IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルム株式会社の特許一覧

<>
  • 特許-磁気記録媒体および磁気記録再生装置 図1
  • 特許-磁気記録媒体および磁気記録再生装置 図2
  • 特許-磁気記録媒体および磁気記録再生装置 図3
  • 特許-磁気記録媒体および磁気記録再生装置 図4
  • 特許-磁気記録媒体および磁気記録再生装置 図5
  • 特許-磁気記録媒体および磁気記録再生装置 図6
  • 特許-磁気記録媒体および磁気記録再生装置 図7
  • 特許-磁気記録媒体および磁気記録再生装置 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-27
(45)【発行日】2022-11-07
(54)【発明の名称】磁気記録媒体および磁気記録再生装置
(51)【国際特許分類】
   G11B 5/706 20060101AFI20221028BHJP
   G11B 5/714 20060101ALI20221028BHJP
   G11B 5/70 20060101ALI20221028BHJP
   G11B 5/78 20060101ALI20221028BHJP
   G11B 5/584 20060101ALI20221028BHJP
【FI】
G11B5/706
G11B5/714
G11B5/70
G11B5/78
G11B5/584
【請求項の数】 9
(21)【出願番号】P 2019033443
(22)【出願日】2019-02-27
(65)【公開番号】P2020140746
(43)【公開日】2020-09-03
【審査請求日】2021-02-18
(73)【特許権者】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】110000109
【氏名又は名称】弁理士法人特許事務所サイクス
(72)【発明者】
【氏名】直井 憲次
【審査官】中野 和彦
(56)【参考文献】
【文献】特開2007-294084(JP,A)
【文献】特開2017-117505(JP,A)
【文献】特開2019-003712(JP,A)
【文献】特開2006-139826(JP,A)
【文献】特開2015-130214(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G11B 5/706
G11B 5/714
G11B 5/70
G11B 5/78
G11B 5/584
(57)【特許請求の範囲】
【請求項1】
非磁性支持体と、強磁性粉末および結合剤を含む磁性層と、を有する磁気記録媒体であって、
前記強磁性粉末は、六方晶ストロンチウムフェライト粉末であり、かつ平均粒子サイズが5nm以上20nm以下であり、
前記磁性層は、サーボパターンを有し、
前記磁性層の異方性磁界Hkは、14.0kOe以上90.0kOe以下であり、
磁気力顕微鏡によって測定される前記磁気記録媒体の直流消磁状態の磁気クラスターの平均面積Sdcは、0.2×10nm以上0.3×10nm未満である、磁気記録媒体。
【請求項2】
前記磁性層の異方性磁界Hkは、16.0kOe以上90.0kOe以下である、請求項1に記載の磁気記録媒体。
【請求項3】
前記磁性層の異方性磁界Hkは、18.0kOe以上90.0kOe以下である、請求項1または2に記載の磁気記録媒体。
【請求項4】
非磁性支持体と、強磁性粉末および結合剤を含む磁性層と、を有する磁気記録媒体であって、
前記強磁性粉末は、ε-酸化鉄粉末であり、かつ平均粒子サイズが5nm以上20nm以下であり、
前記磁性層は、サーボパターンを有し、
前記磁性層の異方性磁界Hkは、18.0kOe以上100.0kOe以下であり、
磁気力顕微鏡によって測定される前記磁気記録媒体の直流消磁状態の磁気クラスターの平均面積Sdcは、0.×10nm以上5.0×10nm未満である、磁気記録媒体。
【請求項5】
前記磁性層の異方性磁界Hkは、30.0kOe以上100.0kOe以下である、請求項4に記載の磁気記録媒体。
【請求項6】
前記磁性層の異方性磁界Hkは、38.0kOe以上100.0kOe以下である、請求項4または5に記載の磁気記録媒体。
【請求項7】
前記Sdcと、磁気力顕微鏡によって測定される前記磁気記録媒体の交流消磁状態の磁気クラスターの平均面積Sacとの比、Sdc/Sac、は0.8以上2.0以下である、請求項1~6のいずれか1項に記載の磁気記録媒体。
【請求項8】
前記磁気記録媒体は、磁気テープであり、
前記サーボパターンは、タイミングベースサーボパターンであり、
前記タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状は、磁気テープの長手方向における理想形状からの位置ずれ幅の累積分布関数99.9%の値L99.9と前記累積分布関数0.1%の値L0.1との差分、L99.9-L0.1、が180nm以下である形状である、請求項1~7のいずれか1項に記載の磁気記録媒体。
【請求項9】
請求項1~のいずれか1項に記載の磁気記録媒体と、
磁気ヘッドと、
を含む磁気記録再生装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録媒体および磁気記録再生装置に関する。
【背景技術】
【0002】
近年の情報量の莫大な増大に伴い、磁気記録媒体には、記録容量を高めること(高容量化)が求められている。この高容量化のための手段としては、データトラックの幅を狭くすることにより、より多くのデータトラックを磁性層に配置して記録密度を高めることが挙げられる。
【0003】
しかしデータトラックの幅を狭くすると、磁気記録媒体を磁気記録再生装置内で走行させてデータの記録および/または再生を行う際、磁気ヘッドがデータトラックに正確に追従することが困難となり、記録および/または再生時にエラーを起こし易くなってしまう。そこで、かかるエラーの発生を低減するための手段として、近年、サーボ信号を利用してヘッドトラッキングを行うシステム(以下、「サーボシステム」と記載する。)が提案され、実用化されている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【文献】米国特許第5689384号
【発明の概要】
【発明が解決しようとする課題】
【0005】
サーボシステムの中で、磁気サーボ方式によるサーボシステムでは、サーボパターンを磁気記録媒体の磁性層に形成し、このサーボパターンを磁気的に読み取って得られるサーボ信号により、データトラックのトラッキングが行われる。より詳しくは、次の通りである。
まずサーボ信号読み取り素子により、磁性層に形成されているサーボパターンを読み取り、サーボ信号を得る。次に、得られたサーボ信号に応じて、磁気記録再生装置内での磁気ヘッドの位置をコントロールして、磁気ヘッドをデータトラックに追従させる。これにより、磁気記録媒体にデータを記録または再生するために磁気記録再生装置内で磁気記録媒体を走行させる際、磁気記録媒体の位置が磁気ヘッドに対して変動しても、磁気ヘッドをデータトラックに追従させることができる。磁気記録媒体へより正確にデータを記録すること、および/または、磁気記録媒体に記録されているデータをより正確に再生すること、を可能とするためには、サーボシステムにおいて磁気ヘッドをデータトラックに追従させる精度(以下、「ヘッド位置決め精度」という。)を高めることが望ましい。
【0006】
ところで、磁気記録媒体は、塗布型と金属薄膜型の二種類に大別される。塗布型磁気記録媒体は、強磁性粉末および結合剤を含む磁性層を有する。塗布型磁気記録媒体(以下、単に「磁気記録媒体」と記載する。)の磁性層に使用される強磁性粉末としては各種強磁性粉末が提案されており、近年、高密度記録適性等の観点から、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末が注目を集めている。
【0007】
そこで、本発明の一態様は、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末を磁性層に含み、サーボシステムにおけるヘッド位置決め精度の向上が可能な磁気記録媒体を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の一態様は、
非磁性支持体と、強磁性粉末および結合剤を含む磁性層と、を有する磁気記録媒体であって、
上記強磁性粉末は、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選択され、かつ平均粒子サイズが5nm以上20nm以下であり、
上記磁性層は、サーボパターンを有し、
磁気力顕微鏡によって測定される上記磁気記録媒体の直流消磁状態の磁気クラスターの平均面積Sdcは、0.2×10nm以上5.0×10nm未満である、磁気記録媒体、
に関する。
【0009】
一態様では、上記Sdcと、磁気力顕微鏡によって測定される上記磁気記録媒体の交流消磁状態の磁気クラスターの平均面積Sacとの比(Sdc/Sac)は、0.8以上2.0以下であることができる。
【0010】
一態様では、上記磁気記録媒体は磁気テープであることができ、上記サーボパターンはタイミングベースサーボパターンであることができる。また、一態様では、上記タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状は、磁気テープの長手方向における理想形状からの位置ずれ幅の累積分布関数99.9%の値L99.9と上記累積分布関数0.1%の値L0.1との差分(L99.9-L0.1)が180nm以下である形状であることができる。
【0011】
一態様では、上記Sdcは、0.2×10nm以上0.3×10nm未満であることができる。
【0012】
本発明の一態様は、上記磁気記録媒体と、磁気ヘッドと、を含む磁気記録再生装置に関する。
【発明の効果】
【0013】
本発明の一態様によれば、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末を磁性層に含み、サーボシステムにおけるヘッド位置決め精度の向上が可能な磁気記録媒体を提供することができる。また、本発明の一態様によれば、かかる磁気記録媒体を含む磁気記録再生装置を提供することができる。
【図面の簡単な説明】
【0014】
図1】データバンドおよびサーボバンドの配置例を示す。
図2】LTO(Linear Tape-Open) Ultriumフォーマットテープのサーボパターン配置例を示す。
図3】サーボパターンのエッジ形状に関する角度αの説明図である。
図4】サーボパターンのエッジ形状に関する角度αの説明図である。
図5】サーボパターンのエッジ形状の一例を示す。
図6】サーボパターンの一例を示す。
図7】サーボパターンの一例を示す。
図8】サーボパターンの一例を示す。
【発明を実施するための形態】
【0015】
[磁気記録媒体]
本発明の一態様は、非磁性支持体と、強磁性粉末および結合剤を含む磁性層と、を有する磁気記録媒体であって、上記強磁性粉末は、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選択され、かつ平均粒子サイズが5nm以上20nm以下であり、上記磁性層は、サーボパターンを有し、磁気力顕微鏡によって測定される上記磁気記録媒体の直流消磁状態の磁気クラスターの平均面積Sdcは、0.2×10nm以上5.0×10nm未満である磁気記録媒体に関する。
【0016】
サーボパターンは、磁化領域であって、サーボライトヘッドにより磁性層の特定の領域を磁化することによって形成される。サーボライトヘッドにより磁化する領域の形状は、規格により定められている。サーボシステムにおけるヘッド位置決め精度は、サーボパターンが設計形状(例えば、詳細を後述する理想形状)により近い形状で形成されているほど向上させることができると考えられる。しかし、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選択される強磁性粉末を含む磁性層は、磁気記録媒体の強磁性粉末として従来使用されていた強磁性粉末(例えば六方晶バリウムフェライト粉末)を含む磁性層と比べて、一般に異方性磁界Hkが高い傾向がある。このことが、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末を含む磁性層に形成されるサーボパターンの形状が、設計形状からずれ易くなる一因と考えられる。
これに対し本発明者は鋭意検討を重ねた結果、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末として、5nm以上20nm以下の平均粒子サイズを有するものを使用し、かつSdcが0.2×10nm以上5.0×10nm未満となるように上記強磁性粉末の磁性層における存在状態を制御することによって、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末を含む磁性層を有する磁気記録媒体のサーボシステムにおけるヘッド位置決め精度を向上させることが可能となることを見出した。なお、Sdcに関して、特開2002-358625号公報には、直流消磁状態の磁気クラスターは、磁性体粒子が凝集し、あたかも1つの大きな磁性体として振舞う部分であり(同公報の段落0014参照)、記録の最小単位である(同公報の段落0019)と記載されている。これらの記載に基づけば、磁性層へのサーボパターン(磁化領域)の形成のし易さは、特開2002-358625号公報に、記録、即ち磁化の最小単位と記載されている直流消磁状態の磁気クラスターのサイズのみに依存すると予想され得る。しかし本発明者が検討を重ねる中で、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末を含む磁性層を有する磁気記録媒体に関して、サーボシステムにおけるヘッド位置決め精度には、直流消磁状態の磁気クラスターの平均面積Sdcに加えて、平均粒子サイズも影響を及ぼすことが判明した。この点は、従来知られていなかった、本発明者により見出された新たな知見である。そして本発明者は更に鋭意検討を重ねた結果、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末を磁性層に含む上記の本発明の一態様にかかる磁気記録媒体によって、サーボシステムにおけるヘッド位置決め精度の向上が可能となることを新たに見出すに至った。
【0017】
本発明および本明細書において、磁気記録媒体の直流消磁状態の磁気クラスターの平均面積Sdcおよび磁気記録媒体の交流消磁状態の磁気クラスターの平均面積Sdcとは、磁気力顕微鏡(Magnetic Force Microscope;MFM)を用いる測定によって、以下の方法により求められる値である。
Sdcは、以下の方法により求められる値である。
サンプルを印加磁界10kOe(1[kOe]=10/4π[A/m])で直流(Direct Current;DC)消磁した後、磁気力顕微鏡によって、直流消磁したサンプルの一辺5μmの正方形領域(5μm×5μm)における磁気力像を得る。公知の画像解析ソフトを用いて、得られた磁気力像のノイズ除去および穴埋め処理を行った後に磁気力像の面積を算出する。以上の操作を、磁性層表面の無作為に選択した異なる10箇所において得られた磁気力像について行い、磁気力像の面積の算術平均(平均面積)を算出する。こうして算出された平均面積をSdcとする。
ある磁気記録媒体についてSdcおよびSacを求める場合には、同じ磁気記録媒体から切り出したサンプルを2つ準備し、一方のサンプルを直流消磁してSdcを測定するために使用し、他方のサンプルを交流消磁してSdcを測定するために使用する。
Sacは、以下の方法により求められる値である。
磁気力顕微鏡によって、周波数60Hz(ヘルツ)の交流磁場中で消磁(交流(Alternating Current;AC)消磁)したサンプルの磁性層表面の一辺5μmの正方形領域(5μm×5μm)において磁気力像を得る。公知の画像解析ソフトを用いて、得られた磁気力像のノイズ除去および穴埋め処理を行った後に磁気力像の面積を算出する。以上の操作を、磁性層表面の無作為に選択した異なる10箇所において得られた磁気力像について行い、磁気力像の面積の算術平均(平均面積)を算出する。こうして算出された平均面積をSacとする。
また、Sdc/Sacは、以上により求められたSdcとSacとの比として算出する。
磁気力顕微鏡を用いて行う磁気力像の取得は、市販の、または公知の構成の磁気力顕微鏡を、周波数変調(Frequency Modulation;FM)モードで使用して行う。磁気力顕微鏡のプローブとしては、例えば、Nanoworld社製SSS-MFMR(公称曲率半径15nm)を用いることができる。磁気力顕微鏡観察時の磁性層表面とプローブ先端との間の距離は、20~50nmの範囲とする。また、画像解析ソフトとしては、市販の解析ソフト、または公知の演算式を組み込んだ解析ソフトを用いることができる。
【0018】
また、本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントするか、ディスプレイに表示する等して、粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズ(以下、「D」とも表記する。)とする。
また、後述する強磁性粉末の「粒子サイズ分布の変動係数」は、こうして得られた500個の粒子の粒子サイズの標準偏差σを平均粒子サイズDで除した値に100を乗じて求められる。即ち、粒子サイズの変動係数(%)=(σ/D)×100、により求められる。
上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している態様に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している態様も包含される。粒子との語が、粉末を表すために用いられることもある。
【0019】
粒子サイズ測定のために磁気テープから試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
【0020】
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不特定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
【0021】
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
【0022】
以下、上記磁気記録媒体について、更に詳細に説明する。以下において、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末を含む磁性層を有する磁気記録媒体についてのサーボシステムにおけるヘッド位置決め精度を、単に「サーボシステムにおけるヘッド位置決め精度」とも記載する。
【0023】
<強磁性粉末>
(平均粒子サイズ)
上記磁気記録媒体の磁性層に含まれる強磁性粉末は、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選択され、かつ平均粒子サイズが5nm以上20nm以下である。上記強磁性粉末の平均粒子サイズが5nm以上20nm以下であることは、サーボシステムにおけるヘッド位置決め精度の向上に寄与し得る。サーボシステムにおけるヘッド位置決め精度の更なる向上の観点から、上記平均粒子サイズは、6nm以上であることが好ましく、7nm以上であることがより好ましく、8nm以上であることが更に好ましく、9nm以上であることが一層好ましく、10nm以上であることがより一層好ましい。また、同様の観点から、上記平均粒子サイズは、19nm以下であることが好ましく、18nm以下であることがより好ましく、17nm以下であることが更に好ましく、16nm以下であることが一層好ましく、15nm以下であることがより一層好ましい。
【0024】
上記磁気記録媒体の磁性層には、上記範囲の平均粒子サイズを有する、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選択される強磁性粉末が含まれる。磁性層の強磁性粉末としては、六方晶ストロンチウムフェライト粉末のみが含まれていてもよく、ε-酸化鉄粉末のみが含まれていてもよく、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末が含まれていてもよい。以下、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末について、更に説明する。
【0025】
(六方晶ストロンチウムフェライト粉末)
本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいう。また、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
【0026】
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
【0027】
六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一態様では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
【0028】
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気記録媒体の走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
【0029】
上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。なお本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として一種の希土類原子のみ含んでもよく、二種以上の希土類原子を含んでもよい。二種以上の希土類原子を含む場合の上記バルク含有率とは、二種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、一種のみ用いてもよく、二種以上用いてもよい。二種以上用いられる場合の含有量または含有率とは、二種以上の合計についていうものとする。
【0030】
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか一種以上であればよい。繰り返し再生における再生出力の低下をより一層抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
【0031】
希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
【0032】
六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気記録媒体の磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mlを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mlを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
【0033】
磁気記録媒体に記録された情報を再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一態様では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。
【0034】
六方晶ストロンチウムフェライト粉末の保磁力Hcは、一態様では、2000Oe以上であることができる。六方晶ストロンチウムフェライト粉末の保磁力Hcは、例えば25kOe以下であることができる。ただし、25kOe超であってもよい。一般に、保磁力Hcが高い強磁性粉末ほど、異方性定数Kuが高く、熱的安定性の観点から好ましい傾向がある。強磁性粉末の保磁力Hcは、磁気特性を測定するための装置として公知の測定装置(例えば振動試料型磁力計等)により求めることができる。
【0035】
六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一態様では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一態様では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて一種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。
【0036】
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または二種以上の結晶構造が検出されるものであることができる。例えば一態様では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下をより一層抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一態様では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一態様では、ビスマス原子(Bi)を含まないものであることができる。
【0037】
上記磁気記録媒体が磁性層に六方晶ストロンチウムフェライト粉末を含む場合、磁性層の異方性磁界Hkは、14.0kOe以上であることが好ましく、16.0kOe以上であることがより好ましく、18.0kOe以上であることが更に好ましい。また、上記磁性層の異方性磁界Hkは、90.0kOe以下であることが好ましく、80.0kOe以下であることがより好ましく、70.0kOe以下であることが更に好ましい。
本発明および本明細書における異方性磁界Hkとは、磁化困難軸方向に磁界を印加したときに、磁化が飽和する磁界をいう。異方性磁界Hkは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。六方晶ストロンチウムフェライト粉末を含む磁性層において、磁性層の磁化困難軸方向は、面内方向である。
【0038】
(ε-酸化鉄粉末)
本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄型の結晶構造に帰属される場合、ε-酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気記録媒体の磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
【0039】
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
【0040】
磁気記録媒体に記録された情報を再生する際の再生出力を高める観点から、磁気記録媒体に含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一態様では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
【0041】
ε-酸化鉄粉末の保磁力Hcは、一態様では、2000Oe以上であることができる。ε-酸化鉄粉末の保磁力Hcは、例えば25kOe以下であることができる。ただし、25kOe超であってもよい。
【0042】
上記磁気記録媒体が磁性層にε-酸化鉄粉末を含む場合、磁性層の異方性磁界Hkは、18.0kOe以上であることが好ましく、30.0kOe以上であることがより好ましく、38.0kOe以上であることが更に好ましい。また、磁性層の異方性磁界Hkは、100.0kOe以下であることが好ましく、90.0kOe以下であることがより好ましく、75.0kOe以下であることが更に好ましい。ε-酸化鉄粉末を含む磁性層において、磁性層の磁化困難軸方向は、面内方向である。
【0043】
<磁気クラスターに関する物性>
(Sdc)
上記磁気記録媒体について、磁気力顕微鏡によって測定される磁気記録媒体の直流消磁状態の磁気クラスターの平均面積Sdcは、0.2×10nm以上5.0×10nm未満である。このことも、サーボシステムにおけるヘッド位置決め精度の向上に寄与し得る。サーボシステムにおけるヘッド位置決め精度の更なる向上の観点から、Sdcは、4.5×10nm以下であることが好ましく、4.0×10nm以下であることがより好ましく、3.5×10nm以下であることが更に好ましく、3.0×10nm以下であることが一層好ましく、2.5×10nm以下であることがより一層好ましく、2.0×10nm以下であることが更に一層好ましく、1.5×10nm以下であることがなお一層好ましく、1.0×10nm以下であることが更に一層好ましく、0.5×10nm以下であることが更により一層好ましく、0.3×10nm未満であることが更になおより一層好ましい。また、Sdcは、一態様では、0.3×10nm以上、0.5×10nm以上または1.0×10nm以上であることもできる。
【0044】
(Sdc/Sac)
上記磁気記録媒体において、上記Sdcと、磁気力顕微鏡によって測定される磁気記録媒体の交流消磁状態の磁気クラスターの平均面積Sacとの比(Sdc/Sac)は、0.8以上2.0以下であることが好ましい。上記の比(Sdc/Sac)も、磁性層における強磁性粉末の存在状態を示す指標となり得る値と考えられる。詳しくは、交流消磁状態の磁気記録媒体の磁性層では、各強磁性粒子はランダムな方向を向いて磁化の総和がゼロ付近になる。したがって、各強磁性粒子は、ほぼ一次粒子の状態で存在することができる。そのため交流消磁状態の磁気クラスターのサイズ(具体的には平均面積Sac)は、磁性層における強磁性粒子の凝集状態に依らない値ということができる。これに対し、直流消磁状態の磁気クラスターのサイズ(具体的には平均面積Sdc)は強磁性粒子の凝集体のサイズに相当し、磁性層における強磁性粒子の凝集の程度により異なり、強磁性粒子が凝集しているほど値が大きくなる傾向がある。したがって、SdcとSacとの違いが少ないほど、強磁性粉末を構成する強磁性粒子の凝集が抑制されていることを意味すると考えられる。そして、上記の比(Sdc/Sac)が0.8以上2.0以下の状態であることは、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末を含む磁性層を有する磁気記録媒体について、サーボシステムにおけるヘッド位置決め精度の更なる向上の観点から好ましい。サーボシステムにおけるヘッド位置決め精度のより一層の向上の観点から、上記の比(Sdc/Sac)は、1.8以下であることがより好ましく、1.6以下であることが更に好ましく、1.4以下であることが一層好ましく、1.2以下であることがより一層好ましく、1.0以下であることが更に一層好ましい。上記の比(Sdc/Sac)の下限は、既知の通り0.80である(例えば特開2004-103186号公報の段落0010参照)。なお、特開2004-103186号公報には、上記の比(Sdc/Sac)に関して記載されているものの、同公報には、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末を含む磁性層を有する磁気記録媒体に関して、サーボシステムにおけるヘッド位置決め精度に、上記の比(Sdc/Sac)が影響し得ることを示唆する記載はない。
【0045】
Sacは、例えばSdcについて上記した範囲であることができる。ただし、本発明において、かかる範囲にSacは限定されるものではない。
【0046】
Sacは、主に、磁性層形成のために使用する強磁性粉末の平均粒子サイズによって制御することができる。一方、Sdcは、主に、磁性層における強磁性粒子の凝集を抑制することによって制御することができる。凝集抑制のための手段としては、例えば以下の手段を挙げることができる。
磁性層形成用組成物調製時の分散条件を調整する。
磁性層に含まれる結合剤として、磁性層形成用組成物の調製に用いる溶媒との親和性が高い結合剤を使用する。
磁性層形成用組成物を非磁性支持体上に、任意に非磁性層を介して塗布した後に強磁性粒子の凝集を解砕するための処理を行う。
以上について、およびその他の制御手段については、例えば、特開2002-358625号公報の段落0023および同公報の実施例、ならびに特開2004-103186号公報の段落0012、0021、0028、0032および同公報の実施例を参照できる。
【0047】
また、強磁性粉末として、粒子サイズの均一性が高いものを使用することは、強磁性粉末を構成する強磁性粒子の凝集を抑制する観点から好ましい。この点に関して、粒子サイズの均一性の指標としては、粒子サイズ分布の変動係数を挙げることができる。粒子サイズの変動係数を算出する方法は、先に記載した通りである。上記磁気記録媒体の磁性層に含まれる強磁性粉末は、粒子サイズ分布の変動係数が40%以下であることが好ましく、38%以下であることがより好ましく、35%以下であることが更に好ましく、33%以下であることが一層好ましく、30%以下であることがより一層好ましく、28%以下であることがなお一層好ましい。また、上記粒子サイズ分布の変動係数は、例えば、4%以上、6%以上、8%以上、10%以上、12%以上、14%以上、16%以上、18%以上、または20%以上であることができる。ただし、上記で例示した値を下回ることも可能である。平均粒子サイズおよび粒子サイズ分布の変動係数は、強磁性粉末の製造条件等によって調整できる。一例として、強磁性粉末の製造工程中に加熱処理が含まれる場合、加熱処理の時間が長くなるほど、平均粒子サイズは大きくなる傾向があり、粒子サイズ分布の変動係数は大きくなる傾向がある。
【0048】
一態様では、主にSdcの値を小さくするために、磁性層表面の表面研磨処理を行うことができる。磁性層表面の表面研磨処理は、例えば、不織布、カミソリブレード等の磁性層表面のクリーニングのために通常使用されるクリーニング手段を用いて、磁気記録媒体の表面のクリーニング方法として公知の方法により磁性層表面を研磨することによって行うことができる。
【0049】
以下に、上記磁気記録媒体について、より詳細に説明する。
【0050】
<磁性層>
上記磁気記録媒体は塗布型磁気記録媒体であって、磁性層には、強磁性粉末とともに結合剤が含まれる。結合剤としては、一種以上の樹脂が用いられる。樹脂は、ホモポリマーであってもコポリマー(共重合体)であってもよい。磁性層に含まれる結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選択したものを単独で用いることができ、または複数の樹脂を混合して用いることができる。これらの中で好ましいものは、ポリウレタン樹脂、アクリル樹脂、セルロース樹脂および塩化ビニル樹脂である。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010-24113号公報の段落0029~0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10000以上200000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって測定された値をポリスチレン換算して求められる値である。測定条件としては、下記条件を挙げることができる。後述の実施例に示す重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
【0051】
また、結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一態様では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一態様では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。磁性層形成工程の中で硬化反応が進行することにより、硬化剤の少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。磁性層形成用組成物の硬化剤の含有量は、結合剤100.0質量部に対して例えば0~80.0質量部であることができ、50.0~80.0質量部であることが好ましい。
【0052】
(添加剤)
磁性層には、強磁性粉末および結合剤が含まれ、必要に応じて一種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。例えば、潤滑剤については、特開2016-126817号公報の段落0030~0033、0035および0036を参照できる。後述する非磁性層に潤滑剤が含まれていてもよい。非磁性層に含まれ得る潤滑剤については、特開2016-126817号公報の段落0030、0031および0034~0036を参照できる。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤を非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012-133837号公報の段落0061を参照できる。また、磁性層に含まれ得る非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(例えば非磁性コロイド粒子等)等が挙げられる。添加剤は、所望の性質に応じて市販品を適宜選択して、または公知の方法で製造して、任意の量で使用することができる。
【0053】
<非磁性層>
上記磁気記録媒体は、一態様では、非磁性支持体上に直接磁性層を有することができる。また、一態様では、上記磁気記録媒体は、非磁性支持体と磁性層との間に、非磁性粉末と結合剤とを含む非磁性層を有することもできる。
【0054】
非磁性層に使用される非磁性粉末は、無機物質の粉末(無機粉末)でも有機物質の粉末(有機粉末)でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
【0055】
非磁性層の結合剤、添加剤等のその他詳細は、塗布型磁気記録媒体の非磁性層に関する公知技術が適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、塗布型磁気記録媒体の磁性層に関する公知技術も適用できる。
【0056】
本発明および本明細書における「非磁性層」には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が100Oe以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が100Oe以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
【0057】
<非磁性支持体>
非磁性支持体(以下、単に「支持体」とも記載する。)としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、およびポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、熱処理等を行ってもよい。
【0058】
<バックコート層>
上記磁気記録媒体は、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末および結合剤を含むバックコート層を有することもでき、有さなくてもよい。バックコート層には、カーボンブラックおよび無機粉末の一方または両方が含有されていることが好ましい。バックコート層に含まれる結合剤、任意に含まれ得る各種添加剤については、塗布型磁気記録媒体のバックコート層に関する公知技術を適用することができ、塗布型磁気記録媒体の磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
【0059】
<非磁性支持体および各層の厚み>
非磁性支持体の厚みは、例えば3.0~80.0μmであり、3.0~20.0μmであることが好ましく、3.0~10.0μmであることがより好ましい。
【0060】
磁性層の厚みは、用いる磁気ヘッドの飽和磁化量、ヘッドギャップ長、記録信号の帯域等により最適化することができ、一般には10nm~150nmであり、高密度記録化の観点から、好ましくは20nm~120nmであり、更に好ましくは30nm~100nmである。磁性層をより薄く形成するほど、Sdcの値はより小さくなる傾向がある。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する二層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。二層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
【0061】
非磁性層の厚みは、例えば0.05~3.0μmであり、0.1~2.0μmであることが好ましく、0.1~1.5μmであることが更に好ましい。
【0062】
バックコート層の厚みは、0.9μm以下であることが好ましく、0.1~0.7μmであることがより好ましい。
【0063】
上記の各種厚みは、磁気記録媒体の厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型透過電子顕微鏡(Scanning Transmission Electron Microscope;STEM)により断面観察を行い、ここで無作為に選択した10箇所について得られた厚みの値の算術平均として求めるものとする。厚みの測定方法の具体例については、後述の実施例における厚みの測定方法に関する記載を参照できる。
【0064】
<製造工程>
(サーボパターンが形成される磁気記録媒体の製造工程)
磁性層、非磁性層またはバックコート層を形成するための組成物を製造する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含む。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。各種成分は、どの工程の最初または途中で添加してもかまわない。また、個々の成分を2つ以上の工程で分割して添加してもかまわない。上記磁気記録媒体を製造するためには、塗布型磁気記録媒体に関する公知の製造技術を一部または全部の工程に用いることができる。例えば、混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつものを使用することが好ましい。これらの混練処理の詳細については、特開平1-106338号公報および特開平1-79274号公報を参照できる。また、各層形成用の組成物を分散するために、分散ビーズとしてガラスビーズを用いることができる。また、分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズも好適である。これら分散ビーズの粒径(ビーズ径)と充填率は最適化して用いることができる。分散機は公知のものを使用することができる。各層形成用組成物を、塗布工程に付す前に公知の方法によってろ過してもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
【0065】
磁性層は、磁性層形成用組成物を、例えば、非磁性支持体上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。配向処理を行う態様では、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、配向ゾーンにおいて塗布層に対して配向処理が行われる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。バックコート層は、バックコート層形成用組成物を、非磁性支持体の磁性層を有する(または磁性層が追って設けられる)側とは反対側に塗布することにより形成することができる。
各層形成用組成物の塗布が行われた後、任意の段階で、カレンダ処理を施すことができる。カレンダ処理の条件を強化するほど、Sdcの値は小さくなる傾向がある。カレンダ処理の条件としては、カレンダロールの種類、カレンダ圧力、カレンダ温度(カレンダロールの表面温度)、カレンダ処理の回数等を挙げることができる。カレンダ圧力は、例えば200~500kN/m、好ましくは250~350kN/mとすることができ、カレンダ温度は、例えば70~120℃、好ましくは80~100℃とすることができ、カレンダ処理の回数は、例えば1~8回とすることができる。また、カレンダロールとして表面が硬いロールを使用するほど、磁性層表面は平滑化する傾向がある。
また、磁気記録媒体の製造方法の詳細については、例えば特開2010-24113号公報の段落0051~0057も参照できる。
【0066】
(サーボパターンの形成)
上記のように製造された磁気記録媒体には、磁気記録再生装置における磁気ヘッドのトラッキング制御、磁気テープの走行速度の制御等を可能とするために、公知の方法によってサーボパターンを形成することができる。「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。上記磁気記録媒体は、テープ状の磁気記録媒体(磁気テープ)であってもよく、ディスク状の磁気記録媒体(磁気ディスク)であってもよい。以下では、磁気テープを例にサーボパターンの形成について説明する。
【0067】
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
【0068】
ECMA(European Computer Manufacturers Association)―319に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。本発明および本明細書において、「タイミングベースサーボパターン」とは、タイミングベースサーボ方式のサーボシステムにおけるヘッドトラッキングを可能とするサーボパターンをいう。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
【0069】
サーボバンドは、磁気テープの長手方向に連続するサーボ信号により構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
【0070】
また、一態様では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
【0071】
なお、サーボバンドを一意に特定する方法には、ECMA―319に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
【0072】
また、各サーボバンドには、ECMA―319に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
【0073】
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
【0074】
サーボ信号記録用(サーボパターン形成用)ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。また、サーボライトヘッドとしては、例えば、漏れ磁界が1800~5000Oe、好ましくは2500~5000Oeの範囲のサーボライトヘッドを用いることができる。
【0075】
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
【0076】
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。なお、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
【0077】
上記磁気記録媒体は、一態様では、磁性層にタイミングベースサーボパターンを有する磁気テープであることができる。タイミングベースサーボパターンは、サーボライトヘッドにより、磁性層に二種以上の異なる形状の複数のサーボパターンとして形成される。一例では、二種以上の異なる形状の複数のサーボパターンが、同種の形状の複数のサーボパターンごとに連続して一定の間隔をもって配置される。他の一例では、異なる種類のサーボパターンが交互に配置される。なおサーボパターンが同種の形状であることに関しては、サーボパターンのエッジ形状の位置ずれは不問とする。以下では、タイミングベースサーボパターンを、単にサーボパターンとも記載する。本発明および本明細書において、タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状は、データ(情報)を記録する際の磁気テープ走行方向(以下、単に「走行方向」とも記載する。)に対して下流側に位置するエッジ(端辺)の形状とする。
【0078】
差分(L99.9-L0.1
先に説明したように、サーボシステムにおけるヘッド位置決め精度は、サーボパターンが設計形状により近い形状で形成されているほど、向上させることができると考えられる。以下に詳述する方法により求められる差分(L99.9-L0.1)は、タイミングベースサーボパターンが設計形状により近い形状で形成されていることの指標となり得る値である。サーボシステムにおけるヘッド位置決め精度の更なる向上の観点からは、差分(L99.9-L0.1)は、180nm以下であることが好ましく、170nm以下であることがより好ましく、160nm以下であることが更に好ましく、150nm以下であることが一層好ましい。また、差分(L99.9-L0.1)は、例えば、50nm以上、60nm以上、70nm以上、80nm以上、90nm以上または100nm以上であることができる。ただし、差分(L99.9-L0.1)の値が小さいほど、サーボシステムにおけるヘッド位置決め精度の向上の観点から好ましいと考えられるため、差分(L99.9-L0.1)は上記で例示した下限を下回ってもよい。六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末を含む磁性層を有する磁気テープにおいて、タイミングベースサーボパターンについて求められる差分(L99.9-L0.1)の値は、強磁性粉末の平均粒子サイズおよびSdc等によって制御することができる。
【0079】
以下に、本発明および本明細書における、タイミングベースサーボパターンの磁気力顕微鏡観察により特定されるエッジ形状、このエッジ形状の磁気テープの長手方向における理想形状からの位置ずれ幅の累積分布関数99.9%の値L99.9と上記累積分布関数0.1%の値L0.1との差分(L99.9-L0.1)、および理想形状について説明する。
以下では、磁気テープの幅方向の一方から他方に向かって連続的に延び、磁気テープの幅方向に対して角度αで傾斜した直線状サーボパターンを主に例に取り説明する。上記の角度αとは、データ(情報)を記録する際の磁気テープの走行方向に対して下流側に位置するサーボパターンのエッジのテープ幅方向の端部2箇所を結ぶ線分と磁気テープの幅方向とのなす角度をいうものとする。この点を含め、以下に更に説明する。
【0080】
例えば、磁気テープ装置の記録方式として広く用いられているリニアスキャン方式に適用される磁気テープには、通常、磁性層に、サーボパターンが形成された領域(「サーボバンド」と呼ばれる)が磁気テープの長手方向に沿って複数存在する。隣接する2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。データの記録はデータバンド上で行われ、各データバンドには複数のデータトラックが長手方向に沿って形成される。図1に、データバンドおよびサーボバンドの配置例を示す。図1中、磁気テープMTの磁性層には、複数のサーボバンド1が、ガイドバンド3に挟まれて配置されている。2本のサーボバンドに挟まれた複数の領域2が、データバンドである。サーボパターンは、磁化領域であって、サーボライトヘッドにより磁性層の特定の領域を磁化することによって形成される。サーボライトヘッドにより磁化する領域(サーボパターンを形成する位置)は規格により定められている。例えば業界標準規格であるLTO Ultriumフォーマットテープには、磁気テープ製造時に、図2に示すようにテープ幅方向に対して傾斜した複数のサーボパターンが、サーボバンド上に形成される。詳しくは、図2中、サーボバンド1上のサーボフレームSFは、サーボサブフレーム1(SSF1)およびサーボサブフレーム2(SSF2)から構成される。サーボサブフレーム1は、Aバースト(図2中、符号A)およびBバースト(図2中、符号B)から構成される。AバーストはサーボパターンA1~A5から構成され、BバーストはサーボパターンB1~B5から構成される。一方、サーボサブフレーム2は、Cバースト(図2中、符号C)およびDバースト(図2中、符号D)から構成される。CバーストはサーボパターンC1~C4から構成され、DバーストはサーボパターンD1~D4から構成される。このような18本のサーボパターンが5本と4本のセットで、5、5、4、4、の配列で並べられたサブフレームに配置され、サーボフレームを識別するために用いられる。図2には、1つのサーボフレームを示したが、各サーボバンドには、複数のサーボフレームが走行方向に配置される。図2中、矢印は走行方向を示している。矢印の進行方向側が上流側であり、反対側が下流側である。
【0081】
図3および図4は、角度αの説明図である。図2に示すサーボパターンにおいて、サーボパターンA1~A5、C1~C4のように走行方向の上流側に向けて傾斜しているサーボパターンについては、下流側のエッジEの端部2箇所を結ぶ線分(図3中、破線L1)とテープ幅方向(図3中、破線L2)とのなす角度を角度αとする。一方、サーボパターンB1~B5、D1~D4のように走行方向の下流側に向けて傾斜しているサーボパターンについては、下流側のエッジEの端部2箇所を結ぶ線分(図4中、破線L1)とテープ幅方向(図4中、破線L2)とのなす角度を角度αとする。この角度αは、一般にアジマス角と呼ばれ、サーボバンド上に磁化領域(サーボパターン)を形成する際のサーボライトヘッドの設定により定められる。
【0082】
サーボバンド上に磁化領域(サーボパターン)を形成する際、サーボパターンが設計形状通りに理想的に形成されたならば、上記の磁気テープ幅方向に対して角度αで傾斜したサーボパターンのエッジ形状は、上記のエッジ端部2箇所を結ぶ線分(図3図4中、破線L1)の形状と一致する。即ち直線になる。したがって、エッジ上の各箇所において、磁気テープの長手方向における理想形状からの位置ずれ幅(以下、単に「位置ずれ幅」とも記載する。)はゼロになる。他方、図5に一例を示すようにサーボパターンのエッジ形状が理想形状からずれてしまう場合がある。上記の差分(L99.9-L0.1)は、サーボパターンのエッジ各位置で理想形状からの位置ずれ幅が小さく、かつエッジ各箇所での位置ずれ幅の値のばらつきが小さいことの指標となり得る値である。差分(L99.9-L0.1)は、以下の方法により求められる値である。
サーボパターンが形成された磁気テープの磁性層表面を磁気力顕微鏡(Magnetic Force Microscope;MFM)で観察する。測定範囲は、サーボパターンが5本含まれる範囲とする。例えば、LTO Ultriumフォーマットテープでは、測定範囲を90μm×90μmとすることにより、AバーストまたはBバーストの5本のサーボパターンを観察することができる。測定範囲を100nmピッチで測定(粗測定)することによりサーボパターン(磁化領域)を抽出する。なお本発明および本明細書において、磁性層表面との語は、磁気記録媒体の磁性層側表面と同義で用いるものとする。
その後、サーボパターンの、走行方向に対して下流側に位置するエッジにおいて磁化領域と非磁化領域との境界を検出するために、上記境界近傍において5nmピッチで測定を行い磁気プロファイルを得る。得られた磁気プロファイルが、磁気テープの幅方向に対して角度α傾斜している場合には、解析ソフトにより磁気テープ幅方向に沿うように(α=0°となるように)回転補正する。その後、解析ソフトにより、5nmピッチで測定された各プロファイルのピーク値の位置座標を算出する。このピーク値の位置座標は、磁化領域と非磁化領域との境界の位置を示している。位置座標は、例えば、走行方向をx座標、幅方向をy座標とするxy座標系により特定される。
理想形状が直線であって直線上のある位置の位置座標が(x,y)=(a,b)である場合を例に取ると、実際に求められたエッジ形状(上記境界の位置座標)が理想形状と一致していたならば、算出される位置座標は、(x,y)=(a,b)となる。この場合、位置ずれ幅はゼロである。これに対し、実際に求められたエッジ形状が理想形状からずれていたならば、上記境界のy=bの位置のx座標は、x=a+cまたはx=a―cとなる。x=a+cとは、例えば走行方向に対して上流側に幅cずれている場合であり、x=a-cとは、例えば走行方向に対して下流側に幅c(即ち上流側を基準にすると-c)ずれている場合である。ここでcが、位置ずれ幅である。即ち、理想形状からのx座標の位置ずれ幅の絶対値が、磁気テープの長手方向における理想形状からの位置ずれ幅である。こうして、5nmピッチでの測定により求められた走行方向の下流側のエッジ各箇所での位置ずれ幅を求める。
各サーボパターンについて得られた値から、解析ソフトにより累積分布関数を得る。得られた累積分布関数から、累積分布関数99.9%の値L99.9と0.1%の値L0.1とを求め、求められた値から各サーボパターンについて差分(L99.9-L0.1)を求める。
以上の測定を、異なる3箇所の測定範囲で行う(測定数N=3)。
各サーボパターンについて得られた差分(L99.9-L0.1)の算術平均を、磁気テープについての上記の差分(L99.9-L0.1)と定義する。
【0083】
本発明および本明細書におけるサーボパターンのエッジ形状の「理想形状」とは、位置ずれなくサーボパターンが形成された場合のエッジ形状をいう。例えば、一態様では、上記サーボパターンは、磁気テープの幅方向の一方から他方に向かって連続的または不連続に延びる直線状サーボパターンである。なおサーボパターンについての「直線状」とは、エッジ形状の位置ずれは不問として、パターン形状として曲線部分を含まないことをいう。「連続的」とは、傾斜角度の変曲点なく、かつ途切れることなく、テープ幅方向の一方から他方に向かって延びることをいう。磁気テープの幅方向の一方から他方に向かって連続的に延びるサーボパターンの一例は、図2に示したサーボパターンである。これに対し、「不連続」とは、傾斜角度の変曲点が1つ以上あるか、および/または、1箇所以上で途切れて延びていることをいう。傾斜角度の変曲点はあるが途切れずに延びる形状は、いわゆる折れ線形状である。傾斜角度の変曲点が1つで途切れることなくテープ幅方向の一方から他方に向かって延びる不連続なサーボパターンの一例は、図6に示すサーボパターンである。一方、傾斜角度の変曲点なく1箇所で途切れてテープ幅方向の一方から他方に向かって延びる不連続なサーボパターンの一例は、図7に示すサーボパターンである。また、傾斜角度の変曲点が1つで、1箇所で途切れてテープ幅方向の一方から他方に向かって延びる不連続なサーボパターンの一例は、図8に示すサーボパターンである。
テープ幅方向の一方から他方に向かって連続的に延びる直線状サーボパターンについて、エッジ形状の「理想形状」とは、直線状のサーボパターンの走行方向の下流側のエッジの端部2箇所を結ぶ線分の形状(直線形状)である。例えば図2に示した直線状サーボパターンについては、図3または図4中のL1で示した直線の形状である。一方、不連続に延びる直線状サーボパターンについては、理想形状とは、傾斜角度の変曲点がある形状については、傾斜角度が同じ部分の一端から他端を結ぶ線分の形状(直線形状)である。また、1箇所以上で途切れて延びている形状については、連続的に延びている各部分のそれぞれの一端から他端を結ぶ線分の形状(直線形状)である。例えば、図6に示すサーボパターンについては、e1とe2とを結ぶ線分、およびe2とe3とを結ぶ線分である。図7に示すサーボパターンについては、e4とe5とを結ぶ線分、およびe6とe7とを結ぶ線分である。図8に示すサーボパターンについては、e8とe9とを結ぶ線分、およびe10とe11とを結ぶ線分である。
【0084】
上記では、直線状サーボパターンを例に説明した。ただし、サーボパターンはエッジ形状の理想形状が曲線形状のサーボパターンであってもよい。例えば走行方向に対して下流側のエッジ形状が理想的には部分円弧形状のサーボパターンについては、この部分円弧の位置座標に対して、走行方向に対して下流側のエッジ形状の磁気力顕微鏡により求められる位置座標により求められる位置ずれ幅から、差分(L99.9-L0.1)を求めることができる。
【0085】
以上の測定で用いる磁気力顕微鏡としては、市販の、または公知の構成の磁気力顕微鏡を周波数変調(Frequency Modulation;FM)モードで用いる。磁気力顕微鏡のプローブとしては、例えば、Nanoworld社製SSS-MFMR(公称曲率半径15nm)を用いることができる。磁気力顕微鏡観察時の磁性層表面とプローブ先端との間の距離は、20~50nmの範囲とする。
また、上記解析ソフトとしては、市販の解析ソフト、または公知の演算式を組み込んだ解析ソフトを用いることができる。
【0086】
上記磁気記録媒体が磁気テープの場合、磁気テープは、通常、磁気テープカートリッジに収容され、磁気テープカートリッジが磁気記録再生装置に装着される。
【0087】
磁気テープカートリッジでは、一般に、カートリッジ本体内部に磁気テープがリールに巻き取られた状態で収容されている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気記録再生装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気記録再生装置側のリールに巻き取られる。磁気テープカートリッジから巻き取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジ側のリール(供給リール)と磁気記録再生装置側のリール(巻き取りリール)との間で、磁気テープの送り出しと巻き取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻き取りリールの両リールが、磁気テープカートリッジ内部に具備されている。磁気テープカートリッジは、単リール型および双リール型のいずれの磁気テープカートリッジであってもよい。磁気テープカートリッジのその他の詳細については、公知技術を適用することができる。
【0088】
[磁気記録再生装置]
本発明の一態様は、上記磁気記録媒体と、磁気ヘッドと、を含む磁気記録再生装置に関する。
【0089】
本発明および本明細書において、「磁気記録再生装置」とは、磁気記録媒体へのデータの記録および磁気記録媒体に記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気記録再生装置は、摺動型の磁気記録再生装置であることができる。摺動型の磁気記録再生装置とは、磁気記録媒体へのデータの記録および/または記録されたデータの再生を行う際に磁性層表面と磁気ヘッドとが接触し摺動する装置をいう。
【0090】
上記磁気記録再生装置に含まれる磁気ヘッドは、磁気記録媒体へのデータの記録を行うことができる記録ヘッドであることができ、磁気記録媒体に記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気記録再生装置は、一態様では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一態様では、上記磁気記録再生装置に含まれる磁気ヘッドは、データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)の両方を1つの磁気ヘッドに備えた構成を有することもできる。以下において、データの記録のための素子および再生のための素子を、「データ用素子」と総称する。再生ヘッドとしては、磁気テープに記録されたデータを感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、AMR(Anisotropic Magnetoresistive)ヘッド、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等の公知の各種MRヘッドを用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気記録再生装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、隣接する2つのサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。
【0091】
上記磁気記録再生装置において、磁気記録媒体へのデータの記録および/または磁気記録媒体に記録されたデータの再生は、磁気記録媒体の磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気記録再生装置は、本発明の一態様にかかる磁気記録媒体を含むものであればよく、その他については公知技術を適用することができる。
【0092】
例えば、データの記録および/または記録されたデータの再生の際には、まず、サーボ信号を用いたトラッキングが行われる。すなわち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御される。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
【実施例
【0093】
以下に、本発明を実施例により更に具体的に説明する。ただし本発明は、実施例に示す態様に限定されるものではない。以下に記載の「部」および「%」は、特記しない限り、「質量部」および「質量%」を示す。「eq」は、当量( equivalent)であり、SI単位に換算不可の単位である。また、下記工程および評価は、特記しない限り、23℃±1℃の大気中で行った。
【0094】
後述の表中、「SR」は六方晶ストロンチウムフェライト粉末を示し、「ε」はε-酸化鉄粉末を示し、「BF」は六方晶バリウムフェライト粉末を示す。
後述の表1中の各強磁性粉末の平均粒子サイズおよび粒子サイズ分布の変動係数は、各磁気記録媒体サンプルの磁性層から採取した試料粉末について、先に記載の方法により求められた値である。
また、表1中の各強磁性粉末の保磁力Hcは、振動試料型磁力計(東英工業社製)を用い、印加磁界15kOeで測定された値である。
表1中の各磁気記録媒体の磁性層の異方性磁界Hkは、振動試料型磁力計TM-VSM5050-SMS型(玉川製作所製)を用いて測定された値である。
【0095】
[磁気記録媒体No.1]
以下の方法により磁気記録媒体(磁気テープ)No.1を作製した。
【0096】
<磁性層形成用組成物の処方>
強磁性粉末(六方晶バリウムフェライト粉末) 100.0部
ポリウレタン樹脂 12.2部
重量平均分子量:10000
スルホン酸基含有量:0.5meq/g
ダイヤモンド粒子 1.85部
平均粒子サイズ:50nm
カーボンブラック(旭カーボン社製#55) 0.5部
平均粒子サイズ:0.015μm
ステアリン酸 0.5部
ブチルステアレート 2.1部
メチルエチルケトン 180.0部
シクロヘキサノン 100.0部
【0097】
<非磁性層形成用組成物の処方>
非磁性粉末 α-酸化鉄 103.0部
平均粒子サイズ:0.09μm
BET(Brunauer-Emmett-Teller)比表面積:50m/g
pH:7
DBP(Dibutyl phthalate)吸油量:27~38g/100g
表面処理剤:Al(8質量%)
カーボンブラック(コロンビアンカーボン社製コンダクテックスSC-U)25.0部
塩化ビニル共重合体(カネカ社製MR104) 12.9部
ポリウレタン樹脂(東洋紡社製UR8200) 5.2部
フェニルホスホン酸 3.5部
ブチルステアレート 1.1部
ステアリン酸 2.1部
メチルエチルケトン 205.0部
シクロヘキサノン 135.0部
【0098】
<バックコート層形成用組成物の処方>
非磁性粉末 α-酸化鉄 80.0部
平均粒子サイズ:0.15μm
平均針状比:7
BET比表面積:52m2/g
カーボンブラック 20.0部
平均粒子サイズ:20nm
塩化ビニル共重合体 13.0部
スルホン酸基含有ポリウレタン樹脂 6.0部
フェニルホスホン酸 3.0部
シクロヘキサノン 155.0部
メチルエチルケトン 155.0部
ステアリン酸 3.0部
ブチルステアレート 3.0部
ポリイソシアネート 5.0部
シクロヘキサノン 200.0部
【0099】
<磁気テープの作製>
磁性層形成用組成物および非磁性層形成用組成物のそれぞれについて、上記の各種成分をニーダで混練した。粒径1.0mmのジルコニアビーズを分散部の容積に対し65体積%充填する量を入れた横型サンドミルにポンプで通液し、2000rpm(revolution per minute)で120分間(実質的に分散部に滞留した時間)分散させた。磁性層形成用組成物に関しては、得られた分散液を1μmの孔径を有するフィルタを用いてろ過し、磁性層形成用組成物を得た。非磁性層形成用組成物に関しては、上記分散により得られた分散液を、ポリイソシアネートを6.5部、更にメチルエチルケトンを7.0部加えた後に、1μmの孔径を有するフィルタを用いてろ過し、非磁性層形成用組成物を得た。
バックコート層形成用組成物は、以下の方法により調製した。潤滑剤(ステアリン酸およびブチルステアレート)、ポリイソシアネートならびにシクロヘキサノン200.0部を除いた各成分をオープンニーダにより混練および希釈した後、横型ビーズミル分散機により、粒径1.0mmのジルコニアビーズを用い、ビーズ充填率80体積%、ローター先端周速10m/秒で、1パスあたりの滞留時間を2分とし、12パスの分散処理を行った。その後、残りの成分を分散液に添加し、ディゾルバーで撹拌した。得られた分散液を1μmの孔径を有するフィルタを用いてろ過し、バックコート層形成用組成物を得た。
その後、厚み5.0μmの二軸延伸ポリエチレンナフタレート製非磁性支持体の一方の表面上に、乾燥後の厚みが0.1μmになるように非磁性層形成用組成物を塗布し乾燥させることにより、非磁性層を形成した。
その後、上記非磁性層上に磁性層形成用組成物を塗布して塗布層を形成した。この塗布層が未乾状態にあるうちに、磁場強度0.6Tの磁場を、塗布層の表面に対し垂直方向に印加し垂直配向処理を行った後、乾燥させることにより、磁性層を形成した。
その後、上記非磁性支持体の反対の表面上に、乾燥後の厚みが0.4μmになるようにバックコート層形成用組成物を塗布し乾燥させてバックコート層を形成した。
その後、金属ロールのみから構成されるカレンダで、カレンダ温度(カレンダロールの表面温度)95℃かつ線圧294kN/m(0.98kN/m=1kg/cm)にて表面平滑化処理(カレンダ処理)を1回行った。その後、雰囲気温度70℃の環境で36時間熱処理を行った。熱処理後、1/2インチ(1インチ=0.0254メートル)幅にスリットし、スリット品の送り出しおよび巻き取り装置を持った装置に不織布とカミソリブレードが磁性層表面に押し当たるように取り付けたテープクリーニング装置によって磁性層表面の表面研磨処理を行った。
得られた磁気テープの磁性層を消磁した状態で、サーボライターに搭載されたサーボライトヘッド(漏れ磁界:3100Oe)によって、LTO Ultriumフォーマットにしたがう配置および形状のサーボパターン(タイミングベースサーボパターン)を磁性層に形成した。これにより、磁性層に、LTO Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを有する磁気テープを得た。
【0100】
[磁気記録媒体サンプルNo.2]
強磁性粉末を、六方晶バリウムフェライト粉末から以下に記載の方法により作製された六方晶ストロンチウムフェライト粉末に変更した点以外は上記の磁気記録媒体No.1の作製と同様にして、磁気記録媒体No.2を得た。
<強磁性粉末(六方晶ストロンチウムフェライト粉末)の作製>
SrCOを1621g、HBOを637g、Feを1106g、Al(OH)を27g、BaCOを77g、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1400℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて607℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと1%濃度の酢酸水溶液を800ml加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
【0101】
[磁気記録媒体No.3]
強磁性粉末を作製する工程において下記の点を変更した以外は上記の磁気記録媒体サンプルNo.2の作製と同様にして、磁気記録媒体サンプルNo.3を作製した。
強磁性粉末を作製する工程において、SrCOを1611g、HBOを637g、Feを1094g、Al(OH)を113g、BaCOを24g、CaCOを38g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た点ならびに結晶化温度を616℃に変更した点以外は同様にして、六方晶ストロンチウムフェライト粉末を得た。
【0102】
[磁気記録媒体No.4]
強磁性粉末を作製する工程において結晶化温度を619℃に変更した点以外は上記の磁気記録媒体サンプルNo.3の作製と同様にして、磁気記録媒体サンプルNo.4を作製した。
【0103】
[磁気記録媒体No.5]
強磁性粉末を作製する工程において下記の点を変更した以外は上記の磁気記録媒体サンプルNo.2の作製と同様にして、磁気記録媒体サンプルNo.5を作製した。
強磁性粉末を作製する工程において、SrCOを1714g、HBOを657g、Feを1326g、Al(OH)を50g、CaCOを242g、ZnOを12gおよびNbを20g秤量し、ミキサーにて混合し原料混合物を得た点ならびに結晶化温度を647℃に変更した点以外は同様にして、六方晶ストロンチウムフェライト粉末を得た。
【0104】
[磁気記録媒体No.6]
強磁性粉末を作製する工程において結晶化温度を652℃に変更した点以外は上記の磁気記録媒体サンプルNo.5の作製と同様にして、磁気記録媒体サンプルNo.6を作製した。
【0105】
[磁気記録媒体No.7]
強磁性粉末を作製する工程において下記の点を変更した以外は磁気記録媒体サンプルNo.2の作製と同様にして、磁気記録媒体サンプルNo.7を作製した。
強磁性粉末を作製する工程において、デカンテーションを繰り返して洗浄したスラリーを10%濃度の酢酸水溶液で希釈し、超音波分散処理を行い、再分散し、更に遠心分離を行うことで上澄みを除去する工程を3回繰り返した後、炉内温度110℃の加熱炉内で6時間乾燥させた点以外は同様にして、六方晶ストロンチウムフェライト粉末を得た。
【0106】
[磁気記録媒体サンプルNo.8]
強磁性粉末を作製する工程において上澄みを除去する工程の回数を2回に変更した点以外は上記の磁気記録媒体サンプルNo.7の作製と同様にして、磁気記録媒体サンプルNo.8を作製した。
【0107】
[磁気記録媒体サンプルNo.9]
磁性層に使用する強磁性粉末100.0部として、磁気記録媒体サンプルNo.2に使用した強磁性粉末と同様の方法で作製された強磁性粉末90.0部と磁気記録媒体サンプルNo.6に使用した強磁性粉末と同様の方法で作製された強磁性粉末10.0部とを混合した強磁性粉末を使用した点以外は上記の磁気記録媒体サンプルNo.2の作製と同様にして、磁気記録媒体サンプルNo.9を作製した。
【0108】
[磁気記録媒体サンプルNo.10]
磁性層に使用する強磁性粉末100.0部として、磁気記録媒体サンプルNo.2に使用した強磁性粉末と同様の方法で作製された強磁性粉末80.0部と磁気記録媒体サンプルNo.6に使用した強磁性粉末と同様の方法で作製された強磁性粉末20.0部とを混合した強磁性粉末を使用した点以外は上記の磁気記録媒体サンプルNo.9の作製と同様にして、磁気記録媒体サンプルNo.10を作製した。
【0109】
[磁気記録媒体サンプルNo.11~14]
磁性層形成時の磁性層形成用組成物の塗布量を変更した以外は上記の磁気記録媒体サンプルNo.2の作製と同様にして、磁気記録媒体サンプルNo.11~14を作製した。
【0110】
[磁気記録媒体サンプルNo.15]
強磁性粉末を作製する工程において結晶化温度を603℃に変更した点以外は上記の磁気記録媒体サンプルNo.2の作製と同様にして、磁気記録媒体サンプルNo.15を作製した。
【0111】
[磁気記録媒体サンプルNo.16]
磁性層形成用組成物を得る工程における分散時間を100分間に変更した点以外は上記の磁気記録媒体サンプルNo.2の作製と同様にして、磁気記録媒体サンプルNo.16を作製した。
【0112】
[磁気記録媒体サンプルNo.17]
磁性層形成用組成物を得る工程における分散時間を85分間に変更した点以外は上記の磁気記録媒体サンプルNo.2の作製と同様にして、磁気記録媒体サンプルNo.17を作製した。
【0113】
[磁気記録媒体サンプルNo.18]
磁性層形成用組成物を得る工程における分散時間を100分間に変更した点およびスリット後に磁性層表面に表面研磨処理を施さなかった点以外は上記の磁気記録媒体サンプルNo.2の作製と同様にして、磁気記録媒体サンプルNo.18を作製した。
【0114】
[磁気記録媒体サンプルNo.19]
強磁性粉末として、以下の方法で作製した強磁性粉末(ε-酸化鉄粉末)を使用して、磁気記録媒体サンプルNo.2の作製における処方および方法と同様にして、磁性層形成用組成物1を調製した。こうして調製した磁性層形成用組成物1を、磁性層形成用組成物1の調製時と同じ混合比(質量基準)のメチルエチルケトンとシクロヘキサノンとの混合溶媒で希釈した後、遠心分離(以下、「磁性層形成用組成物の調製時の遠心分離」と記載する。)を1回行い、上澄みを除去する工程(以下、「磁性層形成用組成物の調製時の上澄み除去工程」と記載する。)を1回行い、スラリーを得た。得られたスラリーを、上記希釈前の磁性層形成用組成物1と同じ固形分濃度になるように磁性層形成用組成物1の調製時と同じ混合比(質量基準)のメチルエチルケトンとシクロヘキサノンとの混合溶媒で希釈して、磁性層形成用組成物2を得た。こうして得られた磁性層形成用組成物2を使用して磁性層を形成した点以外は上記の磁気記録媒体サンプルNo.2の作製と同様にして、磁気記録媒体サンプルNo.19を作製した。
(強磁性粉末(ε-酸化鉄粉末)の作製)
純水90gに、硝酸鉄(III)9水和物8.6g、硝酸ガリウム(III)8水和物1.1g、硝酸コバルト(II)6水和物151mg、および硫酸チタン(IV)117mgを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、25質量%のアンモニア水溶液3.9gを添加し、そのまま2時間撹拌した。得られた溶液に、クエン酸1.1gを純水9gに溶解させて得たクエン酸水溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら25質量%アンモニア水溶液を40g滴下した。50℃の液温を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS;tetraethoxysilane)14mLを滴下し、24時間撹拌して反応溶液を得た。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1003℃(焼成温度)の加熱炉内に装填し、4時間の熱処理を施した。
熱処理した強磁性粉末の前駆体を、4モル/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.2Co0.02Ti0.02Fe1.76)であった。また、粉末X線回折(XRD;X‐ray diffraction)を行い、XRDパターンのピークから、得られた強磁性粉末は、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造を有することが確認された。
【0115】
[磁気記録媒体サンプルNo.20]
強磁性粉末を作製する工程において、硝酸鉄(III)9水和物の量を9.1gに変更した点、硝酸コバルト(II)6水和物および硫酸チタン(IV)は添加しなかった点、焼成温度を975℃に変更した点、ならび磁性層形成用組成物の調製時の遠心分離を行わなかった点以外は磁気記録媒体サンプルNo.19の作製と同様にして、磁気記録媒体サンプルNo.20を作製した。
【0116】
[磁気記録媒体サンプルNo.21]
強磁性粉末を作製する工程における焼成温度を979℃に変更した点以外は上記の磁気記録媒体サンプルNo.20の作製と同様にして、磁気記録媒体サンプルNo.21を作製した。
【0117】
[磁気記録媒体サンプルNo.22]
強磁性粉末を作製する工程において使用する硝酸鉄(III)9水和物の量を9.1gに変更し、硝酸ガリウム(III)8水和物の量を1.2gに変更した点、焼成温度を1013℃に変更した点、および磁性層形成用組成物の調製時の遠心分離を行わなかった点以外は上記の磁気記録媒体サンプルNo.20の作製と同様にして、磁気記録媒体サンプルNo.22を作製した。
【0118】
[磁気記録媒体サンプルNo.23]
強磁性粉末を作製する工程における焼成温度を1016℃に変更した点以外は上記の磁気記録媒体サンプルNo.22の作製と同様にして、磁気記録媒体サンプルNo.23を作製した。
【0119】
[磁気記録媒体サンプルNo.24]
磁性層形成用組成物の調製時の遠心分離を3回実施した点以外は上記の磁気記録媒体サンプルNo.19の作製と同様にして、磁気記録媒体サンプルNo.24を作製した。
【0120】
[磁気記録媒体サンプルNo.25]
磁性層形成用組成物の調製時の遠心分離を2回実施した点以外は上記の磁気記録媒体サンプルNo.19の作製と同様にして、磁気記録媒体サンプルNo.25を作製した。
【0121】
[磁気記録媒体サンプルNo.26]
磁性層に使用する強磁性粉末100.0部として、磁気記録媒体サンプルNo.19に使用した強磁性粉末と同様の方法で作製された強磁性粉末90.0部と磁気記録媒体サンプルNo.23に使用した強磁性粉末と同様の方法で作製された強磁性粉末10.0部とを混合した強磁性粉末を使用した点以外は上記の磁気記録媒体サンプルNo.19の作製と同様にして、磁気記録媒体サンプルNo.26を作製した。
【0122】
[磁気記録媒体サンプルNo.27]
磁性層に使用する強磁性粉末100.0部として、磁気記録媒体サンプルNo.19に使用した強磁性粉末と同様の方法で作製された強磁性粉末80.0部と磁気記録媒体サンプルNo.23に使用した強磁性粉末と同様の方法で作製された強磁性粉末20.0部とを混合した強磁性粉末を使用した点以外は上記の磁気記録媒体サンプルNo.19の作製と同様にして、磁気記録媒体サンプルNo.27を作製した。
【0123】
[磁気記録媒体サンプルNo.28~31]
磁性層形成時の磁性層形成用組成物の塗布量を変更した以外は上記の磁気記録媒体サンプルNo.19の作製と同様にして、磁気記録媒体サンプルNo.28~31を作製した。
【0124】
[磁気記録媒体サンプルNo.32]
強磁性粉末を作製する工程において焼成温度を997℃に変更した点以外は上記の磁気記録媒体サンプルNo.19の作製と同様にして、磁気記録媒体サンプルNo.32を作製した。
【0125】
[磁気記録媒体サンプルNo.33]
磁性層形成用組成物を得る工程における分散時間を100分間に変更した点以外は上記の磁気記録媒体サンプルNo.19の作製と同様にして、磁気記録媒体サンプルNo.33を作製した。
【0126】
[磁気記録媒体サンプルNo.34]
磁性層形成用組成物を得る工程における分散時間を85分間に変更した点以外は上記の磁気記録媒体サンプルNo.19の作製と同様にして、磁気記録媒体サンプルNo.34を作製した。
【0127】
[磁気記録媒体サンプルNo.35]
磁性層形成用組成物を得る工程における分散時間を100分間に変更した点およびスリット後に磁性層表面に表面研磨処理を施さなかった点以外は上記の磁気記録媒体サンプルNo.19の作製と同様にして、磁気記録媒体サンプルNo.35を作製した。
【0128】
[磁気記録媒体サンプルNo.36]
カレンダ処理におけるカレンダ温度(カレンダロールの表面温度)を100℃に変更し、カレンダ処理の回数を2回に変更した点以外は磁気記録媒体サンプルNo.7の作製と同様にして、磁気記録媒体サンプルNo.36を作製した。
【0129】
[磁気記録媒体サンプルNo.37]
カレンダ処理におけるカレンダ温度(カレンダロールの表面温度)を100℃に変更し、カレンダ処理の回数を2回に変更した点以外は上記の磁気記録媒体サンプルNo.24の作製と同様にして、磁気記録媒体サンプルNo.37を作製した。
【0130】
<磁気テープの評価>
(1)Sdc、SacおよびSdc/Sac
SdcおよびSacを先に記載の方法によって求めた。また、求められた値から、SdcとSacとの比(Sdc/Sac)を算出した。磁気力顕微鏡としてはBruker製Dimension 3100を周波数変調モードで使用し、プローブとしてはNanoworld社製SSS-MFMR(公称曲率半径15nm)使用した。磁気力顕微鏡観察時の磁性層表面とプローブ先端との間の距離は、20nmとした。画像解析ソフトとしては、MathWorks製MATLABを使用した。
磁気記録媒体No.20については、磁気力顕微鏡によって明瞭な磁気クラスターを検出することはできなかった。
【0131】
(2)磁性層の厚み
作製した各磁気テープの磁性層の厚みを、以下の方法によって求めた。
(i)断面観察用試料の作製
特開2016-177851号公報の段落0193~0194に記載の方法にしたがい、磁気テープの磁性層側表面からバックコート層側表面までの厚み方向の全領域を含む断面観察用試料を作製した。
(ii)厚み測定
作製した試料をSTEM観察し、STEM像を撮像した。このSTEM像は、加速電圧300kVおよび撮像倍率450000倍で撮像したSTEM -HAADF(High-Angle Annular Dark Field)像であり、1画像に、磁気テープの磁性層側表面からバックコート層側表面までの厚み方向の全領域が含まれるように撮像した。こうして得られたSTEM像において、磁性層表面を表す線分の両端を結ぶ直線を、磁気テープの磁性層側表面を表す基準線として定めた。上記の線分の両端を結ぶ直線とは、例えば、STEM像を、断面観察用試料の磁性層側が画像の上方に位置しバックコート層側が下方に位置するように撮像した場合には、STEM像の画像(形状は長方形または正方形)の左辺と上記線分との交点とSTEM像の右辺と上記線分との交点とを結ぶ直線である。同様に磁性層と非磁性層との界面を表す基準線を定めた。
磁性層の厚みは、無作為に抽出した10箇所について、磁気テープの磁性層側表面を表す基準線から磁性層と非磁性層との界面を表す基準線までの最短距離として求めた厚みの算術平均として求めた。
【0132】
(3)差分(L99.9-L0.1
実施例および比較例の各磁気テープについて、以下の方法により差分(L99.9-L0.1)を求めた。
磁気力顕微鏡としてBruker製Dimension 3100を周波数変調モードで使用し、プローブとしてNanoworld社製SSS-MFMR(公称曲率半径15nm)を使用して、サーボパターンを形成した磁気テープの磁性層表面の90μm×90μmの測定範囲で、100nmピッチで粗測定を行いサーボパターン(磁化領域)を抽出した。磁気力顕微鏡観察時の磁性層表面とプローブ先端との間の距離は、20nmとした。上記測定範囲には、LTO Ultriumフォーマットにしたがい形成されたAバーストの5本のサーボパターンが含まれるため、これら5本のサーボパターンが抽出された。
上記磁気力顕微鏡およびプローブを用いて、各サーボパターンの走行方向に対して下流側のエッジについて、磁化領域と非磁化領域との境界近傍を5nmピッチで測定し磁気プロファイルを得た。得られた磁気プロファイルは、角度α=12°で傾斜していたため、解析ソフトにより角度α=0°となるように回転補正を行った。
測定は、磁性層表面の異なる3箇所で行った。各測定範囲には、それぞれAバーストの5本のサーボパターンが含まれていた。
その後、解析ソフトを用いて先に記載した方法により差分(L99.9-L0.1)を求めた。解析ソフトとしては、MathWorks製MATLABを使用した。こうして求められた差分(L99.9-L0.1)を、表1に示す。
【0133】
(4)PES(Position Error Signal)
サーボシステムにおけるヘッド位置決め精度の指標としては、以下の方法により求められるPESを挙げることができる。PESは、値が小さいほど、サーボシステムにおけるヘッド位置決め精度が高いことを意味する。
上記の各磁気記録媒体について、サーボパターンの形成に用いたサーボライター上のベリファイ(verify)ヘッドによってサーボパターンを読み取った。ベリファイヘッドは、磁気テープに形成されたサーボパターンの品質を確認するための読み取り用磁気ヘッドであり、公知の磁気記録再生装置の磁気ヘッドと同様に、サーボパターンの位置(具体的には、磁気テープの幅方向の位置)に対応した位置に読み取り用の素子が配置されている。
ベリファイヘッドには、ベリファイヘッドでサーボパターンを読み取って得た電気信号から、サーボシステムにおけるヘッド位置決め精度をPESとして演算する公知のPES演算回路が接続されている。PES演算回路により、入力された電気信号(パルス信号)から磁気テープの幅方向への変位を随時計算し、この変位の時間的変化情報(信号)に対してハイパスフィルタ(カットオフ:500cycles/m)を適用した値を、PESとして算出した。算出されたPESを、表1に示す。
【0134】
以上の結果を、表1に示す。
【0135】
【表1】
【0136】
表1に示されている結果から、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末を磁性層に含む実施例の磁気記録媒体は、六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末からなる群から選ばれる強磁性粉末を磁性層に含む比較例の磁気記録媒体と比べてPESの値が小さく、サーボシステムにおいて磁気ヘッドをデータトラックに追従させる精度が高いことが確認できる。
なお、表1に示されている磁気記録媒体No.1(比較例)の評価結果から、磁性層に含まれる強磁性粉末が六方晶バリウムフェライト粉末の場合には、強磁性粉末の平均粒子サイズおよび磁気記録媒体のSdcを先に記載の範囲に制御することがサーボシステムにおけるヘッド位置決め精度の向上にはつながらないことが確認できる。
【産業上の利用可能性】
【0137】
本発明の一態様は、高密度記録用磁気記録媒体の技術分野において有用である。
図1
図2
図3
図4
図5
図6
図7
図8