バッファRconのビンは、再構築されている波形60の立ち下がり部分に対応し、波形60の立ち下がり時間Δtfを得るために処理される。ξによって示される再構築バッファRconのビンは、波形60の立ち上がり後の波形60の安定状態またはON部分に対応し、Δtsは、安定状態またはON部分へ安定させるための波形60のための時間に対応する。サンプルK1,...,KMは、再構築処理を開始するために、埋められるべき最小数のビンを示す。
図6の状態80を参照して示すように、ξ個のビンが埋められると、
【0067】
【0068】
がレポートされ得、処理が進み得る。同様に、状態82を参照して示すように、ビンyrおよびyfが埋められている場合、たとえば、立ち上がりおよび立ち下がり時間の各々の微係数、Δyr/ΔtrおよびΔyf/Δtfを含む、各々の立ち上がりおよび立ち下がりエッジと、各々の立ち上がりおよび立ち下がり時間とに関する情報がレポートされ得る。レポートされた情報は、RF電力システム10をさらに制御するために有用な情報、オペレータのための統計情報、または他の様々な使用であり得る。レポートされた情報は、特定の実施に依存して、スケーラ値またはデータシーケンスであり得る。
【0069】
図9は、電力制御モジュール40の拡張ブロック
図90を描写する。拡張ブロック
図90では、電力制御モジュール40は、パルス制御モジュールまたは回路92、比制御モジュールまたは回路94、およびエッジ制御モジュールまたは回路96を含む。パルス制御モジュール92は、通信98を介して比制御モジュール94と通信する。パルス制御モジュール92は、通信100を介してエッジ制御モジュール96と通信する。比制御モジュール94は、式(4)および(5)に関して上述したように、所望される出力比ξmおよびξnに関する各々の電圧値または電流値を入力として受信する。パルス制御モジュール92は、通信リンク102を介して、マッチングネットワーク14の電力増幅器20およびマッチコントローラ50と通信する。通信リンク98、100、102の各々は、デジタルまたはアナログ通信リンクとして実施され得、様々な実施形態では、一般にバス構成で実施され得る。さらに、様々な実施形態では、パルス制御モジュール92、比制御モジュール94、およびエッジ制御モジュール96は、独立した通信リンクまたはバス構成を使用して、通信リンク23を介するように、マッチコントローラ50と直接的に通信し得る。
【0070】
ξmおよびξn個の入力を受信すると、比制御モジュール94は、マッチングネットワーク14およびマッチコントローラ50へ通信されるコマンドを生成する。エッジ制御モジュール96は、立ち上がり時間および立ち下がり時間の各々の微係数、Δyr/ΔtrおよびΔyf/Δtfを受信し、エッジ制御またはRFパルスを考慮するためのコマンドを提供するエッジ制御信号を生成する。様々な実施形態では、エッジ制御モジュール96は、第1の調整要素56および第2の調整要素58のうちの1つの位置を調節するコマンドを生成するために、立ち上がり時間および立ち下がり時間の微係数を利用する。様々な実施形態では、エッジ制御モジュール96は、立ち上がり時間および立ち下がり時間のレートを決定するために、選択された調整要素56の位置を変動させる。立ち上がりまたは立ち下がりエッジのシャープさを変動させることによって、負荷16において生じる処理のより正確な制御が達成される。そのような制御は、適切なマッチ条件に到達するために、周波数調整と独立し得るか、または、一致し得る。様々な実施形態では、エッジ制御モジュール96は、第2の調整要素58によって実施され得るように、調整キャパシタの位置を制御するために、マッチコントローラ50によって使用されるコマンドを生成する。
【0071】
様々な実施形態では、エッジ制御モジュール96は、入力された立ち上がり時間および立ち下がり時間の各々の微係数Δyr/ΔtrおよびΔyf/Δtfを利用し、遷移中、電力増幅器20によって出力されたRF信号18の増加または減少(またはランプ)を変動させるためのコマンドを生成する。エッジ制御モジュール96は、パルス制御モジュール92へのコマンドを生成し、パルス制御モジュール92は、電力増幅器20に対して、電力増幅器20によって出力されたパルスの適切な増加または減少(またはランプ)を有効化するように指示するコマンドを生成する。様々な実施形態では、エッジ制御モジュール96は、パルス信号の立ち上がりエッジまたは立ち下がりエッジと、RF信号18の増加または減少(ランプ)遷移とのうちの1つまたは両方を変動させるコマンドを生成する。
【0072】
図10は、マルチレベルパルス波形の一般化された表現を描写し、
図11は、受信バッファおよび再構築バッファを描写する。
図10および
図11の各々において図示される量は、パルス波形と、再構築バッファの部分との関係を示すために使用される。
図11のマルチレベルパルス波形106は、多くの一般的な個別の部分を含む。さらに詳しくは、マルチレベルパルス波形106は、時間t=0において始まり、第1のレベル110へ立ち上がる、第1の立ち上がり(遷移)部分108を含む。第1のレベル110は、マルチレベルパルス波形106の定められたまたは安定な状態の部分に対応する。マルチレベルパルス波形106はまた、第1の立ち下り(遷移)部分112を含む。第1の立ち下がり(遷移)部分112は、第1のレベル110から第2のレベル114へ下降する。第2のレベル114は、マルチレベルパルス波形106の定められたまたは安定な状態の部分に対応する。マルチレベルパルス波形106はまた、第2の立ち下り(遷移)部分116を含む。
図10のマルチレベルパルス波形106は、2レベルの波形として図示されているが、いくつかがゼロまたは非ゼロであり得る2つ以上のレベルを有するマルチレベルパルス波形106が実施され得ることが認識されるべきである。様々な実施形態では、マルチレベルパルス波形106は、第1の立ち上がり(遷移)部分108に加えて、多数の立ち上がり(遷移)部分を有し得る。
【0073】
図7とは対照的に、
図11は、各々値K1...,KMおよびF1...,FMを有する2つのデータシーケンスξaおよびξbを示す。データシーケンスξaおよびξbは、
図7の単一のデータシーケンスξと比較して、たとえば、各々第1のレベル110および第2のレベル114の再構築を可能にする。
図10および
図11において見られ得るように、
図11の再構築バッファにおけるデータシーケンスξaおよびξbは、各々第1のレベル110および第2のレベル114の部分に対応する。したがって、値K1...,KMおよびF1...,FMのデータシーケンスは、各々第1の部分110および第2の部分114の判定を可能にする。
図10に図示されるように、データシーケンスξaおよびξbは、各々第1のレベル110および第2のレベル114の選択された部分を表すことが注目されるべきである。したがって、各々第1のレベル110および第2のレベル114は、各レベルの選択されたセクションをサンプリングによって判定され得る。
【0074】
図10にも図示されるように、データシーケンスyraは、第1の立ち上がり(遷移)部分108の選択されたセクションに対応する。時間における変化Δtraは、yraの持続時間を示し、Δyraは、第1の立ち上がり部分108の振幅における変化を示す。同様に、データシーケンスyfaは、第1の立ち下がり(遷移)部分112の選択されたセクションに対応する。時間における変化Δtfaは、yfaの持続時間を示し、Δyfaは、第1の立ち下がり部分112の振幅における変化を示す。データシーケンスyfbは、第1の立ち下がり(遷移)部分114の選択されたセクションに対応する。時間における変化Δtfbは、yfbの持続時間を示し、Δyfbは、第1の立ち下がり部分112の振幅における変化を示す。マルチレベルパルス波形106の第2の立ち上がり(遷移)部分が、
図10に図示されてない一方、マルチレベルパルスの様々な構成では、各パルスの定められたまたは安定な状態のセクションは、類似の量が判定され得る関連付けられた立ち上がりおよび立ち下がりを有し得る。データシーケンスξaおよびξbに関して上述されたように、各立ち上がりおよび立ち下がりセクションの再構築は、マルチレベルパルス波形106の各々の立ち上がりおよび立ち下がり(遷移)部分の部分集合または選択されたセクションをサンプリングすることによって達成され得る。
【0075】
図9を参照して示すように、エッジ制御モジュール96の動作がさらに説明され得る。上述されるように、エッジ制御モジュールは、パルス制御モジュール92へのコマンドを生成し、パルス制御モジュール92は、電力増幅器20に対して、電力増幅器20によって出力されたパルスの適切な増加または減少(またはランプ)を有効化するように指示するコマンドを生成する。
図10は、マルチレベルパルス波形106の部分108、112、および114を参照して示すように、電力増幅器20によって出力されたパルスの増加または減少(またはランプ)を制御する視覚的表現を提供する。立ち上がり部分108および立ち下がり部分112および114は、階段状の遷移を使用して描写される。ここでは、各インクリメントまたはステップの振幅またはレベルおよび持続時間が、マルチレベルパルス波形106の各遷移部分のランプを変動させるために、パルスエッジコントローラによって変動され得る。階段状の遷移を制御することによって、電力増幅器20によって出力されるパルスの、改善された制御を提供する。マルチレベルの部分108、112、および114の各インクリメントまたはステップの振幅またはレベルおよび持続時間は、独立して判定され得ることが認識されるべきである。
【0076】
先述した説明は単に、本質において例示的であり、開示、そのアプリケーション、または使用を限定することはまったく意図されていない。この開示の広い教示は、様々な形式で実施され得る。したがって、この開示は、特定の例を含んでいるが、この開示の真の範囲は、そのように限定されるべきではない。なぜなら、図面、明細書、および以下の特許請求の範囲の検討によって、他の修正が、明らかになるであろうからである。方法内の1つまたは複数のステップは、本開示の原理を変更することなく、異なる順序で(または同時に)実行され得ることが理解されるべきである。さらに、実施形態の各々は、いくつかの特徴を有するとして上述されているが、本開示の任意の実施形態に関して説明されたこれら特徴の任意の1つまたは複数は、たとえその組合せが、明示的に説明されていなくても、他の実施形態の任意の特徴において、および/または、他の実施形態の任意の特徴との組合せにおいて実施され得る。言い換えると、説明された実施形態は、相互に排他的ではなく、1つまたは複数の実施形態の互いとの置換は、この開示の範囲内にある。
【0077】
要素間(たとえば、モジュール、回路素子、半導体レイヤ等間)の空間的および機能的関係は、「接続された」、「係合された」、「結合された」、「隣接する」、「隣の」、「先頭の」、「上方」、「下方」、および「配置された」を含む様々な用語を使用して説明される。「直接的」として明示的に説明されていないのであれば、第1の要素と第2の要素との間の関係が、上記開示において説明されている場合、その関係は、第1の要素と第2の要素との間に他の介在要素が存在しない直接的な関係であり得るが、第1の要素と第2の要
素との間に1つまたは複数の介在要素が(空間的または機能的いずれかによって)存在する間接的な関係でもあり得る。本明細書で使用されるように、A、B、およびCのうちの少なくとも1つというフレーズは、非排他的な論理的ORを使用して、論理的な(A OR B OR C)を意味するように解釈されるべきであり、「Aのうちの少なくとも1つ、Bのうちの少なくとも1つ、および、Cのうちの少なくとも1つ」を意味するように解釈されるべきではない。
【0078】
以下の定義を含むこの出願では、「モジュール」という用語、または、「コントローラ」という用語は、「回路」という用語と置換され得る。「モジュール」という用語は、特定用途向け集積回路(ASIC)、デジタル、アナログ、または、アナログ/デジタル混合ディスクリート回路、デジタル、アナログ、または、アナログ/デジタル混合集積回路、組合せ論理回路、フィールドプログラマブルゲートアレイ(FPGA)、コードを実行するプロセッサ回路(共有、専用、またはグループ)、プロセッサ回路によって実行されたコードを記憶するメモリ回路(共有、専用、またはグループ)、説明された機能を提供する他の適切なハードウェア構成要素、または、システムオンチップにおけるような、上記のうちのいくつかまたはすべての組合せを称し得るか、一部であるか、または含み得る。
【0079】
モジュールは、1つまたは複数のインターフェース回路を含み得る。いくつかの例では、インターフェース回路は、ローカルエリアネットワーク(LAN)、インターネット、広域ネットワーク(WAN)、またはこれらの組合せへ接続されたワイヤまたはワイヤレスインターフェースを含み得る。本開示の任意の所与のモジュールの機能は、インターフェース回路を介して接続された多数のモジュール間で分散され得る。たとえば、多数のモジュールが、負荷平準化を可能にし得る。さらなる例では、(遠隔またはクラウドとしても知られている)サーバモジュールは、クライアントモジュールの代わりに、いくつかの機能を達成し得る。
【0080】
上記で使用されるようなコードという用語は、ソフトウェア、ファームウェア、および/または、マイクロコードを含み得、プログラム、ルーチン、機能、クラス、データ構造、および/または、オブジェクトを称し得る。共有プロセッサ回路という用語は、多数のモジュールからのいくつかまたはすべてのコードを実行する単一のプロセッサ回路を包含する。グループプロセッサ回路という用語は、追加のプロセッサ回路と組み合わされて、1つまたは複数のモジュールからいくつかまたはすべてのコードを実行するプロセッサ回路を包含する。マルチプロセッサ回路への参照は、ディスクリートなダイにおけるマルチプロセッサ回路、単一のダイにおけるマルチプロセッサ回路、単一のプロセッサ回路のマルチコア、単一のプロセッサ回路のマルチスレッド、または、上記の組合せを包含する。共有メモリ回路という用語は、多数のモジュールからのいくつかまたはすべてのコードを記憶する単一のメモリ回路を包含する。グループメモリ回路という用語は、追加のメモリと組み合わされて、1つまたは複数のモジュールからのいくつかまたはすべてのコードを記憶するメモリ回路を包含する。
【0081】
メモリ回路という用語は、コンピュータ読取可能な媒体という用語の部分集合である。コンピュータ読取可能な媒体という用語は、本明細書で使用されるように、(搬送波におけるように)媒体を介して伝搬する一時的な電気または電磁信号を包含せず、したがって、コンピュータ読取可能な媒体という用語は、有形かつ非一時的と考慮され得る。非一時的な有形のコンピュータ読取可能な媒体の非限定的な例は、(フラッシュメモリ回路、消去可能なプログラマブル読取専用メモリ回路、またはマスク読取専用メモリ回路のような)不揮発性メモリ回路、(静的ランダムアクセスメモリ回路または動的ランダムアクセスメモリ回路のような)揮発性メモリ回路、(アナログまたはデジタル磁気テープまたはハードディスクドライブのような)磁気記憶媒体、および、(CD、DVD、Blu-ray(登録商標)ディスクのような)光記憶媒体である。
【0082】
この出願において説明された装置および方法は、コンピュータプログラムにおいて具体化される1つまたは複数の特定の機能を実行するように汎用コンピュータを構成することによって生成された専用コンピュータによって部分的または完全に実施され得る。上述された機能ブロックおよびフローチャート要素は、ソフトウェア仕様として役立つ。これは、熟練した技術者またはプログラマのルーチンワークによって、コンピュータプログラムへ翻訳され得る。
【0083】
コンピュータプログラムは、少なくとも1つの非一時的な、有形のコンピュータ読取可能な媒体に記憶されたプロセッサ実行可能な命令を含む。コンピュータプログラムはまた、記憶されたデータを含み得るか、または、記憶されたデータに依存し得る。コンピュータプログラムは、専用コンピュータのハードウェアとインタラクトする基本入出力システム(BIOS)、専用コンピュータの特定のデバイスとインタラクトするデバイスドライバ、1つまたは複数のオペレーティングシステム、ユーザアプリケーション、バックグランドサービス、バンクグランドアプリケーション等を包含し得る。
【0084】
コンピュータプログラムは、(i)HTML(ハイパテキストマークアップ言語)またはXML(エクステンシブルマークアップ言語)のような解析されるべき記述文、(ii)アセンブリコード、(iii)コンパイラによってソースコードから生成されるオブジェクトコード、(iv)インタプリタによる実行のためのソースコード、(v)ジャストインタイムコンパイラによるコンパイルおよび実行のためのソースコード等を含み得る。例のみとして、ソースコードは、C、C++、C#、Objective C、Haskell、Go、SQL、R、Lisp、Java(登録商標)、Fortran、Perl、Pascal、Curl、OCaml、Javascript(登録商標)、HTML5、Ada、ASP(active server pages)、PHP、Scala、Eiffel、Smalltalk、Erlang、Ruby、Flash(登録商標)、Visual Basic(登録商標)、Lua、およびPython(登録商標)を含む言語からの構文を使用して記述され得る。
【0085】
「~ための手段」というフレーズを使用して、または、方法請求項の場合、「~のための動作」または「~のためのステップ」というフレーズを使用して、要素が明確に記述されていないのであれば、特許請求の範囲において記述された要素のいずれも、米国特許法第112条(f)の意味におけるミーンズプラスファンクション要素であると意図されない。
【符号の説明】
【0086】
10 電力システム
12 無線周波数(RF)生成器
14 マッチングネットワーク
16a 負荷
16b 負荷
16n 負荷
18 RF電力信号
20 電力増幅器
22a 内部フィードバックループ
22b 外部フィードバックループ
23 通信リンク
26 RFセンサ
28 コントローラ
30 センサ信号
32 スケーリングモジュール
34 電力フィードバック信号
36 加算器
38 電力設定点
40 電力制御モジュール
48 調整ネットワークおよび比アクチュエータ
50 マッチコントローラ
52a 伝送路
52b 伝送路
52n 伝送路
54a センサ
54b センサ
54c センサ
56 調整要素
58 調整要素
59 比調整要素
60 パルス波形
62 エイリアスされた表現
66 状態図
68 設定
70 トリガ待機
72 Rxバッファを埋める
74 再構築
76 共有ビンのためのビン値平均の計算
78 結果をレポート
80 ξ個のビンが埋められる
82 y個のビンが埋められる
88 波形
90 拡張ブロック図
92 パルス制御モジュール
94 比制御モジュール
96 エッジ制御モジュール
98 通信リンク
100 通信リンク
102 通信リンク
106 マルチレベルパルス波形
108 立ち上がり部分
110 第1のレベル
112 立ち下がり部分
114 第2のレベル
116 立ち下り部分