IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人大阪大学の特許一覧 ▶ パナソニック株式会社の特許一覧

特許7169585III族窒化物結晶の製造方法および製造装置
<>
  • 特許-III族窒化物結晶の製造方法および製造装置 図1
  • 特許-III族窒化物結晶の製造方法および製造装置 図2
  • 特許-III族窒化物結晶の製造方法および製造装置 図3
  • 特許-III族窒化物結晶の製造方法および製造装置 図4
  • 特許-III族窒化物結晶の製造方法および製造装置 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-02
(45)【発行日】2022-11-11
(54)【発明の名称】III族窒化物結晶の製造方法および製造装置
(51)【国際特許分類】
   C30B 29/38 20060101AFI20221104BHJP
   C30B 19/04 20060101ALI20221104BHJP
【FI】
C30B29/38 D
C30B29/38 C
C30B29/38 Z
C30B19/04
【請求項の数】 6
(21)【出願番号】P 2019012104
(22)【出願日】2019-01-28
(65)【公開番号】P2020117427
(43)【公開日】2020-08-06
【審査請求日】2021-10-07
(73)【特許権者】
【識別番号】504176911
【氏名又は名称】国立大学法人大阪大学
(73)【特許権者】
【識別番号】000005821
【氏名又は名称】パナソニックホールディングス株式会社
(74)【代理人】
【識別番号】100106518
【弁理士】
【氏名又は名称】松谷 道子
(74)【代理人】
【識別番号】100132241
【弁理士】
【氏名又は名称】岡部 博史
(74)【代理人】
【識別番号】100113170
【弁理士】
【氏名又は名称】稲葉 和久
(72)【発明者】
【氏名】森 勇介
(72)【発明者】
【氏名】今西 正幸
(72)【発明者】
【氏名】吉村 政志
(72)【発明者】
【氏名】村上 航介
(72)【発明者】
【氏名】多田 昌浩
(72)【発明者】
【氏名】小松 真介
(72)【発明者】
【氏名】岡山 芳央
【審査官】有田 恭子
(56)【参考文献】
【文献】特開2017-043535(JP,A)
【文献】特開2014-169205(JP,A)
【文献】特開2017-222545(JP,A)
【文献】特開昭59-121192(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C30B 1/00-35/00
(57)【特許請求の範囲】
【請求項1】
ガリウム、アルミニウムおよびインジウムから選ばれる少なくとも1つのIII族元素とアルカリ金属とを含む融液を混合して混合融液とし、
前記混合融液における時間と電気抵抗との関係を測定し、
任意の30分間の電気抵抗率の測定結果について、時間に対する電気抵抗率の変化を最小二乗法により線形近似した際の勾配の絶対値が2e-9オーム・メートル/時間以下である場合に混合完了と判定し、III族窒化物単結晶を成長させる、III族窒化物結晶の製造方法。
【請求項2】
前記電気抵抗の測定に四端子電極を用いる、請求項1に記載のIII族窒化物結晶の製造方法。
【請求項3】
前記電気抵抗の測定にタンタル製の電極を用いる、請求項1に記載のIII族窒化物結晶の製造方法。
【請求項4】
前記混合完了の判定に応じて、窒素を供給し、
前記混合融液の電気抵抗率の時間変化が3.9e-9オーム・メートル/時間以上2.0e-8オーム・メートル/時間以下である場合に、III族窒化物単結晶を成長させる、請求項に記載のIII族窒化物結晶の製造方法。
【請求項5】
反応室と、
前記反応室内に設けられ、III族窒化物結晶の原料の混合融液を保持する坩堝と、
前記坩堝を加熱するヒータと、
前記反応室内に窒素ガスを供給する窒素供給ラインと、
前記坩堝内において、III族窒化物結晶の種結晶基板を前記混合融液の液面より上の位置と、前記混合融液内の位置との間を移動可能に保持する基板保持機構と、
前記坩堝内の前記混合融液に浸漬して前記混合融液の電気抵抗を測定する電気抵抗測定部と、
任意の30分間の電気抵抗率の測定結果について、時間に対する電気抵抗率の変化を最小二乗法により線形近似した際の勾配の絶対値が2e-9オーム・メートル/時間以下であるか否かに基づいて前記混合融液の混合完了か否かを判定する混合完了判定部と、
前記基板保持機構と、前記混合完了判定部と、を制御する制御部と、
を備え、
前記制御部は、前記混合完了判定部による前記混合融液の混合完了の判定に応じて前記基板保持機構によって前記種結晶基板を前記混合融液内に移動させて、前記種結晶基板を前記混合融液に接触させる、III族窒化物結晶の製造装置。
【請求項6】
前記混合完了判定部による混合完了の判定に応じて、前記窒素供給ラインから前記反応室内に窒素を供給し、
さらに、前記混合融液の電気抵抗率の時間変化が3.9e-9オーム・メートル/時間以上2.0e-8オーム・メートル/時間以下である場合に、窒素過飽和度が適正な範囲内であると判定する、窒素過飽和度判定部を備え、
前記制御部は、前記過飽和度判定部を制御すると共に、前記窒素過飽和度判定部による窒素過飽和度が適正な範囲内であるとの判定に応じて、前記基板保持機構によって前記種結晶基板を移動させて、前記種結晶基板を前記混合融液に接触させる、請求項に記載のIII族窒化物結晶の製造装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、III族窒化物結晶の製造方法および製造装置に関する。
【背景技術】
【0002】
III族窒化物単結晶半導体(例えば、窒化ガリウム)の基板は、通常、気相エピタキシャル成長によって形成されている。例えばサファイアで構成されるベース基板上にIII族窒化物結晶をヘテロエピタキシャル成長させた基板などが用いられている。しかしながら、サファイア基板と窒化ガリウム単結晶とは、格子定数に13.8%の差があり、線膨張係数にも25.8%の差がある。このため、気相エピタキシャル成長によって得られる窒化ガリウム単結晶薄膜では結晶性が十分ではない。この方法で得られる結晶の転位密度は、通常、1e+8cm-2(1×10cm-2)~1e+9cm-2(1×10cm-2)であり、転位密度の減少が重要な課題となっている。この課題を解決するために、転位密度を低減する取り組みが行われており、例えば、ELOG(Epitaxial lateral overgrowth)法が開発されている。この方法によれば、転位密度を1e+5cm-2(1×10cm-2)~1e+6cm-2(1×10cm-2)程度まで下げることができるが、作製工程が複雑である。
【0003】
一方、気相エピタキシャル成長ではなく、液相で結晶成長を行う方法も検討されてきた。従来、窒化ガリウム単結晶や窒化アルミニウム単結晶などのIII族窒化物単結晶の融点における窒素の平衡蒸気圧は1000MPa以上であるため、窒化ガリウムを液相で成長させるためには1200℃で800MPaの条件が必要とされてきた。これに対し、ナトリウム融液との混合融液を活用して窒素を溶解するナトリウムフラックス法を用いることで、870℃、4MPaという比較的低温低圧で窒化ガリウム単結晶を合成できることが明らかにされた(例えば、特許文献1参照。)
【0004】
また、アンモニアを含む窒素ガス雰囲気下においてガリウムとナトリウムとの混合物を800℃、5MPaで溶融させ、この融液を用いて96時間の育成時間で、最大結晶サイズが1.2mm程度の単結晶が得られている(例えば、特許文献2参照。)。
【0005】
また、サファイア基板上に有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法により窒化ガリウム単結晶層を成膜したのち、液相成長(LPE:Liquid phase epitaxy)法によって単結晶を成長させる方法も報告されている(例えば、特許文献3及び4参照。)。
【0006】
これらの工法では前記ガリウムとナトリウムとの混合物がIII族窒化物単結晶の成長条件を満たす状態に到達するより前の時刻から前記種結晶基板が融液の中に存在する場合、種結晶基板中の窒化ガリウム単結晶層が意図せず分解し表面の平坦性が悪化してしまう。この問題を回避するために前記ガリウムとナトリウムとの混合物がIII族窒化物単結晶の成長条件を満たす状態に到達し終えてから種結晶基板を前記ガリウムとナトリウムとの混合物に浸漬する工法が知られている(例えば、非特許文献1。)。
【先行技術文献】
【特許文献】
【0007】
【文献】特許第4538596号公報
【文献】特開2009-234800号公報
【文献】特許第4588340号公報
【文献】特許第5904421号公報
【非特許文献】
【0008】
【文献】Taro Sato et al 2015 Jpn. J. Appl. Phys. 54 105501
【発明の概要】
【発明が解決しようとする課題】
【0009】
非特許文献1の工法では、種結晶基板を浸漬するべき時刻を見積もるために、浸漬開始時刻を事前に予測し、予測した浸漬時刻の周辺で浸漬時刻を変化させた、複数回にわたる予備実験を要する。この方法は時間的にも材料的にもコストが高く、またこの方法で導かれた浸漬開始時刻は、予備実験時に刻んだ浸漬時刻の条件のなかから推測されるため、時刻の精度は実施者の設定した実験条件(浸漬開始時間の設定とその刻み幅)に依存する。また、育成条件が変わり最適浸漬時刻が変化する場合は、上記複数回の予備実験を改めて実施することを要求される。
【0010】
そこで、本発明は、原料金属の混合融液の混合完了を簡便な方法で実現し、高品質なIII族窒化物単結晶を製造するIII族窒化物結晶の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記目的を達成するために、本開示では、ガリウム、アルミニウムおよびインジウムから選ばれる少なくとも1つのIII族元素とアルカリ金属とを含む融液を混合して混合融液とし、
前記混合融液における時間と電気抵抗との関係を測定し、
前記電気抵抗が一定の値になった場合に混合完了と判定し、III族窒化物単結晶を成長させるIII族窒化物単結晶の製造方法を提供する。
【0012】
また、本開示では、反応室と、
前記反応室内に設けられ、III族窒化物結晶の原料の混合融液を保持する坩堝と、
前記坩堝を加熱するヒータと、
前記反応室内に窒素ガスを供給する窒素供給ラインと、
前記坩堝内において、III族窒化物結晶の種結晶基板を前記混合融液の液面より上の位置と、前記混合融液内の位置との間を移動可能に保持する基板保持機構と、
前記坩堝内の前記混合融液に浸漬して前記混合融液の電気抵抗を測定する電気抵抗測定部と、
測定した電気抵抗が一定の値になったか否かに基づいて前記混合融液の混合完了か否かを判定する混合完了判定部と、
前記基板保持機構と、前記混合完了判定部と、を制御する制御部と、
を備え、
前記制御部は、前記混合完了判定部による前記混合融液の混合完了の判定に応じて前記基板保持機構によって前記種結晶基板を移動させて、前記種結晶基板を前記混合融液に接触させる、III族窒化物結晶の製造装置を提供する。
【発明の効果】
【0013】
本開示に係るIII族窒化物結晶の製造方法及びIII族窒化物結晶の製造装置により、ガリウム、アルミニウムおよびインジウムから選ばれる少なくとも1つのIII族元素とアルカリ金属の混合融液の混合完了の判定を簡便な方法で実現し、高品質なIII族窒化物単結晶を製造することが可能となる。また、混合融液の時間と電気抵抗との関係における傾きが所定範囲内の場合にIII族窒化物単結晶の成長に好ましい過飽和度に到達していると判断することが可能になる。
【図面の簡単な説明】
【0014】
図1】本開示の実施の形態1に係るIII族窒化物結晶の製造装置の構成の要部の一例を示す概略図である。
図2図1のIII族窒化物結晶の製造装置における四端子電極の構成を示す概略図である。
図3】ベース基板に第1のIII族窒化物単結晶層を形成した種結晶基板の構成を示す概略図である。
図4】実験例1における時刻と電気抵抗率との関係(時刻は浸漬完了時を基準とする)の結果を示すグラフである。
図5】実施の形態1に係るIII族窒化物結晶の製造方法のフローチャートである。
【発明を実施するための形態】
【0015】
第1の態様に係るIII族窒化物結晶の製造方法は、ガリウム、アルミニウムおよびインジウムから選ばれる少なくとも1つのIII族元素とアルカリ金属とを含む融液を混合して混合融液とし、
前記混合融液における時間と電気抵抗との関係を測定し、
前記電気抵抗が一定の値になった場合に混合完了と判定し、III族窒化物単結晶を成長させる。
【0016】
第2の態様に係るIII族窒化物結晶の製造方法は、上記第1の態様において、前記時間と電気抵抗との関係における電気抵抗の時間変化である傾きが所定の範囲内の場合に混合完了と判定してもよい。
【0017】
第3の態様に係るIII族窒化物結晶の製造方法は、上記第1の態様において、前記電気抵抗の測定に四端子電極を用いてもよい。
【0018】
第4の態様に係るIII族窒化物結晶の製造方法は、上記第1の態様において、前記電気抵抗の測定にタンタル製の電極を用いてもよい。
【0019】
第5の態様に係るIII族窒化物結晶の製造方法は、上記第2の態様において、任意の30分間の電気抵抗率の測定結果について、時間に対する電気抵抗率の変化を最小二乗法により線形近似した際の勾配の絶対値が2e-9オーム・メートル/時間以下である場合に混合完了と判定してもよい。
【0020】
第6の態様に係るIII族窒化物結晶の製造方法は、上記第2の態様において、前記混合完了の判定に応じて、窒素を供給し、
前記混合融液の電気抵抗率の時間変化が3.9e-9オーム・メートル/時間以上2.0e-8オーム・メートル/時間以下である場合に、III族窒化物単結晶を成長させてもよい。
【0021】
第7の態様に係るIII族窒化物結晶の製造装置は、反応室と、
前記反応室内に設けられ、III族窒化物結晶の原料の混合融液を保持する坩堝と、
前記坩堝を加熱するヒータと、
前記反応室内に窒素ガスを供給する窒素供給ラインと、
前記坩堝内において、III族窒化物結晶の種結晶基板を前記混合融液の液面より上の位置と、前記混合融液内の位置との間を移動可能に保持する基板保持機構と、
前記坩堝内の前記混合融液に浸漬して前記混合融液の電気抵抗を測定する電気抵抗測定部と、
測定した電気抵抗が一定の値になったか否かに基づいて前記混合融液の混合完了か否かを判定する混合完了判定部と、
前記基板保持機構と、前記混合完了判定部と、を制御する制御部と、
を備え、
前記制御部は、前記混合完了判定部による前記混合融液の混合完了の判定に応じて前記基板保持機構によって前記種結晶基板を移動させて、前記種結晶基板を前記混合融液に接触させる。
【0022】
第8の態様に係るIII族窒化物結晶の製造装置は、上記第7の態様において、前記混合完了判定部による混合完了の判定に応じて、前記窒素供給ラインから前記反応室内に窒素を供給し、
さらに、前記混合融液の電気抵抗率の時間変化が3.9e-9オーム・メートル/時間以上2.0e-8オーム・メートル/時間以下である場合に、窒素過飽和度が適正な範囲内であると判定する、窒素過飽和度判定部を備え、
前記制御部は、窒素過飽和度判定部による窒素過飽和度が適正な範囲内であるとの判定に応じて前記基板保持機構によって前記種結晶基板を移動させて、前記種結晶基板を前記混合融液に接触させてもよい。
【0023】
以下、実施の形態に係るIII族窒化物結晶の製造方法及びIII族窒化物結晶の製造装置について、添付図面を参照しながら説明する。なお、図面において実質的に同一の部材については同一の符号を付している。
【0024】
以下、本開示の実施の形態のIII族窒化物結晶の製造方法について、III族窒化物結晶基板として窒化ガリウム単結晶基板を作製する実施の形態を例に説明する。すべての図において、各構成部材の大きさ、比率等は実際とは異なっている。
【0025】
(実施の形態1)
本実施の形態1に係るIII族窒化物結晶の製造方法は、ガリウム、アルミニウムおよびインジウムから選ばれる少なくとも1つのIII族元素とアルカリ金属とを含む融液を混合して混合融液とし、前記混合融液における時間と電気抵抗との関係を測定し、前記電気抵抗が一定の値になった場合に混合完了と判定し、III族窒化物単結晶を成長させる。より詳細には、図5に示すように、実施の形態1に係るIII族窒化物結晶の製造方法は、
(1)電極、種結晶基板、原料金属、アルカリ金属の準備工程(S01)、
(2)昇温による原料金属およびアルカリ金属の融液化工程(S02)、
(3)金属混合融液の混合完了判定のための抵抗測定工程(S03)、
(4)混合完了判定(S04)、
(5)窒素溶解工程(S05)、
(6)窒素過飽和状態判定のための抵抗測定工程(S06)、
(7)窒素過飽和状態の判定(S07)、
(8)結晶成長工程(S08)
を含む。
なお、混合完了判定工程(S04)でNGと判定されれば融液化工程(S02)に戻る。また、過飽和状態の判定工程(S07)でNGと判定されれば窒素溶解工程(S05)に戻る。
【0026】
図2は、図1のIII族窒化物結晶の製造装置における四端子電極の構成を示す概略図である。金属融液の電気抵抗の測定には電極材料の抵抗変化の影響をなくすため四端子測定手法を用いた(図2)。電極材料に制限はないが、使用する原料金属融液およびアルカリ金属融液に耐性があり、窒化影響、窒化ガリウム単結晶育成影響が少ない材料として、本実施例ではタンタルを用いた。抵抗測定のための電極材料としては他にタングステン、タングステンレニウム、モリブデンなどが考えられる。また、4か所の端子間距離が実験中に変化しないよう、アルミナ部材を加工しジグを作成した。以後、前記タンタル電極線4本203を通したアルミナジグを四端子電極204と呼ぶ。
【0027】
図3は、ベース基板300に第1のIII族窒化物単結晶層301を形成した種結晶基板100の構成を示す概略図である。本実施の形態1に係るIII族窒化物結晶の製造方法ではフラックス法を用いてIII族窒化物結晶を育成する。
そこで、育成に用いる種結晶基板100の準備について述べる。III族窒化物結晶として窒化ガリウム結晶を育成させるための種結晶基板のベース基板300(図3)としては、例えば、サファイア基板を用いることができる。サファイアを用いるのは、窒化ガリウムとの格子定数及び熱膨張係数の差が比較的小さいためである。サファイアの他には、例えば、SiCやGaAs、ScAlMgOなどを用いることができる。また、ベース基板300の厚さとしては、100~3000マイクロメートル程度であることが好ましく、400~1000マイクロメートルであることがより好ましい。ベース基板300の厚みが当該範囲であると、強度が十分に高く、窒化ガリウム単結晶基板の作製時に割れ等が生じ難い。
【0028】
次に、ベース基板300の上に組成式AlGaIn1-u-vN(ただし、0≦u≦1、0≦v≦1である)で表されるIII族窒化物単結晶層301を形成する。III族窒化物単結晶層は、例えば、MOCVD法やMBE(Moleculer Beam Epitaxy)法またはHVPE(Hydrogen Vapor Phase Epitaxy)法で形成できる。III族窒化物層は、主面(上面)が(0001)面の単結晶であることが望ましい。薄膜の厚さとしては、0.5~20マイクロメートル程度であることが好ましく、1~5マイクロメートルであることがより好ましい。薄膜の厚みが0.5マイクロメートル以上であると、形成した薄膜が良好な単結晶となり、得られる窒化ガリウムの結晶に格子欠陥等が生じ難くなる。MOCVD法でサファイア上に形成した窒化ガリウム薄膜の転位密度は、一般的に1平方センチメートルあたり1e+7個~1e+9個程度である。なお、ベース基板300と薄膜との間に、バッファ層(図示せず)を形成してもよい。
【0029】
バッファ層は、サファイアからなるベース基板300上に高品質の窒化ガリウム単結晶薄膜301を形成するために、サファイアと窒化ガリウムとの格子定数差を緩衝させるための層である。当該バッファ層は、サファイアと窒化ガリウムの格子定数に近い材料が好ましく、窒化アルミニウムなどのIII族窒化物からなる層とすることができる。また、バッファ層は、400℃以上700℃以下の比較的低温のMOCVD法で成長させた、アモルファスもしくは多結晶状の層であることが好ましい。このようなバッファ層を用いると、バッファ層上に形成する窒化ガリウム単結晶薄膜に格子欠陥等が生じ難くなる。また、バッファ層の厚みは、10ナノメートル以上50ナノメートル以下であることが好ましく、20ナノメートル以上40ナノメートル以下であることがより好ましい。バッファ層の厚みが10ナノメートル以上であると、格子定数差の緩衝効果が発揮され、得られる窒化ガリウムの結晶に格子欠陥等が生じ難くなる。一方、バッファ層の厚みが過度に厚いと、ベース基板の結晶格子の情報が失われて良好なエピタキシャル成長ができなくなる。上記、MOCVD法によりIII族窒化物単結晶層301を製膜したサファイア製ベース基板300を種結晶基板100と呼ぶ。
【0030】
なお、上記ベース基板上にMOCVD法を用いて形成されたIII族窒化物単結晶層を加工する工程を含んでもよい。
【0031】
続いて、前記III族窒化物単結晶層を成膜した種結晶基板100上に、フラックス法によりIII族窒化物単結晶を形成する。本実施の形態では、フラックス法において加圧により供給された窒素分子を、結晶成長反応のために窒素原子に分けて融液中に溶け込ませるため、前記混合融液を構成するアルカリ金属としてナトリウムを用いる例を示す。アルカリ金属には、ナトリウム、リチウムおよびカリウムから選ばれる少なくとも1つ、すなわち、それらの1つまたはそれらの混合物が考えられる。また、前記混合融液が、アルカリ土類金属あるいは炭素をさらに含むこともできる。アルカリ土類金属としては、例えば、カルシウム、マグネシウム、ストロンチウム、バリウム、ベリリウムなどを用いることができる。これらアルカリ土類金属および炭素からなる微小添加物を含むことで多結晶化を抑制する効果が得られる場合がある。
窒素を含むガスとしては、例えば、窒素ガスや、アンモニアを適用できる。本実施の形態では窒素ガスを用いた例を示す。
【0032】
<III族窒化物単結晶の製造装置>
図1は、III族窒化物結晶の製造装置10の概略図である。III族窒化物単結晶成長工程は、例えば、図1に示すIII族窒化物結晶の製造装置10である反応装置101及び制御部30を用いて、以下のように実施することができる。
【0033】
<反応装置>
反応装置101は、ステンレスや断熱材等で形成された反応室103を有し、当該反応室103内には、坩堝102が設置されている。当該坩堝は、ボロンナイトライド(BN)や、アルミナ(Al)等から形成されたものとすることができる。また、反応室103の周囲には、ヒータ110が配置されており、ヒータ110は、反応室103内部、特に坩堝102内部の温度を調整できるように設計されている。また、反応装置101内には、前記四端子電極204を昇降可能に保持するための四端子電極保持機構120が設置されている。四端子電極の電極線203はシーリングされた機構202を通過して圧力容器の外部の炉外大気空間109にある電流源200及び電圧計201に接続されている。また、同じく反応装置101内に、III族窒化物種結晶基板100を昇降可能に保持するための基板保持機構114が設置されている。また、反応室103には、窒素ガスを供給するための窒素供給ライン113が接続されている(図では省略しているが反応容器外側で窒素ボンベなどに接続されている)。
【0034】
<制御部(コンピュータ装置)>
制御部30は、例えば、コンピュータ装置である。このコンピュータ装置としては、汎用的なコンピュータ装置を用いることができ、例えば、図1に示すように、処理部31、記憶部32、表示部33を含む。なお、さらに、入力装置、記憶装置、インタフェース等を含んでもよい。
制御部30によって、基板保持機構114と、混合完了判定部35aと、窒素過飽和度判定部35bと、を制御する。
【0035】
<処理部>
処理部31は、例えば、中央処理演算子(CPU)、マイクロコンピュータ、又は、コンピュータで実行可能な命令を実行できる処理装置であればよい。
【0036】
<記憶部>
記憶部32は、例えば、ROM、EEPROM、RAM、フラッシュSSD、ハードディスク、USBメモリ、磁気ディスク、光ディスク、光磁気ディスク等の少なくとも一つであってもよい。
記憶部32には、プログラム35を含む。なお、制御部30がネットワークに接続されている場合には、必要に応じてプログラム35をネットワークからダウンロードしてもよい。
【0037】
<プログラム>
プログラム35には、混合完了判定部35aを含んでいればよい。混合完了判定部35aは、実行時には、記憶部32から読み出されて処理部31にて実行される。この混合完了判定部35aによって、測定した混合融液の電気抵抗が一定の値になったか否かに基づいて混合融液の混合完了か否かを判定する。制御部30は、混合完了判定部35aによる混合融液の混合完了の判定に応じて基板保持機構114によって種結晶基板100を移動させて、種結晶基板100を混合融液に接触させる。これによってIII族窒化物結晶の結晶成長工程を進めることができる。
また、プログラム35には、窒素過飽和度判定部35bを含んでもよい。この窒素過飽和度判定部35bによって、混合融液の電気抵抗率の時間変化が3.9e-9オーム・メートル/時間以上2.0e-8オーム・メートル/時間以下である場合に、窒素過飽和度が適正な範囲内であると判定する。制御部30は、窒素過飽和度判定部35bによる窒素過飽和度が適正な範囲内であるとの判定に応じて基板保持機構114によって種結晶基板100を移動させて、種結晶基板100を混合融液に接触させる。これによってIII族窒化物結晶の結晶成長工程を進めることができる。
【0038】
<表示部>
表示部33は、例えば、混合完了判定部35aによる混合完了の判定を表示してもよい。また、基板保持機構114による種結晶基板100の位置を示してもよい。
【0039】
<III族窒化物結晶の製造方法>
図5は、III族窒化物結晶の製造方法のフローチャートである。以下に、このIII族窒化物結晶の製造方法について説明する。
(1)育成するIII族窒化物単結晶が窒化ガリウムである場合、まず、反応装置101の反応室103内の坩堝102に、フラックスとなるアルカリ金属とIII族元素であるガリウムを入れる(S01)。アルカリ金属とガリウムの投入量は、例えばモル量比で85:15~50:50程度である。このとき、必要に応じて、微量添加物を添加してもよい。微量添加物としては、例えばボロン、タリウム、カルシウム、カルシウムを含む化合物、珪素、硫黄、スカンジウム、セレン、テルル、炭素、酸素、アルミニウム、インジウム、アルミナ、窒化インジウム、窒化珪素、酸化珪素、酸化インジウム、亜鉛、マグネシウム、酸化亜鉛、酸化リチウム、リチウム、酸化マグネシウム、およびゲルマニウム等が含まれる。これらの微量添加物は、1種類のみ添加してもよく、2種以上を添加してもよい。
【0040】
なお、これらの作業を空気中で行うと、アルカリ金属が酸化し、酸素を不純物として含んでしまい、育成される結晶の品質が著しく低下してしまうため、当該作業は、アルゴンガスや窒素ガス等の不活性ガスを充填した状態で行うことが好ましい。
【0041】
(2)次に、反応室103内を密閉し、坩堝の温度を800℃以上1000℃以下、より好ましくは850℃以上950℃以下に調整する(S02)。これによって原料金属及びアルカリ金属を融液化する。
【0042】
図1のアルカリ金属とIII族原料金属の混合融液121は、例えば、材料を坩堝102に投入して加熱することによって調製される。アルカリ金属とIII族原料金属、および微量添加物の均一な混合を促進するために、坩堝102において揺動運動または回転運動、もしくはその両方をあわせた運動を行っても良い。
【0043】
(3)坩堝102内部が前記アルカリ金属とIII族原料金属の合金融点(ガリウムとナトリウムの場合は700℃付近)を超えていることを確認し、昇降機構を用いて四端子電極204を完全に混合融液の中に浸漬する(S03)。今回は昇降機構としてマグネット122を用いた。通電の確認後、電流源200から電圧を印加して混合融液の電気抵抗率をモニタリングする。
【0044】
(4)混合融液について、混合完了か否か判定する。具体的には、混合融液の電気抵抗が一定の値になったか否かに基づいて混合融液の混合完了か否かを判定する(S04)。不活性ガスとしてアルゴンを用いた場合は、アルカリ金属とIII族原料金属、および微量添加物の混合が完了するまでは電気抵抗が増加するが、混合融液121が完全に混合され状態が均一になると電気抵抗が変化しなくなる。これはアルゴンガス以外にも不活性ガスであれば、例えばヘリウムやネオンでも同じことが言える。すなわち、測定した電気抵抗が一定の値になった場合に混合完了と判定する。
この手法により、その場観察によってアルカリ金属とIII族原料金属の混合融液および微量添加物の混合の完了を確認することができる。この場合、測定した時間と電気抵抗率との関係における傾きが所定の範囲内の場合に混合完了と判断してもよい、所定の範囲とは、すなわち、任意の30分間の電気抵抗率の測定結果について、時間に対する電気抵抗率の変化を最小二乗法により線形近似した際の勾配の絶対値が2e-9オーム・メートル/時間以下である場合に混合完了と判定することができる。
なお、均一に混合していないアルカリ金属とIII族原料金属との混合融液121と、種結晶基板100とが接触すると、III族窒化物種結晶100のエッチングや品質の悪いIII族窒化物結晶の析出などが発生してしまう場合がある。そこで、混合完了と判定されなかった場合には、融液化工程(S02)に戻る。
【0045】
(5)次に、混合完了と判定した後、窒素供給ライン113から反応室103内に窒素ガスを供給する(S05)。加圧するガスに窒素が含まれる場合は、混合が完了した後も混合融液の電気抵抗は増加し続ける。これはガス中の窒素が混合融液に溶け込み、Ga-N結合を構成することで混合融液中の自由電子を減少させるためである。つまり、窒素ガス加圧時に電気抵抗が増え続ける現象は混合された金属融液内が窒素過飽和の状態であることを意味しており、時間に対する電気抵抗の増加率(勾配)は相対的に窒素過飽和度を表す指標となる。
【0046】
(6)窒素ガス供給後の混合融液の電気抵抗率を測定する(S06)。
(7)次いで、混合融液の窒素過飽和度が適正な範囲であるか判定する(S07)。具体的には、混合融液の電気抵抗率の時間に対する勾配が3.9e-9オーム・メートル/時間以上2.0e-8オーム・メートル/時間以下である場合に、窒素過飽和度が適正な範囲内であると判定する。この場合に、基板保持機構114によって種結晶基板100を混合融液内に移動させて、種結晶基板100を混合融液に浸漬させる。
なお、混合完了時間の評価と窒素過飽和度状態の判定とを同時に行う場合は、まず、窒素ガスを除く不活性ガスで加圧した状態で混合完了の判定を行い、その後、窒素ガスを供給して融液に窒素を溶解させる。混合工程では混合融液の電気抵抗率は一定に収束したが、この窒素ガス供給時においては電気抵抗率が増加する。
【0047】
このとき、所定温度より低く窒素過飽和度が低い、もしくは均一に混合していないアルカリ金属とIII族原料金属との混合融液121と、種結晶基板100とが接触すると、III族窒化物種結晶100のエッチングや品質の悪いIII族窒化物結晶の析出などが発生してしまう場合がある。そのため、窒素過飽和状態の判定工程(S07)において混合融液の窒素飽和度が適正な範囲にないと判定された場合には、基板保持機構114により、種結晶基板100を反応室103の上部に保持しておくことが好ましい。
【0048】
反応室103内の窒素ガス圧は1×10Pa以上1×10Pa以下、より好ましくは3×10Pa以上5×10Pa以下とする。反応室103内のガス圧を高めることで、高温で溶融したNa中に窒素が溶解しやすくなり、前記の温度及び圧力とすることによりIII族窒化物結晶が高速に成長できる。
【0049】
(8)アルカリ金属とIII族原料金属および微量添加物の混合融液121の混合の完了、及び窒素過飽和度が適切であることを確認し、混合融液121に、III族窒化物単結晶層301の育成面側表面を接触させることによって、III族窒化物単結晶を成長させる(S08)。
【0050】
実施例について述べる。本実施例においては、タンタル製の電極(断面直径0.5ミリメートル)とアルミナ製の碍子管を用いて四端子電極を準備した。四端子電極の電極間距離は20ミリメートルとした。四端子電極の電極線はシーリング端子を介して反応室の外に出されており、電流源に接続されている。今回の実験例ではすべて電源設定を10ボルト1アンペアとした。アルミナ製の坩堝を使用し、アルカリ金属としてナトリウムを、III族原料金属としてガリウムをそれぞれ使用し、ナトリウムとガリウムの原子量比が27:73となるようにした。
【0051】
(実施例1)
融液化工程において反応室内をアルゴンガス4メガパスカルで加圧し坩堝内温度を870℃まで昇温した。870℃到達時に四端子電極を金属融液に完全に浸漬した。本実験により金属融液の混合の完了時刻を評価する。
【0052】
図4は、実験例1における時刻と電気抵抗率との関係(時刻は浸漬完了時を基準とする)の結果を示すグラフである。本結果より、10時間で電気抵抗が時間に対して変化なく安定になり、混合が完了していることが確認できた。この時の抵抗率は2e-9オーム・メートル/時間以下であった。今回の条件では、坩堝内温度が870℃に到達してから10時間後に基板を金属融液に浸漬すればよいことが分かった。実際に混合待ち工程を10時間として実施例1の条件で結晶育成を実施したところ、良好な窒化ガリウム結晶を育成することができた。良好な窒化ガリウム結晶が育成できたということは、十分に混合が完了しているということであるから、混合開始から10時間経過して電気抵抗が時間に対して変化なく安定状態に至った時点で混合完了と判断できる。
【0053】
(実施例2)
窒素溶解工程において反応室内を窒素ガスで加圧し、1メガパスカル、2メガパスカル、3メガパスカル、4メガパスカル、5メガパスカルと内圧を変えた場合の電気抵抗率の時間変化を測定し、過飽和度の指標を評価する。電気抵抗率の時間変化は、上記それぞれの圧力を印加し四端子電極を融液に浸漬した状態で4.6時間保持した際の、最終16分間の電気抵抗率測定結果から、最小二乗法による線形近似により求めた。坩堝内温度は900℃とし、電気抵抗率の時間変化の評価は混合完了後に行った。窒素ガス圧力を変化した場合の電気抵抗率の時間変化及び育成結果との関係について、下記の表1に示す。
【0054】
【表1】
【0055】
実施例2についての表1の結果より、窒素ガス加圧時の金属融液の混合安定後の電気抵抗率の時間変化が3.9e-9オーム・メートル/時間以上2.0e-8オーム・メートル/時間以下であれば育成に好ましい状態であることが分かった。窒素ガス圧力が高い場合に育成不良が起こるのは融液内の過飽和度が高すぎるため意図しない雑結晶が融液内や坩堝壁で発生してしまうためであると考えられる。
【0056】
すなわち、電気抵抗率が一定になった場合に金属融液の混合が完了したと判断し、その後の窒素溶解時においても電気抵抗を測定することで、結晶成長を開始するのに最適なタイミングを測定する。具体的には、混合完了後の窒素ガス供給時の金属融液の電気抵抗率の時間変化を測定する。その測定結果が3.9e-9オーム・メートル/時間以上2.0e-8オーム・メートル/時間以下の場合に、窒素の過飽和度が結晶成長に最適な値であると判断し、結晶成長を開始する。結晶成長を開始するとは、すなわち、種結晶基板を金属融液に浸漬することである。
【0057】
上記実施の形態における構成要素の一部または全部は、1個のシステムLSI(Large Scale Integration:大規模集積回路)又は複数の専用電子回路から構成された制御装置により制御されてもよい。例えば、上記した方法は、システムLSI又は複数の専用電子回路によって実現されてもよい。また、上記の装置の各構成の制御による方法は、非一時的なメモリに格納されたインストラクション又はソフトウェアプログラムがプロセッサによって実行されることにより実現されてもよい。
【0058】
システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIであり、具体的には、マイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)などを含んで構成されるコンピュータシステムである。前記ROMには、コンピュータプログラムが記憶されている。前記マイクロプロセッサが、前記コンピュータプログラムに従って動作することにより、システムLSIは、その機能を達成する。
【0059】
なお、ここでは、システムLSIとしたが、集積度の違いにより、IC、LSI、スーパーLSI、ウルトラLSIと呼称されることもある。また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)、あるいはLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。
【0060】
さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
【0061】
また、本開示の一態様は、本方法に含まれる特徴的な各ステップをコンピュータに実行させるコンピュータプログラムであってもよい。また、本開示の一態様は、そのようなコンピュータプログラムが記録された、コンピュータ読み取り可能な非一時的な記録媒体であってもよい。
【0062】
なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
【0063】
なお、本開示においては、前述した様々な実施の形態及び/又は実施例のうちの任意の実施の形態及び/又は実施例を適宜組み合わせることを含むものであり、それぞれの実施の形態及び/又は実施例が有する効果を奏することができる。
【産業上の利用可能性】
【0064】
以上のように、本発明に係るIII族窒化物結晶の製造方法を用いれば、パワー半導体分野などのヘテロ接合高速電子デバイスやLED、レーザー分野などの光電子デバイスなどに適用可能なIII族窒化物結晶を得ることができる。
【符号の説明】
【0065】
10 III族窒化物結晶製造装置
30 制御部
31 処理部
32 記憶部
33 表示部
35 プログラム
35a 混合完了判定部
35b 窒素過飽和度判定部
100 種結晶基板
101 反応装置
102 坩堝
103 反応室
109 炉外大気空間
110 ヒータ
111 金属リチウムもしくは金属リチウムにガリウムを加えたもの
113 窒素供給ライン
114 基板保持機構
120 四端子電極保持機構
121 混合融液
122 マグネット
200 電流源
201 電圧計
202 シーリング機構
203 電極線
204 四端子電極
300 ベース基板
301 III族窒化物結晶薄膜
図1
図2
図3
図4
図5