IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東京精密の特許一覧

<>
  • 特許-導通検査装置、プローバ 図1
  • 特許-導通検査装置、プローバ 図2
  • 特許-導通検査装置、プローバ 図3
  • 特許-導通検査装置、プローバ 図4
  • 特許-導通検査装置、プローバ 図5
  • 特許-導通検査装置、プローバ 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-05
(45)【発行日】2022-10-14
(54)【発明の名称】導通検査装置、プローバ
(51)【国際特許分類】
   H01L 21/66 20060101AFI20221006BHJP
【FI】
H01L21/66 B
【請求項の数】 6
(21)【出願番号】P 2018064818
(22)【出願日】2018-03-29
(65)【公開番号】P2019176080
(43)【公開日】2019-10-10
【審査請求日】2021-03-19
(73)【特許権者】
【識別番号】000151494
【氏名又は名称】株式会社東京精密
(74)【代理人】
【識別番号】100083116
【弁理士】
【氏名又は名称】松浦 憲三
(72)【発明者】
【氏名】柳 良明
(72)【発明者】
【氏名】村上 公之輔
【審査官】平野 崇
(56)【参考文献】
【文献】特開2007-180580(JP,A)
【文献】特開2010-040856(JP,A)
【文献】特開2007-205969(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/66
(57)【特許請求の範囲】
【請求項1】
半導体チップが複数形成されたウェハを保持するウェハチャックと、前記ウェハの表面に形成された前記半導体チップの表面電極に接触するプローブと、を備えるプローバの前記ウェハチャックに設けられた前記ウェハの支持面であって、且つ前記ウェハの裏面に形成された前記半導体チップの裏面電極に接触する導電性の支持面に対して電気的に接続される配線の導通検査装置において、
前記支持面に接続される前記配線の一端部とは反対側の他端部に接続された第1リレー及び第1抵抗の一方である第1部品と、
前記第1部品に接続され且つ接地された前記第1リレー及び前記第1抵抗の他方である第2部品と、
前記支持面に接続された追加配線と、
前記追加配線に接続された電流ループ形成部であって、少なくとも電源を備え、且つ前記配線、前記追加配線、前記第1部品、前記第2部品、及び前記電源を少なくとも含む電流ループを形成する電流ループ形成部と、
前記電源からの電流が前記電流ループを流れるか否かの判定を行う判定部と、
を備える導通検査装置。
【請求項2】
前記電流ループ形成部が、
前記支持面に接続される前記追加配線の一端部とは反対側の他端部に接続された第2リレー及び第2抵抗の一方である第3部品と、
前記第3部品に接続された前記第2リレー及び前記第2抵抗の他方である第4部品と、
前記第4部品に接続され且つ接地された前記電源と、
を備え、
前記第2抵抗の電圧を検出する電圧検出部を備え、
前記判定部が、前記電圧検出部の検出結果に基づき、前記判定を行う請求項1に記載の導通検査装置。
【請求項3】
前記第1リレー及び前記第2リレーの双方のクローズ状態とオープン状態との切り替えを個別に行うリレー制御部を備え、
前記判定部が、前記リレー制御部により前記第1リレー及び前記第2リレーの双方が前記クローズ状態に切り替えられた状態での前記電圧検出部の検出結果に基づき、前記判定を行う請求項2に記載の導通検査装置。
【請求項4】
前記第1部品が前記第1リレーであり且つ前記第2部品が前記第1抵抗である請求項1から3のいずれか1項に記載の導通検査装置。
【請求項5】
前記配線の前記他端部に設けられたコネクタであって、前記半導体チップの電気的特性を検査するテスタと、前記第1部品との双方に接続されたコネクタを備える請求項1から4のいずれか1項に記載の導通検査装置。
【請求項6】
半導体チップが複数形成されたウェハを保持するウェハチャックであって、且つ前記ウェハの裏面に形成された前記半導体チップの裏面電極に接触する導電性の支持面を有するウェハチャックと、
前記ウェハの表面に形成された前記半導体チップの表面電極に接触するプローブと、
請求項1から5のいずれか1項に記載の導通検査装置と、
を備えるプローバ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ウェハに複数形成された半導体チップの電気的特性を検査するウェハテストシステムに用いられる導通検査装置、プローバ、及び除電装置に関する。
【背景技術】
【0002】
ウェハ(半導体ウェハともいう)の表面には、同一の電気素子回路を有する複数の半導体チップが形成されている。ウェハは、ダイサーで各半導体チップに個々に切断される前に、ウェハテストシステムにより個々の半導体チップの電気的特性が検査される(特許文献1及び特許文献2参照)。このウェハテストシステムは、プローバとテスタとを備える。
【0003】
プローバは、ウェハをウェハチャック上に固定した状態で、ウェハチャックとプローブ(プローブ針ともいう)を有するプローブカードとを相対移動させることにより、各半導体チップの電極(電極パッドともいう)にプローブを電気的に接触させる。テスタは、プローブに接続された端子を介して、各半導体チップの電極に各種の試験信号を供給すると共に、この試験信号の供給に応じて電極から出力される信号を受信及び解析することで、各半導体チップの電気的特性(正常に動作するか否か等)を検査する。
【0004】
パワートランジスタ、電界効果型トランジスタ、IGBT(Insulated Gate Bipolar Transistor)、LED(light emitting diode)、半導体レーザなどの半導体チップには、その表面に電極(表面電極)が形成されると共に、その裏面にも電極(裏面電極)が形成される。例えば、IGBTの表面にはゲート電極及びエミッタ電極が形成され、その裏面にコレクタ電極が形成される。
【0005】
このような半導体チップの検査に対応したウェハテストシステムのウェハチャックには、ウェハの裏面に接触した状態でウェハを支持する支持面であって、テスタの測定電極として作用する導電性の支持面(ウェハ載置面)が設けられる(特許文献3参照)。この支持面は、ウェハチャックから引き出されるチャックリード線(配線)を介してテスタに電気的に接続される。そして、半導体チップの検査を行う場合には、ウェハチャックにウェハを保持し、このウェハの表面に形成された半導体チップの表面電極にプローブを接触させた状態で各種測定が行われる。この際に、測定条件に応じて、既述の半導体チップの裏面電極は、テスタから電圧及び電流等が印加されたり、或いは接地されたりする。
【先行技術文献】
【特許文献】
【0006】
【文献】特許4068127号公報
【文献】特開2003-218175号公報
【文献】特許2970893号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、ウェハチャックは動き回ると共に温度も高温になるため、上述のチャックリード線は、機械的にも熱的にも過酷な条件にさらされて切れ易い傾向がある。このチャックリード線が切れると、ウェハチャックの支持面、すなわち、ウェハの半導体チップの裏面電極に電圧及び電流の印加ができなくなったり、或いは、裏面電極からの信号の検出ができなくなったりするので、半導体チップの正確な検査を行うことができなくなる。
【0008】
このため、従来は定期点検時などに担当者がハンディテスタなどを用いてチャックリード線の導通を定期的に確認していたが、定期点検までの間はチャックリード線が断線したことが分からず、チャックリード線が断線した状態でウェハの検査が行われるおそれがある。
【0009】
そこで、例えば特許文献3に記載されているように、チャックリード線に検査電圧を印加する検査電源と、チャックリード線に流れる電流から出力波形を取り出す変換トランスと、変換トランスからの出力波形と基準波形とを比較してチャックリード線の導通(断線)の有無を判断する判断部と、をウェハテストシステムに設ける方法が考えられる。
【0010】
しかしながら、この特許文献3に記載の方法によれば、チャックリード線の導通の有無を自動で検査することができるものの、装置構成が大掛かりになってしまう。このため、チャックリード線の導通の有無を自動且つ簡単に検査したいとの強い要望がある。
【0011】
なお、ウェハチャックには、電荷(静電気)が帯電し、ひいてはウェハチャック上のウェハにも電荷が帯電するため、ウェハの検査に伴って半導体チップの表面電極とプローブとが接触する際に、半導体チップとプローブとの間に放電によるアークが発生して半導体チップを損傷するおそれがある。このため、例えば特許文献2に記載のように、ウェハチャックに電気的に接続された接続線に抵抗(高抵抗)を接続し、さらにこの抵抗に対して接地されたリレーを接続することで、ウェハチャックの除電を行う方法が考えられる。
【0012】
しかしながら、各半導体チップの正確な検査を行うためには、ウェハチャックが高絶縁状態(外部からのリーク電流等の影響を受けない状態)であることが必要であるが、上記特許文献2に記載の方法ではウェハチャックとリレーとの間に抵抗が配置される。このため、ウェハチャックの除電後にリレーをオンからオフに切り替えた後でも、ウェハチャックと抵抗との接続状態が維持される。その結果、抵抗から発生したリーク電流が各半導体チップの検査に影響を及ぼしたり、或いは半導体チップに悪影響を与えたりするおそれがある。
【0013】
本発明はこのような事情に鑑みてなされたものであり、チャックリード線の導通の有無を自動且つ簡単に検査することができる導通検査装置及びプローバを提供することを第1の目的とする。また、リーク電流の発生を最小限に抑えられる除電装置を提供することを第2の目的とする。
【課題を解決するための手段】
【0014】
本発明の第1の目的を達成するための導通検査装置は、半導体チップが複数形成されたウェハを保持するウェハチャックと、ウェハの表面に形成された半導体チップの表面電極に接触するプローブと、を備えるプローバのウェハチャックに設けられたウェハの支持面であって、且つウェハの裏面に形成された半導体チップの裏面電極に接触する導電性の支持面に対して電気的に接続される配線の導通検査装置において、支持面に接続される配線の一端部とは反対側の他端部に接続された第1リレー及び第1抵抗の一方である第1部品と、第1部品に接続され且つ接地された第1リレー及び第1抵抗の他方である第2部品と、支持面に接続された追加配線と、追加配線に接続された電流ループ形成部であって、少なくとも電源を備え、且つ配線、追加配線、第1部品、第2部品、及び電源を少なくとも含む電流ループを形成する電流ループ形成部と、電源からの電流が電流ループを流れるか否かの判定を行う判定部と、を備える。
【0015】
この導通検査装置によれば、電流ループに電流が流れるか否かを判定することで、配線の導通の有無を判定することができる。
【0016】
本発明の他の態様に係る導通検査装置において、電流ループ形成部が、支持面に接続される追加配線の一端部とは反対側の他端部に接続された第2リレー及び第2抵抗の一方である第3部品と、第3部品に接続された第2リレー及び第2抵抗の他方である第4部品と、第4部品に接続され且つ接地された電源と、を備え、第2抵抗の電圧を検出する電圧検出部を備え、判定部が、電圧検出部の検出結果に基づき、判定を行う。これにより、電圧検出部よる第2抵抗の電圧検出結果に基づき、電流ループに電流が流れるか否かを判定することができる。
【0017】
本発明の他の態様に係る導通検査装置において、第1リレー及び第2リレーの双方のクローズ状態とオープン状態との切り替えを個別に行うリレー制御部を備え、判定部が、リレー制御部により第1リレー及び第2リレーの双方がクローズ状態に切り替えられた状態での電圧検出部の検出結果に基づき、判定を行う。これにより、電圧検出部よる第2抵抗の電圧検出結果に基づき、電流ループに電流が流れるか否かを判定することができる。
【0018】
本発明の他の態様に係る導通検査装置において、第1部品が第1リレーであり且つ第2部品が第1抵抗である。これにより、第1リレーをオフすることにより、支持面から第1抵抗を最短で分離することができるので、リーク電流を最小に抑えることができる。
【0019】
本発明の他の態様に係る導通検査装置において、配線の他端部に設けられたコネクタであって、半導体チップの電気的特性を検査するテスタと、第1部品との双方に接続されたコネクタを備える。
【0020】
本発明の第1の目的を達成するためのプローバは、半導体チップが複数形成されたウェハを保持するウェハチャックであって、且つウェハの裏面に形成された半導体チップの裏面電極に接触する導電性の支持面を有するウェハチャックと、ウェハの表面に形成された半導体チップの表面電極に接触するプローブと、上述の導通検査装置と、を備える。
【0021】
本発明の第2の目的を達成するための除電装置は、半導体チップが複数形成されたウェハを保持するウェハチャックと、ウェハの表面に形成された半導体チップの表面電極に接触するプローブとを備えるプローバのウェハチャックに設けられたウェハの支持面であって、且つウェハの裏面に形成された半導体チップの裏面電極に接触する導電性の支持面に電気的に接続された配線と、配線に接続された第1リレーと、第1リレーに接続され且つ接地された第1抵抗と、を備える。
【0022】
この除電装置によれば、第1リレーをオフすることにより、支持面から第1抵抗を最短で分離することができるので、リーク電流を最小に抑えることができる。
【発明の効果】
【0023】
本発明の導通検査装置及びプローバは、チャックリード線の導通の有無を自動且つ簡単に検査することができる。また、本発明の除電装置は、リーク電流の発生を最小限に抑えられる。
【図面の簡単な説明】
【0024】
図1】ウェハテストシステムの概略図である。
図2】チャックリード線及び追加回路を説明するための説明図である。
図3】比較例の除電回路の概略図である。
図4】電流ループ及び電源を説明するための説明図である。
図5】プローバの統括制御部の機能ブロック図である。
図6】追加回路によるウェハチャックの除電、チャックリード線の導通検査、及び各リレーの自己診断の処理の流れを示すフローチャートである。
【発明を実施するための形態】
【0025】
[ウェハテストシステムの構成]
図1は、ウェハテストシステム9の概略図である。以下、図中の上下方向であるZ軸方向の上方及び上面を適宜「上方」及び「上面」といい、Z軸方向の下方及び下面を適宜「下方」及び「下面」という。
【0026】
ウェハテストシステム9は、ウェハWに複数形成された半導体チップ(不図示)であって両面に電極(不図示)が形成されている複数の半導体チップの各々の電気的特性を検査する。このウェハテストシステム9は、プローバ10とテスタ30とを備える。
【0027】
プローバ10は、ウェハW上の個々の半導体チップ(不図示)の表面に形成された表面電極(不図示)にプローブ25を接触させると共に、個々の半導体チップの裏面に形成された裏面電極(不図示)に後述のウェハチャック16の導電性の支持面16aを接触させる。テスタ30は、プローブ25と支持面16aとに電気的に接続され、個々の半導体チップの電気的特性を検査する。
【0028】
プローバ10は、基台11と、ベース12と、Yステージ13と、Xステージ14と、Zθステージ15と、ウェハチャック16と、プローブ位置検出カメラ18と、プローブ高さ検出器20と、高さ調整機構21,27と、ウェハアライメントカメラ19と、ヘッドステージ22と、カードホルダ23と、プローブカード24と、プローブ25と、を備える。
【0029】
基台11の上面には、略平板状のベース12が固定されている。なお、基台11の代わりに脚部材を用いてもよいし、或いは基台11を省略してもよい。
【0030】
ベース12の上面には、不図示のY移動部を介して略平板状のYステージ13がY軸方向に移動自在に支持されている。Y移動部は、ベース12の上面に設けられ且つY軸に平行なガイドレールと、Yステージ13の下面に設けられ且つガイドレールに係合するスライダと、Yステージ13をY軸方向に移動させるモータ等の駆動機構と、を備える。このY移動部を駆動することにより、ベース12上でYステージ13と、後述のXステージ14及びZθステージ15等とが一体的にY軸方向に移動される。
【0031】
Yステージ13の上面には、不図示のX移動部を介して略平板状のXステージ14がX軸方向に移動自在に支持されている。X移動部は、Yステージ13の上面に設けられ且つX軸に平行なガイドレールと、Xステージ14の下面に設けられ且つガイドレールに係合するスライダと、Xステージ14をX軸方向に移動させるモータ等の駆動機構と、を備える。このX移動部を駆動することにより、Yステージ13上でXステージ14及び後述のZθステージ15等が一体的にX軸方向に移動される。
【0032】
Xステージ14の上面には、Zθステージ15及び高さ調整機構21,27が設けられている。Zθステージ15の内部には、不図示のZθ移動部が設けられている。また、Zθステージ15の上面には、不図示のZθ移動部を介して、ウェハチャック16が保持されている。このZθ移動部は、例えば、Zθステージ15の上面をZ軸方向に移動自在な昇降機構と、且つこの上面をZ軸の軸周りに回転させる回転機構とを有する。このため、Zθ移動部は、Zθステージ15の上面に保持されているウェハチャック16をZ軸方向に移動させると共に、Z軸の軸周りに回転させる。
【0033】
ウェハチャック16は、ウェハWをその裏面側から保持する。このウェハチャック16は、既述のYステージ13とXステージ14とZθステージ15とにより、ベース12に対してXYZ軸方向に移動自在に支持されている共に、Z軸の軸周りに回転自在に支持されている。これにより、ウェハチャック16に保持されているウェハWと、後述のプローブ25とを相対移動させることができる。
【0034】
ウェハチャック16の上面であるウェハWの支持面16aは、例えばアルミメッキ又は金メッキ等の各種金属メッキが施されており、導電性を有している。この支持面16aは、ウェハWの各半導体チップの裏面電極(不図示)に接触する。そして、この支持面16aは、後述のチャックリード線40(図2参照)を介してテスタ30に接続されており、このテスタ30の測定電極として作用する。これにより、ウェハWの各半導体チップ(不図示)の検査時の各種測定条件に応じて、各半導体チップの裏面電極が、支持面16aを介してテスタ30から電圧及び電流等が印加されたり、或いは接地されたりする。
【0035】
高さ調整機構21は、後述のプローブ位置検出カメラ18のZ軸方向の昇降を行う。また、高さ調整機構27は、後述のプローブ高さ検出器20のZ軸方向の昇降を行う。高さ調整機構21,27は、公知の直線的な移動機構であればよく、例えばリニアガイド機構及びボールネジ機構等が用いられる。
【0036】
ヘッドステージ22は、例えばプローバ10の不図示の筐体の天板を構成しており、不図示の支柱等によってウェハチャック16(ウェハW)の上方に支持されている。ヘッドステージ22は、略環状に形成されており、その中央部にはプローブカード24を保持する略環状のカードホルダ23が設けられている。すなわち、ヘッドステージ22は、カードホルダ23を介してプローブカード24を保持する。
【0037】
プローブカード24は複数のプローブ25を有している。これらプローブ25は、検査対象のウェハWの不図示の各半導体チップの表面電極の配置パターンに対応するパターンでプローブカード24に配置されている。
【0038】
プローブ位置検出カメラ18は、高さ調整機構21に取り付けられている。プローブ位置検出カメラ18は、例えば針合せ顕微鏡を備えたカメラであり、プローブカード24のプローブ25を下方から撮影する。このプローブ位置検出カメラ18にて撮影されたプローブ25の画像に基づき、プローブ25の位置を検出することができる。具体的には、プローブ25の先端位置のXY座標がプローブ位置検出カメラ18の位置座標から検出され、プローブ25の先端位置のZ座標がプローブ位置検出カメラ18の焦点位置から検出される。
【0039】
ウェハアライメントカメラ19は、ベース12上に設けられた不図示の支柱によって支持されており、ウェハチャック16に保持されているウェハWの半導体チップ(不図示)を上方から撮影する。このウェハアライメントカメラ19にて撮影された半導体チップの画像に基づき、半導体チップの電極の位置を検出することができる。これにより、ウェハアライメントカメラ19で得られた情報とプローブ位置検出カメラ18で得られたプローブ25の先端の位置情報とに基づき、プローブ25とウェハWの半導体チップの電極とのXY面内の二次元的な位置合わせ(アライメント)を行うことができる。
【0040】
プローブ高さ検出器20は、Xステージ14上の既述の高さ調整機構27に取り付けられている。このプローブ高さ検出器20は、プローブ位置検出カメラ18の高さの基準となる基準面からのプローブ25の先端の高さを検出する。プローブ高さ検出器20は、接触式の検出器であり、物理的にプローブ25の先端に接触することにより、プローブ25の先端の高さを検出する。ここで、基準面とはプローバ10の全般において高さの基準となる面であり、任意(例えばXステージ14の上面)に設定されるものである。
【0041】
既述の高さ調整機構21は、プローブ25の先端の高さの検出結果に基づいて、プローブ位置検出カメラ18をプローブ25の先端からワーキングディスタンスだけ離れた高さに調整する。これにより、プローブ位置検出カメラ18を上昇させ過ぎて、プローブ位置検出カメラ18がプローブ25の先端に衝突することが防止される。
【0042】
テスタ30は、テスタ本体31と、テスタ本体31に設けられたコンタクトリング32とを備えている。プローブカード24には、各プローブ25に接続される端子が設けられている。そして、コンタクトリング32は、プローブカード24の各端子に接触可能な配置パターンで配置されたスプリングプローブを有する。
【0043】
テスタ本体31は、不図示の支持機構により、プローバ10に対して保持される。このテスタ本体31は、プローブカード24及びプローブ25等を介して不図示の半導体チップの表面電極に電気的に接続され、且つチャックリード線40(図2参照)及び支持面16a等を介して不図示の半導体チップの裏面電極に電気的に接続される。そして、テスタ本体31は、半導体チップに電流又は電圧等を印加することにより、半導体チップの電気的特性を検査する。
【0044】
[チャックリード線及び追加回路]
図2は、チャックリード線40及び追加回路42を説明するための説明図である。図2に示すように、チャックリード線40は、本発明の配線に相当するものであり、支持面16aとテスタ30(テスタ本体31)とを電気的に接続する。このチャックリード線40は、支持面16aに電気的に接続される一端部40aと、一端部40aとは反対側の他端部40bであって且つ後述のコネクタ44に電気的に接続される他端部40bと、を有する。なお、チャックリード線40(配線)の種類は特に限定はされない。
【0045】
追加回路42は、全体が本発明の導通検査装置として機能し且つその一部が本発明の除電装置として機能するものであり、チャックリード線40の導通検査(断線検査)を行うと共に、ウェハチャック16の除電(ディスチャージ)を行う。この追加回路42は、コネクタ44と、除電回路50(第1リレー46及び第1抵抗48)と、追加リード線52と、第2リレー54と、第2抵抗56と、電源58と、検出回路60と、を備える。
【0046】
コネクタ44は、既述の通り、チャックリード線40の他端部40bに電気的に接続される。また、コネクタ44には、他端部40bの他に、テスタ30と、除電回路50を構成する第1リレー46とが個別に接続されている。これにより、チャックリード線40及びコネクタ44を介して、支持面16aとテスタ30とが電気的に接続され、且つ支持面16aと除電回路50(第1リレー46)とが電気的に接続される。
【0047】
除電回路50は、本発明の除電装置に相当するものであり、コネクタ44(すなわち他端部40b)に電気的に接続された第1リレー46と、第1リレー46に接続され且つ接地された第1抵抗48と、を備える。なお、本実施形態では除電回路50の一方の第1リレー46が本発明の第1部品に相当し、他方の第1抵抗48が本発明の第2部品に相当する。ウェハチャック16には、既述の通り、電荷(静電気)が帯電し、その結果、ウェハチャック16上のウェハWにも電荷が帯電する。このため、除電回路50は、ウェハチャック16に帯電した電荷(静電気)を除電する。
【0048】
第1リレー46は、チャックリード線40及び支持面16a(以下、支持面16a等と略す)と、第1抵抗48との双方の間において、双方を電気的に接続するクローズ状態(接続状態)と、双方の電気的な接続を解除したオープン状態(非接続状態)とに切替可能である。なお、第1リレー46の種類については特に限定はされない。また、本明細書では第1リレー46を、クローズ状態に切り替えることを「オン」と定義し、逆にオープン状態に切り替えることを「オフ」と定義する。そして、第1リレー46のオンオフの切り替えは、後述の統括制御部62により制御される。
【0049】
第1リレー46は、ウェハチャック16の除電時及び後述のチャックリード線40の導通検査時にオンされ、支持面16a等と第1抵抗48とを電気的に接続する。また、第1リレー46は、各半導体チップ(不図示)の電気的特性の検査時にはオフされ、支持面16a等と第1抵抗48との電気的な接続を解除する。
【0050】
第1抵抗48は、ウェハチャック16の除電時において第1リレー46がオンされた場合に、ウェハチャック16に帯電した電荷(静電気)が接地側に向けて一気に流れることを防止する電流制限抵抗であり、高抵抗体が用いられる。これにより、ウェハチャック16の除電時において、第1リレー46がオンされると、第1抵抗48を介して、ウェハチャック16に帯電した電荷を接地側に徐々に放電することができ、その結果、ウェハチャック16が除電される。
【0051】
次に、本実施形態の除電回路50と比較例の除電回路200(図3参照)と比較して、本実施形態の除電回路50の作用効果についてより詳しく説明する。なお、本発明は以下の作用効果の説明に限定されるものではない。
【0052】
図3は、比較例の除電回路200の概略図である。なお、図3に示した比較例において、本実施形態と機能又は構成上同一のものについては、同一符号を付してその説明は省略する。図3に示すように、比較例の除電回路200では、特開2003-218175号公報(上記特許文献2)に開示されているように、コネクタ44に対して第1抵抗48が先に電気的に接続され、且つこの第1抵抗48に対して接地された第1リレー46が接続されている。
【0053】
このような比較例の除電回路200においても、第1リレー46をオンすることで、本実施形態の除電回路50と同様に、第1抵抗48を介して、ウェハチャック16に帯電した電荷を接地側に徐々に放電することができる。
【0054】
しかしながら、比較例の除電回路200では、ウェハチャック16と第1リレー46との間に第1抵抗48が配置されているので、第1リレー46をオフに切り替えた場合でも、支持面16a等と第1抵抗48との接続が維持される。一方、第1抵抗48は、高抵抗体であるため、第1リレー46がオフされている状態ではリーク電流が発生する可能性がある。そして、第1抵抗48からリーク電流が発生すると、このリーク電流が、ウェハWの各半導体チップ(不図示)の検査時に裏面電極(不図示)から出力される信号に混入することで各半導体チップの検査に影響を及ぼしたり、或いは各半導体チップに悪影響を与えたりするおそれがある。従って、各半導体チップの正確な検査を行うためには、ウェハチャック16が高絶縁状態(外部からのリーク電流等の影響を受けない状態)であることが必要であり、ウェハチャック16に余分な部品を接続することは好ましくない。
【0055】
このような比較例の除電回路200に対して、本実施形態の除電回路50では、図2に示したように、コネクタ44に対して第1リレー46を先に電気的に接続し、この第1リレー46に対して接地された第1抵抗48を電気的に接続している。これにより、各半導体チップの検査時には第1リレー46をオフすることにより、支持面16a等から第1抵抗48を最短で分離することができる。その結果、除電用に追加する除電回路50によるリーク電流を最小に抑えることができる。
【0056】
図2に戻って、追加リード線52は、本発明の追加配線に相当するものであり、その一端部52aが支持面16aに接続されている。これにより、チャックリード線40と追加リード線52とは、支持面16aを介して電気的に接続される。また、追加リード線52の一端部52aと反対側の他端部52bには、第2リレー54が電気的に接続されている。なお、追加リード線52(配線)の種類は特に限定はされない。また、本実施形態では、チャックリード線40及び追加リード線52の双方の一部がケーブル(登録商標)ベア64内に収納されている。
【0057】
第2リレー54は、本発明の第3部品に相当するものであり、後述の第2抵抗56及び電源58と、追加リード線52との双方の間において、双方を電気的に接続するクローズ状態(接続状態)と、双方の電気的な接続を解除したオープン状態(非接続状態)とに切替可能である。なお、第2リレー54の種類についても特に限定はされない。また、本明細書では、第2リレー54についても、クローズ状態に切り替えることを「オン」と定義し、逆にオープン状態に切り替えることを「オフ」と定義する。そして、この第2リレー54のオンオフの切り替えは、第1リレー46と同様に後述の統括制御部62により制御される。
【0058】
第2リレー54は、後述のチャックリード線40の導通検査時にオンされ、第2抵抗56及び電源58と、追加リード線52とを電気的に接続する。また、第2リレー54は、ウェハチャック16の除電時及び各半導体チップ(不図示)の電気的特性の検査時にはオフされ、第2抵抗56及び電源58と、追加リード線52との電気的な接続を解除する。
【0059】
第2抵抗56は、本発明の第4部品に相当するものであり、第2リレー54に電気的に接続されている。この第2抵抗56は、第1抵抗48と同様の電流制限抵抗であり、高抵抗体が用いられる。詳しくは後述するが、この第2抵抗56の電圧(両端電圧、電位差)は、チャックリード線40の導通(断線)の有無の判定に利用される。
【0060】
図4は、電流ループCR及び電源58を説明するための説明図である。図2及び図4に示すように、電源58は、第2抵抗56に接続され且つ接地されている。なお、電源58及び既述の第1抵抗48は、所謂フレーム接地(例えばアース電極又は金属製の筐体に接続)されているので、電源58と第1抵抗48とは電気的に接続されている。このため、チャックリード線40、第1リレー46、第1抵抗48、追加リード線52、第2リレー54、第2抵抗56、及び電源58は、電流ループCRを構成している。従って、第2リレー54、第2抵抗56、及び電源58は、本発明の電流ループ形成部として機能する。
【0061】
電源58は、後述のチャックリード線40の導通検査時、すなわち、第1リレー46及び第2リレー54の双方がオンされている状態で、電流ループCRに対して電流供給(電圧印加)を行う。これにより、チャックリード線40が導通している場合(断線していない場合)、すなわち電流ループCRが構成されている場合、この電流ループCRには電流Is(微小電流)が流れる。
【0062】
検出回路60は、本発明の電圧検出部に相当するものであり、第2抵抗56の電圧(両端電圧、電位差)を検出する電圧計である。第1リレー46及び第2リレー54の双方がオンされている状態でチャックリード線40が導通している場合、既述の電流ループCRに電流Isが流れる。この場合、電源58により電流ループCRに印加される電圧V、第1抵抗48の抵抗値をR1、及び第2抵抗56の抵抗値をR2とすると、検出回路60により検出される第2抵抗56の検出電圧は「V×(R2/(R1+R2))」となる。従って、例えばR1=R2である場合、第2抵抗56の検出電圧は「V/2」となる。以下、説明の煩雑化を防止するため、「R1=R2」として説明を行う。
【0063】
一方、第1リレー46及び第2リレー54の双方がオンされている状態であってもチャックリード線40が断線している場合には、電源58による電流Isは電流ループCRを流れることはない。従って、この場合に検出回路60による検出電圧は「V」となる。
【0064】
このように検出回路60による検出電圧を参照することで、電流ループCRに電流Isが流れているか否か、すなわちチャックリード線40の導通の有無(断線の無し有り)を判定することができる。そして、検出回路60は、第2抵抗56の電圧検出結果を統括制御部62へ出力する。
【0065】
また逆に、チャックリード線40の導通が確認されている場合、検出回路60による第2抵抗56の電圧検出結果を、第1リレー46及び第2リレー54の自己診断に用いることができる。
【0066】
例えば、第1リレー46及び第2リレー54の双方をオンさせた際に、検出回路60による検出電圧が「V/2」となる場合は第1リレー46及び第2リレー54の双方が正常であると判定することができる。一方、第1リレー46及び第2リレー54の双方をオンさせた際に、検出回路60による検出電圧が「V」となる場合は、第1リレー46及び第2リレー54の少なくとも一方が実際にはオンされていない、すなわち少なくとも一方が異常であると判定することができる。また、第1リレー46及び第2リレー54の少なくとも一方をオフさせた際に、検出回路60による検出電圧が「V/2」となる場合は、第1リレー46及び第2リレー54の双方が実際にはオンされているため、第1リレー46及び第2リレー54の少なくとも一方が異常であると判定することができる。
【0067】
図5は、プローバ10(ウェハテストシステム9でも可、以下同じ)の統括制御部62の機能ブロック図である。統括制御部62は、例えばCPU(Central Processing Unit)或いはFPGA(field-programmable gate array)含む各種の演算部と処理部とメモリ等により構成されており、プローバ10の各部の動作を統括制御する。なお、図5では、統括制御部62の複数の機能の中で、追加回路42によるウェハチャック16の除電、チャックリード線40の導通検査、及び各リレー46,54の自己診断に係る機能のみを図示し、ウェハWの検査等のプローバ10の他の制御に係る機能は公知技術であるので図示は省略する。
【0068】
統括制御部62には、各種の操作入力を受け付ける操作部70、各種表示を行う表示部72、既述の各リレー46,54、電源58、及び検出回路60の他、プローバ10の各部が接続されている。そして、この統括制御部62は、所定の制御プログラムを実行することで、追加回路制御部76、判定部80、及び自己診断部82として機能する。
【0069】
追加回路制御部76は、追加回路42によるウェハチャック16の除電、チャックリード線40の導通検査、及び各リレー46,54の自己診断がそれぞれ開始される際に、各リレー46,54のオンオフと電源58のオンオフとを制御する。すなわち、追加回路制御部76は、本発明のリレー制御部として機能する。
【0070】
なお、追加回路42による除電、導通検査、及び自己診断は、不図示の各半導体チップの検査を実行してない任意のタイミング、すなわちプローブ25がウェハWから離間しているタイミングで実行される。例えば、Zθステージ15によりウェハチャック16を下方側に退避させているタイミング、ウェハチャック16へのウェハWのロード又はアンロードのタイミング、及び半導体チップのインデックス送りのタイミング等が例として挙げられる。なお、除電、導通検査、及び自己診断を、操作部70への開始操作に応じて開始させてもよい。
【0071】
追加回路制御部76は、除電を実行する任意のタイミングで或いは操作部70への除電開始操作の入力を受けて、第1リレー46のみをオンさせる。また、追加回路制御部76は、導通検査を実行する任意のタイミングで或いは操作部70への導通検査開始操作の入力を受けて、各リレー46,54の双方をオンさせると共に、電源58をオンさせる。さらに、追加回路制御部76は、自己診断を実行するタイミングで或いは操作部70への自己診断開始操作の入力受けて、各リレー46,54を個別に1回以上オンオフさせると共に、電源58をオンさせる。
【0072】
判定部80は、導通検査が開始された場合、すなわち第1リレー46及び第2リレー54の双方がオンされ且つ電源58がオンされている場合、検出回路60から入力される第2抵抗56の電圧検出結果に基づき、電流ループCRに電流Isが流れているか否かを判定する。その結果、判定部80は、チャックリード線40の導通の有無を判定することができる。既述の通り、判定部80は、第2抵抗56の電圧が「V/2」である場合には、電流ループCRに電流Isが流れていると判定すると共に、チャックリード線40が導通していると判定する。一方、判定部80は、第2抵抗56の電圧が「V」である場合には、電流ループCRに電流Isが流れてないと判定すると共に、チャックリード線40が断線していると判定する。
【0073】
そして、判定部80は、チャックリード線40の導通の有無を表示部72へ出力する。これにより、表示部72にて、チャックリード線40の導通の有無(断線の有無)が表示される。なお、表示部72には、画面表示(画像表示)を行うモニタの他に、音声表示(音声出力)を行うスピーカ等も含まれる。
【0074】
自己診断部82は、自己診断が実行されている場合、すなわち各リレー46,54がオンオフされ且つ電源58がオンされている場合、検出回路60から入力される第2抵抗56の電圧検出結果に基づき、各リレー46,54の自己診断を行う。既述の通り、自己診断部82は、例えば、各リレー46,54の双方をオンさせた際に、検出回路60による検出電圧が「V/2」となる場合は各リレー46,54の双方が正常であると判定し、検出電圧が「V」となる場合は各リレー46,54の少なくとも一方が異常であると判定する。また、自己診断部82は、各リレー46,54の少なくとも一方をオフさせた際に、検出回路60による検出電圧が「V/2」となる場合は、各リレー46,54の少なくとも一方が異常であると判定する。
【0075】
そして、自己診断部82は、各リレー46,54の自己診断結果を表示部72へ出力する。これにより、表示部72にて、各リレー46,54の自己診断結果が表示される。
【0076】
[本実施形態の追加回路の作用]
図6は、上記構成の追加回路42によるウェハチャック16の除電、チャックリード線40の導通検査、及び各リレー46,54の自己診断の処理の流れを示すフローチャートである。
【0077】
<導通検査>
図6に示すように、追加回路制御部76は、導通検査を実行する任意のタイミングで或いは操作部70への導通検査開始操作の入力を受けて(ステップS1でYES)、各リレー46,54の双方をオンさせると共に(ステップS2)、電源58をオンさせる(ステップS3)。一方、検出回路60は、電源58のオンに合わせて第2抵抗56の電圧検出を開始し、第2抵抗56の電圧検出結果を判定部80へ出力する(ステップS4)。
【0078】
判定部80は、第2抵抗56の電圧が「V/2」である場合には、電流ループCRに電流Isが流れていると判定、すなわちチャックリード線40が導通していると判定する(ステップS5)。一方、判定部80は、第2抵抗56の電圧が「V」である場合には、電流ループCRに電流Isが流れていないと判定、すなわちチャックリード線40が断線していると判定する(ステップS5)。そして、判定部80は、判定結果を表示部72に出力する。これにより、表示部72にて、チャックリード線40の導通の有無の判定結果が表示される(ステップS6)。
【0079】
<除電>
追加回路制御部76は、除電を実行する任意のタイミングで或いは操作部70への除電開始操作の入力を受けて(ステップS1でNO、ステップS7でYES)、第1リレー46をオンさせる(ステップS8)。これにより、第1抵抗48を介して、ウェハチャック16に帯電した電荷が接地側に放電されるため、ウェハチャック16が除電される。
【0080】
<自己診断>
追加回路制御部76は、各リレー46,54の自己診断を実行する任意のタイミングで或いは操作部70への自己診断開始操作の入力を受けて(ステップS1及びステップS7の双方でNO)、電源58をオンさせる(ステップS9)。また、この電源58のオンに合わせて、検出回路60が、第2抵抗56の電圧検出を開始し、その電圧検出結果を自己診断部82へ出力する(ステップS10)。
【0081】
次いで、追加回路制御部76は、各リレー46,54を個別に1回以上オンオフさせる(ステップS11)。そして、自己診断部82は、各リレー46,54のオンオフが実行されている間、検出回路60から入力される第2抵抗56の電圧検出結果に基づき、既述の通り、各リレー46,54の自己診断を行い、その診断結果を表示部72に出力する(ステップS12)。これにより、表示部72にて、各リレー46,54の自己診断結果が表示される(ステップS13)。
【0082】
[本実施形態の効果]
以上のように本実施形態の追加回路42によれば、追加リード線52等により電流ループCRを形成し、この電流ループCRに電流Isが流れるか否か、すなわち検出回路60による第2抵抗56の電圧検出結果が「V/2」になるかを検出するだけで、チャックリード線40の導通の有無を判定することができる。そして、この追加回路42は、既知のリレー46,54、抵抗48,56、電源58、及び検出回路60(電圧計等)を組み合わるだけで簡単に構築することができる。その結果、チャックリード線40の導通の有無を自動且つ簡単に検査することができる。
【0083】
また、本実施形態の除電回路50では、コネクタ44に対して第1リレー46を先に電気的に接続し、この第1リレー46に対して接地された第1抵抗48を電気的に接続しているので、各半導体チップの検査時には第1リレー46をオフすることにより、チャックリード線40等から第1抵抗48を最短で分離することができる。その結果、除電回路50に起因するリーク電流を最小に抑えることができるので、リーク電流が、ウェハWの各半導体チップ(不図示)の検査に影響を及ぼしたり、或いは各半導体チップに悪影響を与えたりすることが防止される。
【0084】
[その他]
上記実施形態では、追加リード線52(他端部52b)に対して、第2リレー54、第2抵抗56、及び電源58の順番で接続されているが、第2リレー54のオンオフに応じて電流ループCRへの電流Isの供給をオンオフ可能であれば、その順番は特に限定はされない。また、上記実施形態では、除電回路50によるリーク電流を最小に抑えるために、コネクタ44に対して第1リレー46及び第1抵抗48の順番で接続しているが、リーク電流を考慮する必要が無い場合にはコネクタ44に対して第1抵抗48及び第1リレー46の順番で接続してもよい。
【0085】
上記実施形態では、第1抵抗48及び第2抵抗56としてそれぞれ単体の抵抗を例に挙げて説明したが、第1抵抗48及び第2抵抗56が複数の抵抗(抵抗と等価な電子部品、或いは抵抗以外の電子部品を含む)で構成されていてもよい。
【0086】
上記実施形態では、検出回路60により第2抵抗56の電圧を検出しているが、検出回路60により第1抵抗48の電圧を検出し、この電圧検出結果に基づき判定部80による判定と自己診断部82による診断とを行ってもよい。
【0087】
上記実施形態では、電源58が追加リード線52側に接続されているが、電源58が除電回路50に接続されていてもよい。
【0088】
上記実施形態では、コネクタ44(チャックリード線40の他端部40b)に、除電回路50の他にテスタ30が接続されている場合を例に挙げて説明したが、テスタ30以外の各種の装置又は計測器等が接続される場合にも本発明を適用することができる。また、ウェハチャック16の除電のみを目的とする場合、コネクタ44に除電回路50のみが接続されていてもよい。
【符号の説明】
【0089】
9…ウェハテストシステム,
10…プローバ,
16…ウェハチャック,
16a…支持面,
30…テスタ,
40…チャックリード線,
42…追加回路,
44…コネクタ,
46…第1リレー,
48…第1抵抗,
50…除電回路,
52…追加リード線,
54…第2リレー,
56…第2抵抗,
58…電源,
60…検出回路,
62…統括制御部,
80…判定部,
82…自己診断部
図1
図2
図3
図4
図5
図6