IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社明治の特許一覧

<>
  • 特許-フィトケミカル吸収促進剤 図1
  • 特許-フィトケミカル吸収促進剤 図2
  • 特許-フィトケミカル吸収促進剤 図3
  • 特許-フィトケミカル吸収促進剤 図4
  • 特許-フィトケミカル吸収促進剤 図5
  • 特許-フィトケミカル吸収促進剤 図6
  • 特許-フィトケミカル吸収促進剤 図7
  • 特許-フィトケミカル吸収促進剤 図8
  • 特許-フィトケミカル吸収促進剤 図9
  • 特許-フィトケミカル吸収促進剤 図10
  • 特許-フィトケミカル吸収促進剤 図11
  • 特許-フィトケミカル吸収促進剤 図12
  • 特許-フィトケミカル吸収促進剤 図13
  • 特許-フィトケミカル吸収促進剤 図14
  • 特許-フィトケミカル吸収促進剤 図15
  • 特許-フィトケミカル吸収促進剤 図16
  • 特許-フィトケミカル吸収促進剤 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-14
(45)【発行日】2022-11-22
(54)【発明の名称】フィトケミカル吸収促進剤
(51)【国際特許分類】
   A61K 31/715 20060101AFI20221115BHJP
   A61K 35/20 20060101ALI20221115BHJP
   A61K 35/744 20150101ALI20221115BHJP
   A61K 35/747 20150101ALI20221115BHJP
   A61P 1/14 20060101ALI20221115BHJP
   A23C 9/13 20060101ALI20221115BHJP
   A23L 5/00 20160101ALI20221115BHJP
   A23L 29/00 20160101ALI20221115BHJP
   A23L 33/125 20160101ALN20221115BHJP
   A23L 33/135 20160101ALN20221115BHJP
【FI】
A61K31/715
A61K35/20
A61K35/744
A61K35/747
A61P1/14
A23C9/13
A23L5/00 J
A23L29/00
A23L33/125
A23L33/135
【請求項の数】 6
(21)【出願番号】P 2019506279
(86)(22)【出願日】2018-03-16
(86)【国際出願番号】 JP2018010366
(87)【国際公開番号】W WO2018169027
(87)【国際公開日】2018-09-20
【審査請求日】2021-03-01
(31)【優先権主張番号】P 2017051965
(32)【優先日】2017-03-16
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】000006138
【氏名又は名称】株式会社明治
(74)【代理人】
【識別番号】110000109
【氏名又は名称】弁理士法人特許事務所サイクス
(72)【発明者】
【氏名】森藤 雅史
(72)【発明者】
【氏名】北出 晶美
(72)【発明者】
【氏名】深澤 朝幸
【審査官】新熊 忠信
(56)【参考文献】
【文献】特開平08-322464(JP,A)
【文献】国際公開第2016/111276(WO,A1)
【文献】KANO, Mitsuyoshi et al.,Bioavailability of Isoflavones after Ingestion of Soy Beverages in Healthy Adults,The Journal of Nutrition,2006年,Vol.136,p.2291-2296,全文,特に抄録,第2292頁左欄第11-28行,表1-2,図1-2
【文献】HERBERT, Michlmayr et al.,β-Glucosidase activities of lactic acid bacteria:mechanisms, impact on fermented food and human hea,FEMS Microbiol. Lett.,2014年,Vol.352,p.1-10,全文,特に抄録,第3頁左欄第12-26行
【文献】TAMURA, Motoi et al.,Role of Intestinal Flora on the Metabolism,Absorption, and Biological Activity of Dietary Flavonoids,Bioscience Microflora,2003年,Vol.22, No.4,p.125-131,全文,特に抄録
(58)【調査した分野】(Int.Cl.,DB名)
A61K 31/00-33/44
A61K 35/00-35/768
A61P 1/00
A23C 9/00- 9/20
A23L 5/00- 5/49
A23L 29/00-29/30
A23L 33/00-33/29
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
多糖体を含有する乳酸菌産生物を有効成分として含んでなる、難水溶性フィトケミカル吸収促進剤であって、
前記乳酸菌産生物が、ラクトバチルス・ブルガリクス(Lactobacillus bulgaricus)またはストレプトコッカス・サーモフィラス(Streptococcus thermophilus)のいずれかによって生成されるものであり、かつ前記難水溶性フィトケミカルは、その溶解率が88%以下のものであって、ケルセチン、ゲニステイン、エピカテキン、ルテオリン、ナリンゲニン、βカロテンおよびリコペンから選択されるものである、難水溶性フィトケミカル吸収促進剤。
【請求項2】
前記乳酸菌産生物が、ラクトバチルス・ブルガリクス(Lactobacillus bulgaricus)とストレプトコッカス・サーモフィラス(Streptococcus thermophilus)との組合せによって生成されるものである、請求項1に記載の難水溶性フィトケミカル吸収促進剤。
【請求項3】
前記乳酸菌産生物が発酵乳である、請求項1または2に記載の難水溶性フィトケミカル吸収促進剤。
【請求項4】
請求項1~のいずれか一項に記載の難水溶性フィトケミカル吸収促進剤を含んでなる、難水溶性フィトケミカル吸収促進用の食品添加剤であって、
前記難水溶性フィトケミカルは、その溶解率が88%以下のものであって、ケルセチン、ゲニステイン、エピカテキン、ルテオリン、ナリンゲニン、βカロテンおよびリコペンから選択されるものである、難水溶性フィトケミカル吸収促進用の食品添加剤。
【請求項5】
請求項1~のいずれか一項に記載の難水溶性フィトケミカル吸収促進剤を含んでなる、難水溶性フィトケミカル吸収促進用の飲食品または飲食品組成物であって、
前記難水溶性フィトケミカルは、その溶解率が88%以下のものであって、ケルセチン、ゲニステイン、エピカテキン、ルテオリン、ナリンゲニン、βカロテンおよびリコペンから選択されるものである、難水溶性フィトケミカル吸収促進用の飲食品または飲食品組成物。
【請求項6】
請求項1~のいずれか一項に記載の難水溶性フィトケミカル吸収促進剤の製造のための、多糖体を含有する乳酸菌産生物の使用。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は難水溶性のフィトケミカルの体内への吸収を促進する作用を有するフィトケミカル吸収促進剤に関する。
【背景技術】
【0002】
フィトケミカルは、一般的に、通常の身体機能維持には必要とされないが、健康によい影響を与える植物由来の化合物を意味する。例えば、ポリフェノールであるイソフラボンは大豆に多く含まれ、更年期障害改善・骨粗鬆症予防の機能を示し、ケルセチンはたまねぎに多く含まれ、血流改善や体脂肪軽減の機能を示す。また、テルペノイドであるβカロテンはにんじんやかぼちゃに多く含まれ、視機能や体内の粘膜や 皮膚、免疫機能を保つ働きを示し、リコペンはトマトに多く含まれ、血中コレステロールや血圧を低下させる機能を示す。
【0003】
多くのフィトケミカルは、加工・調理により分解され失われてしまい、さらに難水溶性の成分が多いため、生体内への移行性が低いことが知られている。難水溶性のフィトケミカルの吸収を促進する方法としては、乳化製剤化により溶解性や分散性を向上する方法、粒子径を小さくする方法、非晶化する方法が多く用いられている。
【0004】
さらに、難水溶性のフィトケミカルの吸収を促進する手法としては、例えば、特開2016-216440号公報(特許文献1)には、カテキン類の吸収促進剤として、レスベラトロール、ヘスペレチン、ラカンカ(Siraitia grosvenorii)抽出物、ナツメ(Zizyphus jujuba var.inermis)抽出物、ライム(Citrus aurantiifolia)抽出物、レモン(Citrus limon)抽出物、パイナップル(Ananas comosus)抽出物、アピゲニン、グルコース、ジフルクトースジアンヒドリドIII、スクラロース、アスパルテーム若しくはその塩、エリスリトール、イノシトール、クエン酸若しくはその塩、フィチン酸若しくはその塩、及び没食子酸若しくはその塩からなる群より選ばれる少なくとも1種が開示されている。
【0005】
また、特開2016-93143号公報(特許文献2)には、生体利用性が低いカテキン等のポリフェノールを、特定の配合の脂肪及び炭水化物に添加することにより、カテキン等のポリフェノールの吸収および血漿への蓄積を向上することのできるとの開示がある。
【0006】
また、特表2016-506381号公報(特許文献3)には、シクロデキストリンを有効成分として含む、カテキン生体利用率増進剤が示されている。
【0007】
しかし、これら文献は、多糖体を有効成分とする乳酸菌の産生物が、フィトケミカルの吸収を促進する作用を有することを開示するものではない。
【0008】
一方、乳酸菌とフィトケミカルとの組み合わせは、例えば、特開平8-322464号公報(特許文献4)に開示がある。この公報には、乳酸菌と共にビフィドバクテリウム菌を含有するヨーグルトに、カテキン類やトコフェロール類をそれぞれ0.1~2,000ppm程度含有させた発酵乳の開示があり、これによりビフィドバクテリウム菌の生残性が向上するとされている。また、特表2015-527076号公報(特許文献5)には、濃厚なテクスチャの乳製品ベース栄養組成物を製造する方法であって、フィトケミカルを含むことができるとの記載がある。しかしながら、これら特許文献のいずれも、乳酸菌の産生物が、フィトケミカルの吸収を促進する作用を有することを開示するものではない。
【先行技術文献】
【特許文献】
【0009】
【文献】特開2016-216440号公報
【文献】特開2016-93143号公報
【文献】特表2016-506381号公報
【文献】特開平8-322464号公報
【文献】特表2015-527076号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
本発明者らは、今般、多糖体を含有する乳酸菌産生物が難水溶性のフィトケミカルの体内への取り込み、特に血中への移行の速度および/または移行の量を有意に高めることを見出した。本発明はかかる知見に基づくものである。
【0011】
従って、本発明は、難水溶性のフィトケミカルの体内への吸収を促進する作用を有するフィトケミカル吸収促進剤の提供をその目的としている。
【0012】
また本発明は、上記難水溶性のフィトケミカル吸収促進剤を含んでなる食品添加剤、さらにそれらが添加された飲食品または飲食品組成物の提供をその目的としている。
【課題を解決するための手段】
【0013】
そして、本発明による難水溶性のフィトケミカル吸収促進剤は、多糖体を含有する乳酸菌産生物を有効成分として含んでなるものである。
【0014】
また、本発明による食品添加剤、飲食品または飲食品組成物は、本発明による難水溶性のフィトケミカル吸収促進剤を含んでなるものである。
【0015】
また、本発明は、多糖体を含有する乳酸菌産生物をヒトまたは動物に投与するまたは摂取させることを含んでなる、当該ヒトまたは動物の体内への難水溶性フィトケミカルの取り込みを促進する方法に関する。
【0016】
また、本発明は、ヒトまたは動物の体内への難水溶性フィトケミカルの取り込みを促進するための、多糖体を含有する乳酸菌産生物の使用にも関する。
【0017】
また、本発明は、上記難水溶性フィトケミカル吸収促進剤の製造のための、多糖体を含有する乳酸菌産生物の使用にも関する。
【図面の簡単な説明】
【0018】
図1】ラットにケルセチンのみ、またはケルセチンとヨーグルトを同時に投与した時の、血清中のケルセチン抱合体濃度の変化を表すグラフである。
図2】ラットにケルセチンのみ、またはケルセチンとヨーグルトを同時に投与した時の、血清中のイソラムネチン抱合体濃度の変化を表すグラフである。
図3】ラットにケルセチンと脱脂粉乳のみ、またはケルセチンとヨーグルトを同時に投与した時の、血清中のケルセチン抱合体濃度の変化を表すグラフである。
図4】ラットにケルセチンと脱脂粉乳のみ、またはケルセチンとヨーグルトを同時に投与した時の、血清中のイソラムネチン抱合体濃度の変化を表すグラフである。
図5】ラットにケルセチンのみ、またはケルセチンと多糖体濃縮物を同時に投与した時の、血清中のケルセチン抱合体濃度の変化を表すグラフである。
図6】ラットにケルセチンのみ、またはケルセチンと多糖体濃縮物を同時に投与した時の、血清中のイソラムネチン抱合体濃度の変化を表すグラフである。
図7】ラットにゲニステインのみ、またはゲニステインとヨーグルトを同時に投与した時の、血清中のゲニステイン抱合体濃度の変化を表すグラフである。
図8】ラットにエピカテキンのみ、またはエピカテキンとヨーグルトを同時に投与した時の、血清中のエピカテキン抱合体濃度の変化を表すグラフである。
図9】ラットにβカロテンのみ、またはβカロテンとヨーグルトを同時に投与した時の、血清中のβカロテン濃度の変化を表すグラフである。
図10】ラットにβカロテンと脱脂粉乳のみ、またはβカロテンとヨーグルトを同時に投与した時の、血清中のβカロテン濃度の変化を表すグラフである。
図11】ラットにβカロテンのみ、またはβカロテンと多糖体濃縮物を同時に投与した時の、血清中のβカロテン濃度の変化を表すグラフである。
図12】ラットにαグルコシルルチンのみ、またはαグルコシルルチンとヨーグルトを同時に投与した時の、血清中のケルセチン抱合体濃度の変化を表すグラフである。
図13】ラットにαグルコシルルチンのみ、またはαグルコシルルチンとヨーグルトを同時に投与した時の、血清中のイソラムネチン抱合体濃度の変化を表すグラフである。
図14】ラットにルテオリンのみ、またはルテオリンとヨーグルトを同時に投与した時の、血清中のルテオリン抱合体濃度の変化を表すグラフである。
図15】ラットにナリンゲニンのみ、またはナリンゲニンとヨーグルトを同時に投与した時の、血清中のナリンゲニン抱合体濃度の変化を表すグラフである。
図16】ラットにリコペンのみ、またはリコペンとヨーグルトを同時に投与した時の、血清中のリコペン濃度の変化を表すグラフである。
図17】ラットにカカオ豆由来抽出物のみ、またはカカオ豆由来抽出物とヨーグルトを同時に投与した時の、血清中のエピカテキン抱合体濃度の変化を表すグラフである。
【発明を実施するための形態】
【0019】
フィトケミカル
本発明において、「フィトケミカル」とは、植物中に存在する天然の化学物質およびその修飾体並びにそれらを含む組成物であって、通常の身体機能維持には必須とはされないが、健康維持・改善によい影響を与えるものとして摂取されている、または今後摂取されるものとなる化合物または組成物を意味する。従って、本発明において、フィトケミカルとは、植物由来の純粋なまたはある程度の純度を有する化合物に加え、そのような化合物を主たる成分として含む植物由来の組成物の形態のもの、例えば画分をも意味するものとする。
【0020】
本発明の好ましい態様によれば、フィトケミカルは、例えば、ポリフェノール、有機硫黄化合物、およびテルぺノイドなどを意味する。
【0021】
本発明において、ポリフェノールの好ましい例としては、フラボノイド類、シゲトン類、テトラテルペンなどが挙げられ、さらにそれらの具体例とては、フラボノイド類として、フラボン(例えば、アピゲニン、ルテオリンなど)、イソフラボン(例えば、ゲニステイン、ダイゼインなど)、フラボノール(例えば、ケルセチン、ミリセチン、ケンフェロールなど)、フラバノン(例えば、ヘスペレチン、ナリンゲニンなど)、フラバン-3-オール(例えば、カテキン、エピカテキンなど)、アントシアニン(例えば、シアニジン、デルフィニジンなど)が挙げられる。また、シゲトン類としてはクルクミンが挙げられる。
【0022】
また、有機硫黄化合物の好ましい例としては、イソシアネート類(例えば、スルフォラファンなど)、システインスルホキシド類(例えば、メチルシステインスルホキシドなど)、スルフィン類(例えば、アリシンなど)が挙げられる。
【0023】
また、テルぺノイドとしては、テトラテルペンが挙げられ、その具体例としてはカロテノイド(例えば、βカロテン、リコペン、ルテイン、アスタキサンチンなど)が挙げられる。
【0024】
さらに、本発明において、上記フィトケミカルには、それらの類縁体も包含され、その好ましい例としては、ゲニステインについて配糖体(ゲニスチン)および抱合体(グルクロン酸抱合体、硫酸抱合体)が、ケルセチンについてメチル化体(イソラムネチン)、配糖体(ルチン、ケルセチングルコシド)、抱合体(グルクロン酸抱合体、硫酸抱合体)が、ケンフェロールについて配糖体(ヘスペリジン)および抱合体(グルクロン酸抱合体、硫酸抱合体)が挙げられる。さらに、エピカテキンやカテキンについて、異性体(カテキン)、重合体(プロシアニジンB1、プロシアニジンB2、プロシアニジンB5、プロシアニジンC1など)、抱合体(グルクロン酸抱合体、硫酸抱合体)および没食子エステル(エピカテキンガレート、エピガロカテキンガレート)が挙げられる。ヘスペレチンについて配糖体(ヘスペリジン)および抱合体(グルクロン酸抱合体、硫酸抱合体)が、ナリンゲニンについて配糖体(ナリンゲニン)および抱合体(グルクロン酸抱合体、硫酸抱合体)が挙げられる。βカロテンについて異性体(αカロテン、γカロテン)および代謝物(パルミチン酸レチノール、アポ-10-カロテナール、レチノール)が、リコペンについて代謝物(アポ-10-リコペナール)が挙げられる。
【0025】
さらに、本発明においてフィトケミカルには、植物由来の抽出物や濃縮物も含まれる。その好ましい例として、ゲニステインについては大豆、小豆、えんどう豆、空豆由来の抽出物や濃縮物、ケルセチンについてはたまねぎやりんごの由来の抽出物や濃縮物、ケンフェロールについては茶やブロッコリーの由来の抽出物や濃縮物、エピカテキンやカテキンについてはカカオ豆、茶由来の抽出物や濃縮物、ヘスペレチンについては温州みかん由来の抽出物や濃縮物、ナリンゲニンについてグレープフルーツやオレンジ由来の抽出物や濃縮物、ルテオリンについてエゴマ、シソ、春菊やピーマン由来の抽出物や濃縮物、βカロテンについては、人参やほうれんそうの抽出物や濃縮物、リコペンについてはトマト由来の抽出物や濃縮物、エピカテキンについてはカカオ豆由来の抽出物や濃縮物が挙げられる。
【0026】
本発明において、フィトケミカルは難水溶性のものである。本発明の好ましい態様によれば、難水溶性のフィトケミカルとは、水への溶解率が88%以下のものであり、さらに好ましくは50%以下、より好ましくは20%以下、最も好ましくは1%以下のフィトケミカルである。ここで、本発明における「溶解率」とは、化合物の水への溶解しやすさを表した指標であり、化合物を純水に振とうして溶解させた後、遠心分離した上清の濃度(w/v)を、振とう溶解前の濃度(w/v)で除した値を100分率(%)で示したものである。濃度の測定は分光光度計を用いて行うことができる。本発明において好ましくは、フィトケミカル化合物33.3mgに純水10mLに加えて調製した溶液を、「溶解率」の測定のために用いる。より難水溶性のフィトケミカルの場合には、3.3mgを純水10mLに加えて調製した溶液を用いて「溶解率」を測定してもよい。なお、「溶解率」測定の温度条件は21±2℃とする。また、フィトケミカルの難水溶性は、上記「溶解率」の測定にあたり得られた「化合物を純水に振とうして溶解させた後、遠心分離した上清の濃度(w/v)」を指標に表してもよく、この場合、水への溶解率が88%以下は、293mg/100g以下に対応する。なお、本発明において吸収促進の対象とされるフィトケミカルは、水に溶解している態様にあることは必須ではないと考えられる。すなわち、固形の状態または水に懸濁した状態で摂取されたフィトケミカルに対しても、本発明による吸収促進の効果は得られるものと考えられる。
【0027】
吸収促進剤
本発明において、フィトケミカルの吸収促進とは、フィトケミカルを、多糖体を含有する乳酸菌産生物なしで摂取した対照と比較して、体内への取り込み、特に血中への移行の速度および/または移行の量を有意に高めることを意味する。具体的には、投与後、対照と比較して高い血中濃度を生じさせる、または対照と比較して大きな血中濃度-時間曲線下面積(AUC)を生じさせることのいずれかまたは両方を意味する。それにより、より少ない量または短い時間でフィトケミカル摂取の効果が得られ、併せて原料コストを低減できる。また、本発明によるフィトケミカル吸収促進剤を飲食品、飲食品組成物に添加することで、飲食品等の付加価値を高め商品価値を上げることができる。
【0028】
多糖体を含有する乳酸菌産生物
本発明において、多糖体を含有する「乳酸菌産生物」とは、乳酸菌発酵物に加え、乳酸菌培養物、乳酸菌代謝物等、乳酸菌の発酵により多糖体を含むことになる組成物を広く意味する。
【0029】
本明細書において「多糖体」とは、ガラクトース、グルコース、ラムノース、マンノース、N-アセチルグルコサミンなどの糖類から構成される糖鎖高分子である。この多糖体には、中性多糖体の他、リン酸基が結合した酸性多糖体が含まれてもよい。また、その分子量は、通常、5000から50万の範囲内である。
【0030】
また、本明細書において「乳酸菌」とは、ブドウ糖を資化して対糖収率で50%以上の乳酸を生産する微生物の総称であり、生理学的性質としてグラム陽性菌の球菌または桿菌で、運動性なし、胞子形成能なし、カタラーゼ陰性などの特徴を有しているものである。乳酸菌は古来、発酵乳等を介して世界各地で食されており、極めて安全性の高い微生物と言える。乳酸菌は現在までに、ラクトコッカス(Lactococcus)属、ラクトバチルス(Lactobacillus)属、リューコノストック(Leuconostoc)属、ペディオコッカス(Pediococcus)属、ストレプトコッカス(Streptococcus)属、ワイセラ(Wissella)属、テトラジェノコッカス(Tetragenococcus)属、オエノコッカス(Oenococcus)属、エンテロコッカス(Enterococcus)属、バゴコッカス(Vagococcus)属、カルノバクテリウム(Carnobacterium)属の11属に分類されている。本発明の実施の形態ではこれら全ての乳酸菌を用いることができる。
【0031】
本発明の好ましい態様によれば、上記の中でも、ラクトバチルス・デルブルッキー・サブスピーシーズ・ブルガリクス(Lactobacillus delbrueckii subsp. bulgaricus)とストレプトコッカス・サーモフィラス(Streptococcus thermophilus)とを組み合わせて用いることが特に好ましい。
【0032】
本発明のさらに好ましい態様によれば、
ラクトバチルス・デルブルッキー・サブスピーシーズ・ブルガリクスとして、
ラクトバチルス・デルブルッキー・サブスピーシーズ・ブルガリクスOLL1247菌、または
ラクトバチルス・デルブルッキー・サブスピーシーズ・ブルガリクスOLL1224菌を用い、
ストレプトコッカス・サーモフィラスとして、
ストレプトコッカス・サーモフィラスOLS3078菌、または
ストレプトコッカス・サーモフィラスOLS3290菌を用いる。
【0033】
ここで、ラクトバチルス・デルブルッキー・サブスピーシーズ・ブルガリクスOLL1247菌は、2014年3月6日付(受託日)で、独立行政法人製品評価技術基盤機構特許微生物寄託センター(日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に、受託番号NITE BP-01814として、ブタペスト条約に基づき国際寄託されている。
【0034】
さらに、ラクトバチルス・デルブルッキー・サブスピーシーズ・ブルガリクスOLL1224菌は、2009年7月2日付(受託日)で、受託番号NITE BP-778として独立行政法人製品評価技術基盤機構特許微生物寄託センターに、ブタペスト条約に基づき国際寄託されている。
【0035】
また、ストレプトコッカス・サーモフィラスOLS3078菌は、2013年8月23日付(受託日)で、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、受託番号NITE BP-01697として、ブタペスト条約に基づき国際寄託されている。
【0036】
さらにストレプトコッカス・サーモフィラスOLS3290菌は、2004年1月19日付(受託日)で、受託番号FERM BP-19638として、独立行政法人製品評価技術基盤機構特許微生物寄託センターに、ブタペスト条約に基づき国際寄託されている。
【0037】
本明細書において「乳酸菌発酵物」とは、乳酸菌による発酵によって得られた培養物およびそれを含んでなる組成物、およびそれを処理した後の組成物を意味する。従って、この乳酸菌発酵物には、乳酸菌の発酵物およびその処理物、例えば、培養物(乳酸菌発酵物)をろ過・遠心分離もしくは膜分離等で除菌して得られた培養濾液や培養上清液、培養濾液・培養上清液や乳酸菌発酵物等をエバポレーター等により濃縮した濃縮物、ペースト化物、希釈物、または乾燥物(例えば、凍結、加熱、減圧などによるもの)が含まれる。また、処理は、ろ過、遠心分離、膜分離等の除菌処理、沈殿、濃縮、ペースト化、希釈、乾燥などの上記処理工程の1つまたは複数を組み合わせて実施することができる。また、培養用の培地としては、例えば、酵母エキスを添加した脱脂粉乳培地、MRS培地等が挙げられる。
【0038】
本発明の好ましい態様によれば、乳酸菌産生物は、乳酸菌の乳発酵物、乳培養物、乳代謝物であるのが特に好ましい。乳発酵物、乳培養物、および乳代謝物としては、例えば、発酵乳(ヨーグルト)が挙げられる。本発明において発酵乳(ヨーグルト)は、好ましくはその上清とすることができる。この発酵乳には、脱脂粉乳や、ホエイ分解物等の培養液の他、ペクチン、グアーガム、キサンタンガム、カラギーナン、加工でんぷん等の増粘剤やゲル化剤が添加されていてもよい。
【0039】
本発明において、乳としては、例えば、牛乳等の獣乳や、その加工品(例えば、脱脂乳、全脂粉乳、脱脂粉乳、れん乳、カゼイン、乳清、生クリーム、コンパウンドクリーム、バター、バターミルクパウダー、チーズ等)、大豆由来の豆乳等の植物性乳等が挙げられる。なお、乳は、殺菌処理されていてもよく、また殺菌処理されていなくてもよい。
【0040】
本発明の一つの態様によれば、発酵乳(ヨーグルト)の原料として、発酵乳原料ミックスと呼ばれるものを用いることができる。発酵乳原料ミックスとは、原料乳および他の成分を含む混合物である。この発酵乳原料ミックスは、例えば、原料乳、水、他の任意成分(例えば、砂糖、糖類、甘味料、酸味料、ミネラル、ビタミン、香料等)等の発酵乳の製造に常用される原料を加温して溶解し、混合することによって得られる。原料乳には、水、生乳、殺菌乳、脱脂乳、全脂粉乳、脱脂粉乳、全脂濃縮乳、脱脂濃縮乳、バターミルク、バター、クリーム、チーズ等が含まれてもよい。また、原料乳には、ホエイタンパク質濃縮物(WPC)、ホエイタンパク質単離物(WPI)、α-ラクトアルブミン(α-La)、β-ラクトグロブリン(β-Lg)等が含まれてもよい。
【0041】
本発明において、発酵乳(ヨーグルト)は、当業界において常法とされる方法により調製されてよい。すなわち、発酵乳(ヨーグルト)は、原料ミックスの調合工程、原料ミックスの(加熱)殺菌工程、原料ミックスの冷却工程、スターターの添加工程、発酵工程、発酵乳の冷却工程等の工程を経て製造されてよい。また、これら工程においては発酵乳(ヨーグルト)を製造する際に用いられる通常の条件を適宜採用してよい。また、原料ミックスの(加熱)殺菌工程、原料ミックスの冷却工程、スターターの添加工程、発酵工程および発酵乳の冷却工程は、この順番で実施されることが好ましい。
【0042】
本発明において、乳酸菌を培養するための培地としては、乳酸菌を培養するため当業界において通常用いられる培地を使用することができる。すなわち、主炭素源のほか窒素源、無機物その他の栄養素を程良く含有する培地であれば、いずれの培地も使用することができる。炭素源としては、使用菌の資化性に応じて、ラクトース、グルコース、スクロース、フラクトース、澱粉加水分解物、廃糖蜜等を使用することができる。窒素源としては、カゼインの加水分解物、ホエイタンパク質加水分解物、α-ラクトアルブミン、β-ラクトグロブリン、グリコマクロペプチド、大豆タンパク質加水分解物等の有機窒素含有物を使用することができる。ほかに増殖促進剤としては、肉エキス、魚肉エキス、酵母エキス等を使用することができる。
【0043】
本発明において、乳酸菌は、嫌気状態で培養されてもよく、また液体静置培養等で用いられる微好気状態で培養されてもよい。嫌気状態下での培養方法には、例えば、炭素ガス気相下で培養する方法などの公知の手法を採用することができるが、他の方法を採用してもよい。培養温度は一般に30℃以上47℃以下の範囲内であることが好ましく、35℃以上46℃以下の範囲内であることがより好ましく、37℃以上45℃以下の範囲内であることがさらに好ましい。乳酸菌培養中の培地のpHは、6以上7以下の範囲内に維持されることが好ましいが、菌が生育するpHであれば他のpH範囲でもよい。乳酸菌等の培養時間としては、通常、1時間以上48時間以下の範囲内が好ましく、1.5時間以上36時間以下の範囲内であることがより好ましく、2時間以上24時間以下の範囲内であることがさらに好ましい。
【0044】
本発明の一つの態様によれば、発酵乳(ヨーグルト)は、典型的には、無脂乳固形分が8重量%以上であり、乳酸菌数又は酵母数が10個/ml以上1011個/ml以下の範囲内である。
【0045】
フィトケミカル吸収促進剤の組成、形態、および任意成分
本発明において、「吸収促進剤」とは、「乳酸菌産生物」として乳酸菌発酵物、乳酸菌培養物、乳酸菌代謝物等の形態のまま用いられてもよいが、好ましくは製剤化して用いられる。従って、本発明において「吸収促進剤」とは、例えば、医薬品の他、そのまま摂取、好ましくは経口摂取される製剤の形態、いわゆるサプリメントの形態で提供されるものを包含し、また食品添加剤として、他の食品、飲食物に添加して、その食品、飲食物にフィトケミカル吸収促進作用を付加するために用いられるものも含まれる。
【0046】
また、本発明によれば、本発明によるフィトケミカル吸収促進剤を含んでなる飲食品、および加工された飲食品、飲食品組成物もまた本発明に包含される。
【0047】
本発明において、製剤とは、製剤化のために許容されうる添加剤を併用して、常法に従い、好ましくは経口製剤として調製したものである。この製剤は、錠剤、散剤、細粒剤、顆粒剤、カプセル剤、丸剤、徐放剤などの固形製剤、溶液、懸濁液、乳濁液などの液状製剤の形態を採り得る。製剤化のために許容され得る添加剤としては、例えば、賦形剤、安定剤、防腐剤、湿潤剤、乳化剤、滑沢剤、甘味料、着色料、香料、緩衝剤、酸化防止剤、pH調整剤などが挙げられる。なお、食品添加剤としては、具体的には加工調味料、風味調味料、調理ミックス等の調味料等が挙げられる。
【0048】
また、本発明において、飲食品および飲食品組成物とは、ヒトや動物の飲食のために加工されたものであって、溶液、懸濁液、乳濁液、粉末、固体成形物等の経口摂取可能な形態であればよく、特に限定されない。飲食品および飲食品組成物の例としては、具体的には、乳飲料(加工乳を含む)、ヨーグルト類、乳酸菌飲料、発酵乳、アイスクリーム類、クリーム類、チーズ類などの乳製品;清涼飲料、果汁飲料、野菜飲料、豆乳飲料、コーヒー飲料、茶飲料、ゼリー飲料、栄養ドリンク、美容用の飲料、ココア、スムージーなどの粉末飲料やスポーツ粉末飲料、栄養強化の粉末飲料、美容用の粉末食品、粉末スープ、蒸しパンのもと、濃縮飲料、アルコール飲料などの飲料類;パン、パスタ、麺、ケーキミックス、唐揚げ粉、パン粉などの小麦粉製品;チョコレート、ガム、飴、クッキー、グミ、スナック、和菓子、ゼリー、プリンなどのデザート菓子などの菓子類;カレー、パスタソース、ポトフ、シチュー、和風食品のレトルト食品;加工油脂、バター、マーガリン、スプレッド、マヨネーズなどの油脂類;フリーズドライ食品などの即席食品類;農産缶詰、ジャム・マーマレード類、漬け物、煮豆、シリアル、雑炊などの農産加工品;水産加工品;畜産加工品;ピッツア、ドリア、グラタン、惣菜、フライなど冷凍食品;流動食、半流動食、さらには動物の飼料、タブレット、口腔内に使用する化粧品などが挙げられる。
【0049】
本発明において、飲食品および飲食品組成物には、機能性食品、健康栄養食品、健康食品、特定保健用食品、機能性表示食品、栄養機能食品、病者用食品、乳幼児用調製粉乳、妊産婦もしくは授乳婦用粉乳、または疾病リスク低減表示を付した飲食品のような分類のものも包含される。ここで、疾病リスク低減の表示とは、疾病リスクを低減する可能性のある飲食品の表示であって、FAO/WHO合同食品規格委員会(コーデックス委員会)の定める規格に基づいて、またはその規格を参考にして、定められた表示または認められた表示である。
【0050】
本発明において、飲食品および飲食品組成物には、必要に応じて、任意の成分を加えることができる。このような任意の成分としては、特段の制限はないが、通常、飲食品に配合される成分である甘味料、酸味料、野菜や果物や種実の汁やそのエキス、ビタミン、ミネラル、アミノ酸などの栄養素、乳酸菌(本発明の実施の形態に係る必須の乳酸菌を除く。)、ビフィズス菌、プロピオン酸菌などの有用な微生物やその発酵物、オリゴ糖などの機能性をもつ糖類、ローヤルゼリー、グルコサミン、アスタキサンチン、コラーゲン、ポリフェノールなどの既存の機能性素材、香料、pH調整剤、賦形剤、酸味料、着色料、乳化剤、保存料等が挙げられる。
【0051】
また、以上から明らかなように、本発明の一つの態様によれば、上記した本発明による難水溶性フィトケミカル吸収促進剤の製造のための、多糖体を含有する乳酸菌産生物の使用が提供される。
【0052】
フィトケミカル吸収促進剤の摂取方法
本発明において、フィトケミカル吸収促進剤の摂取量は、適宜決定されてよいが、本発明の一つの態様によれば、多糖体の摂取量が200μg以上/日となる程度の量とされ、200μg/日以上60000μg/日以下の範囲内であることが好ましく、300μg/日以上45000μg/日以下の範囲内であることがより好ましく、400μg/日以上30000μg/日以下の範囲内であることがさらに好ましく、500μg/日以上15000μg/日以下の範囲内であることが特に好ましい(なお、「質量/日以上」の表記は「質量以上/日」の表記と同義であり、「質量/日以下」の表記は「質量以下/日」の表記と同義である。)。摂取の期間も特に限定されないが、例えば少なくとも1回以上、経口摂取することが好ましい。
【0053】
本発明の別の態様によれば、必要用量は、動物実験(例えばマウス実験)における必要投与用量から食品安全委員会資料に基づく下式を用いて人体への必要投与用量に換算することもできる。
(人体への必要投与用量(換算値))=(動物への必要投与用量)×(女性体重下限値:40kg)÷(安全係数:100)
【0054】
以上から明らかなとおり、本発明の一つの態様によれば、多糖体を含有する乳酸菌産生物をヒトまたは動物に投与するまたは摂取させることを含んでなる、当該ヒトまたは動物の体内への難水溶性フィトケミカルの取り込みを促進する方法が提供される。また、本発明の別の態様によれば、ヒトまたは動物の体内への難水溶性フィトケミカルの取り込みを促進するための、多糖体を含有する乳酸菌産生物の使用が提供される。
【実施例
【0055】
以下の実施例において、以下の測定方法を共通して適用した。
ヨーグルト中の多糖体含有量の測定
ヨーグルト中の多糖体の含有量は、フェノール硫酸法(Hodgeら,「Methods in carbohydrate chemistry」,第1巻,第338頁(1962年))に従って測定した。具体的には以下の通りである。
【0056】
先ず、10gのヨーグルトに1gのトリクロロ酢酸を加えてよく撹拌した。次に、そのトリクロロ酢酸添加ヨーグルトを10000rpm、10分、4℃の条件下で遠心分離処理した後、その上清を別のチューブに移した。次いで、その上清に2倍容量の99.5%エタノールを加えてから、そのエタノール添加上清を冷凍庫で一晩放置したところ、チューブ中に沈殿物が生じていた。この沈殿物を10000rpm、10分、4℃の条件下で遠心分離処理した後、得られた沈殿物に超純水を3mL加えて多糖体抽出液とした。そして、500μLの多糖体抽出液に500μLのフェノール試薬(5%(w/v))を加えてその混合液を撹拌した後に、さらにその混合液に2.5mLの濃硫酸を加えてその混合液を直ぐに10秒間撹拌した。その後、その混合液を室温で20分以上放置してから、分光光度計でその混合液の490nmの吸光度を測定した。対照液は次のとおり調製し、上述と同様にしてその490nmの吸光度を測定した。500μLの標準グルコース溶液に500μLのフェノール試薬(5%(w/v))を加えてその混合液を撹拌した後に、さらにその混合液に2.5mLの濃硫酸を加えてその混合液を直ぐに10秒間撹拌した。その後、その混合液を室温で20分以上放置した。
【0057】
実験例1:ケルセチンの吸収促進(その1)
(1)ヨーグルトの調製
10質量%の脱脂粉乳を含む培地にラクトバチルス・ブルガリクス(Lactobacillus bulgaricus)OLL1247菌、およびストレプトコッカス・サーモフィラス(Streptococcus thermophilus)OLS3078菌を接種した後、その培地を43℃で3時間発酵させて加熱した。このようにして得られたヨーグルトには、多糖体が110μg/g含まれていた。
【0058】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにケルセチン(和光純薬工業株式会社製)、ケルセチンとヨーグルトをそれぞれ投与した。ここで、ケルセチンは50mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。以下、ケルセチンを投与したラット群(コントロール)を「ケルセチン群」と呼び、ケルセチンとヨーグルトを投与したラット群(実施例)を「ケルセチン+ヨーグルト群」と呼ぶこととする。
【0059】
(3)ケルセチン代謝物の測定
ケルセチン代謝物であるケルセチン抱合体と、イソラムネチン抱合体を以下のとおり測定した。血清50μLに、0.1M酢酸ナトリウム緩衝液(pH5.0)に溶解させたグルクロニダーゼ溶液を45μL(10000U/mL、シグマアルドリッチ社製)、0.1M酢酸ナトリウム緩衝液(pH5.0)に溶解させた0.1Mアスコルビン酸溶液を5μL加え、37℃で2時間加温させた。メタノールを300μL加え、酵素反応を停止させ、遠心分離(12000rpm 、10分、4℃)した。上清を別のチューブに移し、遠心濃縮により溶媒を除去した。300μLの0.1%ギ酸含有の50%アセトニトリル溶液に溶解させ、HPLC用のサンプルを調製した。
【0060】
(4)HPLC/MS/MSの分析条件
HPLCは、Nexera XR(島津製作所製)、MS/MS検出器は4500QTRAP(サイエックス社製)を使用した。カラムは、ACQUITY UPLC HSS T3 1.8μm(2.1×50mm)(Waters社製)を使用し、カラム温度は40℃に設定した。移動相はA液として0.1%含有ギ酸溶液、 B液として0.1%ギ酸含有アセトニトリル溶液を調製した。B液30%で1分間保持し、その後4.5分間でB液45%までグラジエントをかけ、目的の物質を溶出させた。その後、B液99%でカラムを2分間洗浄し、B液30%で3分間保持した。なお、流速は、0.3mL/分に設定した。MS/MS分析はESIネガティブモードで分析した。MS/MSの分析条件は、カーテンガス流量30psi、コリジョンガス流量9psi、イオンスプレー電圧-4500V、ターボガス温度600℃、イオンソースガス70psiに設定した。
【0061】
(5)結果
結果は表1並びに図1および2に示される通りであった。図1はケルセチン抱合体の血清中濃度を、図2はイソラムネチン抱合体の血清中濃度をそれぞれ表すグラフである。いずれの時点においても、ケルセチン群に比べ、ケルセチン+ヨーグルト群において、ケルセチン抱合体、イソラムネチン抱合体の血清中濃度が有意に上昇した。また、血中濃度-時間曲線下面積(AUC)は、ケルセチン群に比べ、ケルセチン+ヨーグルト群において有意に増加した。本結果は、ヨーグルトの摂取がケルセチンの吸収を促進させることを意味する。なお、図中、「*」の記号はP<0.05でケルセチン群に対して有意差があることを示している。
【表1】
【0062】
実験例2:ケルセチンの吸収促進(その2)
(1)用いた脱脂粉乳およびヨーグルト
脱脂粉乳として実験例1(1)で用いた培地を、ヨーグルトとして実験例1で調製したヨーグルトを用いた。
【0063】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにケルセチンと脱脂粉乳、ケルセチンとヨーグルトをそれぞれ投与した。ここで、ケルセチンは50mg/kg体重、脱脂粉乳とヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。以下、ケルセチンと脱脂粉乳を投与したラット群(コントロール)を「ケルセチン+脱脂粉乳群」と呼び、ケルセチンとヨーグルトを投与したラット群(実施例)を「ケルセチン+ヨーグルト群」と呼ぶこととする。
【0064】
(3)ケルセチン代謝物の測定とHPLC/MS/MSの分析条件
ケルセチン代謝物であるケルセチン抱合体と、イソラムネチン抱合体を、実験例1に記載の方法および条件に従い行った。
【0065】
(4)結果
結果は表2並びに図3および4に示される通りであった。図3はケルセチン抱合体の血清中濃度を、図4はイソラムネチン抱合体の血清中濃度をそれぞれ表すグラフである。ケルセチン+脱脂粉乳群に比べ、ケルセチン+ヨーグルト群において、投与後60分、120分のケルセチン代謝物、投与後60分、120分、240分のイソラムネチン抱合体の血清中濃度が有意に上昇した。その他の全ての時点において、ケルセチン代謝物又はイソラムネチン抱合体の血清中濃度が上昇した。また、ケルセチン抱合体の血中濃度-時間曲線下面積(AUC)は、ケルセチン+脱脂粉乳群に比べ、ケルセチン+ヨーグルト群において有意に増加した。本結果は、乳酸菌による発酵がケルセチンの吸収を促進させることを意味する。なお、図中、「*」の記号はP<0.05でケルセチン+脱脂粉乳群に対して有意差があることを示している。
【表2】
【0066】
実験例3:ケルセチンの吸収促進(その3)
(1)ヨーグルト由来の多糖体濃縮物の調製
ヨーグルトの一部を分取し、その上清に3倍量のエタノールを添加して冷凍保管した。その後、その上清を遠心分離処理したところ、沈殿物が得られた。そして、この沈殿物を凍結乾燥して多糖体濃縮物を得た。なお、11.3gのヨーグルト中に70mgの多糖体濃縮物が含まれていた。
【0067】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにケルセチン、ケルセチンと多糖体濃縮物をそれぞれ投与した。ここで、ケルセチンは50mg/kg体重、多糖体濃縮物は70mg/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。以下、ケルセチンを投与したラット群(コントロール)を「ケルセチン群」と呼び、ケルセチン多糖体濃縮物を投与したラット群(実施例)を「ケルセチン+多糖体濃縮物群」と呼ぶこととする。
【0068】
(3)ケルセチン代謝物の測定とHPLC/MS/MSの分析条件
ケルセチン代謝物であるケルセチン抱合体と、イソラムネチン抱合体についての測定及び分析を、実験例1に記載の方法および条件に従い行った。
【0069】
(4)結果
結果は表3並びに図5および6に示される通りであった。図5はケルセチン抱合体の血清中濃度を、図6はイソラムネチン抱合体の血清中濃度をそれぞれ表すグラフである。ケルセチン群に比べ、ケルセチン+多糖体濃縮物群において、投与後480分のケルセチン抱合体の血清中濃度が、投与後240分、480分のイソラムネチン抱合体の血清中濃度が有意に上昇した。その他の全ての時点において、ケルセチン代謝物又はイソラムネチン抱合体の血清中濃度が上昇した。また、イソラムネチン抱合体の血中濃度-時間曲線下面積(AUC)は、ケルセチン群に比べ、ケルセチン+多糖体濃縮物群において有意に増加した。本結果は、多糖体を含有する乳酸菌産生物の摂取がケルセチンの吸収を促進させることを意味する。なお、図中、「*」の記号はP<0.05でケルセチン群に対して有意差があることを示している。
【表3】
【0070】
実験例4:ゲニステインの吸収促進
(1)用いたヨーグルト
実験例1で調製したヨーグルトを用いた。
【0071】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにゲニステイン(東京化成工業株式会社製)、ゲニステインとヨーグルトをそれぞれを投与した。なお、ゲニステインは50mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。以下、説明の便宜上、ゲニステインを投与したラット群(コントロール)を「ゲニステイン群」と呼び、ゲニステインとヨーグルトを投与したラット群(実施例)を「ゲニステイン+ヨーグルト群」と呼ぶこととする。
【0072】
(3)ゲニステイン代謝物の測定
ゲニステイン代謝物であるゲニステイン抱合体を、以下のとおり測定した。すなわち、血清50μLに、0.1M酢酸ナトリウム緩衝液(pH5.0)に溶解させたグルクロニダーゼ溶液を45μL(10000U/mL、シグマアルドリッチ社製)、0.1M酢酸ナトリウム緩衝液(pH5.0)に溶解させた0.1Mアスコルビン酸溶液を5μL加え、37℃で2時間加温させた。メタノールを300μL加え、酵素反応を停止させ、遠心分離(12000rpm 、10分、 4℃)した。上清を別のチューブに移し、遠心濃縮により溶媒を除去した。300μLの0.1%ギ酸含有の50%アセトニトリル溶液に溶解させ、HPLC用のサンプルを調製した。
【0073】
(4)HPLC/MS/MSの分析条件
HPLCは、Nexera XR(島津製作所製)、MS/MS検出器は4500QTRAP(サイエックス社製)を使用した。カラムは、ACQUITY UPLC HSS T3 1.8μm(2.1×50mm) (Waters社製)を使用し、カラム温度は40℃に設定した。移動相はA液として0.1%含有ギ酸溶液、 B液として0.1%ギ酸含有アセトニトリル溶液を調製した。B液30%で1分間保持し、その後4.5分間でB液45%までグラジエントをかけ、目的の物質を溶出させた。その後、B液99%でカラムを2分間洗浄し、B液30%で3分間保持した。なお、流速は、0.3mL/分に設定した。MS/MS分析はESIネガティブモードで分析した。MS/MSの分析条件は、カーテンガス流量30psi、コリジョンガス流量9psi、イオンスプレー電圧-4500V、ターボガス温度600℃、イオンソースガス70psiに設定した。
【0074】
(5)結果
結果は表4および図7に示される通りであった。投与後60分、480分において、ゲニステイン群に比べ、ゲニステイン+ヨーグルト群において、ゲニステイン抱合体の血清中濃度が有意に上昇した。その他の全ての時点において、ゲニステイン抱合体の血清中濃度が上昇した。また、血中濃度-時間曲線下面積(AUC)は、ゲニステイン群に比べ、ゲニステイン+ヨーグルト群において有意に増加した。本結果は、ヨーグルトの摂取がゲニステインの吸収を促進させることを意味する。なお、図中、「*」の記号はP<0.05でゲニステイン群に対して有意差があることを示している。
【表4】
【0075】
実験例5:エピカテキンの吸収促進(その1)
(1)用いたヨーグルト
実験例1で調製したヨーグルトを用いた。
【0076】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにエピカテキン、エピカテキン(シグマアルドリッチ社製)とヨーグルトをそれぞれ投与した。なお、エピカテキンは50mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。以下、説明の便宜上、エピカテキンを投与したラット群(コントロール)を「エピカテキン群」と呼び、エピカテキンとヨーグルトを投与したラット群(実施例)を「エピカテキン+ヨーグルト群」と呼ぶこととする。
【0077】
(3)エピカテキン代謝物の測定
エピカテキン代謝物であるエピカテキン抱合体を、以下のとおり測定した。すなわち、血清50μLに、0.1M酢酸ナトリウム緩衝液(pH5.0)に溶解させたグルクロニダーゼ溶液を45μL(10000U/mL、シグマアルドリッチ社製)、0.1M酢酸ナトリウム緩衝液(pH5.0)に溶解させた0.1Mアスコルビン酸溶液を5μL加え、37℃で2時間加温させた。メタノールを300μL加え、酵素反応を停止させ、遠心分離(12000rpm 、10分、 4℃)した。上清を別のチューブに移し、遠心濃縮により溶媒を除去した。300μLの0.1%ギ酸含有の50%メタノール溶液に溶解させ、HPLC用のサンプルを調製した。
【0078】
(4)HPLC/MS/MSの分析条件
HPLCは、Nexera XR(島津製作所製)、MS/MS検出器は4500QTRAP(サイエックス社製)を使用した。カラムは、ACQUITY UPLC HSS T3 1.8μm(2.1×50mm)(Waters社製)を使用し、カラム温度は40℃に設定した。移動相はA液として0.1%含有ギ酸溶液、 B液として0.1%ギ酸含有メタノール溶液を調製した。B液10%で1分間保持し、その後9分間でB液40%までグラジエントをかけ、目的の物質を溶出させた。その後、B液99%でカラムを2分間洗浄し、B液10%で3分間保持した。なお、流速は、0.3mL/分に設定した。MS/MS分析はESIネガティブモードで分析した。MS/MSの分析条件は、カーテンガス流量30psi、コリジョンガス流量9psi、イオンスプレー電圧-4500V、ターボガス温度600℃、イオンソースガス70psiに設定した。
【0079】
(5)結果
結果は表5および図8に示される通りであった。投与後60分、120分、240分において、エピカテキン群に比べ、エピカテキン+ヨーグルト群において、エピカテキン抱合体の血清中濃度が有意に上昇した。また、血中濃度-時間曲線下面積(AUC)は、エピカテキン群に比べ、エピカテキン+ヨーグルト群において有意に増加した。本結果は、ヨーグルトの摂取がエピカテキンの吸収を促進させることを意味する。なお、図中、「*」の記号はP<0.05でエピカテキン群に対して有意差があることを示している。
【表5】
【0080】
実験例6:βカロテンの吸収促進(その1)
(1)用いたヨーグルト
実験例1で調製したヨーグルトを用いた。
【0081】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにβカロテン、βカロテン(三栄源エフ・エフ・アイ株式会社.製)とヨーグルトをそれぞれ投与した。なお、βカロテンは5mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。以下、説明の便宜上、βカロテンを投与したラット群(コントロール)を「βカロテン群」と呼び、βカロテンとヨーグルトを投与したラット群(実施例)を「βカロテン+ヨーグルト群」と呼ぶこととする。
【0082】
(3)βカロテンの測定
血清50μLに、生理食塩水を90μL加え、ジクロロメタンメタノール溶液(ジクロロメタン:メタノール=1:2)を300μL加えた。さらに、ヘキサンを150μL加えβカロテンを抽出した。上層を別のチューブに移し、窒素還流により溶媒を除去した。150μLの0.1%酢酸アンモニウム含有30%酢酸エチル70%メタノール溶液に溶解させ、HPLC用のサンプルを調製した。
【0083】
(4)HPLCの分析条件
HPLCは、1200シリーズ(アジレントテクノロジーズ社製)を使用した。カラムは、TSKgel ODS―80TsQA(5.0×250mm)(東ソー株式会社製)を使用し、カラム温度は40℃に設定した。移動相は0.1%酢酸アンモニウム含有30%酢酸エチル70%メタノール溶液を調製した。なお、流速は、0.3mL/分に設定し、450nmの吸光波長を測定した。
【0084】
(5)結果
結果は表6および図9に示される通りであった。いずれの時点においても、βカロテン群に比べ、βカロテン+ヨーグルト群において、βカロテンの血清中濃度が有意に上昇した。また、血中濃度-時間曲線下面積(AUC)は、βカロテン群に比べ、βカロテン+ヨーグルト群において有意に増加した。本結果は、ヨーグルトの摂取がβカロテンの吸収を促進させることを意味する。なお、図中、「*」の記号はP<0.05でβカロテン群に対して有意差があることを示している。
【表6】
【0085】
実験例7:βカロテンの吸収促進(その2)
(1)用いた脱脂粉乳およびヨーグルト
脱脂粉乳として実験例1(1)で用いた培地を、ヨーグルトとして実験例1で調製したヨーグルトを用いた。
【0086】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにβカロテンと脱脂粉乳、βカロテンとヨーグルトをそれぞれ投与した。なお、βカロテンは5mg/kg体重、脱脂粉乳とヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。以下、説明の便宜上、βカロテンと脱脂粉乳を投与したラット群を(コントロール)を「βカロテン+脱脂粉乳群」と呼び、βカロテンとヨーグルトを投与したラット群(実施例)を「βカロテン+ヨーグルト群」と呼ぶこととする。
【0087】
(3)βカロテンの測定とHPLCの分析条件
実験例6に記載の方法および条件に従い行った。
【0088】
(4)結果
結果は表7および図10に示される通りであった。投与後60分において、βカロテン+脱脂粉乳群に比べ、βカロテン+ヨーグルト群において、βカロテンの血清中濃度が有意に上昇した。その他の全ての時点において、βカロテンの血清中濃度が上昇した。また、血中濃度-時間曲線下面積(AUC)は、βカロテン+脱脂粉乳群に比べ、βカロテン+ヨーグルト群において増加した。本結果は、乳酸菌による発酵がβカロテンの吸収速度を増大させることを意味する。なお、図中、「*」の記号はP<0.05でβカロテン群に対して有意差があることを示している。
【表7】
【0089】
実験例8:βカロテンの吸収促進(その3)
(1)用いた多糖体濃縮物
実験例3で調製した多糖体濃縮物を用いた。
【0090】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにβカロテン、βカロテンと多糖体濃縮物をそれぞれ投与した。なお、βカロテンは5mg/kg体重、多糖体濃縮物は70mg/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。以下、説明の便宜上、βカロテンを投与したラット群を(コントロール)を「βカロテン群」と呼び、βカロテンと多糖体濃縮物を投与したラット群(実施例)を「βカロテン+多糖体濃縮物群」と呼ぶこととする。
【0091】
(3)βカロテンの測定とHPLCの分析条件
実験例6に記載の方法および条件に従い行った。
【0092】
(4)結果
結果は表8および図11に示される通りであった。投与後60分、120分において、βカロテン群に比べ、βカロテン+多糖体濃縮物群において、βカロテンの血清中濃度が有意に上昇した。その他の全ての時点において、βカロテンの血清中濃度が上昇した。また、血中濃度-時間曲線下面積(AUC)は、βカロテン群に比べ、βカロテン+多糖体濃縮物群において有意に増加した。本結果は、多糖体を含有する乳酸菌産生物の摂取がβカロテンの吸収を促進させることを意味する。なお、図中、「*」の記号はP<0.05でβカロテン群に対して有意差があることを示している。
【表8】
【0093】
実験例9:リコペンの吸収促進(その1)
(1)用いたヨーグルト
実験例1で調製したヨーグルトを用いた。
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにリコペン(和光純薬工業株式会社製)、リコペンとヨーグルトをそれぞれ投与した。ここで、リコペンは5mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与後120分後に腹部大静脈より採血を行い、血清を得た。以下、リコペンを投与したラット群(コントロール)を「リコペン群」と呼び、リコペンとヨーグルトを投与したラット群(実施例)を「リコペン+ヨーグルト群」と呼ぶこととする。
【0094】
(3)リコペンの測定
血清500μLに、エタノールを500μL加えた。さらに、ヘキサンを2500μL加えリコペンを抽出した。上層を別のチューブに移し、窒素還流により溶媒を除去した。200μLの0.1%酢酸アンモニウム含有30%酢酸エチル70%メタノール溶液に溶解させ、HPLC用のサンプルを調製した。
【0095】
(4)HPLCの分析条件
HPLCは、1200シリーズ(アジレントテクノロジーズ社製)を使用した。カラムは、TSKgel ODS―80TsQA(5.0×250mm)(東ソー株式会社製)を使用し、カラム温度は40℃に設定した。移動相は0.1%酢酸アンモニウム含有30%酢酸エチル70%メタノール溶液を調製した。なお、流速は、0.3mL/分に設定し、470nmの吸光波長を測定した。
【0096】
(5)結果
結果は表9に示される通りであった。投与120分後のリコペンの血清中濃度は、リコペン群に比べて、リコペン+ヨーグルト群で有意に上昇した。本結果は、ヨーグルトの摂取がリコペンの吸収を促進させることを意味する。
【表9】
【0097】
比較例:αグルコシルルチンの吸収促進
(1)用いたヨーグルト
実験例1で調製したヨーグルトを用いた。
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにαグルコシルルチン(和光純薬工業株式会社製)、αグルコシルルチンとヨーグルトをそれぞれ投与した。ここで、αグルコシルルチンは27mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。以下、αグルコシルルチンを投与したラット群(コントロール)を「αGルチン群」と呼び、αグルコシルルチンとヨーグルトを投与したラット群(実施例)を「αGルチン+ヨーグルト群」と呼ぶこととする。
【0098】
(3)ケルセチン代謝物の測定とHPLC/MS/MSの分析条件
ケルセチンの代謝物であるケルセチン抱合体濃度と、イソラムネチン抱合体濃度の測定を、実験例1に記載の方法および条件に従い行った。
【0099】
(4)結果
結果は表10並びに図12および13に示される通りであった。図12はケルセチン抱合体の血清中濃度を、図13はイソラムネチン抱合体の血清中濃度をそれぞれ表すグラフである。αGルチン群とαGルチン+ヨーグルト群の間に、ケルセチン抱合体の血清中濃度、イソラムネチン抱合体の血清中濃度に違いはみられなかった。また、ケルセチン抱合体、イソラムネチン抱合体の血中濃度-時間曲線下面積(AUC)は、αGルチン群とαGルチン+ヨーグルト群の間に違いはみられなかった。
【表10】
【0100】
実験例10:フィトケミカルの溶解性
(1)実験方法
エピカテキン(シグマアルドリッチ社製)、カテキン(東京化成工業株式会社製)、ケルセチン(和光純薬工業株式会社製)、ゲニステイン(東京化成工業株式会社製)、ルチン(和光純薬工業株式会社製)、αグルコシルルチン(和光純薬工業株式会社製)、ヘスペリジン(和光純薬工業株式会社製)、ナリンジン(シグマアルドリッチ社製)、ナリンゲニン(シグマアルドリッチ社製)、ケンフェロール(Extra Synthase社製)、βカロテン(和光純薬工業株式会社製)、リコペン(和光純薬工業株式会社製)を用いた。実験例に用いた投与用量に従い、エピカテキン、カテキン、ケルセチン、ゲニステイン、ナリンゲニン、ケンフェロール、ルテオリンはそれぞれ33.3mgに10mLの超純水を加えた。配糖体のフィトケミカルはアグリコン(配糖体を加水分解すると得られる糖質以外の部分)量として33.3mgと等しくなるように、ルチンは67.3mg(ケルセチンとして33.3mg)、αグルコシルルチンは89.6mg(ケルセチンとして33.3mg)、ヘスペリジンは67.3mg(ヘスペレチンとして33.3mg)、ナリンジンは71.0mg(ナリンゲニンとして33.3mg)に10mLの超純水を加えた。実験例に用いた投与用量に従い、テルぺノイドは、βカロテン、リコペンをそれぞれ3.3mgに10mLの超純水を加えた。調製した溶液を3時間振とうした後、2000×g、10分間遠心分離した。遠心上清を0.45μLのフィルターを用い濾過した。遠心上清の吸光度(エピカテキン、カテキン、ヘスペリジン、ナリンジン、ナリンゲニンは280nm、ゲニステインは260nm、ケルセチン、ルチン、αグルコシルルチン、ケンフェロールは360nm、βカロテンは450nm、リコペンは470nm)を、分光光度計を用い測定した。それぞれの化合物を80%メタノールまたはメタノールを用い溶解し、検量線を作成し、遠心上清の濃度を求めた。なお、以上の一連の操作は21±2℃の温度条件下で行った。そして、以下の式に従い、溶解率を算出した。
溶解率(%)=((振とう溶解後の遠心上清液の濃度(w/v)÷(振とう溶解前の溶液の濃度(w/v))× 100
【0101】
(2)結果
結果は表11および表12に示される通りであった。カテキン、αグルコシルルチンは溶解率が89%以上であり水溶性のフィトケミカルであった。一方、エピカテキン、ゲニステイン、ケルセチン、ルチン、ケンフェロール、ヘスペリジン、ナリンジン、ナリンゲニン、βカロテン、リコペン、ルテオリンは溶解率が88%以下であり、難水溶性であった。これらの結果は、溶解率が88%以下の難水溶性のフィトケミカルにおいて、多糖体を含有する乳酸菌産生物の摂取がフィトケミカルの吸収を促進させることを意味する。また、溶解率測定にあたり得られた「(振とう溶解後の遠心上清液の濃度(w/v))を「飽和溶解度」と呼び、表11および表12に併せて記載した。なお、配糖体のフィトケミカルは、アグリコン換算値として記した。
【表11】
【表12】
【0102】
実験例11:ルテオリンの吸収促進
(1)用いたヨーグルト
実験例1で調製したヨーグルトを用いた。
【0103】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにルテオリン(東京化成工業株式会社製)、ルテオリンとヨーグルトをそれぞれ投与した。なお、ルテオリンは50mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。以下、説明の便宜上、ルテオリンを投与したラット群(コントロール)を「ルテオリン群」と呼び、ルテオリンとヨーグルトを投与したラット群(実施例)を「ルテオリン+ヨーグルト群」と呼ぶこととする。
【0104】
(3)ルテオリン代謝物の測定
ルテオリン代謝物であるルテオリン抱合体を、以下のとおり測定した。すなわち、血清50μLに、0.1M酢酸ナトリウム緩衝液(pH5.0)に溶解させたグルクロニダーゼ溶液を45μL(10000U/mL、シグマアルドリッチ社製)、0.1M酢酸ナトリウム緩衝液(pH5.0)に溶解させた0.1Mアスコルビン酸溶液を5μL加え、37℃で2時間加温させた。メタノールを300μL加え、酵素反応を停止させ、遠心分離(12000rpm 、10分、 4℃)した。上清を別のチューブに移し、遠心濃縮により溶媒を除去した。300μLの0.1%ギ酸含有の50%アセトニトリル溶液に溶解させ、HPLC用のサンプルを調製した。
【0105】
(4)HPLC/MS/MSの分析条件
HPLCは、Nexera XR(島津製作所製)、MS/MS検出器は4500QTRAP(サイエックス社製)を使用した。カラムは、ACQUITY UPLC HSS T3 1.8μm(2.1×50mm) (Waters社製)を使用し、カラム温度は40℃に設定した。移動相はA液として0.1%含有ギ酸溶液、 B液として0.1%ギ酸含有アセトニトリル溶液を調製した。B液30%で1分間保持し、その後4.5分間でB液45%までグラジエントをかけ、目的の物質を溶出させた。その後、B液99%でカラムを2分間洗浄し、B液30%で3分間保持した。なお、流速は、0.3mL/分に設定した。MS/MS分析はESIネガティブモードで分析した。MS/MSの分析条件は、カーテンガス流量30psi、コリジョンガス流量9psi、イオンスプレー電圧-4500V、ターボガス温度600℃、イオンソースガス70psiに設定した。
【0106】
(5)結果
結果は表13および図14に示される通りであった。投与後60分、120、240分において、ルテオリン群に比べ、ルテオリン+ヨーグルト群において、ルテオリン抱合体の血清中濃度が有意に上昇した。その他の全ての時点において、ルテオリン抱合体の血清中濃度が上昇した。また、血中濃度-時間曲線下面積(AUC)は、ルテオリン群に比べ、ルテオリン+ヨーグルト群において有意に増加した。本結果は、ヨーグルトの摂取がルテオリンの吸収を促進させることを意味する。なお、図中、「*」の記号はP<0.05でルテオリン群に対して有意差があることを示している。
【表13】
【0107】
実験例12:ナリンゲニンの吸収促進
(1)用いたヨーグルト
実験例1で調製したヨーグルトを用いた。
【0108】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにナリンゲニン(東京化成工業株式会社製)、ナリンゲニンとヨーグルトをそれぞれ投与した。なお、ナリンゲニンは50mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。以下、説明の便宜上、ナリンゲニンを投与したラット群(コントロール)を「ナリンゲニン群」と呼び、ナリンゲニンとヨーグルトを投与したラット群(実施例)を「ナリンゲニン+ヨーグルト群」と呼ぶこととする。
【0109】
(3)ナリンゲニン代謝物の測定
ナリンゲニン代謝物であるナリンゲニン抱合体を、以下のとおり測定した。すなわち、血清50μLに、0.1M酢酸ナトリウム緩衝液(pH5.0)に溶解させたグルクロニダーゼ溶液を45μL(10000U/mL、シグマアルドリッチ社製)、0.1M酢酸ナトリウム緩衝液(pH5.0)に溶解させた0.1Mアスコルビン酸溶液を5μL加え、37℃で2時間加温させた。メタノールを300μL加え、酵素反応を停止させ、遠心分離(12000rpm 、10分、 4℃)した。上清を別のチューブに移し、遠心濃縮により溶媒を除去した。300μLの0.1%ギ酸含有の50%アセトニトリル溶液に溶解させ、HPLC用のサンプルを調製した。
【0110】
(4)HPLC/MS/MSの分析条件
HPLCは、Nexera XR(株式会社島津製作所製)、MS/MS検出器は4500QTRAP(サイエックス社製)を使用した。カラムは、ACQUITY UPLC HSS T3 1.8μm(2.1×50mm)(Waters社製)を使用し、カラム温度は40℃に設定した。移動相はA液として0.1%含有ギ酸溶液、 B液として0.1%ギ酸含有アセトニトリル溶液を調製した。B液30%で1分間保持し、その後4.5分間でB液45%までグラジエントをかけ、目的の物質を溶出させた。その後、B液99%でカラムを2分間洗浄し、B液30%で3分間保持した。なお、流速は、0.3mL/分に設定した。MS/MS分析はESIネガティブモードで分析した。MS/MSの分析条件は、カーテンガス流量30psi、コリジョンガス流量9psi、イオンスプレー電圧-4500V、ターボガス温度600℃、イオンソースガス70psiに設定した。
【0111】
(5)結果
結果は表14および図15に示される通りであった。投与後60分において、ナリンゲニン群に比べ、ナリンゲニン+ヨーグルト群において、ナリンゲニン抱合体の血清中濃度が有意に上昇した。その他の全ての時点において、ナリンゲニン抱合体の血清中濃度が上昇した。また、血中濃度-時間曲線下面積(AUC)は、ナリンゲニン群に比べ、ナリンゲニン+ヨーグルト群において有意に増加した。本結果は、ヨーグルトの摂取がナリンゲニンの吸収を促進させることを意味する。なお、図中、「*」の記号はP<0.05でナリンゲニン群に対して有意差があることを示している。
【表14】
【0112】
実験例13:リコペンの吸収促進(その2)
(1)用いたヨーグルト
実験例1で調製したヨーグルトを用いた。
【0113】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにリコペン(リコレッド社製)、リコペンとヨーグルトをそれぞれ投与した。ここで、リコペンは5mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。リコペンの血清中濃度の測定は実験例9に記載の方法および条件に従い行った。また、以下では、リコペンを投与したラット群(コントロール)を「リコペン群」と呼び、リコペンとヨーグルトを投与したラット群(実施例)を「リコペン+ヨーグルト群」と呼ぶこととする。
【0114】
(3)結果
結果は表15および図16に示される通りであった。投与後60分、120分、240分において、リコペン群に比べ、リコペン+ヨーグルト群において、リコペンの血清中濃度が有意に上昇した。また、血中濃度-時間曲線下面積(AUC)は、リコペン群に比べ、リコペン+ヨーグルト群において増加した。本結果は、ヨーグルトの摂取がリコペンの吸収を促進させることを意味する。なお、図中、「*」の記号はP<0.05でリコペン群に対して有意差があることを示している。
【表15】
【0115】
実験例14:βカロテンの吸収促進(その4)
(1)ヨーグルトの調製
10質量%の脱脂粉乳および0.5mMギ酸ナトリウムを含む培地にラクトバチルス・ブルガリクスOLL1224菌、ラクトバチルス・ブルガリクスOLL1247菌をそれぞれ接種した後、その培地を43℃でpH4.6になるまで発酵させて加熱した。このようにして得られたヨーグルトには、多糖体がそれぞれ88μg/g、68μg/g含まれていた。
【0116】
(2)実験方法
24匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにβカロテン、βカロテンとヨーグルト(ラクトバチルス・ブルガリクスOLL1224菌)、βカロテンとヨーグルト(ラクトバチルス・ブルガリクスOLL1247菌)をそれぞれ投与した。ここで、βカロテンは5mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。βカロテンの血清中濃度の測定は実験例6に記載の方法および条件に従い行った。
以下、βカロテンを投与したラット群(コントロール)を「βカロテン群」と呼び、βカロテンとヨーグルト(ラクトバチルス・ブルガリクスOLL1224菌)を投与したラット群(実施例)を「βカロテン+OLL1224群」、βカロテンとヨーグルト(ラクトバチルス・ブルガリクスOLL1247菌)を投与したラット群(実施例)を「βカロテン+OLL1247群」と呼ぶこととする。
【0117】
(3)結果
結果は表16に示される通りであった。血中濃度-時間曲線下面積(AUC)は、βカロテン群に比べ、βカロテン+OLL1224群、βカロテン+OLL1247群において有意に増加した。本結果は、ヨーグルトの摂取がβカロテンの吸収を促進させることを意味する。
【表16】
【0118】
実験例15:βカロテンの吸収促進(その5)
(1)ヨーグルトの調製
10質量%の脱脂粉乳および0.1重量%のカゼインペプチド(DOMO製)を含む培地にストレプトコッカス・サーモフィラスOLS3290菌、ストレプトコッカス・サーモフィラスOLS3078菌を接種した後、その培地を43℃でpH4.6になるまで発酵させて加熱した。このようにして得られたヨーグルトには、多糖体がそれぞれ76.3μg/g、45.8μg/g含まれていた。
【0119】
(2)実験方法
24匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにβカロテン、βカロテンとヨーグルト(ストレプトコッカス・サーモフィラスOLS3290菌)、βカロテンとヨーグルト(ストレプトコッカス・サーモフィラスOLS3078菌)をそれぞれ投与した。ここで、βカロテンは5mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。βカロテンの血清中濃度の測定は実験例6に記載の方法および条件に従い行った。以下、βカロテンを投与したラット群(コントロール)を「βカロテン群」と呼び、βカロテンとヨーグルト(ストレプトコッカス・サーモフィラスOLS3290菌)を投与したラット群(実施例)を「βカロテン+OLS3290群」、βカロテンとヨーグルト(ストレプトコッカス・サーモフィラスOLS3078菌)を投与したラット群(実施例)を「βカロテン+OLS3078群」と呼ぶこととする。
【0120】
(3)結果
結果は表17に示される通りであった。血中濃度-時間曲線下面積(AUC)は、βカロテン群に比べ、βカロテン+OLS3290群において有意に増加した。本結果は、ヨーグルトの摂取がβカロテンの吸収を促進させることを意味する。
【表17】
【0121】
実験例16:βカロテンの吸収促進(その6)
(1)ヨーグルトの調製
10質量%の脱脂粉乳を含む培地に、市販のスターター(カスピ海ヨーグルト、フジッコ株式会社製)、ラクトバチルス・ブルガリクスOLL1247菌およびストレプトコッカス・サーモフィラスOLS3078菌を接種した後、その培地を43℃でpH4.6に達するまで発酵させて加熱した。このようにして得られたヨーグルトには、多糖体が15μg/g、54μg/g含まれていた。
【0122】
(2)実験方法
24匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにβカロテン、βカロテンとヨーグルト(カスピ海ヨーグルト)、βカロテンとヨーグルト(ラクトバチルス・ブルガリクスOLL1247菌およびストレプトコッカス・サーモフィラスOLS3078菌)をそれぞれ投与した。ここで、βカロテンは5mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。βカロテンの血清中濃度の測定は実験例6に記載の方法および条件に従い行った。以下、βカロテンを投与したラット群(コントロール)を「βカロテン群」と呼び、βカロテンとヨーグルト(カスピ海ヨーグルト)を投与したラット群(実施例)を「βカロテン+カスピ海YG群」、βカロテンとヨーグルト(ラクトバチルス・ブルガリクスOLL1247菌およびストレプトコッカス・サーモフィラスOLS3078菌)を投与したラット群(実施例)を「βカロテン+OLL1247×OLS3078群」と呼ぶこととする。
【0123】
(5)結果
結果は表18に示される通りであった。血中濃度-時間曲線下面積(AUC)は、βカロテン群に比べ、βカロテン+OLL1247×OLS3078群において有意に増加した。本結果は、ヨーグルトの摂取がβカロテンの吸収を促進させることを意味する。
【表18】
【0124】
実験例17:ケルセチンの吸収促進(その4)
(1)用いたヨーグルト
10質量%の脱脂粉乳を含む培地に、市販のスターター(明治ブルガリアヨーグルト(株式会社明治製)より単離したラクトバチルス・ブルガリクス2038菌およびストレプトコッカス・サーモフィラス1131菌)、ラクトバチルス・ブルガリクスOLL1247菌およびストレプトコッカス・サーモフィラスOLS3078菌を接種した後、その培地を43℃でpH4.6に達するまで発酵させて加熱し、ヨーグルトを調製した。
【0125】
(2)実験方法
24匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにケルセチン、ケルセチンとヨーグルトをそれぞれ投与した。ここで、ケルセチンは50mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。ケルセチン代謝物であるケルセチン抱合体と、イソラムネチン抱合体の血清中濃度の測定は、実験例1に記載の方法および条件に従い行った。以下、ケルセチンを投与したラット群(コントロール)を「ケルセチン群」と呼び、ケルセチンとヨーグルト(ラクトバチルス・ブルガリクス2038菌およびストレプトコッカス・サーモフィラス1131菌)を投与したラット群(実施例)を「ケルセチン+LB81群」、ケルセチンとヨーグルト(ラクトバチルス・ブルガリクスOLL1247菌およびストレプトコッカス・サーモフィラスOLS3078菌)を投与したラット群(実施例)を「ケルセチン+OLL1247×OLL3078群」と呼ぶこととする。
【0126】
(3)結果
結果は表19に示される通りであった。ケルセチン抱合体の血中濃度-時間曲線下面積(AUC)は、ケルセチン群に比べ、ケルセチン+LB81群、ケルセチン+OLL1247×OLS3078群において有意に増加した。本結果は、乳酸菌による発酵がケルセチンの吸収を促進させることを意味する。
【表19】
【0127】
実験例18:エピカテキンの吸収促進(その2)
(1)用いたヨーグルト
実験例1で調製したヨーグルトを用いた。
【0128】
(2)実験方法
16匹のラット(SD、雄、8週齢、日本エスエルシー株式会社)を7日間馴化させた後、それらのラットを8匹ずつの群に分けた。16時間の絶食後、各群のラットにカカオ豆抽出物、カカオ豆抽出物とヨーグルトをそれぞれ投与した。カカオ豆抽出物は、未発酵カカオ豆を脱脂して得たカカオ豆パウダーを、50%エタノール(v/v)で抽出した後、抽出液を濃縮、凍結乾燥させて調製した。得られたカカオ豆抽出物中には、エピカテキンが188 mg/g含まれていた。なお、カカオ豆抽出物はエピカテキンとして50mg/kg体重、ヨーグルトは11.3g/kg体重で投与した。投与前、投与後60分、120分、240分、480分に尾静脈より採血を行い、血清を得た。エピカテキン代謝物であるエピカテキン抱合体の血清中濃度の測定は、実験例5に記載の方法および条件に従い行った。以下、説明の便宜上、カカオ豆抽出物を投与したラット群(コントロール)を「カカオ豆抽出物群」と呼び、カカオ豆抽出物とヨーグルトを投与したラット群(実施例)を「カカオ豆抽出物+ヨーグルト群」と呼ぶこととする。
【0129】
(3)結果
結果は表20および図17に示される通りであった。投与後60分、120分において、カカオ豆抽出物群に比べ、カカオ豆抽出物+ヨーグルト群において、エピカテキン抱合体の血清中濃度が有意に上昇した。また、血中濃度-時間曲線下面積(AUC)は、カカオ豆抽出物群に比べ、カカオ豆抽出物+ヨーグルト群において有意に増加した。本結果は、ヨーグルトの摂取がカカオ豆抽出物中に含まれるエピカテキンの吸収を促進させることを意味する。なお、図中、「*」の記号はP<0.05でカカオ豆抽出物群に対して有意差があることを示している。
【表20】

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17