IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東芝の特許一覧 ▶ 東芝マテリアル株式会社の特許一覧

特許7176121放電ランプ用カソード部品および放電ランプ
<>
  • 特許-放電ランプ用カソード部品および放電ランプ 図1
  • 特許-放電ランプ用カソード部品および放電ランプ 図2
  • 特許-放電ランプ用カソード部品および放電ランプ 図3
  • 特許-放電ランプ用カソード部品および放電ランプ 図4
  • 特許-放電ランプ用カソード部品および放電ランプ 図5
  • 特許-放電ランプ用カソード部品および放電ランプ 図6
  • 特許-放電ランプ用カソード部品および放電ランプ 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-11
(45)【発行日】2022-11-21
(54)【発明の名称】放電ランプ用カソード部品および放電ランプ
(51)【国際特許分類】
   H01J 61/06 20060101AFI20221114BHJP
【FI】
H01J61/06
H01J61/06 A
【請求項の数】 12
(21)【出願番号】P 2021537388
(86)(22)【出願日】2020-08-06
(86)【国際出願番号】 JP2020030234
(87)【国際公開番号】W WO2021025130
(87)【国際公開日】2021-02-11
【審査請求日】2021-11-02
(31)【優先権主張番号】P 2019144671
(32)【優先日】2019-08-06
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】303058328
【氏名又は名称】東芝マテリアル株式会社
(74)【代理人】
【識別番号】110001092
【氏名又は名称】弁理士法人サクラ国際特許事務所
(72)【発明者】
【氏名】溝部 雅恭
(72)【発明者】
【氏名】青山 斉
(72)【発明者】
【氏名】中野 秀士
(72)【発明者】
【氏名】田中 徹
【審査官】中尾 太郎
(56)【参考文献】
【文献】特開2007-095665(JP,A)
【文献】特開2012-190627(JP,A)
【文献】特開2013-251094(JP,A)
【文献】特開2014-186890(JP,A)
【文献】特開2019-067527(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 61/06
(57)【特許請求の範囲】
【請求項1】
タングステンとエミッタ材とを含有する第1の部分と、
前記エミッタ材と異なる金属を含有する第2の部分と、を具備し、
前記第1の部分のタングステン相の平均結晶粒径がAμmであり、前記第2の部分の前記金属の相の平均結晶粒径がBμmであるとき、前記Aおよび前記Bが式:B>Aを満たし、且つ式:B≧1.5Aを満たす数であり、
前記タングステン相の平均結晶粒径は、5μm以上15μm以下であり、
前記金属の相の平均結晶粒径は、18μm以上40μm以下である、放電ランプ用カソード部品。
【請求項2】
前記第1の部分の中心部を通るとともに前記第1の部分の長さ方向に沿う断面における、前記第1の部分の中心部から1mm以内に位置するとともに90μm×90μmの単位面積を有する領域の電子線後方散乱回折分析を行う場合、前記断面に垂直な方向のInverse Pole Figureマップにおいて、<111>方位に対する方位差が-15度以上15度以下の結晶方位を有するタングステン相の面積比が15%以上50%以下である、請求項1に記載のカソード部品。
【請求項3】
前記タングステン相の前記面積比は、21%以上50%以下である、請求項2に記載のカソード部品。
【請求項4】
前記第2の部分の中心部を通るとともに前記第2の部分の長さ方向に沿う断面における、前記第2の部分の中心部から1mm以内に位置するとともに90μm×90μmの単位面積を有する領域の電子線後方散乱回折分析を行う場合、前記断面に垂直な方向のInverse Pole Figureマップにおいて、<111>方位に対する方位差が-15度以上15度以下の結晶方位を有する前記金属の相の面積比が前記タングステン相の前記面積比よりも低い、請求項2または請求項3に記載のカソード部品。
【請求項5】
前記金属の相の前記面積比は、5%以上40%以下である、請求項4に記載のカソード部品。
【請求項6】
前記金属は、タングステンおよびモリブデンからなる群より選ばれる少なくとも一つの金属元素を含む、請求項1ないし請求項5のいずれか一項に記載のカソード部品。
【請求項7】
前記エミッタ材は、トリウムおよびハフニウムからなる群より選ばれる少なくとも一つの元素を含む、請求項1ないし請求項6のいずれか一項に記載のカソード部品。
【請求項8】
前記第1の部分は、前記第2の部分に接合され、
前記第1の部分と前記第2の部分との接合界面は、凹凸を有する、請求項1ないし請求項7のいずれか一項に記載のカソード部品。
【請求項9】
前記第2の部分は、フィンを有する、請求項1ないし請求項8のいずれか一項に記載のカソード部品。
【請求項10】
前記第2の部分は、支持棒を接合するための穴を有する、請求項1ないし請求項9のいずれか一項に記載のカソード部品。
【請求項11】
前記第2の部分は、支持棒を有する、請求項1ないし請求項9のいずれか一項に記載のカソード部品。
【請求項12】
請求項1ないし請求項11のいずれか一項に記載の前記カソード部品を具備する、放電ランプ。
【発明の詳細な説明】
【技術分野】
【0001】
実施形態は、放電ランプ用カソード部品および放電ランプに関する。
【背景技術】
【0002】
放電ランプは、低圧放電ランプと高圧放電ランプの2種類に大きく分けられる。低圧放電ランプは、一般照明、道路やトンネル等に使われる特殊照明、塗料硬化装置、紫外線(UV)硬化装置、殺菌装置、半導体等の光洗浄装置等様々なアーク放電型の放電ランプが挙げられる。高圧放電ランプは、上下水の処理装置、一般照明、競技場等の屋外照明、UV硬化装置、半導体やプリント基板等の露光装置、ウエハ検査装置、プロジェクタ等の高圧水銀ランプ、メタルハライドランプ、超高圧水銀ランプ、キセノンランプ、ナトリウムランプ等が挙げられる。このように放電ランプは、照明装置、映像投影装置、製造装置等の様々な装置に用いられている。
【0003】
放電ランプ用カソード部品(カソード部品ともいう)の一例は、放電ランプ用カソード部品の側面方向断面と円周方向断面のタングステン結晶粒径のサイズを制御する。耐久性試験として、カソード部品に通電して加熱した状態で、電圧を印加し、10時間後のエミッション電流密度(mA/mm)と100時間後のエミッション電流密度(mA/mm)を測定する。上記制御された結晶粒径を有するカソード部品は、上記耐久性試験で優れた特性を示す。
【0004】
上記カソード部品の一例は、エミッタ材として酸化トリウム(ThO)を含有する。上記カソード部品の一例カソード部品は、円柱状の胴体部と、先端を尖らせた先端部と、を具備する。上記カソード部品の一例は、エミッタ材を均一に含有するタングステン合金からなる。上記カソード部品の一例の先端にあるエミッタ材はエミッション特性に寄与するが、胴体部にあるエミッタ材はエミッション特性には寄与しない場合がある。
【0005】
エミッション特性に寄与しないエミッタ材は、コストアップの原因となる。上記カソード部品の他の例は、高密度なタングステン焼結鍛造体と、多孔質タングステン層と、を具備する。上記カソード部品の他の例は、エミッタ材の使用量を減らし、軽量化、タングステンの省資源化を実現できる。
【0006】
上記カソード部品の他の例では、軽量化等はできるが、放電ランプ用カソード部品としての寿命は不十分の場合がある。放電ランプの使用は、カソード部品の先端部の温度を2000℃程度まで上昇させる。このため、カソード部品の放熱性を向上させることにより寿命を向上させることができる。多孔質タングステン層を設けるだけでは、必ずしも放熱性の改善が十分とは言えなかった。
【先行技術文献】
【特許文献】
【0007】
【文献】特許第5800922号公報
【文献】特開2018-77945号公報
【発明の概要】
【0008】
放電ランプ用カソード部品は、タングステンとエミッタ材とを含有する第1の部分と、エミッタ材と異なる金属を含有する第2の部分と、を具備する。第1の部分のタングステン相の平均結晶粒径はAμmであり、第2の部分の上記金属の相の平均結晶粒径はBμmであるとき、AおよびBが式:B>Aを満たす数である。
【図面の簡単な説明】
【0009】
図1】先端一体型構造を有する放電ランプ用カソード部品の例の長さ方向の断面を示す模式図である。
図2図1に示すカソード部品1の線径D方向の断面を示す模式図である。
図3】フィン構造を有するカソード部品1の外観図である。
図4】周囲一体型構造を有する放電ランプ用カソード部品の例の長さ方向の断面を示す模式図である。
図5】穴を有するカソード部品1の例を示す模式図である。
図6】高融点金属部3と一体成型された支持棒を有するカソード部品1の例を示す模式図である。
図7】放電ランプの構造例を示す図である。
【発明を実施するための形態】
【0010】
以下、実施形態について、図面を参照して説明する。図面に記載された各構成要素の厚さと平面寸法との関係、各構成要素の厚さの比率等は現物と異なる場合がある。実施形態において、実質的に同一の構成要素には同一の符号を付し適宜説明を省略する。
【0011】
図1は、先端一体型構造を有する放電ランプ用カソード部品の例の長さ方向の断面を示す模式図である。図1は、カソード部品1と、タングステン部2(第1の部分)と、高融点金属部3(第2の部分)と、カソード部品の線径方向の中心部4-1と、接合界面5と、タングステン部2の長さT1と、高融点金属部3の長さT2と、高融点金属部3の線径Dと、を図示する。図2は、図1に示すカソード部品1の線径D方向の断面を示す模式図である。カソード部品1は、タングステン部2と、高融点金属部3と、を具備する。
【0012】
タングステン部2の長さ方向の断面は、図1に示すように、先端を尖らせたテーパ形状を有する。テーパ角は40度以上120度以下であることが好ましい。
【0013】
タングステン部2は、タングステン(W)とエミッタ材とを含有する。タングステン部2は、例えばエミッタ材を含有するタングステン合金からなる。エミッタ材は、4.0eV以下の仕事関数を有する材料であって、カソード部品1に電圧を印加することによりエミッション特性を有する。
【0014】
エミッタ材は、例えばトリウム(Th)およびハフニウム(Hf)からなる群より選ばれる少なくとも一つの元素を含むことが好ましい。トリウムは、酸化トリウム(ThO)の形態で含まれていてもよく、トリウムの濃度はThO換算により算出できる。ハフニウムは、炭化ハフニウム(HfC)の形態で含まれていてもよく、ハフニウムの濃度はHfC換算により算出できる。
【0015】
タングステン部2のエミッタ材の濃度は、0.1質量%以上5質量%以下、さらには0.5質量%以上3質量%以下であることが好ましい。エミッタ材の濃度が0.1質量%未満であると、エミッション特性が低下する。エミッタ材の濃度が5質量%を超えると、エミッション特性が飽和し、コストアップの要因にもなる。トリウムの濃度は、0.5質量%以上3質量%以下であることがより好ましい。トリウムおよびハフニウムは、エミッション特性が高いため、上記濃度で性能を得ることができる。
【0016】
高融点金属部3は、例えば図1に示すようにタングステン部2の下側に設けられる。高融点金属部3は、エミッタ材と異なる金属を含有する。高融点金属部3は、例えば高融点金属を主成分として含有する。主成分とは、構成元素のうち最も多く含む元素であり、主成分の元素は、例えば全体の50原子%以上含まれる。高融点金属部3は、エミッタ材を含有しなくてもよい、またはエミッタ材を含有してもよい。
【0017】
高融点金属の融点は、例えば2300℃以上である。放電ランプ用カソード部品の温度は、使用中に2000℃付近まで上昇する場合がある。このため、高融点金属を用いることが好ましい。
【0018】
高融点金属は、例えばタングステンまたはモリブデン(Mo)が挙げられる。タングステンの融点は3422℃であり、モリブデンの融点は2623℃である。タングステンおよびモリブデンは融点が高いことから、放電ランプ用カソード部品の使用温度であっても耐久性を示す。よって、高融点金属部3に含まれる金属は、タングステンおよびモリブデンからなる群より選ばれる少なくとも一つの金属元素を含むことが好ましい。
【0019】
高融点金属部3は、例えばドープタングステン合金、酸化ランタン含有タングステン合金、タングステンモリブデン合金、純タングステン、純モリブデンからなる群より選ばれる少なくとも一つを含んでいてもよい。これらの材料は、いずれも2300℃以上の高い融点を有する。
【0020】
ドープタングステン合金は、例えばカリウム(K)、珪素(Si)、およびアルミニウム(Al)からなる群より選ばれる少なくとも一つのドープ材を含有する。ドープ材の濃度は、例えば500質量ppm以下である。ドープ材はエミッタ材に該当しない。
【0021】
酸化ランタン含有タングステン合金は、La換算で1質量%以上2質量%以下の酸化ランタンを含有するタングステン合金である。タングステンモリブデン合金は、1質量%以上50質量%以下のモリブデンを含有する。
【0022】
純タングステンは、99.9質量%以上のタングステンを含有する。純モリブデンは99.9質量%以上のモリブデンを含有する。
【0023】
図3は、フィン構造を有する放電ランプ用カソード部品の外観図である。図3は、カソード部品1と、タングステン部2と、高融点金属部3と、フィン構造6と、を図示する。タングステン部2および高融点金属部3のその他の説明については、図1に示すタングステン部2および高融点金属部3の説明を適宜援用できる。
【0024】
フィン構造6は、高融点金属部3の外周表面の一部または全部に設けられることが好ましい。フィン構造6は、フィンを有する。フィン構造6は、高融点金属部3の外周表面に凸部および凹部からなる群より選ばれる少なくとも一つを設けることにより形成され、表面積を大きくできる。放電ランプ内は真空に保たれているため、表面積を大きくすることにより、輻射効果を得ることができる。フィン構造6の形状は、ねじ溝、断面V字、断面U字、表面S字、突起型、粗面化、低密度化、直線状、波状など様々な形状が挙げられる。
【0025】
フィン構造6のフィンの直径は、高融点金属部3に接する部分の最大径である。フィンの高さは、フィンの根元(高融点金属部3との接触部)からの最大高さである。隣り合うフィンの頂点間隔は、最も近いフィンの頂点同士の間隔(ピッチ)である。隣り合うフィンの頂点間隔は1mm以上であることが好ましい。複数のフィンを設ける場合、直径、高さ、間隔は全て同じであってもよいし、それぞれ異なっていてもよい。上記好ましい範囲を満たしていれば冷却効率を向上させることができる。隣り合うフィン同士は隙間があってもよいし、連続する形状であってもよい。
【0026】
フィンの高さは10μm以上が好ましい。フィンが凸部の場合、高融点金属部3の表面に対する凸部の高さがフィンの高さである。フィンが凹部の場合、高融点金属部3の表面に対する凹部の深さがフィンの高さである。フィンの高さが10μm未満では、表面積を大きくする効果が不十分となる可能性がある。フィンの高さの上限は特に限定されないが、5mm以下が好ましい。5mmを超えると、高融点金属部3の強度が低下する、または不要にサイズが大きくなる場合がある。このため、フィンの高さは10μm以上5mm以下、0.1mm以上3mm以下、0.3mm以上3mm以下が好ましい。
【0027】
フィンの直径または最小幅は1mm以上であることが好ましい。フィンの直径とは、凸型フィンを上から見たときの最大径である。例えば、高融点金属部3に円錐型のフィンが設けられた場合、円錐の根元が最大径となる。フィンの最小幅は、凹型フィンの最小幅である。例えば、高融点金属部3の外周に沿って一周つながった溝を設ける場合、溝の幅が最小幅となる。
【0028】
隣り合うフィンの頂点間隔(ピッチ)が1mm以上であることが好ましい。フィンは複数設けることが好ましい。複数設けることにより、表面積をより大きくすることができる。フィンのピッチが1mm未満であると、フィン同士の隙間の強度が低下する可能性がある。
【0029】
フィン形状の幅は、0.5mm以上3mm以下の範囲内であることが好ましい。溝部のときは最小幅がフィン形状の幅となる。突起部のときは、突起部を上から見たときの最大径である。複数のフィンを設ける場合は、ピッチ1mm以上5mm以下の範囲内が好ましい。
【0030】
図4は、周囲一体型構造を有する放電ランプ用カソード部品の例の長さ方向の断面を示す模式図である。図4は、カソード部品1と、タングステン部2と、高融点金属部3と、カソード部品1の長さ方向の中心部4-2と、接合界面5と、高融点金属部3の線径D1と、タングステン部2の線径D2と、を図示する。
【0031】
カソード部品1は、タングステン部2と、高融点金属部3と、を具備する。高融点金属部3は、カソード部品1の線径方向の断面においてタングステン部2を囲むように設けられる。タングステン部2および高融点金属部3のその他の説明については、図1に示すタングステン部2および高融点金属部3の説明を適宜援用できる。
【0032】
タングステン部2の長さ方向の断面は、図4に示すように、先端を尖らせたテーパ形状を有する。図4では、高融点金属部3もタングステン部2のテーパ形状に合わせたテーパ形状を有するが、タングステン部2のみにテーパ形状を付与してもよい。図3ではタングステン部2の下面と高融点金属部3の下面が面一であるが、どちらか一方を他方よりも低くしてもよい。特に、タングステン部2の端面を低くすることにより、電極支持棒を取付ける穴を形成してもよい。
【0033】
タングステン部2のタングステン相の平均結晶粒径がAμmであり、高融点金属部3の上記金属の相の平均結晶粒径がBμmであるとき、AおよびBは式:B>Aを満たす数である。換言すると、高融点金属部3の上記金属の相の平均結晶粒径は、タングステン部2のタングステン相の平均結晶粒径よりも大きい。
【0034】
カソード部品1を用いた放電ランプ内は真空に保持される。タングステン部2の温度は2000℃程度の温度まで上昇する場合がある。このため、タングステン部2から高融点金属部3に熱を伝えて逃がすことが好ましい。
【0035】
多結晶体は、結晶の間に粒界を有する。粒界は伝熱に対する阻害要因である。これに対し、高融点金属部3の上記金属の相の平均結晶粒径を大きくすることにより、粒界の数を減らすことができる。これにより、タングステン部2で発生する熱を高融点金属部3から容易に逃がすことができる。これにより、カソード部品の電極の温度上昇を抑制することができ、放電ランプの寿命を向上させることができる。
【0036】
AおよびBは、式:B≧1.5Aを満たす数であることがより好ましい。換言すると、高融点金属部3の上記金属の相の平均結晶粒径が、タングステン部2のタングステン相の平均結晶粒径の1.5倍以上であることが好ましい。これにより、放熱効果を向上させることができる。
【0037】
タングステン部2のタングステン相の平均結晶粒径は、5μm以上15μm以下であることが好ましい。エミッタ材はタングステン相の結晶粒界に分散する。上記平均結晶粒径が5μm未満または15μmを超えると、エミッタ材の均一分散が困難となる可能性がある。このため、上記平均結晶粒径は5μm以上15μm以下、さらには7μ以上12μm以下であることが好ましい。
【0038】
高融点金属部3の上記金属の相の平均結晶粒径は18μm以上40μm以下であることが好ましい。上記平均結晶粒径が18μm未満では放熱効果が小さい。上記平均結晶粒径が40μmを超えると、放熱効果が向上するが、高融点金属部3の強度が低下する可能性がある。また、高融点金属部3に電極支持棒を取付けてカソード部品を製造する場合、高融点金属部3の強度が低下すると電極支持棒を取付ける際の破損の原因となる場合がある。同様にフィン構造を設ける際の加工時に破損する可能性がある。このため、平均結晶粒径は18μm以上40μm以下、さらには20μm以上36μm以下が好ましい。
【0039】
タングステン部2の中心部4-1または中心部4-2を通るとともにタングステン部2の長さ方向に沿う断面における、中心部4-1または中心部4-2から1mm以内に位置するとともに90μm×90μmの単位面積を有する領域の電子線後方散乱回折(EBSD)分析を行う場合、長さ方向の逆極点図(Inverse Pole Figure:IPF)マップにおいて、<111>方位に対する方位差が-15度以上15度以下の結晶方位を有するタングステン相の面積比が15%以上50%以下であることが好ましい。
【0040】
また、高融点金属部3の中心部4-1または中心部4-2を通るとともに高融点金属部3の長さ方向に沿う断面における、中心部4-1または中心部4-2から1mm以内に位置するとともに90μm×90μmの単位面積を有する領域の電子線後方散乱回折分析を行う場合、断面に垂直な方向のInverse Pole Figureマップにおいて、<111>方位に対する方位差が-15度以上15度以下の結晶方位を有する上記金属の相の面積比が上記タングステン相の上記面積比よりも低いことが好ましい。これにより高融点金属部3の熱を電極支持棒に容易に伝えることができる。
【0041】
高融点金属部3の中心部4-1とは、先端一体型構造のカソード部品1のときの中心部である。高融点金属部3の中心部4-2は周囲一体型のカソード部品1のときの中心部である。中心部4-1および中心部4-2の総称として中心部4と呼ぶこともある。
【0042】
タングステン相の平均結晶粒径および上記金属の相の平均結晶粒径は、EBSDにより得た結晶粒マップから求められる。測定箇所については以下の通りである。
【0043】
先端一体型構造の場合は、カソード部品1の長さ方向の断面であって、中心部4-1を通る断面を用意する。断面の中心部4-1から1mm以内の場所を測定箇所とする。タングステン部2および高融点金属部3からそれぞれ測定箇所を選出する。測定試料の測定面は、表面粗さRaが0.8μm以下になるまで研磨される。
【0044】
周囲一体型構造の場合、タングステン部2の測定箇所を先端一体型構造の場合と同様の方法で選出する。周囲一体型構造の場合、カソード部品1の長さ方向の断面であって、中心部4-2を通る断面を用意する。高融点金属部3において中心部4-2を通る個所から1mm以内の箇所を測定箇所とする。
【0045】
EBSDの結晶粒マップは、単位面積90μm×90μmの中で結晶方位角差5度以内の測定点が2点以上連続して存在する場合を同一結晶粒子として識別し、表示した図である。平均結晶粒径は単位面積90μm×90μmにおける識別された結晶粒子の面積から算出する。粒径は円相当径となる。
【0046】
単位面積90μm×90μmからはみ出た粒子については単位面積90μm×90μmの境界を結晶粒界として算出する。得られる平均結晶粒径は、メジアン径(平均粒径D50)である。つまり、累積粒径となる。
【0047】
EBSDは、結晶試料に電子線を照射する。電子は回折され反射電子として試料から放出される。この回折パターンを投影し、投影されたパターンから結晶方位を測定することができる。X線回折(XRD)は複数の結晶における結晶方位の平均値を測定する方法である。これに対し、EBSDは個々の結晶の結晶方位を測定することができる。EBSDと同様の分析方法は、電子線後方散乱パターン(EBSP)分析と呼ばれることがある。
【0048】
EBSD分析は、日本電子株式会社製の熱電界放射型走査電子顕微鏡(TFE-SEM)JSM-6500Fと株式会社TSLソリューション製のDigiViewIVスロースキャンCCDカメラ、OIM Data Collectionver.7.3x、OIM Analysisver.8.0を用いて行われる。
【0049】
EBSD分析の測定条件は、電子線の加速電圧20kV、照射電流12nA、試料の傾斜角70度、測定領域の単位面積90μm×90μm、測定位置は中心部4から1mm以内、測定間隔0.3μm/stepを含む。上記断面が測定面であり、上記断面へ電子線を照射し回折パターンを得る。測定試料の測定面は、表面粗さRaが0.8μm以下になるまで研磨される。
【0050】
結晶方位は、基本ベクトルを用いて方向を示す。角括弧([ ])と角括弧に挟まれた数字の組み合わせからなる表記は特定の結晶方位のみを示す。山括弧(< >)と山括弧に挟まれた数字の組み合わせからなる表記は、特定の結晶方位とそれと等価な方向とを示す。例えば、<111>方位とは、[111]と等価な方向を含むことを示す。
【0051】
IPFマップとは、結晶方位マップのことである。IPFマップは、所定の結晶方位からずれた領域の割合を面積比で求めることができる。IPFマップは、前述のEBSD測定方法に準じて求めることができる。カラーマッピングにより、面積比を画像解析により求めやすくできる。
【0052】
タングステン部2の中心部4を通る断面における<111>とは、中心部4を通る断面に対して垂直方向への配向性を示す。タングステン部2が<111>の配向性を有することにより、熱が外に逃げ易くなる。これにより、カソード部品1の放熱性を向上させることができる。
【0053】
高融点金属部3の中心部4-1または中心部4-2を通る断面における<111>とは、中心部4を通る断面に対して垂直方向への配向性を示す。
【0054】
高融点金属部3の<111>方位に対する方位差が-15度以上15度以下の結晶方位を有する上記金属の相の面積比は、5%以上90%以下であることが好ましい。<111>とは異なる配向を持たせることにより、高融点金属部3の粒成長を抑制する効果がある。高融点金属部3に<111>の配向性を持たせることにより、熱が外に逃げ易くなる。
【0055】
タングステン部2および高融点金属部3の<111>方位に対する方位差が-15度以上15度以下の結晶方位を有する相の面積比は5%以上40%以下であることが好ましい。タングステン部2および高融点金属部3が所定割合の<111>を備えることにより、熱処理後であっても式:B>Aを満たす関係を維持させることができる。カソード部品1は、放電ランプに搭載する際に熱処理を施すことがある。この熱処理は、再結晶熱処理や歪取り熱処理などが挙げられる。<111>は断面に対して垂直方向の配向を示している。垂直方向の配向を備えることにより、熱処理に伴う異常粒成長を抑制できる。これにより、実施形態にかかるカソード部品1は熱処理を施した後であっても、式:B>Aを満たすことができる。
【0056】
カソード部品1は、周囲一体型構造であっても、AおよびBは式:B>Aを満たす。Bを大きくすることにより、放熱効果を向上させることができる。AおよびBは、式:B≧1.5Aを満たすことがより好ましい。
【0057】
接合界面5は、少なくとも一部に凹凸を有することが好ましい。接合界面に凹凸を有することにより、タングステン部2と高融点金属部3のアンカー効果を生じさせて接合強度を向上できる。
【0058】
凹凸の値は、凹部の最深部と凸部の最頂部との差により定義される。凹凸の値は0.01mm以上、さらには0.1mm以上であることが好ましい。0.01mm以上の凹凸とすることにより接合強度を200MPa以上にすることができる。接合強度が向上すると、電極支持棒の圧入時の破損、取り扱い時の破損等を抑制することができる。凹凸の上限は特に限定されないが、1mm以下が好ましい。1mmを超えると、凹凸が大きすぎて接合界面に隙間が生じる可能性がある。このため、接合界面の凹凸は0.01mm以上1mm以下、さらには0.1mm以上0.5mm以下が好ましい。この範囲であれば、接合強度を200MPa以上、さらには400MPa以上にすることができる。
【0059】
接合強度は、ピール試験により測定される。接合強度の測定は、4点曲げ試験で行われる。試験片の接合界面が内部支点及び外部支点間に入るように設置し、荷重を加える。試験片が破壊した時の最大荷重から接合強度を算出する。4点曲げ試験についてはJISR1631(ファインセラミックスの室温曲げ強さ試験方法)に準じて行う。
【0060】
接合界面5の凹凸は、断面のレーザ顕微鏡観察で確認することができる。接合界面5に凹凸があると、エミッタ材の分布状態に凹凸が生じる。レーザ顕微鏡写真においてエミッタ材は黒く写る。タングステンまたは高融点金属とはコントラストが異なるため識別可能である。
【0061】
レーザ顕微鏡写真は、500倍以上1500倍以下の倍率、測定視野200μm×200μm以上でサンプルを観察することにより得られる。レーザ顕微鏡写真のエミッタ材領域を線で結ぶと凹凸形状を確認できる。
【0062】
接合界面5の凹凸は、断面の走査型電子顕微鏡(SEM)観察とエネルギー分散型X線分析(EDS)などにより確認することもできる。元素分析によってタングステンまたは高融点金属とエミッタ材を識別することが可能である。接合界面5に凹凸があると、エミッタ材の分布状態に凹凸が生じる。SEM観察では、500倍以上1500倍以下、測定視野200μm×200μm以上で試料を観察する。元素分析で識別されたエミッタ材領域を線で結ぶと凹凸形状を確認できる。
【0063】
カソード部品1の線径Dは2mm以上35mm以下であることが好ましい。先端一体型構造の場合は、高融点金属部3の直径が線径Dである。周囲一体型構造の場合は、高融点金属部3の線径D1が線径Dである。線径Dが2mm未満であると、不十分なエミッション特性となる可能性がある。線径Dが35mmを超えると、それ以上の効果が得られない可能性がある。
【0064】
先端一体型構造の場合、タングステン部2の長さT1と高融点金属部3の長さT2は、0.4≦T2/T1≦3の範囲内であることが好ましい。周囲一体型構造の場合、高融点金属部3の線径D1とタングステン部2の線径D2は、0.2≦D2/D1≦0.8の範囲内であることが好ましい。比T2/T1または比D2/D1を調整することにより、高融点金属部3にエミッタ材を添加しなくてもエミッション特性の低下を抑制できる。つまり、エミッション特性に寄与しないエミッタ材の使用を防ぐことができる。エミッタ材の使用量を抑制することにより、製造コストを低減できる。
【0065】
図5は、穴を有するカソード部品1の例を示す模式図である。高融点金属部3は、図5に示すように、穴7を有していてもよい。穴7は、電極支持棒を接合するための穴である。穴7は、高融点金属部3の下面(タングステン部2が設けられていない側)に設けられている。
【0066】
支持棒8の接合方法は、圧入、ろう付けなど様々な方法が挙げられる。穴7の内側にねじ溝を設けてもよい。支持棒8にねじ溝を設けて、ねじ込む構造であってもよい。ねじ溝を設けておけば、支持棒8を取付ける際に高融点金属部3の破損を抑制できる。
【0067】
図6は、高融点金属部3と一体成型された支持棒を有するカソード部品1の例を示す模式図である。支持棒8を高融点金属部3に一体化させることにより、穴を設ける工程や支持棒8を接合する工程が不要になる。よって、製造コストを削減できる。なお、支持棒8の長さは、図5および図6に示す長さに限定されない。
【0068】
高融点金属部3の3点曲げ強度は、100MPa以上600MPa以下であることが好ましい。例えば、鍛造加工や圧延加工を施して形成された焼結体を用いてカソード部品を製造することにより、700MPa以上の3点曲げ強度を実現できる。これは、空隙の少ない緻密な焼結体を形成できるためである。
【0069】
放電ランプ用カソード部品は、放電ランプの点灯中に高温環境下に曝される。このため、高温での耐久性が要求される。その一方で、物理的な強度の要求は小さい。100MPa以上600MPa以下の3点曲げ強度のためには、カソード部品の密度を低くする方法が有効である。例えば3Dプリンタを用いた造形技術(3Dプリンティング)を用いることにより、密度を変えることができる。
【0070】
強度の制御には、気孔を形成することが有効である。気孔の存在割合は、200μm×200μm以上の単位面積あたり、面積比で0%以上60%以下の範囲内であることが好ましい。気孔の存在割合が面積比で60%を超えると、3点曲げ強度が100MPa未満に低下する可能性がある。
【0071】
気孔の面積比は、高融点金属部3の任意の断面をレーザ顕微鏡などの光学顕微鏡で観察することにより測定できる。倍率は100倍以上とする。光学顕微鏡写真において気孔は黒いコントラストで見える。タングステン等の高融点金属は灰色に見える。単位面積200μm×200μm以上あたりの黒色の面積比を求める。この作業を任意の3か所行い、その平均値を気孔の面積比とする。
【0072】
高融点金属部3がエミッタ材を含有しない場合、酸素濃度は0.1質量%以下が好ましい。エミッタ材は、酸化トリウムなどの酸化物で添加されることもある。一方、エミッタ材の構成元素でない酸素は不純物酸素となる。酸素の濃度が0.1質量%を超えると、強度が低下する場合がある。このため、高融点金属部3の酸素濃度は0.1質量%以下、さらには0.05質量%以下が好ましい。高融点金属部3の酸素濃度は、例えばSEM-EDXの半定量分析、または高融点金属部3を粉砕して赤外線吸収法にて測定される。
【0073】
実施形態のカソード部品は、放電ランプに適用することができる。図7は放電ランプの構造例を示す図である。図7に示す放電ランプ20は、カソード部品1と、カソード電極支持棒である支持棒8と、アノード部品9と、アノード電極支持棒である支持棒10と、ガラス管11と、を具備する。
【0074】
カソード部品1は支持棒8に接続されている。アノード部品9は支持棒10に接続されている。接続は圧入、ろう付け等によって行われる。カソード部品1とアノード部品9はガラス管11の中で対向して配置され、支持棒8の一部および支持棒10の一部とともに封止されている。ガラス管11内部は真空に保たれている。
【0075】
カソード部品1は低圧放電ランプ、高圧放電ランプのいずれの放電ランプにも適用できる。低圧放電ランプは、一般照明、道路やトンネル等に使われる特殊照明、塗料硬化装置、UV硬化装置、殺菌装置、半導体等の光洗浄装置等に用いられる、様々なアーク放電型の放電ランプが挙げられる。高圧放電ランプは、上下水の処理装置、一般照明、競技場等の屋外照明、UV硬化装置、半導体やプリント基板等の露光装置、ウエハ検査装置、プロジェクタ等の高圧水銀ランプ、メタルハライドランプ、超高圧水銀ランプ、キセノンランプ、ナトリウムランプ等が挙げられる。このように放電ランプは、照明装置、映像投影装置、製造装置等の様々な装置に用いられている。
【0076】
実施形態に係るカソード部品は、放熱性を改善しているため、温度上昇を抑制できる。カソード部品1の耐久性を向上させることができるため、放電ランプの輝度維持率の低下を抑制できる。このため、特に高圧放電ランプに適している。
【0077】
次に、実施形態のカソード部品の製造方法例について説明する。実施形態のカソード部品の製造方法は、上記構成を有していれば特に限定されないが、歩留り良くカソード部品を製造する方法として次の方法が挙げられる。
【0078】
まず、タングステン部2の製造方法について説明する。タングステン部2は、エミッタ材を含有するタングステン合金を含む。ここではエミッタ材としてトリウムを用いた製造方法について説明する。
【0079】
トリウムを含有するタングステン合金粉末を調製する。タングステン合金粉末の調製法は、例えば湿式法と乾式法が挙げられる。
【0080】
湿式法では、まず、タングステン材料粉末を調製する工程を実施する。タングステン材料粉末は、タングステン酸アンモニウム(APT)粉末、金属タングステン粉末、酸化タングステン粉末が挙げられる。タングステン材料粉末は、これら1種でもよいし、2種以上を用いてもよい。タングステン酸アンモニウム粉末が比較的価格が安いことから好ましい。タングステン材料粉末の平均粒径は5μm以下が好ましい。
【0081】
タングステン酸アンモニウム粉末を使う場合、タングステン酸アンモニウム粉末を大気中または不活性雰囲気(窒素、アルゴン等)中で400℃以上600℃以下の温度で加熱して、タングステン酸アンモニウム粉末を酸化タングステン粉末に変化させる。400℃未満の温度では、酸化タングステン粉末に十分に変化させられず、600℃を超える温度では、酸化タングステン粉末の粒子が粗大になり、後工程での酸化トリウム粉末との均一分散が困難となる。この工程により、酸化タングステン粉末を調製する。
【0082】
次に、トリウム材料粉末と酸化タングステン粉末を溶液中に添加する工程を実施する。トリウム材料粉末は、金属トリウム粉末、酸化トリウム粉末、硝酸トリウム粉末が挙げられる。この中では、硝酸トリウム粉末が好ましい。硝酸トリウム粉末は液体中で均一に混合しやすい。この工程により、トリウム材料粉末と酸化タングステン粉末とを含有する溶液を調製する。最終的に目的とする酸化トリウム濃度と同じか、若干高めの濃度となるように添加することが好ましい。トリウム材料粉末の平均粒径は5μm以下が好ましい。溶液は純水であることが好ましい。
【0083】
次に、トリウム材料粉末と酸化タングステン粉末とを含有する溶液の液体成分を蒸発させる工程を実施する。次に、大気雰囲気中で400℃以上900℃以下の温度で加熱して、硝酸トリウム等のトリウム材料粉末を酸化トリウム粉末に変化させる分解工程を実施する。この工程により、酸化トリウム粉末と酸化タングステン粉末とを含む混合粉末を調製することができる。得られた酸化トリウム粉末と酸化タングステン粉末とを含む混合粉末の酸化トリウム濃度を測定し、濃度が低い場合には、酸化タングステン粉末を追加することが好ましい。
【0084】
次に、酸化トリウム粉末と酸化タングステン粉末とを含む混合粉末を、水素等の還元雰囲気中、750℃以上950℃以下の温度で加熱して酸化タングステン粉末を金属タングステン粉末に還元する工程を実施する。この工程により、酸化トリウム粉末を含有するタングステン粉末を調製することができる。
【0085】
金属タングステン粉末とトリウム材料粉末とを混合する方法も有効である。金属タングステン粉末は、タングステン酸アンモニウム粉末から酸化タングステン粉末を形成し、得られた酸化タングステンを還元することにより形成されることが好ましい。タングステン酸アンモニウム粉末から酸化タングステン粉末に変化させるとき、得られる酸化タングステンは酸素欠損を有することが好ましい。酸化タングステンの組成は、WOが安定である。酸素欠損があるとWO3-x、x>0、となる。酸素欠損があると、結晶構造にゆがみが形成される。この状態で還元して得られた金属タングステン粉末は、異常粒成長の抑制効果が高い。xの値は0.05≦x≦0.30の範囲内であることが好ましい。
【0086】
タングステン酸アンモニウム粉末から酸化タングステン粉末を形成する工程は、不活性雰囲気中で加熱する工程が好ましい。不活性雰囲気とは、窒素雰囲気やアルゴン雰囲気である。xの値の制御のためには、不活性雰囲気中の酸素量を少なくする(例えば、1体積%以下)ことや、水素を混合すること等が挙げられる。熱処理温度は、400℃以上600℃以下の範囲内であることが好ましい。400℃未満では反応速度が遅く量産性が低下する。600℃を超えると粒成長し過ぎる可能性がある。
【0087】
WO3-x粉末を還元する工程は、水素含有雰囲気で行うことが好ましい。熱処理温度は600℃以上800℃以下の範囲内であることが好ましい。熱処理温度が600℃未満では還元の速度が遅く量産性が低下する。800℃を超えると粒成長し過ぎる可能性がある。
【0088】
次に、トリウム材料粉末と金属タングステン粉末とを含有する溶液の液体成分を蒸発させる工程を実施する。次に、大気雰囲気中で400℃以上900℃以下の温度で試料を加熱して、硝酸トリウム等のトリウム材料粉末を酸化トリウム粉末に変化させる分解工程を実施する。この工程により、酸化トリウム粉末を含有するタングステン粉末を調製できる。
【0089】
乾式法は、先ず、酸化トリウム粉末を準備する。次に、酸化トリウム粉末をボールミルにて粉砕混合する工程を実施する。この工程により、凝集された酸化トリウム粉末をほぐすことができ、凝集された酸化トリウム粉末を低減することができる。混合工程の際は、少量の金属タングステン粉末を添加してもよい。
【0090】
粉砕混合された酸化トリウム粉末に対し、必要に応じ、篩を掛けて粉砕しきれなかった凝集粉または粗大粒を取り除くことが好ましい。篩掛けにより、最大径10μmを超える凝集粉または粗大粒を取り除くことが好ましい。
【0091】
次に、金属タングステン粉末を混合する工程を実施する。最終的に目的とする酸化トリウム濃度になるように金属タングステン粉末を添加する。酸化トリウム粉末と金属タングステン粉末の混合粉末を混合容器に入れ、混合容器を回転させ均一に混合させる。このとき、円筒形状の混合容器を円周方向に回転させることにより、スムーズに混合することができる。この工程により、酸化トリウム粉末を含有するタングステン粉末を調製することができる。
【0092】
エミッタ材としてハフニウムを用いる場合は乾式法が適している。エミッタ材は、0.1質量%以上5質量%以下の含有量となるように混合される。
【0093】
次に、得られたエミッタ材を含有するタングステン粉末を使って成形体を調製する。成形体を形成する際は、必要に応じ、バインダを使用してもよい。成形体は円柱形状であることが好ましい。成形体の長さは任意である。
【0094】
次に、成形体を予備焼結する工程を実施する。予備焼結は1250℃以上1500℃以下の温度で行うことが好ましい。この工程により、予備焼結体を得ることができる。
【0095】
次に、予備焼結体を通電焼結する工程を実施する。通電焼結は、焼結体が2100℃以上2500℃以下の温度になるように通電することが好ましい。温度が2100℃未満では十分な緻密化ができず強度が低下する場合がある。2500℃を超えると、酸化トリウム粒子およびタングステン粒子が粒成長し過ぎて目的とする結晶組織が得られない場合がある。この工程により、酸化トリウム含有タングステン合金焼結体を得ることができる。予備焼結体が円柱形状を有していれば焼結体も円柱形状を有する。
【0096】
次に、円柱状焼結体(インゴット)を、鍛造加工、圧延加工、押出加工等により、線径を調整する第一の加工工程を実施する。第一の加工工程の加工率は10%以上30%以下の範囲内であることが好ましい。
【0097】
第一の加工工程の次に第二の加工工程を行う。第二の加工工程は、加工率30%以上70%以下、さらには加工率40%以上70%以下の圧延加工であることが好ましい。
【0098】
加工率は、加工前の円柱状焼結体の断面積をC、加工後の円柱状焼結体の断面積をDとする場合、加工率=[(C-D)/C]×100%、により求められる。例えば、直径25mmの円柱状焼結体を直径20mmの円柱状焼結体に加工する場合の加工率を説明する。直径25mmの円の断面積Cは460.6mm、直径20mmの円の断面積Dは314mmであるから加工率は32%=[(460.6-314)/460.6]×100%となる。
【0099】
第一の加工工程の加工率が10%以上30%以下であることは、第一の加工工程の前の円柱状焼結体(インゴット)の断面積を断面積Cとして求められる。第二の加工工程の加工率が30%以上70%以下であることは、第一の加工工程の後の円柱状焼結体の断面積を断面積Cとして求められる。
【0100】
鍛造加工とは、ハンマーで焼結体を叩いて圧力を加える加工である。圧延加工とは、2つ以上のローラーで焼結体を挟みながら加工する方法である。押出加工は、強圧してダイス孔から押し出す方法である。
【0101】
第一の加工工程は、鍛造加工、圧延加工、および押出加工からなる群より選ばれる少なくとも一つの加工を含むことが好ましい。これらの加工方法は、線径を小さくできる。よって、円柱状焼結体中のポアを低減できる。第一の加工工程は、鍛造加工または押出加工が好ましい。鍛造加工または押出加工は、円柱状焼結体の円周全体を加工しやすいため、ポアの低減効果が高い。
【0102】
第一の加工工程の加工率は10%以上30%以下であることが好ましい。加工率が10%未満であるとポアを低減する効果が小さい。加工率が30%を超えると結晶方位の制御が困難となる。第一の加工工程は、加工率が10%以上30%以下の範囲内であれば、複数回に分けて加工を行ってもよい。
【0103】
第二の加工工程は、圧延加工である。圧延加工であると結晶方位を制御しやすい。圧延加工は、複数のローラーで挟みながら断面積を小さくする方法である。圧延加工のみで加工すると結晶方位を制御することができる。
【0104】
鍛造加工はハンマーで叩くため結晶方位に部分的なばらつきが生じやすい。押出加工は、ダイスを通すときの応力が強いため、中央部と表面部での結晶方位に違いが生じやすい。圧延加工であると、ローラーからの応力を調整できるため、結晶方位を制御しやすい。
【0105】
第二の加工工程において圧延加工の加工率は30%以上70%以下である。第一の加工工程後の断面積を断面積Cとして加工率を制御する。加工率が30%以上70%以下の範囲内であれば、1回の加工でもよいし、2回以上に分けてもよい。加工率が30%未満または70%を超えると、目的とする結晶方位が得られない。
【0106】
第一の加工工程および第二の加工工程は、冷間加工であることが好ましい。冷間加工は、再結晶温度以下の温度で対象物を加工する方法である。再結晶温度以上の加熱状態で加工することを熱間加工という。熱間加工であると円柱状焼結体が再結晶化する。冷間加工であると再結晶化しない。再結晶化しない組織で結晶方位を制御することが重要である。
【0107】
冷間加工とすることにより、タングステン部2のタングステン相の平均結晶粒径の拡大を抑制できる。圧延加工の加工率を制御することにより、タングステン部2の<111>方位に対する方位差が-15度以上15度以下の結晶方位を有するタングステン相の面積比も制御できる。鍛造と圧延を組み合わせることにより、99.5%以上の相対密度を有する緻密なタングステン部2を形成できる。
【0108】
また、高融点金属部3を形成する工程を行う。高融点金属部3は、タングステン部2よりも平均結晶粒径を大きくする。高融点金属部3を形成する方法は、例えば大きい平均結晶粒径を有する高融点金属焼結体を予め用意する方法や、3Dプリンティングを用いる方法が挙げられる。特に3Dプリンティングを用いることが好ましい。
【0109】
3Dプリンティングは、3次元立体モデルを使って直接的に立体的な造形物を造形する技術である。3Dプリンティングとしては、例えばレーザビームまたは電子ビームを使った方法が挙げられる。
【0110】
レーザビームを使った3Dプリンティングは、選択的レーザ焼結法(SLS)と呼ばれている。レ-ザ焼結法の一種に、直接金属レーザ焼結法(DMLS)がある。SLSは造形ステージ上に粉末材料を敷き詰めて、レーザビームを照射する方法である。レーザビームの照射により粉末材料が溶融し、その後冷却されることにより造形されていく。造形後に、新たに粉末材料を供給し、レーザ照射を繰り返す方法である。
【0111】
DMLSは、高いレーザ出力を用いたレーザ焼結法である。DMLSはイッテルビウムレーザを使用する。SLSは炭酸ガスレーザを使用する。
【0112】
SLSとDMLSはレーザビームにより粉末材料を焼結する方法である。レーザビームを使う方法として、選択的レーザ溶融法(SLM)もある。SLMはレーザ照射により粉末材料を溶融して造形していく方式である。また、レーザビームを照射した領域に粉末を吹き付け、溶融して造形する肉盛り造形法であるレーザーメタルデポジション(LMD)もある。
【0113】
電子ビームを使った3Dプリンティングは、電子ビーム溶解法(EBM)という。電子ビームは、真空中でフィラメントを加熱して放出された電子を照射するビームのことである。電子ビームは、レーザビームに比べて高出力かつ高速であることが特徴である。EBMは、粉末材料を溶融して造形する技術である。EBMには、金属ワイヤを用いて造形する方法もある。前述の高融点金属を3Dプリンティングで造形する場合は、SLMまたはEBMが好ましい。SLMまたはEBMは、金属粒子を溶融させる方式である。溶融させる場合、高密度の造形物を得やすくなる。
【0114】
レーザビームを用いた3Dプリンティングは、金属粉を敷いてレーザビームを照射して固める工程を行い、その上に金属粉を敷いてレーザビームを照射して固める工程を繰り返す。金属粉に高融点金属粉を用いることにより、高融点金属部3を造形できる。先端一体型構造の場合は、下面(高融点金属部3の反対側)に造形していく方法が挙げられる。周囲一体型の場合は、LMDによってタングステン部2の周囲に造形していく方法が挙げられる。
【0115】
3Dプリンティングの場合、タングステン部2の平均結晶粒径よりも大きな平均結晶粒径を有する高融点金属粉を用いることが好ましい。これにより、式:B>A、さらには式:B≧1.5Aを満たすカソード部品を製造し易くなる。
【0116】
DMLS、SLSはレーザ出力100W以上であることが好ましい。SLM、LMDはレーザ出力100W以上であることが好ましい。EBMは、電子ビームの出力が2000W以上であることが好ましい。
【0117】
SLS、SLM、EBM、またはLMDは、造形速度が100mm/s以上であることが好ましい。造形速度はレーザまたは電子ビームを走査する速度である。造形速度が100mm/s未満であると、造形速度が遅く量産性が低下する。造形速度の上限は特に限定されないが5000mm/s以下が好ましい。高融点金属の場合、5000mm/sより速いと焼結状態または溶融状態にばらつきが生じ、密度が必要以上に低下する可能性がある。密度が低下すると高融点金属部3の強度が低下する。
【0118】
レーザビームまたは電子ビームの出力と造形速度とを制御することにより、高融点金属部3の平均結晶粒径を大きくできる。タングステン部2にレーザビームまたは電子ビームが当たることにより、接合界面5に凹凸を形成することが可能となる。高融点金属部3を基準に見ると、レーザビームが当たった場所は凹部になる。前述の出力および造形速度の範囲内とすることにより、凹凸の値を0.1mm以上にすることができる。レーザビームまたは電子ビームの照射径を制御することにより、凹凸の幅や間隔を制御できる。
【0119】
3Dプリンティングにより高融点金属部3を形成することにより、造形方法、造形方向を決めることができる。このため、<111>方位に対する方位差が-15度以上15度以下の結晶方位を有する上記金属の相の面積比を制御することができる。
【0120】
3Dプリンティングにより、図5に示すように、支持棒8を接合するための穴7を直接造形してもよい。直接造形する方法であれば、穴7にねじ溝を形成することも容易である。高融点金属部3を造形した後、穴7を設ける加工を施してもよい。タングステン部2は、鍛造、圧延を行って形成されることから、緻密な難加工材である。一方、高融点金属部3は、3Dプリンティングにより形成されるため、高融点金属粉を溶融して造形される。このため、タングステン部2よりも加工性が高く、穴7を形成しやすい。また、高融点金属部3に圧延加工を施さないことにより、<111>方位に対する方位差が-15度以上15度以下の結晶方位を有する上記金属の相の面積比を制御することができる。
【0121】
3Dプリンティングを用いることにより、図6に示すように、高融点金属部3と支持棒8とを一体化させることができる。これにより製造コストを削減できる。
【0122】
3Dプリンティングにより、図3に示すように、高融点金属部3に直接フィン構造6を形成できる。3Dプリンティングで形成された高融点金属部3を加工してフィン構造6を形成してもよい。加工としては、切削加工やレーザビーム加工などが挙げられる。
【0123】
タングステン部2は、高融点金属部3の先端を尖らせる加工を施すことにより形成されてもよい。タングステン部2を作製した後、先端を尖らせてもよい。
【実施例
【0124】
(実施例1~6、比較例1)
タングステン部2を形成した。平均粒径3μmのタングステン粉末と平均粒径2μmのエミッタ材とを、円筒形状の混合容器の中で、容器の円周方向に回転させながら混合した。その後、予備焼結、通電焼結を行った。この工程により、円柱状焼結体(インゴット)を製造した。製造条件を表1に示す。
【0125】
【表1】
【0126】
次に、円柱状焼結体を加工した。加工条件を表2に示す。なお、いずれの例も冷間加工で行った。
【0127】
【表2】
【0128】
円柱状焼結体を加工した後、先端部を尖らせる加工を施すことによりタングステン部2を作製した。得られたタングステン部2の長さ方向の中心部に沿って切断し、タングステン相の平均結晶粒径を測定した。また、タングステン部2の<111>方位に対する方位差が-15度以上15度以下の結晶方位を有するタングステン相の面積比を測定した。測定結果を表3に示す。
【0129】
【表3】
【0130】
次に、3Dプリンティングを用いてタングステン部2の表面に高融点金属部3を形成した。3Dプリンティングは、先端一体型構造の例はSLM法により形成し、周囲一体型構造の例は、LMD法により形成した。
【0131】
SLM法とLMD法は、レーザ出力100W以上とした。造形速度は100mm/s以上5000mm/s以下とした。実施例は、タングステン部2のタングステン相の平均結晶粒径よりも大きな平均結晶粒径を有する高融点金属粉を用いた。比較例は、タングステン部2のタングステン相の平均結晶粒径よりも小さな平均結晶粒径を有する高融点金属粉を用いた。実施例および比較例にかかるカソード部品1には高融点金属部3にフィン構造6を形成した。フィン構造は、高融点金属部3の外周を一周するように、高さ0.5mm、最小幅1mmの凹状のフィンを有する。2mmのピッチで複数のフィンを形成した。
【0132】
実施例1~5および比較例1は、電極支持棒を取付ける穴7を形成した。実施例6は、3Dプリンティングにより高融点金属部3と支持棒8とを一体的に造形した。比較例1は3Dプリンティングを用いずに、タングステン部2を鍛造および圧延で製造し、タングステン部2の一部から高融点金属部3を形成することによりカソード部品1を形成した。つまり、比較例1のカソード部品は、タングステン部2および高融点金属部3が酸化トリウムを含有するタングステン合金により形成された。
【0133】
実施例および比較例にかかるカソード部品1には高融点金属部3について、平均結晶粒径、<111>方位に対する方位差が-15度以上15度以下の結晶方位を有する上記金属の相の面積比を測定した。また、高融点金属部3の3点曲げ強度を測定した。測定はJISR1631に準じて行った。これにより、表4、表5に示す放電ランプ用カソード部品を作製した。なお、表4に示す比較例1の3点曲げ強度、平均粒径、<111>方位に対する方位差が-15度以上15度以下の結晶方位を有する上記金属の相の面積比は、高融点金属部3に相当する位置で測定された。
【0134】
【表4】
【0135】
【表5】
【0136】
タングステン部2と高融点金属部3との接合界面を観察したところ、0.01mm以上の凹凸を観察した。高融点金属部3の酸素濃度を赤外線吸収法により測定したところ、いずれも0.1質量%以下であった。
【0137】
次に、得られたカソード部品1を用いて放電ランプを作製した。放電ランプは、カソード部品1とアノード部品9の電極間距離を5mmに統一した。各放電ランプについて、カソード部品1の温度と照度維持率を測定した。
【0138】
カソード部品1の温度は、入力電力を3000Wとし、3時間連続点灯時のカソード部品1のタングステン部2の温度をサーモグラフィを用いて測定した。
【0139】
照度維持率は、点灯試験により測定した。点灯時のランプ電圧を40V、非点灯時のランプ電圧を20Vとした。点灯および非点灯を繰り返し、合計10時間後および合計700時間後の照度の変化率を測定した。照度維持率(%)=[(10時間後の照度-700時間の照度)/10時間後の照度]×100で求めた。照度は照度計で測定した。その結果を表6に示す。
【0140】
【表6】
【0141】
表から分かる通り、実施例にかかるカソード部品1は照度維持率(%)が優れていた。比較例1のように、タングステン部2と高融点金属部3を一つの材料で形成したカソード部品1と同等の性能を示した。これは、平均結晶粒径の制御、フィン構造の存在により、放熱性が向上し、カソード部品1の温度上昇が抑制されたためである。また、高融点金属部3にエミッタ材を含有させなくても、優れた特性を有することも分かった。このため、エミッタ材の使用量を抑制することもできる。
【0142】
以上、本発明のいくつかの実施形態を例示したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更などを行うことができる。これら実施形態やその変形例は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。前述の各実施形態は、相互に組み合わせて実施することができる。
図1
図2
図3
図4
図5
図6
図7