IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友化学株式会社の特許一覧

特許7152981発光素子用組成物及びそれを含有する発光素子
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-04
(45)【発行日】2022-10-13
(54)【発明の名称】発光素子用組成物及びそれを含有する発光素子
(51)【国際特許分類】
   H01L 51/50 20060101AFI20221005BHJP
   H05B 33/10 20060101ALI20221005BHJP
【FI】
H05B33/14 B
H05B33/10
【請求項の数】 6
(21)【出願番号】P 2019063784
(22)【出願日】2019-03-28
(62)【分割の表示】P 2018151685の分割
【原出願日】2018-08-10
(65)【公開番号】P2019204946
(43)【公開日】2019-11-28
【審査請求日】2021-07-02
(31)【優先権主張番号】P 2018096865
(32)【優先日】2018-05-21
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000002093
【氏名又は名称】住友化学株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100128381
【弁理士】
【氏名又は名称】清水 義憲
(74)【代理人】
【識別番号】100124062
【弁理士】
【氏名又は名称】三上 敬史
(72)【発明者】
【氏名】佐々田 敏明
(72)【発明者】
【氏名】松本 龍二
【審査官】酒井 康博
(56)【参考文献】
【文献】国際公開第2016/152544(WO,A1)
【文献】米国特許出願公開第2014/0346406(US,A1)
【文献】特開2019-204947(JP,A)
【文献】特開2007-015933(JP,A)
【文献】特開2018-061030(JP,A)
【文献】国際公開第2018/062278(WO,A1)
【文献】HATAKEYAMA Takuji, et al.,Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO-LUMO Separation by the Multiple Resonance Effect,ADVANCED MATERIALS,ドイツ,WILEY-VCH Verlag GmbH & Co. KGaA,2016年02月11日,Vol. 28, Issue 14,pp. 2777-2781,DOI: 10.1002/adma.201505491
(58)【調査した分野】(Int.Cl.,DB名)
H01L 51/50-51/56
H05B 33/00-33/28
H01L 27/32
Scopus
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
ホスト材料と混合して発光素子用組成物を得るために用いられるゲスト材料の製造方法であって、
前記ホスト材料として、芳香族炭化水素基及び複素環基からなる群より選ばれる少なくとも1種を含む化合物を準備する準備工程と、
環内に、ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子、及び、窒素原子からなる群より選ばれる少なくとも1種とを含む、縮合環の複素環基を有する化合物であり、25℃における吸収スペクトルの最も低エネルギー側のピークの半値幅のエネルギー値が0.171eV以下であり、且つ、25℃における吸収スペクトルの最も低エネルギー側のピークのエネルギー値と前記ホスト材料の25℃における発光スペクトルの最大ピークのエネルギー値との差ΔEが0.50eV以下となる、ゲスト材料を選別する選別工程と、
を含む、ゲスト材料の製造方法。
【請求項2】
前記ΔEが0.20eV以下である、請求項1に記載の製造方法。
【請求項3】
前記ΔEが0.010eV以上である、請求項1又は2に記載の製造方法。
【請求項4】
前記ゲスト材料が、環内にホウ素原子と窒素原子とを含む、縮合環の複素環基を有する化合物である、請求項1~のいずれか一項に記載の製造方法。
【請求項5】
前記発光素子用組成物が、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種を更に含有する、請求項1~のいずれか一項に記載の製造方法。
【請求項6】
陽極と、陰極と、前記陽極及び前記陰極の間に設けられた層とを有する、発光素子の製造方法であって、
請求項1~のいずれか一項に記載の製造方法によりゲスト材料を製造する工程と、
前記工程で製造された前記ゲスト材料を用いて、乾式法又は湿式法により前記層を形成する工程と、
を含む、発光素子の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発光素子用組成物及びそれを含有する発光素子に関する。
【背景技術】
【0002】
有機エレクトロルミネッセンス素子等の発光素子は、例えば、ディスプレイ及び照明に好適に使用することが可能である。発光素子の発光層に用いられる発光材料として、例えば、特許文献1では、化合物(H-0)と化合物(E-1)とを含有する組成物が提案されている。
【0003】
【化1】
【先行技術文献】
【特許文献】
【0004】
【文献】国際公報第2018/062278号
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、上記の組成物を用いて作製される発光素子は、輝度寿命が必ずしも十分ではない。
そこで、本発明は、輝度寿命が優れる発光素子の製造に有用な組成物を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明者らは、上記課題を解決するために鋭意検討を行った結果、特定のホスト材料及び特定のゲスト材料を含む発光素子用組成物において、ゲスト材料の発光スペクトルの最大ピークが特定のエネルギー関係を満たし、且つ、ホスト材料の発光スペクトルの最大ピークとゲスト材料の吸収スペクトルの最も低エネルギー側のピークとが特定のエネルギー関係を満たすことにより、輝度寿命が優れる発光素子を形成できることを見出し、本発明を完成するに至った。
【0007】
本発明は、以下の[1]~[11]を提供する。
[1]
ホスト材料とゲスト材料とを含有する発光素子用組成物であって、
前記ホスト材料が、芳香族炭化水素基及び複素環基からなる群より選ばれる少なくとも1種を含む化合物であり、
前記ゲスト材料が、環内に、ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子、及び、窒素原子からなる群より選ばれる少なくとも1種とを含む、縮合環の複素環基を有する化合物であり、
前記ホスト材料の25℃における発光スペクトルの最大ピークのエネルギー値と、前記ゲスト材料の25℃における吸収スペクトルの最も低エネルギー側のピークのエネルギー値との差ΔEが0.50eV以下であり、
前記ゲスト材料の25℃における発光スペクトルの最大ピークのエネルギー値と、前記ゲスト材料の77Kにおける発光スペクトルの最大ピークのエネルギー値との差ΔSが0.10eV以下である、発光素子用組成物。
[2]
前記ΔEが0.20eV以下である、[1]に記載の発光素子用組成物。
[3]
前記ΔEが0.010eV以上である、[1]又は[2]に記載の発光素子用組成物。
[4]
前記ΔSが0.050eV以下である、[1]~[3]のいずれかに記載の発光素子用組成物。
[5]
前記ゲスト材料が、環内にホウ素原子と窒素原子とを含む、縮合環の複素環基を有する化合物である、[1]~[4]のいずれかに記載の発光素子用組成物。
[6]
正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種を更に含有する、[1]~[5]のいずれかに記載の発光素子用組成物。
[7]
陽極と、陰極と、前記陽極及び前記陰極の間に設けられた[1]~[6]のいずれかに記載の発光素子用組成物を含有する層とを有する、発光素子。
[8]
芳香族炭化水素基及び複素環基からなる群より選ばれる少なくとも1種を含む化合物であるホスト材料を準備する準備工程と、
環内に、ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子、及び、窒素原子からなる群より選ばれる少なくとも1種とを含む、縮合環の複素環基を有する化合物であり、25℃における発光スペクトルの最大ピークのエネルギー値と77Kにおける発光スペクトルの最大ピークのエネルギー値との差ΔSが0.10eV以下であり、且つ、25℃における吸収スペクトルの最も低エネルギー側のピークのエネルギー値と前記ホスト材料の25℃における発光スペクトルの最大ピークのエネルギー値との差ΔEが0.50eV以下となる、ゲスト材料を選別する選別工程と、
前記ホスト材料と前記ゲスト材料とを混合して発光素子用組成物を得る製造工程と、
を備える、発光素子用組成物の製造方法。
[9]
前記ホスト材料の25℃における発光スペクトルの最大ピークのエネルギー値を求める工程を更に備える、[8]に記載の発光素子用組成物の製造方法。
[10]
前記選別工程が、前記縮合環の複素環基を有する化合物の、25℃における吸収スペクトルの最も低エネルギー側のピークのエネルギー値、25℃における発光スペクトルの最大ピークのエネルギー値及び77Kにおける発光スペクトルの最大ピークのエネルギー値をそれぞれ求めて、前記ΔE及び前記ΔSを算出する工程を含む、[8]又は[9]に記載の製造方法。
[11]
陽極と、陰極と、前記陽極及び前記陰極の間に設けられた層とを有する発光素子の製造方法であって、
[8]~[10]のいずれかに記載の製造方法により発光素子用組成物を製造する工程と、該工程で製造された発光素子用組成物を用いて、乾式法又は湿式法により前記層を形成する工程とを含む、発光素子の製造方法。
[12]
芳香族炭化水素基及び複素環基からなる群より選ばれる少なくとも1種を含む化合物であるホスト材料と、環内に、ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子、及び、窒素原子からなる群より選ばれる少なくとも1種とを含む、縮合環の複素環基を有する化合物であるゲスト材料と、を含有する発光素子用組成物の評価方法であって、
前記ホスト材料の25℃における発光スペクトルの最大ピークのエネルギー値と、前記ゲスト材料の25℃における吸収スペクトルの最も低エネルギー側のピークのエネルギー値との差ΔEを求める工程と、
前記ゲスト材料の25℃における発光スペクトルの最大ピークのエネルギー値と、前記ゲスト材料の77Kにおける発光スペクトルの最大ピークのエネルギー値との差ΔSを求める工程と、
前記ΔE及び前記ΔSに基づいて、前記発光素子用組成物を評価する工程と、
を備える、発光素子用組成物の評価方法。
【発明の効果】
【0008】
本発明によれば、輝度寿命が優れる発光素子の製造に有用な組成物を提供することができる。また、本発明によれば、前記組成物を含有する発光素子を提供することができる。更に、本発明によれば、前記組成物及び前記発光素子の製造方法、並びに、前記組成物の評価方法を提供することができる。
【発明を実施するための形態】
【0009】
以下、本発明の好適な実施形態について詳細に説明する。
【0010】
<共通する用語の説明>
本明細書で共通して用いられる用語は、特記しない限り、以下の意味である。
「室温」とは、25℃を意味する。
Meはメチル基、Etはエチル基、Buはブチル基、i-Prはイソプロピル基、t-Buはtert-ブチル基を表す。
水素原子は、重水素原子であっても、軽水素原子であってもよい。
【0011】
「高分子化合物」とは、分子量分布を有し、ポリスチレン換算の数平均分子量が1×10~1×10である重合体を意味する。
「低分子化合物」とは、分子量分布を有さず、分子量が1×10以下の化合物を意味する。
【0012】
「アルキル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~50であり、好ましくは1~20であり、より好ましくは1~10である。分岐のアルキル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは3~20であり、より好ましくは4~10である。アルキル基は、置換基を有していてもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、2-ブチル基、イソブチル基、tert-ブチル基、ペンチル基、イソアミル基、2-エチルブチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、3-プロピルヘプチル基、デシル基、3,7-ジメチルオクチル基、2-エチルオクチル基、2-ヘキシルデシル基、ドデシル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基、3-フェニルプロピル基、3-(4-メチルフェニル)プロピル基、3-(3,5-ジ-ヘキシルフェニル)プロピル基、及び6-エチルオキシヘキシル基が挙げられる。
「シクロアルキル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~50であり、好ましくは4~10である。シクロアルキル基は、置換基を有していてもよく、例えば、シクロヘキシル基、シクロヘキシルメチル基、及びシクロヘキシルエチル基が挙げられる。
「アルキレン基」の炭素原子数は、置換基の炭素原子数を含めないで、通常1以上20以下であり、好ましくは1以上15以下であり、より好ましくは1以上10以下である。アルキレン基は、置換基を有していてもよく、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基が挙げられる。
「シクロアルキレン基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3以上20以下である。シクロアルキレン基は、置換基を有していてもよく、例えば、シクロヘキシレン基が挙げられる。
【0013】
「芳香族炭化水素基」は、芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個以上を除いた基を意味する。芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子1個を除いた基を「アリール基」ともいう。芳香族炭化水素から環を構成する炭素原子に直接結合する水素原子2個を除いた基を「アリーレン基」ともいう。
芳香族炭化水素基の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~30であり、より好ましくは6~18である。
「芳香族炭化水素基」は、例えば、単環式の芳香族炭化水素(例えば、ベンゼンが挙げられる。)、又は、多環式の芳香族炭化水素(例えば、ナフタレン及びインデン等の2環式の芳香族炭化水素;アントラセン、フェナントレン、ジヒドロフェナントレン及びフルオレン等の3環式の芳香族炭化水素;トリフェニレン、ナフタセン、ベンゾフルオレン、ピレン、クリセン及びフルオランテン等の4環式の芳香族炭化水素;ジベンゾフルオレン、ペリレン及びベンゾフルオランテン等の5環式の芳香族炭化水素;スピロビフルオレン等の6環式の芳香族炭化水素;ベンゾスピロビフルオレン及びアセナフトフルオランテン等の7環式の芳香族炭化水素;並びに、ジベンゾスピロビフルオレン等の8環式の芳香族炭化水素が挙げられる。)から、環を構成する炭素原子に直接結合する水素原子1個以上を除いてなる基が挙げられ、これらの基は置換基を有していてもよい。芳香族炭化水素基は、これらの基が複数結合した基を含む。
【0014】
「アルコキシ基」は、直鎖及び分岐のいずれでもよい。直鎖のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~40であり、好ましくは1~10である。分岐のアルコキシ基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。アルコキシ基は、置換基を有していてもよく、例えば、メトキシ基、エトキシ基、プロピルオキシ基、イソプロピルオキシ基、ブチルオキシ基、イソブチルオキシ基、tert-ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7-ジメチルオクチルオキシ基、及びラウリルオキシ基が挙げられる。
「シクロアルコキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~40であり、好ましくは4~10である。シクロアルコキシ基は、置換基を有していてもよく、例えば、シクロヘキシルオキシ基が挙げられる。
【0015】
「アリールオキシ基」の炭素原子数は、置換基の炭素原子数を含めないで、通常6~60であり、好ましくは6~48である。アリールオキシ基は、置換基を有していてもよく、例えば、フェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、1-アントラセニルオキシ基、9-アントラセニルオキシ基、及び1-ピレニルオキシ基が挙げられる。
【0016】
「複素環基」とは、複素環式化合物から環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個以上を除いた基を意味する。複素環基の中でも、芳香族複素環式化合物から環を構成する炭素原子又はヘテロ原子に直接結合する水素原子1個以上を除いた基である「芳香族複素環基」が好ましい。複素環式化合物から環を構成する炭素原子又はヘテロ原子に直接結合する水素原子p個(pは、1以上の整数を表す。)を除いた基を「p価の複素環基」ともいう。芳香族複素環式化合物から環を構成する炭素原子又はヘテロ原子に直接結合する水素原子p個を除いた基を「p価の芳香族複素環基」ともいう。
「芳香族複素環式化合物」としては、例えば、オキサジアゾール、チアジアゾール、チアゾール、オキサゾール、チオフェン、ピロール、ホスホール、フラン、ピリジン、ピラジン、ピリミジン、トリアジン、ピリダジン、キノリン、イソキノリン、カルバゾール、ジベンゾホスホール等の複素環自体が芳香族性を示す化合物、及び、フェノキサジン、フェノチアジン、ジベンゾボロール、ジベンゾシロール、ベンゾピラン等の複素環自体は芳香族性を示さなくとも、複素環に芳香環が縮環されている化合物が挙げられる。
複素環基の炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは2~40であり、より好ましくは3~20である。芳香族複素環基のヘテロ原子数は、置換基の炭素原子数を含めないで、通常1~30であり、好ましくは、1~10であり、より好ましくは、1~5であり、更に好ましくは1~3である。
複素環基は、置換基を有していてもよく、例えば、単環式の複素環式化合物(例えば、フラン、チオフェン、ピロール、ジアゾール、トリアゾール、ピリジン、ジアザベンゼン及びトリアジンが挙げられる。)、又は、多環式の複素環式化合物(例えば、アザナフタレン、ジアザナフタレン、ベンゾフラン、インドール、ベンゾジアゾール及びベンゾチアジアゾール等の2環式の複素環式化合物;ジベンゾフラン、ジベンゾチオフェン、ジベンゾボロール、ジベンゾシロール、ジベンゾホスホール、ジベンゾセレノフェン、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、フェナザボリン、フェノホスファジン、フェノセレナジン、フェナザシリン、アザアントラセン、ジアザアントラセン、アザフェナントレン及びジアザフェナントレン等の3環式の複素環式化合物;ヘキサアザトリフェニレン、ベンゾインドール及びベンゾナフトフラン等の4環式の複素環式化合物;ジベンゾカルバゾール、インドロカルバゾール及びインデノカルバゾール等の5環式の複素環式化合物;カルバゾロカルバゾール、ベンゾインドロカルバゾール及びベンゾインデノカルバゾール等の6環式の複素環式化合物;並びに、ジベンゾインドロカルバゾール等の7環式の複素環式化合物が挙げられる。)から、環を構成する原子に直接結合する水素原子1個以上を除いてなる基が挙げられ、これらの基は置換基を有していてもよい。複素環基は、これらの基が複数結合した基を含む。
【0017】
「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
【0018】
「アミノ基」は、置換基を有していてもよく、置換アミノ基が好ましい。アミノ基が有する置換基としては、アルキル基、シクロアルキル基、アリール基又は1価の複素環基が好ましい。
置換アミノ基としては、例えば、ジアルキルアミノ基、ジシクロアルキルアミノ基及びジアリールアミノ基が挙げられる。
アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、ビス(4-メチルフェニル)アミノ基、ビス(4-tert-ブチルフェニル)アミノ基、ビス(3,5-ジ-tert-ブチルフェニル)アミノ基が挙げられる。
【0019】
「アルケニル基」は、直鎖及び分岐のいずれでもよい。直鎖のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常2~30であり、好ましくは3~20である。分岐のアルケニル基の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
「シクロアルケニル基」の炭素原子数は、置換基の炭素原子数を含めないで、通常3~30であり、好ましくは4~20である。
アルケニル基及びシクロアルケニル基は、置換基を有していてもよく、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-ブテニル基、3-ブテニル基、3-ペンテニル基、4-ペンテニル基、1-ヘキセニル基、5-ヘキセニル基、7-オクテニル基、及び、これらの基が置換基を有する基が挙げられる。
【0020】
「アルキニル基」は、直鎖及び分岐のいずれでもよい。アルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常2~20であり、好ましくは3~20である。分岐のアルキニル基の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
「シクロアルキニル基」の炭素原子数は、置換基の炭素原子を含めないで、通常4~30であり、好ましくは4~20である。
アルキニル基及びシクロアルキニル基は、置換基を有していてもよく、例えば、エチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1-ヘキシニル基、5-ヘキシニル基、及び、これらの基が置換基を有する基が挙げられる。
【0021】
「架橋基」とは、加熱、紫外線照射、近紫外線照射、可視光照射、赤外線照射、ラジカル反応等に供することにより、新たな結合を生成することが可能な基であり、好ましくは、式(B-1)~式(B-17)のいずれかで表される基である。これらの基は、置換基を有していてもよい。
【0022】
【化2】
【0023】
「置換基」とは、ハロゲン原子、シアノ基、アルキル基、シクロアルキル基、アリール基、1価の複素環基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アミノ基、置換アミノ基、アルケニル基、シクロアルケニル基、アルキニル基又はシクロアルキニル基を表す。置換基は架橋基であってもよい。なお、置換基が複数存在する場合、それらは互いに結合して、それぞれが結合する原子とともに環を形成していてもよいが、環を形成しないことが好ましい。
【0024】
<発光素子用組成物>
本実施形態の発光素子用組成物は、ホスト材料とゲスト材料とを含有する。
本実施形態の発光素子用組成物において、ホスト材料及びゲスト材料は、それぞれ、1種のみを含有していてもよく、2種以上を含有していてもよい。
【0025】
本実施形態の発光素子用組成物において、ゲスト材料の含有量は、ホスト材料とゲスト材料との合計を100質量部とした場合、通常、0.01~99質量部であり、本実施形態の発光素子の輝度寿命がより優れるので、0.05~50質量部であることが好ましく、0.1~30質量部であることがより好ましく、0.5~5質量部であることが更に好ましく、0.8~2質量部であることが特に好ましい。
【0026】
本実施形態の発光素子用組成物において、ホスト材料の室温(25℃)における発光スペクトルの最大ピークのエネルギー値と、ゲスト材料の室温(25℃)における吸収スペクトルの最も低エネルギー側のピークのエネルギー値との差ΔEは、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは0.20eV以下であり、より好ましくは0.15eV以下である。また、ΔEは、0.13eV以下であってもよく、0.10eV以下であってもよく、0.08eV以下であってもよい。また、ΔEは、0eV以上であってもよく、0.001eV以上であってもよく、0.01eV以上であってもよく、0.03eV以上であってもよく、0.05eV以上であってもよい。なお、本明細書中、差ΔEは、差の絶対値を示す。
【0027】
本実施形態の発光素子用組成物において、ホスト材料の室温(25℃)における発光スペクトルの最大ピークのエネルギー値をEHとし、ゲスト材料の室温(25℃)における吸収スペクトルの最も低エネルギー側のピークのエネルギー値をEGとした場合、EH-EGの値(以下、「EH-EG」ともいう。)は、通常、-0.50eV以上であり、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは-0.10eV以上であり、より好ましくは-0.07eV以上であり、更に好ましくは-0.05eV以上である。また、EH-EGは、通常、0.50eV以下であり、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは0.20eV以下であり、より好ましくは0.15eV以下であり、更に好ましくは0.13eV以下であり、特に好ましくは0.10eV以下であり、とりわけ好ましくは0.08eV以下である。
【0028】
本実施形態の発光素子用組成物において、ゲスト材料の室温(25℃)における発光スペクトルの最大ピークのエネルギー値と、ゲスト材料の77Kにおける発光スペクトルの最大ピークのエネルギー値との差ΔSは、通常、0.10eV以下であり、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは0.050eV以下である。また、ΔSは、0.040eV以下であってもよい。また、ΔSは、0.005eV以上であってもよく、0.010eV以上であってもよく、0.020eV以上であってもよい。なお、本明細書中、差ΔSは、差の絶対値を示す。
【0029】
本実施形態の発光素子用組成物において、ゲスト材料の室温(25℃)における発光スペクトルの最大ピーク波長は、好ましくは380nm以上495nmであり、より好ましくは400m以上485nmであり、更に好ましくは420nm以上475nmである。
【0030】
本実施形態の発光素子用組成物において、ゲスト材料の室温(25℃)における吸収スペクトルの最も低エネルギー側のピーク波長は、好ましくは、360nm以上490nmであり、より好ましくは380m以上480nmであり、より好ましくは400m以上470nmである。
【0031】
本実施形態の発光素子用組成物において、ゲスト材料の室温(25℃)における吸収スペクトルの最も低エネルギー側のピークの半値幅のエネルギー値は、好ましくは、0.50eV以下であり、より好ましくは0.30eV以下であり、更に好ましくは0.20eV以下である。ゲスト材料の室温(25℃)における吸収スペクトルの最も低エネルギー側のピークの半値幅のエネルギー値は、0.001eV以上であってもよく、0.01eV以上であってもよく、0.10eV以上であってもよい。
【0032】
ここで、ΔS及びΔEと、発光素子の発光特性(特に輝度寿命)との関係について、以下のように推測される。
本発明者らは、ΔSを0.10eV以下とすることで、ゲスト材料の吸収スペクトルの半値幅が小さくなることを見出した。これにより、発光スペクトルの半値幅が小さいゲスト材料を得ることができる。しかし、ゲスト材料の吸収スペクトルの半値幅が小さくなると、ホスト材料の発光スペクトルとゲスト材料の吸収スペクトルとの重なりが小さくなる。そのため、本発明者らは、ホスト材料の発光スペクトルとゲスト材料の吸収スペクトルとの重なりを大きくする必要があると考え、ΔEに着目した。より詳細には、ΔEを0.50eV以下とすることで、ホスト材料の発光スペクトルとゲスト材料の吸収スペクトルとの重なりが大きくなり、ホスト材料の励起エネルギーがゲスト材料へ速やかに移動するため、ホスト材料の劣化を抑制することができ、その結果、発光素子の発光特性(特に輝度寿命)が優れると推測される。
【0033】
化合物の発光スペクトルの最大ピークのエネルギー値、及び、吸収スペクトルの最も低エネルギー側のピークのエネルギー値は、化合物の発光スペクトルの最大ピーク波長、及び、吸収スペクトルの最も低いエネルギー側のピーク波長を測定した後、得られたピーク波長をエネルギー値に換算することで求めることができる。
化合物の室温における発光スペクトルの最大ピーク波長は、化合物を、キシレン、トルエン、クロロホルム、テトラヒドロフラン、2-メチルテトラヒドロフラン等の有機溶媒に溶解させ、希薄溶液を調製し(1×10-6質量%~1×10-3質量%)、該希薄溶液のPLスペクトルを室温で測定することで評価することができる。化合物を溶解させる有機溶媒としては、キシレン又は2-メチルテトラヒドロフランが好ましい。
化合物の77Kにおける発光スペクトルの最大ピーク波長は、化合物を、キシレン、トルエン、クロロホルム、テトラヒドロフラン、2-メチルテトラヒドロフラン等の有機溶媒に溶解させ、希薄溶液を調製し(1×10-6質量%~1×10-3質量%)、該希薄溶液のPLスペクトルを77Kで測定することで評価することができる。化合物を溶解させる有機溶媒としては、2-メチルテトラヒドロフランが好ましい。
化合物の室温における吸収スペクトルの最も低エネルギー側のピーク波長は、化合物を、キシレン、トルエン、クロロホルム、テトラヒドロフラン、2-メチルテトラヒドロフラン等の有機溶媒に溶解させ、希薄溶液を調製し(1×10-6質量%~1×10-3質量%)、該希薄溶液の紫外可視吸収スペクトルを室温で測定することで評価することができる。化合物を溶解させる有機溶媒としては、キシレンが好ましい。
【0034】
[ホスト材料]
ホスト材料は、電気エネルギーをゲスト材料へ渡す役割を担う材料を意味する。発光材料を一例として説明すれば、ホスト材料からゲスト材料へ効率的に電気エネルギーを渡すことで、ゲスト材料をより効率的に発光させることができる。
ホスト材料は高分子化合物(以下、「高分子ホスト材料」ともいう。)であっても、低分子化合物(以下、「低分子ホスト材料」ともいう。)であってもよく、低分子ホスト材料が好ましい。
低分子ホスト材料の分子量は、通常、1×10~1×10であり、好ましくは、2×10~5×10であり、より好ましくは3×10~3×10であり、更に好ましくは4×10~1.5×10である。低分子ホスト材料は、分子量分布を有さない化合物であることが好ましい。
低分子ホスト材料に含まれる芳香族炭化水素基及び芳香族複素環基の合計の個数は、通常、1~30個であり、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは1~20個であり、より好ましくは1~15個であり、更に好ましくは1~10個である。
【0035】
低分子ホスト材料は、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、式(H-1)で表される化合物である。
【0036】
【化3】

[式中、
ArH1及びArH2は、それぞれ独立に、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。
H1及びnH2は、それぞれ独立に、0又は1を表す。nH1及びnH2が複数存在する場合、各々、それらは同一でも異なっていてもよい。
H3は、0以上の整数を表す。
H1は、アリーレン基、2価の複素環基、アルキレン基又はシクロアルキレン基を表し、これらの基は置換基を有していてもよい。LH1が複数存在する場合、それらは同一でも異なっていてもよい。
H2は、-N(RH21)-で表される基を表す。LH2が複数存在する場合、それらは同一でも異なっていてもよい。
H21は、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。]
【0037】
ArH1及びArH2において、アリール基及び1価の複素環基としては、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン、トリフェニレン、フルオレン、ベンゾフルオレン、スピロビフルオレン、ベンゾスピロビフルオレン、ピレン、クリセン、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、アザカルバゾール、ジアザカルバゾール、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、アザアントラセン、ジアザアントラセン、アザフェナントレン、ジアザフェナントレン、インドロカルバゾール又はインデノカルバゾールから、環を構成する原子に直接結合する水素原子1個を除いた基が挙げられ、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、フルオレン、スピロビフルオレン、ピレン、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、アザカルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン、フェノチアジン、インドロカルバゾール又はインデノカルバゾールから、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ベンゼン、ナフタレン、アントラセン、フルオレン、スピロビフルオレン、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、ジベンゾフラン又はジベンゾチオフェンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ベンゼン又はカルバゾールから、環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
【0038】
ArH1及びArH2が有していてもよい置換基としては、好ましくは、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよい。
ArH1及びArH2が有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
ArH1及びArH2が有していてもよい置換基における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、ArH1及びArH2におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
ArH1及びArH2が有していてもよい置換基が更に有していてもよい置換基としては、好ましくは、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基であり、より好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、更に好ましくは、アルキル基又はシクロアルキル基であり、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
ArH1及びArH2が有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、ArH1及びArH2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
【0039】
H1は、好ましくは1である。nH2は、好ましくは0である。
H3は、通常、0以上10以下の整数であり、好ましくは0以上5以下の整数であり、より好ましくは1以上3以下の整数であり、更に好ましくは2である。
【0040】
H1は、本実施形態の発光素子の輝度寿命がより優れるので、アリーレン基又は2価の複素環基であることが好ましい。
【0041】
H1としては、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン、ジヒドロフェナントレン、トリフェニレン、フルオレン、ベンゾフルオレン、スピロビフルオレン、ベンゾスピロビフルオレン、ピレン、クリセン、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、アザカルバゾール、ジアザカルバゾール、アザナフタレン、ジアザナフタレン、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン、フェノチアジン、9,10-ジヒドロアクリジン、5,10-ジヒドロフェナジン、アザアントラセン、ジアザアントラセン、アザフェナントレン、ジアザフェナントレン、インドロカルバゾール又はインデノカルバゾールから、環を構成する原子に直接結合する水素原子2個を除いた基が挙げられ、好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、フルオレン、スピロビフルオレン、ピレン、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、アザカルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン、フェノチアジン、インドロカルバゾール又はインデノカルバゾールから、環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、ベンゼン、ナフタレン、アントラセン、フルオレン、スピロビフルオレン、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、ジベンゾフラン又はジベンゾチオフェンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、カルバゾール、ジベンゾフラン又はジベンゾチオフェンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
【0042】
H1が有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基が好ましく、アルキル基、アルコキシ基、アリール基又は1価の複素環基がより好ましく、アルキル基、アリール基又は1価の複素環基が更に好ましく、これらの基は更に置換基を有していてもよい。
H1が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、ArH1及びArH2が有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
H1が有していてもよい置換基が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲は、ArH1及びArH2が有していてもよい置換基が更に有していてもよい置換基の例及び好ましい範囲と同じである。
【0043】
H21は、アリール基又は1価の複素環基であることが好ましく、これらの基は置換基を有していてもよい。
H21で表されるアリール基及び1価の複素環基の定義及び例は、ArH1及びArH2で表されるアリール基及び1価の複素環基の定義及び例と同様である。
H21が有していてもよい置換基の定義及び例は、ArH1及びArH2が有していてもよい置換基の定義及び例と同様である。
【0044】
式(H-1)で表される化合物は、式(H-2)で表される化合物であることが好ましい。
【0045】
【化4】

[式中、ArH1、ArH2、nH3及びLH1は、前記と同じ意味を表す。]
【0046】
低分子ホスト材料としては、下記式で表される化合物並びに後述の化合物H2、化合物H3及び化合物H4が例示される。
【0047】
【化5】
【0048】
【化6】
【0049】
【化7】

[式中、Zは、酸素原子又は硫黄原子を表す。]
【0050】
高分子ホスト材料としては、例えば、後述の正孔輸送材料である高分子化合物、及び、後述の電子輸送材料である高分子化合物が挙げられる。
【0051】
高分子ホスト材料のポリスチレン換算の数平均分子量は、好ましくは5×10~1×10であり、より好ましくは1×10~5×10であり、更に好ましくは5×10~2×10である。高分子ホスト材料のポリスチレン換算の重量平均分子量は、好ましくは1×10~2×10であり、より好ましくは2×10~1×10であり、更に好ましくは1×10~5×10である。
高分子ホスト材料は、ブロック共重合体、ランダム共重合体、交互共重合体、グラフト共重合体のいずれであってもよいし、その他の態様であってもよいが、複数種の原料モノマーを共重合した共重合体であることが好ましい。
【0052】
高分子ホスト材料は、置換基を有していてもよいアリーレン基又は置換基を有していてもよい2価の複素環基を含む高分子化合物であることが好ましく、置換基を有していてもよいアリーレン基を含む高分子化合物であることがより好ましい。
【0053】
高分子ホスト材料が含んでいてもよいアリーレン基及び2価の複素環基は、好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、フルオレン、スピロビフルオレン、ピレン、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、アザカルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン、フェノチアジン、インドロカルバゾール又はインデノカルバゾールから、環を構成する原子に直接結合する水素原子2個を除いた基であり、より好ましくは、ベンゼン、ナフタレン、アントラセン、フルオレン、スピロビフルオレン、ピリジン、ジアザベンゼン、トリアジン、カルバゾール、ジベンゾフラン又はジベンゾチオフェンから、環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ベンゼン、ナフタレン、アントラセン、フルオレン又はスピロビフルオレンから、環を構成する原子に直接結合する水素原子2個を除いた基であり、これらの基は置換基を有していてもよい。
高分子ホスト材料において、アリーレン基及び2価の複素環基が有していてもよい置換基の例及び好ましい範囲は、LH1が有していてもよい置換基の例及び好ましい範囲と同じである。
【0054】
高分子ホスト材料としては、下記式で表される構成単位を含む高分子化合物が挙げられる。
【0055】
【化8】
【0056】
【化9】
【0057】
【化10】
【0058】
[ゲスト材料]
ゲスト材料は、環内に、ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子、及び、窒素原子からなる群より選ばれる少なくとも1種とを含む、縮合環の複素環基(以下、「複素環基G」ともいう。)を有する化合物である。ここで、複素環基Gが含み得る窒素原子は、二重結合を有さない窒素原子であることが好ましい。
複素環基Gの炭素原子数は、置換基の炭素原子数を含めないで、通常1~60であり、好ましくは5~40であり、より好ましくは10~25である。複素環基Gのヘテロ原子数は、置換基の炭素原子数を含めないで、通常1~30であり、好ましくは1~10であり、より好ましくは1~5であり、更に好ましくは1~3である。複素環基Gのホウ素原子数は、置換基の炭素原子数を含めないで、通常1~10であり、好ましくは、1~5であり、より好ましくは1~3であり、更に好ましくは1である。複素環基Gの酸素原子、硫黄原子、セレン原子、sp炭素原子、及び、窒素原子の合計個数は、置換基の炭素原子数を含めないで、通常1~10であり、好ましくは1~5であり、より好ましくは1~3であり、更に好ましくは2である。
複素環基Gは、本実施形態の発光素子の輝度寿命がより優れるので、環内に、ホウ素原子と、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1種とを含む、縮合環の複素環基であることが好ましく、環内に、ホウ素原子と窒素原子とを含む、縮合環の複素環基であることがより好ましい。
複素環基Gにおいて、本実施形態の発光素子の輝度寿命がより優れるので、好ましくは、環内に、ホウ素原子と、酸素原子、硫黄原子、セレン原子、sp炭素原子、及び、窒素原子からなる群より選ばれる少なくとも1種とを含む、多環式の複素環式化合物から、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、該基は置換基を有していてもよい。多環式の複素環式化合物は、好ましくは3~12環式であり、より好ましくは3~6環式であり、更に好ましくは5環式である。
【0059】
複素環基Gが有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基、アリール基又は置換アミノ基が更に好ましく、これらの基は更に置換基を有していてもよい。
複素環基Gが有していてもよい置換基における、アリール基としては、好ましくは、単環式又は多環式(特には、2環式~6環式)の芳香族炭化水素から、環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ベンゼン、ナフタレン、アントラセン、フェナントレン、フルオレン、スピロビフルオレン又はピレンから環を構成する炭素原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、フェニル基であり、これらの基は置換基を有していてもよい。
複素環基Gが有していてもよい置換基における、1価の複素環基としては、好ましくは、単環式、多環式(特には、2環式又は3環式)の複素環式化合物から、環を構成する原子に直接結合する水素原子1個を除いた基であり、より好ましくは、ピリジン、ジアザベンゼン、トリアジン、アザナフタレン、ジアザナフタレン、カルバゾール、アザカルバゾール、ジベンゾフラン、ジベンゾチオフェン、フェノキサジン又はフェノチアジンから環を構成する原子に直接結合する水素原子1個を除いた基であり、更に好ましくは、ピリジン、ジアザベンゼン又はトリアジンから環を構成する原子に直接結合する水素原子1個を除いた基であり、これらの基は置換基を有していてもよい。
複素環基Gが有していてもよい置換基における置換アミノ基において、アミノ基が有する置換基としては、アリール基又は1価の複素環基が好ましく、アリール基がより好ましく、これらの基は更に置換基を有していてもよい。アミノ基が有する置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、複素環基Gが有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
【0060】
複素環基Gが有していてもよい置換基が更に有していてもよい置換基としては、ハロゲン原子、アルキル基、シクロアルキル基、アルコキシ基、シクロアルコキシ基、アリール基、1価の複素環基又は置換アミノ基が好ましく、アルキル基、シクロアルキル基、アリール基、1価の複素環基又は置換アミノ基がより好ましく、アルキル基又はシクロアルキル基が更に好ましく、これらの基は更に置換基を有していてもよいが、更に置換基を有さないことが好ましい。
複素環基Gが有していてもよい置換基が更に有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲は、それぞれ、複素環基Gが有していてもよい置換基におけるアリール基、1価の複素環基及び置換アミノ基の例及び好ましい範囲と同じである。
【0061】
「二重結合を有さない窒素原子」とは、窒素原子と、その窒素原子と結合するすべての原子との間に、単結合のみを有する窒素原子を意味する。
「環内に二重結合を有さない窒素原子を含む」とは、環内に-N(-R)-(式中、Rは水素原子又は置換基を表す。)又は式:
【0062】
【化11】

で表される基を含むことを意味する。
【0063】
ゲスト材料の分子量は、通常、1×10~1×10であり、好ましくは2×10~5×10であり、より好ましくは3×10~3×10であり、更に好ましくは4×10~1.5×10である。
ゲスト材料は、分子量分布を有さない化合物であることが好ましい。
【0064】
ゲスト材料は、本実施形態の発光素子の輝度寿命がより優れるので、式(1-1)~式(1-3)で表される化合物であることが好ましく、式(1-2)又は式(1-3)で表される化合物であることがより好ましく、式(1-2)で表される化合物であることが更に好ましい。
【0065】
【化12】

[式中、
Ar、Ar及びArは、それぞれ独立に、芳香族炭化水素基又は複素環基を表し、これらの基は置換基を有していてもよい。
は、酸素原子、硫黄原子、セレン原子、-N(Ry)-で表される基、アルキレン基又はシクロアルキレン基を表し、これらの基は置換基を有していてもよい。
及びYは、それぞれ独立に、単結合、酸素原子、硫黄原子、セレン原子、-N(Ry)-で表される基、アルキレン基又はシクロアルキレン基を表し、これらの基は置換基を有していてもよい。Ryは、水素原子、アルキル基、シクロアルキル基、アリール基又は1価の複素環基を表し、これらの基は置換基を有していてもよい。Ryが複数存在する場合、同一であっても異なっていてもよい。Ryは、直接結合して又は連結基を介して、Ar、Ar又はArと結合していてもよい。]
【0066】
Ar、Ar及びArは、本実施形態の発光素子の輝度寿命がより優れるので、単環式、2環式若しくは3環式の芳香族炭化水素又は単環式、2環式若しくは3環式の芳香族複素環式化合物から、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、より好ましくは、単環式の芳香族炭化水素又は単環式の芳香族複素環式化合物から、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、更に好ましくは、ベンゼン、ピリジン又はジアザベンゼンから、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、特に好ましくは、ベンゼンから、環を構成する原子に直接結合する水素原子1個以上を除いた基であり、これらの基は置換基を有していてもよい。
Ar、Ar及びArが有していてもよい置換基の例及び好ましい範囲は、複素環基Gが有していてもよい置換基の例及び好ましい範囲と同じである。
【0067】
は、好ましくは、酸素原子、硫黄原子、-N(Ry)-で表される基又はメチレン基であり、より好ましくは、酸素原子、硫黄原子又は-N(Ry)-で表される基であり、更に好ましくは、-N(Ry)-で表される基であり、これらの基は置換基を有していてもよい。
及びYは、好ましくは、単結合、酸素原子、硫黄原子、-N(Ry)-で表される基又はメチレン基であり、より好ましくは、単結合、酸素原子、硫黄原子又は-N(Ry)-で表される基であり、更に好ましくは、酸素原子、硫黄原子又は-N(Ry)-で表される基であり、特に好ましくは、-N(Ry)-で表される基であり、これらの基は置換基を有していてもよい。
、Y及びYが有していてもよい置換基の例及び好ましい範囲は、複素環基Gが有していてもよい置換基の例及び好ましい範囲と同じである。
【0068】
Ryは、好ましくは、アルキル基、シクロアルキル基、アリール基又は1価の複素環基であり、より好ましくはアリール基又は1価の複素環基であり、更に好ましくはアリール基であり、これらの基は置換基を有していてもよい。
Ryにおけるアリール基及び1価の複素環基の例及び好ましい範囲は、それぞれ、複素環基Gが有していてもよい置換基におけるアリール基及び1価の複素環基の例及び好ましい範囲と同じである。
Ryが有していてもよい置換基の例及び好ましい範囲は、複素環基Gが有していてもよい置換基の例及び好ましい範囲と同じである。
【0069】
Ryは、直接結合して又は連結基を介して、Ar、Ar又はArと結合していてもよいが、結合していないことが好ましい。連結基としては、例えば、-O-で表される基、-S-で表される基、-N(Ry)-で表される基、アルキレン基、シクロアルキレン基、アリーレン基及び2価の複素環基が挙げられ、好ましくは、-O-で表される基、-S-で表される基、-N(Ry)-で表される基又はメチレン基であり、これらの基は置換基を有していてもよい。
【0070】
ゲスト材料としては、下記式で表される化合物及び後述の化合物G1~G7が例示される。
【0071】
【化13】
【0072】
【化14】

[式中、Zは、前記と同じ意味を表す。]
【0073】
[その他の成分]
本実施形態の発光素子用組成物は、ホスト材料と、ゲスト材料と、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料、発光材料、酸化防止剤及び溶媒からなる群より選ばれる少なくとも1種の材料とを含有する組成物である。但し、正孔輸送材料、正孔注入材料、電子輸送材料及び電子注入材料は、ホスト材料とは異なり、発光材料は、ゲスト材料とは異なる。
【0074】
[インク]
ホスト材料と、ゲスト材料と、溶媒とを含有する組成物(以下、「インク」と言う。)は、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイヤーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法、キャピラリ-コート法、ノズルコート法等の湿式法を用いた発光素子の作製に好適である。インクの粘度は、印刷法の種類によって調整すればよいが、好ましくは25℃において1~20mPa・sである。
インクに含まれる溶媒は、好ましくは、インク中の固形分を溶解又は均一に分散できる溶媒である。溶媒としては、例えば、塩素系溶媒、エーテル系溶媒、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、ケトン系溶媒、エステル系溶媒、多価アルコール系溶媒、アルコール系溶媒、スルホキシド系溶媒、アミド系溶媒が挙げられる。
インクにおいて、溶媒の配合量は、ホスト材料とゲスト材料との合計を100質量部とした場合、通常、1000~100000質量部である。
溶媒は、一種単独で用いても二種以上を併用してもよい。
【0075】
・正孔輸送材料
正孔輸送材料は、低分子化合物と高分子化合物とに分類され、好ましくは架橋基を有する高分子化合物である。
高分子化合物としては、例えば、ポリビニルカルバゾール及びその誘導体;側鎖又は主鎖に芳香族アミン構造を有するポリアリーレン及びその誘導体が挙げられる。高分子化合物は、フラーレン、テトラフルオロテトラシアノキノジメタン、テトラシアノエチレン及びトリニトロフルオレノン等の電子受容性部位が結合された化合物でもよい。
本実施形態の発光素子用組成物において、正孔輸送材料が含まれる場合、正孔輸送材料の配合量は、ホスト材料とゲスト材料との合計を100質量部とした場合、通常、1~400質量部である。
正孔輸送材料は、一種単独で用いても二種以上を併用してもよい。
【0076】
・電子輸送材料
電子輸送材料は、低分子化合物と高分子化合物とに分類される。電子輸送材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、8-ヒドロキシキノリンを配位子とする金属錯体、オキサジアゾール、アントラキノジメタン、ベンゾキノン、ナフトキノン、アントラキノン、テトラシアノアントラキノジメタン、フルオレノン、ジフェニルジシアノエチレン及びジフェノキノン、並びに、これらの誘導体が挙げられる。
高分子化合物としては、例えば、ポリフェニレン、ポリフルオレン、及び、これらの誘導体が挙げられる。高分子化合物は、金属でドープされていてもよい。
本実施形態の発光素子用組成物において、電子輸送材料が含まれる場合、電子輸送材料の配合量は、ホスト材料とゲスト材料との合計を100質量部とした場合、通常、1~400質量部である。
電子輸送材料は、一種単独で用いても二種以上を併用してもよい。
【0077】
・正孔注入材料及び電子注入材料
正孔注入材料及び電子注入材料は、各々、低分子化合物と高分子化合物とに分類される。正孔注入材料及び電子注入材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、銅フタロシアニン等の金属フタロシアニン;カーボン;モリブデン、タングステン等の金属酸化物;フッ化リチウム、フッ化ナトリウム、フッ化セシウム、フッ化カリウム等の金属フッ化物が挙げられる。
高分子化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、ポリキノリン及びポリキノキサリン、並びに、これらの誘導体;芳香族アミン構造を主鎖又は側鎖に含む重合体等の導電性高分子が挙げられる。
本実施形態の発光素子用組成物において、正孔注入材料及び/又は電子注入材料が含まれる場合、正孔注入材料及び電子注入材料の配合量は、各々、ホスト材料とゲスト材料との合計を100質量部とした場合、通常、1~400質量部である。
正孔注入材料及び電子注入材料は、各々、一種単独で用いても二種以上を併用してもよい。
【0078】
・イオンドープ
正孔注入材料又は電子注入材料が導電性高分子を含む場合、導電性高分子の電気伝導度は、好ましくは1×10-5S/cm~1×10S/cmである。導電性高分子の電気伝導度をかかる範囲とするために、導電性高分子に適量のイオンをドープすることができる。ドープするイオンの種類は、正孔注入材料であればアニオン、電子注入材料であればカチオンである。アニオンとしては、例えば、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンが挙げられる。カチオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンが挙げられる。
ドープするイオンは、一種単独で用いても二種以上を併用してもよい。
【0079】
・発光材料
発光材料は、低分子化合物と高分子化合物とに分類される。発光材料は、架橋基を有していてもよい。
低分子化合物としては、例えば、ナフタレン及びその誘導体、アントラセン及びその誘導体、ペリレン及びその誘導体、並びに、イリジウム、白金又はユーロピウムを中心金属とする三重項発光錯体が挙げられる。
高分子化合物としては、例えば、フェニレン基、ナフタレンジイル基、フルオレンジイル基、フェナントレンジイル基、ジヒドロフェナントレンジイル基、アントラセンジイル基及びピレンジイル基等のアリーレン基;芳香族アミンから2個の水素原子を取り除いてなる基等の芳香族アミン残基;並びに、カルバゾールジイル基、フェノキサジンジイル基及びフェノチアジンジイル基等の2価の複素環基を含む高分子化合物が挙げられる。
【0080】
本実施形態の発光素子用組成物において、発光材料が含まれる場合、発光材料の含有量は、ホスト材料とゲスト材料との合計を100質量部とした場合、通常、0.1~400質量部である。
発光材料は、一種単独で用いても二種以上を併用してもよい。
【0081】
・酸化防止剤
酸化防止剤は、ホスト材料及びゲスト材料と同じ溶媒に可溶であり、発光及び電荷輸送を阻害しない化合物であればよく、例えば、フェノール系酸化防止剤、リン系酸化防止剤が挙げられる。
本実施形態の発光素子用組成物において、酸化防止剤が含まれる場合、酸化防止剤の配合量は、ホスト材料とゲスト材料との合計を100質量部とした場合、通常、0.001~10質量部である。
酸化防止剤は、一種単独で用いても二種以上を併用してもよい。
【0082】
<膜>
膜は、本実施形態の発光素子用組成物を含有するものであって、発光素子における発光層として好適である。膜は、例えば、インクを用いて、湿式法により作製することができ、その厚さは、通常、1nm~10μmである。
【0083】
<発光素子>
本実施形態の発光素子は、上述の発光素子用組成物を含有する。
本実施形態の発光素子の構成としては、例えば、陽極及び陰極からなる電極と、該電極間に設けられた本実施形態の発光素子用組成物を含有する層とを有する。
【0084】
[層構成]
本実施形態の発光素子用組成物を含有する層は、通常、発光層、正孔輸送層、正孔注入層、電子輸送層及び電子注入層からなる群から選ばれる1種以上の層であり、好ましくは、発光層である。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を含む。これらの層は、各々、発光材料、正孔輸送材料、正孔注入材料、電子輸送材料、電子注入材料を、上述した溶媒に溶解させ、インクを調製して用い、上述した膜の作製と同じ方法を用いて形成することができる。
【0085】
発光素子は、陽極と陰極の間に発光層を有する。本実施形態の発光素子は、正孔注入性及び正孔輸送性の観点からは、陽極と発光層との間に、正孔注入層及び正孔輸送層の少なくとも1層を有することが好ましく、電子注入性及び電子輸送性の観点からは、陰極と発光層の間に、電子注入層及び電子輸送層の少なくとも1層を有することが好ましい。
【0086】
正孔輸送層、電子輸送層、発光層、正孔注入層及び電子注入層の材料としては、本実施形態の発光素子用組成物の他、各々、上述した正孔輸送材料、電子輸送材料、発光材料、正孔注入材料及び電子注入材料等が挙げられる。
【0087】
正孔輸送層の材料、電子輸送層の材料及び発光層の材料は、発光素子の作製において、各々、正孔輸送層、電子輸送層及び発光層に隣接する層の形成時に使用される溶媒に溶解する場合、該溶媒に該材料が溶解することを回避するために、該材料が架橋基を有することが好ましい。架橋基を有する材料を用いて各層を形成した後、該架橋基を架橋させることにより、該層を不溶化させることができる。
【0088】
本実施形態の発光素子において、発光層、正孔輸送層、電子輸送層、正孔注入層、電子注入層等の各層の形成方法としては、低分子化合物を用いる場合、例えば、粉末からの真空蒸着法等の乾式法、溶液又は溶融状態からの成膜による方法等の湿式法が挙げられ、高分子化合物を用いる場合、例えば、溶液又は溶融状態からの成膜による方法等の湿式法が挙げられる。積層する層の順番、数及び厚さは、例えば、発光効率及び輝度寿命を勘案して調整する。
【0089】
[基板/電極]
発光素子における基板は、電極を形成することができ、かつ、有機層を形成する際に化学的に変化しない基板であればよく、例えば、ガラス、プラスチック、シリコン等の材料からなる基板である。不透明な基板の場合には、基板から最も遠くにある電極が透明又は半透明であることが好ましい。
陽極の材料としては、例えば、導電性の金属酸化物、半透明の金属が挙げられ、好ましくは、酸化インジウム、酸化亜鉛、酸化スズ;インジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等の導電性化合物;銀とパラジウムと銅との複合体(APC);NESA、金、白金、銀、銅である。
陰極の材料としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、亜鉛、インジウム等の金属;それらのうち2種以上の合金;それらのうち1種以上と、銀、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1種以上との合金;並びに、グラファイト及びグラファイト層間化合物が挙げられる。合金としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、インジウム-銀合金、リチウム-アルミニウム合金、リチウム-マグネシウム合金、リチウム-インジウム合金、カルシウム-アルミニウム合金が挙げられる。
陽極及び陰極は、各々、2層以上の積層構造としてもよい。
【0090】
[用途]
発光素子を用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。パターン状の発光を得るためには、面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部にしたい層を極端に厚く形成し実質的に非発光とする方法、陽極もしくは陰極、又は、両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にON/OFFできるように配置することにより、数字、文字等を表示できるセグメントタイプの表示装置が得られる。ドットマトリックス表示装置とするためには、陽極と陰極を共にストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子化合物を塗り分ける方法、カラーフィルター又は蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス表示装置は、パッシブ駆動も可能であるし、TFT等と組み合わせてアクティブ駆動も可能である。これらの表示装置は、コンピュータ、テレビ、携帯端末等のディスプレイに用いることができる。面状の発光素子は、液晶表示装置のバックライト用の面状光源、又は、面状の照明用光源として好適に用いることができる。フレキシブルな基板を用いれば、曲面状の光源及び表示装置としても使用できる。
【0091】
以上、本発明の好適な実施形態について説明したが、本発明はこれに限定されるものではない。
【0092】
例えば、本発明の一側面は、発光素子用組成物の製造方法に関する。この製造方法は、ホスト材料を準備する準備工程と、上記差ΔSが0.10eV以下、且つ、上記差ΔEが0.50eV以下となるゲスト材料を選別する選別工程と、ホスト材料とゲスト材料とを混合して発光素子用組成物を得る製造工程と、を備えていてよい。
【0093】
上記製造方法は、ホスト材料の25℃における発光スペクトルの最大ピークのエネルギー値を求める工程を更に備えていてよい。
【0094】
また、上記製造方法において、選別工程は、ゲスト材料となる化合物の、25℃における吸収スペクトルの最も低エネルギー側のピークのエネルギー値、25℃における発光スペクトルの最大ピークのエネルギー値及び77Kにおける発光スペクトルの最大ピークのエネルギー値をそれぞれ求めて、差ΔE及び差ΔSを算出する工程を含んでいてよい。
【0095】
本発明の他の一側面は、発光素子の製造方法に関する。この製造方法は、陽極と、陰極と、陽極及び陰極の間に設けられた層とを有する発光素子の製造方法であって、上記製造方法により発光素子用組成物を製造する工程と、該工程で製造された組成物を用いて、乾式法又は湿式法により前記層を形成する工程とを含む、製造方法であってよい。
【0096】
本発明の他の一側面は、ホスト材料とゲスト材料とを含有する発光素子用組成物の評価方法に関する。この評価方法は、上記差ΔEを求める工程と、上記差ΔSを求める工程と、上記差ΔE及び上記差ΔSに基づいて発光素子用組成物を評価する工程と、を備えていてよい。
【実施例
【0097】
以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0098】
実施例において、化合物H1~H4の室温における発光スペクトルの最大ピーク波長は、分光光度計(日本分光株式会社製、FP-6500)により室温にて測定した。化合物をキシレンに、約8×10-4質量%の濃度で溶解させたキシレン溶液を試料として用いた。励起光としては、波長325nmの紫外(UV)光を用いた。
実施例において、化合物G1~G7の室温における吸収スペクトルの最も低エネルギー側のピーク波長は、紫外可視分光光度計(バリアン社製、Cary 5E)により室温にて測定した。化合物をキシレンに、約8×10-4質量%の濃度で溶解させたキシレン溶液を試料として用いた。
実施例において、化合物G1~G7の室温における発光スペクトルの最大ピーク波長は、マルチチャンネル分光器(浜松ホトニクス社製、PMA-12)により室温にて測定した。化合物を2-メチルテトラヒドロフランに、約8×10-4質量%の濃度で溶解させた2-メチルテトラヒドロフラン溶液を試料として用いた。励起光としては、波長325nmのHe-Cdレーザー(金門光波社製)を用いた。
実施例において、化合物G1~G7の77Kにおける発光スペクトルの最大ピーク波長は、マルチチャンネル分光器(浜松ホトニクス社製、PMA-12)により77Kにて測定した。化合物を2-メチルテトラヒドロフランに、約8×10-4質量%の濃度で溶解させた2-メチルテトラヒドロフラン溶液を試料として用いた。励起光としては、波長325nmのHe-Cdレーザー(金門光波社製)を用いた。
実施例において、高分子化合物のポリスチレン換算の数平均分子量(Mn)及びポリスチレン換算の重量平均分子量(Mw)は、移動相にテトラヒドロフランを用い、サイズエクスクルージョンクロマトグラフィー(SEC)により求めた。
具体的には、測定する高分子化合物を約0.05質量%の濃度でテトラヒドロフランに溶解させ、SECに10μL注入した。移動相は、1.0mL/分の流量で流した。カラムとして、PLgel MIXED-B(ポリマーラボラトリーズ製)を用いた。検出器には、UV-VIS検出器(東ソー製、商品名:UV-8320GPC)を用いた。
【0099】
<化合物H1~H4及びG1~G7の入手及び合成>
実施例で用いた化合物H1~H4及びG1~G7は、以下のとおりである。
化合物H1は、Luminescense Technology社製を用いた。化合物H1の室温における発光スペクトルの最大ピーク波長は373nmであり、そのエネルギー値は3.324eVであった。
化合物H2は、国際公開第2011/098030号に記載の方法に準じて合成した。化合物H2の室温における発光スペクトルの最大ピーク波長は431nmであり、そのエネルギー値は2.877eVであった。
化合物H3は、国際公開第2017/038613号に記載の方法に準じて合成した。化合物H3の室温における発光スペクトルの最大ピーク波長は369nmであり、そのエネルギー値は3.360eVであった。
化合物H4は、国際公開第2008/059713号に記載の方法に準じて合成した。化合物H4の室温における発光スペクトルの最大ピーク波長は441nmであり、そのエネルギー値は2.812eVであった。
化合物G1は、国際公開第2015/102118号に記載の方法に準じて合成した。化合物G1の室温における吸収スペクトルの最も低エネルギー側のピーク波長は441nmであり、そのエネルギー値は2.812eVであった。化合物G1の室温における吸収スペクトルの最も低エネルギー側のピークの半値幅のエネルギー値は0.142eVであった。化合物G1の室温における発光スペクトルの最大ピーク波長は453.2nmであり、そのエネルギー値は2.736eVであった。化合物G1の77Kにおける発光スペクトルの最大ピーク波長は448.7nmであり、そのエネルギー値は2.764eVであった。
化合物G2は、Luminescense Technology社製を用いた。化合物G2の室温における吸収スペクトルの最も低エネルギー側のピーク波長は439nmであり、そのエネルギー値は2.825eVであった。化合物G2の室温における吸収スペクトルの最も低エネルギー側のピークの半値幅のエネルギー値は0.171eVであった。化合物G2の室温における発光スペクトルの最大ピーク波長は451.7nmであり、そのエネルギー値は2.745eVであった。化合物G2の77Kにおける発光スペクトルの最大ピーク波長は450.2nmであり、そのエネルギー値は2.754eVであった。
化合物G3は、国際公開第2015/102118号に記載の方法に準じて合成した。化合物G3の室温における吸収スペクトルの最も低エネルギー側のピーク波長は433nmであり、そのエネルギー値は2.864eVであった。化合物G3の室温における吸収スペクトルの最も低エネルギー側のピークの半値幅のエネルギー値は0.147eVであった。化合物G3の室温における発光スペクトルの最大ピーク波長は444.9nmであり、そのエネルギー値は2.787eVであった。化合物G3の77Kにおける発光スペクトルの最大ピーク波長は438.2nmであり、そのエネルギー値は2.830eVであった。
化合物G4は、国際公開第2015/102118号に記載の方法に準じて合成した。化合物G4の室温における吸収スペクトルの最も低エネルギー側のピーク波長は427nmであり、そのエネルギー値は2.904eVであった。化合物G4の室温における吸収スペクトルの最も低エネルギー側のピークの半値幅のエネルギー値は0.159eVであった。化合物G4の室温における発光スペクトルの最大ピーク波長は438.9nmであり、そのエネルギー値は2.825eVであった。化合物G4の77Kにおける発光スペクトルの最大ピーク波長は438.9nmであり、そのエネルギー値は2.825eVであった。
化合物G5は、国際公開第2015/102118号に記載の方法に準じて合成した。化合物G5の室温における吸収スペクトルの最も低エネルギー側のピーク波長は450nmであり、そのエネルギー値は2.756eVであった。化合物G5の室温における吸収スペクトルの最も低エネルギー側のピークの半値幅のエネルギー値は0.161eVであった。化合物G5の室温における発光スペクトルの最大ピーク波長は463.7nmであり、そのエネルギー値は2.674eVであった。化合物G5の77Kにおける発光スペクトルの最大ピーク波長は458.4nmであり、そのエネルギー値は2.705eVであった。
化合物G6は、国際公開第2015/102118号に記載の方法に準じて合成した。化合物G6の室温における吸収スペクトルの最も低エネルギー側のピーク波長は438nmであり、そのエネルギー値は2.831eVであった。化合物G6の室温における吸収スペクトルの最も低エネルギー側のピークの半値幅のエネルギー値は0.144eVであった。化合物G6の室温における発光スペクトルの最大ピーク波長は452.4nmであり、そのエネルギー値は2.741eVであった。化合物G6の77Kにおける発光スペクトルの最大ピーク波長は446.4nmであり、そのエネルギー値は2.778eVであった。
化合物G7は、国際公開第2015/102118号に記載の方法に準じて合成した。化合物G7の室温における吸収スペクトルの最も低エネルギー側のピーク波長は430nmであり、そのエネルギー値は2.884eVであった。化合物G7の室温における吸収スペクトルの最も低エネルギー側のピークの半値幅のエネルギー値は0.149eVであった。化合物G7の室温における発光スペクトルの最大ピーク波長は442.7nmであり、そのエネルギー値は2.801eVであった。化合物G7の77Kにおける発光スペクトルの最大ピーク波長は441.9nmであり、そのエネルギー値は2.806eVであった。
【0100】
【化15】
【0101】
【化16】
【0102】
【化17】
【0103】
【化18】
【0104】
【化19】
【0105】
<合成例HP1> 高分子化合物HP1の合成
高分子化合物HP1は、化合物M1及び化合物M2を用いて、特開2012-36381号公報に記載の方法に従って合成した。高分子化合物HP1のMnは8.1×10であり、Mwは3.4×10であった。
【0106】
【化20】
【0107】
高分子化合物HP1は、仕込み原料の量から求めた理論値では、化合物M1から誘導される構成単位と、化合物M2から誘導される構成単位とが、50:50のモル比で構成された共重合体である。
高分子化合物HP1の室温における発光スペクトルの最大ピーク波長は429nmであり、そのエネルギー値は2.890eVであった。
【0108】
<合成例HP2> 高分子化合物HP2の合成
高分子化合物HP2は、化合物M3及び化合物M4を用いて、特開2012-144722号公報に記載の方法に従って合成した。高分子化合物HP2のMnは8.7×10であり、Mwは2.4×10であった。
【0109】
【化21】
【0110】
高分子化合物HP2は、仕込み原料の量から求めた理論値では、化合物M3から誘導される構成単位と、化合物M4から誘導される構成単位とが、50:50のモル比で構成された共重合体である。
高分子化合物HP2の室温における発光スペクトルの最大ピーク波長は439nmであり、そのエネルギー値は2.825eVであった。
【0111】
<実施例D1> 発光素子D1の作製と評価
(陽極及び正孔注入層の形成)
ガラス基板にスパッタ法により45nmの厚さでITO膜を付けることにより、陽極を形成した。該陽極上に、正孔注入材料であるND-3202(日産化学工業製)をスピンコート法により35nmの厚さで成膜した。正孔注入層を積層した基板を大気雰囲気下において、ホットプレート上で50℃、3分間加熱し、更に230℃、15分間加熱することにより正孔注入層を形成した。
【0112】
(正孔輸送層の形成)
キシレンに高分子化合物HTL-1を0.7質量%の濃度で溶解させた。得られたキシレン溶液を用いて、正孔注入層の上にスピンコート法により20nmの厚さで成膜し、窒素ガス雰囲気下において、ホットプレート上で180℃、60分間加熱させることにより正孔輸送層を形成した。なお、高分子化合物HTL-1は、国際公報第2014/102543号のポリマー実施例1の高分子化合物である。
【0113】
(発光層の形成)
トルエンに、化合物H1及び化合物G2(化合物H1/化合物G2=99質量%/1質量%)を1.5質量%の濃度で溶解させた。得られたトルエン溶液を用いて、正孔輸送層の上にスピンコート法により60nmの厚さで成膜し、窒素ガス雰囲気下において、130℃、10分間加熱させることにより発光層を形成した。
【0114】
(陰極の形成)
発光層を形成した基板を蒸着機内において、1.0×10-4Pa以下にまで減圧した後、陰極として、発光層の上にフッ化ナトリウムを約4nm、次いで、フッ化ナトリウム層の上にアルミニウムを約80nm蒸着した。蒸着後、陰極を形成した基板をガラス基板で封止することにより、発光素子D1を作製した。
【0115】
(発光素子の評価)
発光素子D1に電圧を印加することによりEL発光が観測された。100mA/cmにおけるCIE色度座標(x,y)を測定した。また、100mA/cmで定電流駆動させ、輝度が初期輝度の50%及び60%となるまでの時間を測定した。
【0116】
<実施例D2~D10、比較例CD1> 発光素子D2~D10及びCD1の作製と評価
実施例D1の(発光層の形成)における「化合物H1及び化合物G2(化合物H1/化合物G2=99質量%/1質量%)」に代えて、表1に記載の材料を用いた以外は、実施例D1と同様にして、発光素子D2~D10及びCD1を作製した。
発光素子D2~D10及びCD1に電圧を印加することによりEL発光が観測された。100mA/cmにおけるCIE色度座標(x,y)を測定した。また、100mA/cmで定電流駆動させ、輝度が初期輝度の50%となるまでの時間を測定した。
【0117】
実施例D1~D10及び比較例CD1の結果を表1に示す。発光素子CD1の輝度が初期輝度の50%となるまでの時間(輝度寿命)を1.0としたときの発光素子D1~D10の輝度が初期輝度の50%となるまでの時間(輝度寿命)の相対値を示す。
【0118】
【表1】
【0119】
<実施例D11~D14> 発光素子D11~D14の作製と評価
実施例D1の(発光層の形成)における「化合物H1及び化合物G2(化合物H1/化合物G2=99質量%/1質量%)」に代えて、表2に記載の材料を用いた以外は、実施例D1と同様にして、発光素子D11~D14を作製した。
発光素子D11~D14に電圧を印加することによりEL発光が観測された。100mA/cmにおけるCIE色度座標(x,y)を測定した。また、100mA/cmで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
【0120】
実施例D11~D14及び比較例CD1の結果を表2に示す。発光素子CD1の輝度が初期輝度の60%となるまでの時間(輝度寿命)を1.0としたときの発光素子D11~D14の輝度が初期輝度の60%となるまでの時間(輝度寿命)の相対値を示す。
【0121】
【表2】
【0122】
<実施例D15~D20、比較例CD2~CD5> 発光素子D15~D20及びCD2~CD5の作製と評価
実施例D1の(発光層の形成)における「化合物H1及び化合物G2(化合物H1/化合物G2=99質量%/1質量%)」に代えて、表3に記載の材料を用いた以外は、実施例D1と同様にして、発光素子D15~D20及びCD2~CD5を作製した。
発光素子D15~D20及びCD2~CD5に電圧を印加することによりEL発光が観測された。100mA/cmにおけるCIE色度座標(x,y)を測定した。また、100mA/cmで定電流駆動させ、輝度が初期輝度の70%となるまでの時間を測定した。
【0123】
実施例D15~D20及び比較例CD2~CD5の結果を表3に示す。発光素子CD2の輝度が初期輝度の70%となるまでの時間(輝度寿命)を1.0としたときの発光素子D15~D20及びCD3~CD5の輝度が初期輝度の70%となるまでの時間(輝度寿命)の相対値を示す。
【0124】
【表3】
【0125】
<実施例D21~D23> 発光素子D21~D23の作製と評価
実施例D1の(発光層の形成)における「化合物H1及び化合物G2(化合物H1/化合物G2=99質量%/1質量%)」に代えて、表4に記載の材料を用いた以外は、実施例D1と同様にして、発光素子D21~D23を作製した。
発光素子D21~D23に電圧を印加することによりEL発光が観測された。100mA/cmにおけるCIE色度座標(x,y)を測定した。また、100mA/cmで定電流駆動させ、輝度が初期輝度の60%となるまでの時間を測定した。
【0126】
実施例D21~D23の結果を表4に示す。発光素子D23の輝度が初期輝度の60%となるまでの時間(輝度寿命)を1.0としたときの発光素子D21及びD22の輝度が初期輝度の60%となるまでの時間(輝度寿命)の相対値を示す。
【0127】
【表4】
【0128】
<実施例D24~D26、比較例CD6> 発光素子D24~D26及び比較例CD6の作製と評価
実施例D1の(発光層の形成)における「化合物H1及び化合物G2(化合物H1/化合物G2=99質量%/1質量%)」に代えて、表5に記載の材料を用いた以外は、実施例D1と同様にして、発光素子D24~D26及びCD6を作製した。
発光素子D24~D26及びCD6に電圧を印加することによりEL発光が観測された。100mA/cmにおけるCIE色度座標(x,y)を測定した。また、100mA/cmで定電流駆動させ、輝度が初期輝度の50%となるまでの時間を測定した。
【0129】
実施例D24~D26及びCD6の結果を表5に示す。発光素子CD6の輝度が初期輝度の50%となるまでの時間(輝度寿命)を1.0としたときの発光素子D24~D26の輝度が初期輝度の50%となるまでの時間(輝度寿命)の相対値を示す。
【0130】
【表5】
【0131】
<実施例D27~D29> 発光素子D27~D29の作製と評価
実施例D1の(発光層の形成)における「化合物H1及び化合物G2(化合物H1/化合物G2=99質量%/1質量%)」に代えて、表6に記載の材料を用いた以外は、実施例D1と同様にして、発光素子D27~D29を作製した。
発光素子D27~D29に電圧を印加することによりEL発光が観測された。100mA/cmにおけるCIE色度座標(x,y)を測定した。また、100mA/cmで定電流駆動させ、輝度が初期輝度の80%となるまでの時間を測定した。
【0132】
実施例D27~D29の結果を表6に示す。発光素子D27の輝度が初期輝度の80%となるまでの時間(輝度寿命)を1.0としたときの発光素子D28及びD29の輝度が初期輝度の80%となるまでの時間(輝度寿命)の相対値を示す。
【0133】
【表6】
【産業上の利用可能性】
【0134】
本発明によれば、輝度寿命が優れる発光素子の製造に有用な組成物が提供される。輝度寿命の優れた発光素子の製造により、省資源化、省エネルギー化等の効果があるため、本発明は産業上有用である。