(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-14
(45)【発行日】2022-11-22
(54)【発明の名称】エッジに限局されたイオン軌道制御及びプラズマ動作を通じた、最端エッジにおけるシース及びウエハのプロフィール調整
(51)【国際特許分類】
H01L 21/3065 20060101AFI20221115BHJP
H05H 1/46 20060101ALN20221115BHJP
【FI】
H01L21/302 101C
H05H1/46 L
【外国語出願】
(21)【出願番号】P 2021038938
(22)【出願日】2021-03-11
(62)【分割の表示】P 2016054582の分割
【原出願日】2016-03-18
【審査請求日】2021-04-01
(32)【優先日】2015-07-13
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】サラバナプリヤン・スリラマン
(72)【発明者】
【氏名】アレキサンダー・パターソン
(72)【発明者】
【氏名】トム・カンプ
【審査官】鈴木 智之
(56)【参考文献】
【文献】特開2010-186841(JP,A)
【文献】特開2004-022822(JP,A)
【文献】登録実用新案第3154930(JP,U)
【文献】特表2011-525694(JP,A)
【文献】特表2001-527285(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/3065
H05H 1/46
(57)【特許請求の範囲】
【請求項1】
プラズマ処理チャンバのためのエッジリングアセンブリであって、
第1のRF電源に電気的に接続されるように構成されている静電チャック(ESC)を取り囲むように構成されているエッジリングと、前記ESCは、基板を支持するための上面と、前記上面を取り囲む環状段差とを有し、前記環状段差は、前記上面よりも低い環状棚を画定し、
前記エッジリングの下方且つ前記環状棚の上方に配置され、第2のRF電源に電気的に接続されるように構成されている環状電極
であって、半径方向幅が前記エッジリングの半径方向幅未満である環状電極と、
前記環状電極を前記ESCから隔離するために前記環状電極の下方に配置され、前記環状棚の上に位置決めされている誘電体リングと、を備え、
前記環状電極の第1の部分は、前記ESCの前記上面上にあるときの前記基板の下方に配置され、前記環状電極の第2の部分は、前記基板の直径を超えて半径方向に広がる、エッジリングアセンブリ。
【請求項2】
請求項1に記載のエッジリングアセンブリであって、
前記エッジリングは上面を有し、前記エッジリングの前記上面は前記エッジリングの内径に画定されている段差エッジを有し、前記段差エッジの下部は前記基板が存在するときに前記基板が前記段差エッジの前記下部の上に延伸するように、前記ESCの前記上面よりも低い高さに位置するように構成されている、エッジリングアセンブリ。
【請求項3】
請求項2に記載のエッジリングアセンブリであって、
前記環状電極の少なくとも一部は、前記エッジリングの前記段差エッジの下方に配置されている、エッジリングアセンブリ。
【請求項4】
請求項1に記載のエッジリングアセンブリであって、
プラズマ処理時における前記環状電極へのRF電力の印加は、前記プラズマ処理時に形成されるプラズマシースを、前記エッジリングを実質的に覆うように画定されている空間領域内へ放射状に広がらせる、エッジリングアセンブリ。
【請求項5】
請求項4に記載のエッジリングアセンブリであって、
前記プラズマ処理時における前記環状電極への前記RF電力の印加は、前記基板のエッジ領域におけるイオン集束を低減する、エッジリングアセンブリ。
【請求項6】
請求項5に記載のエッジリングアセンブリであって、
前記プラズマ処理時における前記環状電極への前記RF電力の印加は、前記基板の前記エッジ領域における、前記基板の上面に垂直な方向からのイオン軌道の傾斜を減少させる、エッジリングアセンブリ。
【請求項7】
請求項1に記載のエッジリングアセンブリであって、
前記環状電極は、約5~28ミリメートルの半径方向幅を有する、エッジリングアセンブリ。
【請求項8】
請求項1に記載のエッジリングアセンブリであって、
前記環状電極は、約0.5~5ミリメートルの厚さを有する、エッジリングアセンブリ。
【請求項9】
請求項1に記載のエッジリングアセンブリであって、
前記環状電極は、複数の同心電極として定められ、前記複数の同心電極のぞれぞれは、前記第2のRF電源に電気的に接続されている、エッジリングアセンブリ。
【請求項10】
請求項1に記載のエッジリングアセンブリであって、
前記環状電極は、導電性材料の網の目状構造として定められる、エッジリングアセンブリ。
【請求項11】
請求項1に記載のエッジリングアセンブリであって、
前記環状電極は、前記エッジリングと一体化されている、エッジリングアセンブリ。
【請求項12】
請求項1に記載のエッジリングアセンブリであって、
前記環状電極は、前記エッジリングの半径方向幅と少なくとも同じ幅の半径方向幅を有する、エッジリングアセンブリ。
【請求項13】
プラズマ処理のためのシステムであって、
プロセスチャンバと、
前記プロセスチャンバ内に配置されている静電チャック(ESC)であって、プラズマ処理時に基板を支持するように構成されている上面を有し、更に、前記上面を取り囲む環状段差を含む、静電チャック(ESC)と、前記環状段差は前記上面よりも低い高さに環状棚を画定し、前記環状棚
はエッジリングアセンブリに適応するように構成され、前記エッジリングアセンブリは前記ESCを取り囲むように構成されているエッジリングを含み、前記エッジリングの下方には、環状電極が配置され、前記環状電極の下方且つ前記環状棚の上方には誘電体リングが配置され、
前記環状電極の半径方向幅は前記エッジリングの半径方向幅未満であり、
前記ESC内に配置されたバイアス電極であって、前記基板上にバイアス電圧を生成するために、第1のRF電源からRF電力を受信するように構成されているバイアス電極と、を備え、
前記環状電極は、第2のRF電源に電気的に接続されるように構成され、
前記環状電極の第1の部分は、前記ESCの前記上面上にあるときの前記基板の下方に配置され、前記環状電極の第2の部分は、前記基板の直径を超えて半径方向に広がる、システム。
【請求項14】
請求項13に記載のシステムであって、
前記エッジリングは上面を有し、前記エッジリングの前記上面は前記エッジリングの内径に画定されている段差エッジを有し、前記段差エッジの下部は前記基板が存在するときに前記基板が前記段差エッジの前記下部の上に延伸するように、前記ESCの前記上面よりも低い高さに位置するように構成されている、システム。
【請求項15】
請求項14に記載のシステムであって、
前記環状電極の少なくとも一部は、前記エッジリングの前記段差エッジの下方に配置されている、システム。
【請求項16】
請求項13に記載のシステムであって、
前記プラズマ処理時における前記環状電極へのRF電力の印加は、前記プラズマ処理時に形成されるプラズマシースを、前記エッジリングを実質的に覆うように画定されている空間領域内へ放射状に広がらせる、システム。
【請求項17】
請求項16に記載のシステムであって、
前記プラズマ処理時における前記環状電極への前記RF電力の印加は、前記基板のエッジ領域におけるイオン集束を低減する、システム。
【請求項18】
請求項17に記載のシステムであって、
前記プラズマ処理時における前記環状電極への前記RF電力の印加は、前記基板の前記エッジ領域における、前記基板の上面に垂直な方向からのイオン軌道の傾斜を減少させる、システム。
【請求項19】
請求項13に記載のシステムであって、
前記環状電極は、約5~28ミリメートルの半径方向幅を有する、システム。
【請求項20】
請求項13に記載のシステムであって、
前記環状電極は、約0.5~5ミリメートルの厚さを有する、システム。
【請求項21】
請求項13に記載のシステムであって、
前記環状電極は、複数の同心電極として定められ、前記複数の同心電極のぞれぞれは、前記第2のRF電源に電気的に接続されている、システム。
【請求項22】
請求項13に記載のシステムであって、
前記環状電極は、導電性材料の網の目状構造として定められる、システム。
【請求項23】
請求項13に記載のシステムであって、
前記環状電極は、前記エッジリングと一体化されている、システム。
【請求項24】
請求項13に記載のシステムであって、
前記環状電極は、前記エッジリングの半径方向幅と少なくとも同じ幅の半径方向幅を有する、システム。
【請求項25】
プラズマ処理のためのシステムであって、
プロセスチャンバと、
前記プロセスチャンバ内に配置され、プラズマ処理時に基板を支持するように構成された上面を有し、更に、前記上面を取り囲む環状段差を含む静電チャック(ESC)と、前記環状段差は、前記上面よりも低い高さに環状棚を画定し、前記環状棚
はエッジリングアセンブリに適応するように構成され、前記エッジリングアセンブリは、前記ESCを取り囲むように構成されているエッジリングを含み、前記エッジリングアセンブリは、更に、誘電体リングを含み、
前記ESC内に配置されているバイアス電極であって、前記基板上にバイアス電圧を生成するために、第1のRF電源からRF電力を受信するように構成されているバイアス電極と、
前記ESC内に配置されている環状電極であって、前記ESCの前記上面の周縁領域の下方に配置され、第2のRF電源に電気的に接続されるように構成されている環状電極と、を備え、
前記環状電極の第1の部分は、前記ESCの前記上面上にあるときの前記基板の下方に配置され、前記環状電極の第2の部分は、前記基板の直径を超えて半径方向に広がり、
前記誘電体リングは、前記環状電極の下方に且つ前記環状棚の上方に配置されている、システム。
【請求項26】
請求項25に記載のシステムであって、
前記エッジリングは上面を有し、前記エッジリングの前記上面は前記エッジリングの内径に画定されている段差エッジを有し、前記段差エッジの下部は前記基板が存在するときに前記基板が前記段差エッジの前記下部の上に延伸するように、前記ESCの前記上面よりも低い高さに位置するように構成されている、システム。
【請求項27】
請求項26に記載のシステムであって、
前記環状電極の少なくとも一部は、前記エッジリングの前記段差エッジの下方に配置されている、システム。
【請求項28】
請求項25に記載のシステムであって、
前記プラズマ処理時における前記環状電極へのRF電力の印加は、前記プラズマ処理時に形成されるプラズマシースを、前記エッジリングを実質的に覆うように画定されている空間領域内へ放射状に広がらせる、システム。
【請求項29】
請求項28に記載のシステムであって、
前記プラズマ処理時における前記環状電極への前記RF電力の印加は、前記基板のエッジ領域におけるイオン集束を低減する、システム。
【請求項30】
請求項29に記載のシステムであって、
前記プラズマ処理時における前記環状電極への前記RF電力の印加は、前記基板の前記エッジ領域における、前記基板の上面に垂直な方向からのイオン軌道の傾斜を減少させる、システム。
【請求項31】
請求項25に記載のシステムであって、
前記環状電極は、約5~28ミリメートルの半径方向幅を有する、システム。
【請求項32】
請求項25に記載のシステムであって、
前記環状電極は、約0.5~5ミリメートルの厚さを有する、システム。
【請求項33】
請求項25に記載のシステムであって、
前記環状電極は、複数の同心電極として定められ、前記複数の同心電極のぞれぞれは、前記第2のRF電源に電気的に接続されている、システム。
【請求項34】
請求項25に記載のシステムであって、
前記環状電極は、導電性材料の網の目状構造として定められる、システム。
【発明の詳細な説明】
【技術分野】
【0001】
本実施形態は、半導体ウエハ処理機器ツールに関し、特に、プラズマプロセスチャンバ内で使用されるエッジリングアセンブリに関する。
【背景技術】
【0002】
ウエハ全域の均一性を求める進歩にかかわらず、依然として、ウエハのエッジ領域及び最端エッジ領域におけるエッチングの挙動が課題であり続けている。ダイの少なくとも10%がウエハのこの領域で影響を受け、ダイごとの費用増加を考慮すると、その経済的な影響はとりわけ深刻になりえる。約1~5mmをエッジ除外領域とする(例えば、300mmウエハの半径に沿って140~150mmにおける)遠エッジ効果が、ウエハ面内の均一性を実現しようとする現行の製造努力の積極的焦点である。
【0003】
大半のプロセスは、駆動輸送の傾向があるので、エッチング性能は、ウエハ上の特定の領域の上方におけるプラズマの組成に依存し、どのプラズマ源にも、チャンバ壁に由来する何らかの非均一性及び影響が内在している。ウエハのエッジにおける中性種及びイオン種のプラズマ種組成は、電気的不連続性及び化学的不連続性の両方の原因となる「ウエハサイズの有限性」に起因する不連続性ゆえに、ウエハの中心とは異なる傾向がある。中性束の勾配と相まって、ウエハ最端エッジにおけるエッチング挙動は、ウエハの残りの領域とは極めて異なるだろう。
【0004】
ウエハのエッジでは、バイアスをかけられた表面から接地された又は浮遊した表面に表面が切り替わるために、電圧勾配が形成される。その結果、ウエハ材料とチャンバ材料(特にエッジリング)との間の電気的性質の相違と相まって、シースの湾曲、垂直からのイオン束のずれ、及びウエハへのイオン集束が生じる。これは、エッチング特徴に望ましくない影響を及ぼし、特徴の傾斜及び/又は限界寸法(CD)のばらつきのいずれかを通じて不均一性として現れる。
【0005】
現時点では、静電チャック(ESC)が処理プラズマに曝されること及び材料特性の変化ゆえにウエハのエッジ近くで電気的不連続性が本質的に引き起こされることを防ぐために、反応性イオンエッチングチャンバ(Lam Research Corporationによって製造されているKiyo(登録商標)シリーズのプロセスチャンバ)において、様々な導電率の誘電体エッジリングが使用されている。この電気的性質の不連続性に起因するプラズマシースの湾曲によって引き起こされるイオン集束及びイオン軌道を軽減するための、追加の調整つまみはなく、したがって、特徴の傾斜及びCDの非均一性の問題は、尚も続いている。
【0006】
本開示の実施形態が生じるのは、このような状況においてである。
【発明の概要】
【0007】
本開示の実施形態は、通常は(約0~5mmをエッジ除外領域とする)(300mmウエハの半径に沿って)おおよそ120~150mmの範囲であるウエハ最端エッジにおける及びその範囲を超えたところにおけるプラズマシース境界の制御を可能にしてそのような制御を行うことによって、エッジに限局されたイオン軌道制御を促し、それによってウエハ最端エッジにおけるウエハプロフィール調整を提供するための、方法、装置、並びにシステムを提供する。イオン軌道の制御を実現し、ウエハエッジ近くにおけるシースの湾曲の結果として引き起こされるイオン集束効果を最小限に抑えることによって、ウエハへのイオンの軌道のみならず、イオン束対中性束の比率(即ちイオン対エッチャント及び/又はイオン対パッシバント)も操作することができる。その結果、更なる調整によって、(例えばエッジリング及び静電チャック(ESC)(例えば、Lam Research Corporationによって製造されているHydra Uniformity System)の)温度や、パッシバント勾配プロフィール(例えばRTC)限界寸法均一性(CDU)などのパラメータを、低減技術ノードに合わせて最適化することもできる。
【0008】
一部の実装形態では、ウエハ最端エッジにおけるイオン束及びイオン軌道の制御が、RFで通電されるエッジリングを通じて実現される。この場合は、電極が、ウエハを取り囲むエッジリングの内部に埋設され、低RF周波数で通電される(低周波数では電圧が高くなる)。十分に高い制御電圧を埋設電極に対して使用することによって、エッジリング上におけるシースの連続性を可能にし、それによって、ウエハ最端エッジの付近におけるプラズマシース境界を修正することができる。低周波数RFで通電されるエッジリングによる修正されたシース境界の存在は、ウエハのエッジにおけるイオン傾斜及びイオン集束を低減する。
【0009】
一実装形態では、プラズマ処理チャンバのためのエッジリングアセンブリが提供される。該アセンブリは、第1のRF電源への電気接続用に構成された静電チャック(ESC)を取り囲むように構成されたエッジリングであって、ESCは、基板を支持するための上面と、該上面を取り囲む環状段差とを有し、該環状段差は、上記上面よりも低い環状棚を画定する、エッジリングと、エッジリングの下方に且つ環状棚の上方に配置された環状電極と、該環状電極をESCから隔離するために環状電極の下方に配置された誘電体リングであって、環状棚の上に位置決めされる誘電体リングと、ESCを通るように及び誘電体リングを通るように配置された複数の絶縁コネクタであって、第2のRF電源と環状電極との間の電気接続をそれぞれ提供する複数の絶縁コネクタとを含む。
【0010】
一実装形態では、複数の絶縁コネクタのそれぞれは、同軸コネクタとして定められる。
【0011】
一実装形態では、複数の絶縁コネクタのそれぞれは、第2のRF電源を第1のRF電源から隔離するように構成される。
【0012】
一実装形態では、エッジリングは、上面を有し、該エッジリングの上面は、エッジリングの内径に画定された段差エッジを有し、該段差エッジの下部は、基板が存在するときにその基板が段差エッジの下部の上に広がるように、ESCの上面よりも低い高さに位置するように構成される。
【0013】
一実装形態では、環状電極の少なくとも一部が、エッジリングの段差エッジの下方に配置される。
【0014】
一実装形態では、プラズマ処理時における環状電極へのRF電力の印加が、プラズマ処理時に形成されるプラズマシースを、エッジリングを実質的に覆うように画定された空間領域内へ放射状に広がらせる。
【0015】
一実装形態では、プラズマ処理時における環状電極へのRF電力の印加は、基板のエッジ領域におけるイオン集束を低減する。
【0016】
一実装形態では、プラズマ処理時における環状電極へのRF電力の印加は、基板のエッジ領域における、基板の上面に垂直な方向からのイオン軌道の傾斜を減少させる。
【0017】
一実装形態では、環状電極は、約5~28ミリメートルの半径方向幅を有する。
【0018】
一実装形態では、環状電極は、約0.5~5ミリメートルの厚さを有する。
【0019】
一実装形態では、環状電極は、複数の同心電極として定められ、該複数の同心電極のぞれぞれは、第2のRF電源に電気的に接続される。
【0020】
一実装形態では、環状電極は、導電性材料の網の目状構造として定められる。
【0021】
一実装形態では、環状電極は、エッジリングと一体化される。
【0022】
一実装形態では、環状電極は、少なくともエッジリングの半径方向幅と同じ幅の半径方向幅を有する。
【0023】
別の一実装形態では、プラズマ処理のためのシステムが提供される。該システムは、プロセスチャンバと、該プロセスチャンバ内に配置された静電チャック(ESC)であって、プラズマ処理時に基板を支持するように構成された上面を有し、更に、該上面を取り囲む環状段差を含み、該環状段差は、上記上面よりも低い高さに環状棚を画定し、該環状棚は、エッジリングアセンブリに適応するように構成され、エッジリングアセンブリは、ESCを取り囲むように構成されたエッジリングを含み、エッジリングの下方には、環状電極が配置され、該環状電極の下方に且つ環状棚の上方には、エッジリングが配置される、静電チャック(ESC)と、ESC内に配置されたバイアス電極であって、基板にかかるバイアス電圧を生成するために、第1のRF電源からRF電力を受信するように構成されるバイアス電極と、ESCを通るように配置された複数の絶縁コネクタであって、該複数の絶縁コネクタは、誘電体リングを通るように配置されるように構成され、複数の絶縁コネクタのそれぞれは、第2のRF電源と環状電極との間の電気接続を提供するように構成される、複数の絶縁コネクタとを含む。
【0024】
一実装形態では、複数の絶縁コネクタのそれぞれは、同軸コネクタとして定められる。
【0025】
一実装形態では、複数の絶縁コネクタは、第2のRF電源を第1のRF電源から隔離するように構成される。
【0026】
別の一実装形態では、プラズマ処理のためのシステムが提供される。該システムは、プロセスチャンバと、該プロセスチャンバ内に配置された静電チャック(ESC)であって、プラズマ処理時に基板を支持するように構成された上面を有し、更に、該上面を取り囲む環状段差を含み、該環状段差は、上記上面よりも低い高さに環状棚を画定し、該環状棚は、エッジリングアセンブリに適応するように構成され、エッジリングアセンブリは、ESCを取り囲むように構成されたエッジリングを含み、エッジリングアセンブリは、更に、誘電体リングを含む、静電チャック(ESC)と、ESC内に配置されたバイアス電極であって、基板にかかるバイアス電圧を生成するために、第1のRF電源からRF電力を受信するように構成されるバイアス電極と、ESC内に配置された環状電極であって、ESCの上面の周縁領域の下方に配置される環状電極と、ESCを通るように配置された複数の絶縁コネクタであって、第2のRF電源と環状電極との間の電気接続をそれぞれ提供するように構成される複数の絶縁コネクタとを含み、誘電体リングは、環状電極の下方に且つ環状棚の上方に配置される。
【0027】
一実装形態では、環状電極及び複数の絶縁コネクタは、第2のRF電源を第1のRF電源から隔離するように構成される。
【0028】
一実装形態では、環状電極の第1の部分が、ESCの上面上にあるときの基板の下方に配置され、環状電極の第2の部分が、基板の直径を超えて半径方向に広がる。
【0029】
一実装形態では、第1のRF電源及び第2のRF電源は、既定の位相角差でそれぞれのRF電力を提供するように構成される。位相角差は、所望のイオン束を、及びその結果としての所望のエッチングプロフィールを実現するために、動的に調整可能である。
【図面の簡単な説明】
【0030】
【
図1A】本開示の一実施形態に従う、エッチング動作のためのプラズマ処理システム100の構造図である。
【0031】
【
図1B】本開示の一実施形態に従う、プラズマ処理システム100の設計図である。
【0032】
【
図2A】本開示の実装形態に従う、プラズマ処理チャンバ内に配置されるように構成された静電チャック(ESC)及びエッジリングアセンブリの断面を概念的に示す図である。
【0033】
【
図2B-1】本開示の実装形態に従う、ESC及びエッジリングアセンブリの拡大断面図である。
【0034】
【
図2B-2】本開示の実装形態に従う、ESC及びエッジリングアセンブリの切断図である。
【0035】
【
図2C】本開示の実装形態に従う、エッジリング及びESCの断面図である。
【0036】
【
図2D】本開示の実装形態に従う、エッジリング及びESCの断面図である。
【0037】
【
図2E】本開示の実装形態に従う、複数の同心電極が埋め込まれたエッジリングの断面図である。
【0038】
【
図3A】本開示の実装形態に従う、プラズマ処理動作時に生成されるプラズマシースを概念的に示す図である。
【0039】
【
図3B】本開示の実装形態に従う、プラズマ処理動作時に生成されるプラズマシースを概念的に示す図である。
【0040】
【
図4A】本開示の実装形態に従う、プラズマ処理を経ている基板のエッジ領域の断面図である。
【
図4B】本開示の実装形態に従う、プラズマ処理を経ている基板のエッジ領域の断面図である。
【
図4C】本開示の実装形態に従う、プラズマ処理を経ている基板のエッジ領域の断面図である。
【
図4D】本開示の実装形態に従う、プラズマ処理を経ている基板のエッジ領域の断面図である。
【
図4E】本開示の実装形態に従う、プラズマ処理を経ている基板のエッジ領域の断面図である。
【0041】
【
図5A】
図4A~4Eの実装形態に従う、基板の上面に沿った半径方向位置に対してArイオン束をプロットしたグラフである。
【0042】
【
図5B】
図4A~4Eの実装形態に従う、基板に沿って約13~15センチメートルの範囲(直径300mmの基板のエッジの近く)の半径方向位置に対してArイオン束をプロットしたグラフである。
【0043】
【
図6】本開示の実装形態に従う、エッジリング環状電極に印可される電圧が様々な場合における正規化エッチング速度を300mmウエハに沿った半径方向位置に対してプロットしたグラフである。
【0044】
【
図7】本開示の実装形態に従う、エッジリング及び台座/ESCの図である。
【0045】
【
図8】本開示の実装形態に従う、プラズマプロセスチャンバ内に配置されるように構成された静電チャック(ESC)及びエッジリングの断面を概念的に示す図である。
【0046】
【
図9】本開示の実装形態に従う、プラズマプロセスチャンバ内に配置されるように構成された静電チャック(ESC)及びエッジリングの断面を概念的に示す図である。
【0047】
【
図10】本開示の実装形態に従う、ESCに印加される電力と環状電極に印加される電力との間の位相差が様々な場合における影響を示す図である。
【0048】
【
図11A】本開示の実装形態に従う、エッジリングアセンブリの切断図である。
【0049】
【
図11B】本開示の実装形態に従う、プラズマプロセスチャンバの下方ボウルの内部図である。
【
図11C】本開示の実装形態に従う、プラズマプロセスチャンバの下方ボウルの内部図である。
【0050】
【
図12A】本開示の実装形態に従う、エッジリングアセンブリの断面図である。
【0051】
【
図12B】本開示の実装形態に従う、エッジリングアセンブリの断面図である。
【0052】
【
図13】本開示の実装形態に従う、HBrプラズマプロセスにおけるエッチング速度プロフィールを示すグラフである。
【0053】
【
図14】本開示のシステムを制御するための制御モジュール1000の図である。
【発明を実施するための形態】
【0054】
本開示の実施形態は、エッジに限局されたイオン軌道制御及びプラズマ動作を通じて最端エッジにおけるシース及びウエハのプロフィール調整を可能にするための、方法、装置、並びにシステムを提供する。本実施形態は、プロセス、装置、システム、デバイス、又は方法などの、数々の形態で実装可能であることがわかる。幾つかの実施形態が、以下で説明される。
【0055】
一部の実装形態では、ウエハの最端エッジにおけるイオン束及びイオン軌道の制御が、RFで通電されるエッジリングアセンブリを通じて実現される。電極が、ウエハを又は静電チャック(ESC)セラミックの最端エッジを取り囲むエッジリングアセンブリの内部に埋め込まれ、該エッジリングアセンブリは、(400kHzや、2MHz~約13.56MHzなどの)低RF周波数で電極を通電する。電極は、それがESCから電気的に隔離されて、ESCにかかるRF電力とは別々に制御可能であるRF電力を供給される限り、エッジリングの内部に作成されること又は誘電体間に挟まれることが可能である。以下で更に詳細に論じられるように、RF電力は、ESCの周縁に画定可能なフィード(供給線)を通じて供給することができる。
【0056】
十分に高い電圧を埋め込み電極に対して使用することによって、エッジリング上におけるシースの連続性を可能にし、それによって、ウエハ最端エッジの付近におけるプラズマシース境界を修正することができる。RFで通電されるエッジリングによる修正されたシース境界の存在は、ウエハのエッジにおけるイオン傾斜及びイオン集束を低減する。埋設電極へのRF電圧の印加は、ESCへの主RF供給と同相であってよい、又は位相差があってよい。2つのRF電圧間に位相差を用いることによって、ウエハのエッジの近くに横方向の電場が形成され、これは、ウエハ最端エッジにおけるイオン軌道を制御する形にシースを修正させることができる。
【0057】
RFで通電されるエッジリングアセンブリは、ウエハのエッジ及びウエハのエッジの近くにおけるプラズマが影響を受けることができるように、ESCの周囲の領域に配置される。プラズマに及ぼされる影響は、エッジ除外領域に近い領域における及びウエハの物理的なエッジの外まで及ぶプラズマシースの均一性及び連続性の提供を助けることができる。エッジ除外領域に到るまでの及びエッジ除外領域も含む均一性を提供することによる利点は、ウエハごとに画定可能な有用な集積回路が増えることであり、これは、製造歩留まりを向上させる。
【0058】
低いRF周波数の使用によって、より高い電圧が得られる一方で、より高いRF周波数の使用によって、高いプラズマ密度が実現可能である。ウエハ最端エッジに局在するパッシベーション種を生成する場合は、≧27MHzの高いRF周波数で通電されるエッジリングを設計すればよいだろう。ただし、これは、常に望ましいとは限らない。具体的には、電圧の制御及びシース境界の修正のためには、より低い範囲(400kHz~13.56MHz)のRF周波数が利用可能である。その他の実施形態では、埋設電極とエッジリングの辺縁とを半径方向に重複させ、それによってウエハのエッジの上方におけるシースを操作するために、埋設電極に適応するように延長されたESCセラミック段差が利用可能である。
【0059】
エッジリングにかかる電圧を制御するとともにウエハの最端エッジにおける容量結合に作用する、低周波RFで通電されるエッジリングを通じて、ウエハの最端エッジにおける制御が可能である。これは、ウエハの最端エッジにおける電気的不連続性及び化学的不連続性による影響が軽減されるという意味で技術的な利点を提供する。
【0060】
図1Aは、本開示の一実施形態に従う、エッチング動作のためのプラズマ処理システム100の構造図を示している。
図1Bは、本開示の一実施形態に従う、プラズマ処理システム100の設計図を示している。システム100は、ESC103を含むチャンバ101と、誘電体窓107とを含む。
図1Bの実施形態におけるESC103は、チャンバ101の側方から伸びるサイドアームで支持されているが、ESC103は、チャンバ101の基部から又は下側の開口を通って伸びる支持を通じて底側から支持されてもよいことがわかる。更に、ESC103には、ESC103の底部からRF電力が供給されてよく、このようなRF電力は、ESC103に対称的に供給することができる。ESC103は、プラズマ処理動作時に基板105を支持するように画定される。本明細書で言う基板は、半導体デバイス製造時に存在するあらゆるタイプの基板のうち、半導体ウエハ、ハードドライブディスク、光ディスク、ガラス基板、フラットパネルディスプレイ表面、液晶ディスプレイ表面を指し、ただし、これらに限定はされない。一実施形態では、ESC103は、基板105を支持する及び保持するための静電ESCである。別の一実施形態では、ESC103は、物理的拘束によって基板105を保持するように画定される。ESC103は、バイアス整合回路113及びイオンエネルギ・角度分布関数(IEADF)制御回路115によってバイアスRF電源111から高周波数(RF)電力を受信するように接続された1つ以上のバイアス電極104(以下、バイアス電極104)を含む。バイアスRF電源111は、電気接続119A及び119Bによって示されるように、基準地電位117とバイアス整合回路113との間に接続される。バイアス整合回路113は、IEADF制御回路115に電気的に接続され、これは、電気接続119Cによって示されるように、バイアス電極104に電気的に接続される。
【0061】
ESC103は、基板105の把持及び解放を可能にするために、クランプ電極(不図示)を含む。また、この実施形態では、クランプ電極によるESC103への基板105の静電把持を実現するために、フィルタ・直流(DC)クランプ電源が提供される。また、ESC103は、基板105を受け取る、基板105を下降させてESC103に載せる、及び基板105を持ち上げてESC103から離れさせるための、リフトピンなどのその他の制御システムを含むことができる。また、図には示されていないが、チャンバ101内の圧力の制御を提供するために、及びプラズマ処理動作時にチャンバ101からガス状の副生成物を排出させるために、ポンプがチャンバ101に接続される。
【0062】
各種の実施形態では、特にセラミック材料又は石英などの誘電体材料から誘電体窓107が画定される。その他の実施形態では、誘電体窓107は、チャンバ101内においてプラズマ処理動作時に曝される条件に耐えられる限り、その他の誘電体材料で画定されることも可能であると理解される。一部のプラズマ処理動作では、チャンバ101は、摂氏約50~120度の温度範囲内の昇温で運転される。総じて、チャンバ101内の温度は、実施される具体的なエッチングプロセスに依存する。また、チャンバ101は、約1~100ミリトール(mT)の圧力範囲内の減圧条件で運転されることも可能である。
【0063】
システム100は、また、チャンバ101の外側の誘電体窓107の上に配置されたTCP(トランス結合プラズマ)コイル109を含む。TCPコイル109は、TCP整合回路123によってTCP RF電源121からRF電力を受信するように接続される。具体的には、TCP RF電源121は、電気接続127A及び127Bによって示されるように、基準地電位125とTCP整合回路123との間に電気的に接続される。TCP整合回路123は、電気接続127B及び127Cによって示されるように、TCP RF電源121とTCPコイル109との間に電気的に接続される。TCP整合回路123は、TCPコイル109への効率的なRF電力伝送を提供するために、TCPコイル109に到るRF電力伝送経路のインピーダンスを制御するように定められる。
【0064】
プラズマ処理動作時には、チャンバ101にプロセスガスが流し込まれ、TCP RF電源121からTCPコイル109にRF電力が供給される。TCPコイル109を流れるRF電力は、チャンバ101内に電磁電流を誘導し、該電流は、プロセスガスに作用してプラズマ129を発生させる。このようにして、TCPコイル109は、変圧器の一次コイルとして振る舞い、プラズマ129は、変圧器の二次コイルとして振る舞う。プラズマ129は、ラジカル及びイオン(陽と陰)などの反応性成分を含み、これらは、基板105との接触の際に基板105から材料を除去する、即ちエッチングする働きをする。
【0065】
チャンバ101は、製造施設内に設置されるときは、チャンバ101へのプロセスガスの供給、チャンバ101からのプロセスガス及び副生成物の排出、チャンバ101内の圧力の監視及び制御、チャンバ101内の温度の監視及び制御、並びに環境粒子の制御を提供するシステムに接続されることが理解されるべきである。また、チャンバ101は、チャンバ101への基板105のロボット移送及びチャンバ101からの基板105のロボット取り出しを提供するように定められた移送チャンバにも接続可能であることが理解されるべきである。
【0066】
動作中は、基板105上に存在する直流(DC)バイアス電圧を生成及び制御するために、バイアス整合回路113及びIEADF制御回路115によってバイアスRF電源111からバイアス電極104にRF電力が伝送され、これは、ひいては、基板105の上方に生成されるプラズマ129内に存在するイオン集団に作用する力を制御する。バイアス電極104に伝送されるRF電力は、バイアス電極104に印加されるRFバイアス電圧に相当する。基板105上に蓄積するDCバイアス電圧及びバイアス電極104に印加されるRFバイアス電圧は、ともに、バイアス整合回路113及びIEADF制御回路115によってバイアスRF電源111からバイアス電極104にRF電力を印加する結果として同時に発生する。したがって、バイアスRF電源内のIEADF制御回路115は、基板105にかかるDCバイアス電圧及びバイアス電極104にかかるRFバイアス電圧の両方に影響を及ぼす。
【0067】
DCバイアス電圧は、基板105上の特定の地点における平均イオンエネルギの表れである。DCバイアス電圧は、基板105の充電が起きるのにともなって、基板105上に蓄積する。IEDAF制御回路115は、パルスバイアスRF電力供給モードでは、DCバイアス電圧が発達する速度を制御する。連続波(CW)バイアスRF電源モードでは、基板105にかかるDCバイアス電圧は、定常状態に到達することを許される。したがって、CWバイアスRF電源モードでは、基板105にかかるDCバイアス電圧にIEADF制御回路11が及ぼす影響は、無関係である。また、プラズマ129シースの縁で(バイアス整合回路113、及びESC103内の全容量層を経た後に)見られるRF波は、IEADF制御回路115によって制御されることが理解されるべきである。また、イオンは、基板105に向かって加速し、プラズマ129シースの縁でRF波に応答し、それに相応してIEADFに入力される。
【0068】
各種の実施形態において、RF電源111は、1つのRF発生器又は複数のRF発生器のいずれかを含むように定めることができる。また、RF電源111は、1つ以上の周波数でRF電力を生成するように定めることができる。また、複数のRF発生器の場合、RF電源111は、複数の周波数で同時にRF電力を生成することができる。バイアス整合回路113は、バイアス電極104への効率的なRF電力伝送を提供するために、バイアス電極に到るRF電力伝送経路のインピーダンスを制御するように定められる。
【0069】
チャンバ101は、プラズマ処理動作時に基板105の露出表面に到達するエネルギイオン集団を生成及び制御するために、RF電源111によって様々な周波数で生成されるRFバイアス電力を利用する。実施されているエッチング用途に応じて、基板105に到達する各種のエネルギのイオン集団の割合及び関連のイオンエネルギ・角度分布関数(IEADF)を制御することが、重要だと考えられる。基板105におけるIEADFを生成するためには、バイアスRF電源111からのパルス発振、即ちバイアスパルス発振を利用することができる。バイアスパルス発振動作は、供給されるバイアスRF電力のパルス繰り返し周波数(PRF)及びパルスデューティサイクル(DC)に関係付けられた期間にわたり、様々なエネルギからのイオン集団を基板105へ移動させる。しかしながら、基板105上において特定のプラズマ処理結果を得るためには、バイアスパルス発振動作時に、基板105が曝されるIEADFを制御することも必要である。本開示の様々な実施形態にしたがうと、IEADF回路115は、基板105が曝される低エネルギイオン及び高エネルギイオンの集団を制御するために、バイアスパルス発振動作時にIEADFを制御するように定められて動作される。
【0070】
上記のように、バイアスRF電力は、バイアスRF電源111からバイアス整合回路113及びIEADF回路115を経てバイアス電極104に供給される。バイアス電極104から、バイアスRF電力は、プラズマ129を通って、電気的に接地されたチャンバ101の周辺構造へ伝送される。バイアス整合回路113内の回路コンポーネントが、プラズマ129を通ってバイアスRF電力が効率的に伝送されることを可能にするためのインピーダンス整合を提供する。バイアスRF電源111は、連続波バイアスRF電源モード又はパルスバイアスRF電源モードのいずれかで動作されることが可能である。
【0071】
図2Aは、本開示の実装形態に従う、プラズマプロセスチャンバ内に配置されるように構成された静電チャック(ESC)及びエッジリングの断面を概念的に示している。例示の実装形態では、ESC103は、プラズマ処理時に基板(不図示)を支持するように構成された上面130を有する。また、ESC103の上面130の下方に配置されたバイアス電極104も示されている。バイアス電極104は、バイアスRF電源111からRF電力を受信する。一部の実装形態では、バイアスRF電源111は、13.56MHzの周波数で動作されるが、その他の実装形態では、実施されているプラズマプロセスに適したその他の周波数で動作されることが可能である。
【0072】
ESC103は、環状棚134を画定する環状段差132を有する。環状棚134の高さは、ESC103の上面130の高さよりも低い。エッジリングアセンブリ200は、環状段差132によって画定された環状棚134の上に少なくとも一部が載るように位置決めされる。
【0073】
例示の実装形態では、エッジリングアセンブリ200は、RF源/発生器204から電力を受信する環状電極202を含む。一部の実装形態では、環状電極202は、エッジリングアセンブリ200に完全に封入されている/埋設されている。要するに、環状電極202の表面が、プラズマ処理中にチャンバ環境に曝されることはない。一部の実装形態では、環状電極202は、固体の導電性材料(例えば、銅、アルミニウム、導電性合金など)で構成される単一の環状構造として画定される。このような実装形態における環状電極202は、扁平なリング状の構造を有する。
【0074】
上述された実装形態の環状電極202は、連続した固体の環状構造を有することができるが、その他の実装形態では、環状電極202は、幾つかの放射状セグメントからなる周方向に連続していない環状構造、穴が全体に分布された多孔性の構造、網の目状の構造、導電性の撚り糸やリボンなどからなる編み上げ構造、幾つかの相互接続要素(例えば、幾つかの同心状の環状要素とそれらを相互に接続する要素)を画定するグリル(焼き網)状の構造などの、その他のタイプの構造を有していてよいことがわかる。
【0075】
一部の実装形態では、同心状に配置された複数の環状電極が、エッジリングアセンブリ200に埋め込まれる。これらの各環状電極は、同じRF源/発生器204によって、又は別々のRF源/発生器によって通電することができる。更に、各電極のRF電力は、個別に調整可能であり、異なる電圧/周波数で通電されてよい。
【0076】
上記のように、一実装形態では、バイアス電極104は、13.56MHzの周波数で通電される。環状電極202は、バイアス電極104と同じ周波数(本例では13.56MHz)で、又は異なる周波数(例えば、0.4MHz、1MHz、2MHz、27MHz、60MHzなど)で通電されてよい。また、バイアス電極104に印加されるRF電力は、連続波又はパルス状であってよい。バイアス電極104に印加されるRF電力が連続波であるときは、環状電極202に印加されるRF電力も、連続波であることが望ましい。バイアス電極104に印加されるRF電力がパルス状であるときは、環状電極202に印加されるRF電力は、パルス状又は連続波であってよい。
【0077】
引き続き
図2Aを参照すると、ESC103内に画定されてESC103に通されたエッジリングRFフィード206も示されている。エッジリングRFフィード206は、RF源204に電気的に接続され、RF源204からエッジリングアセンブリ200に、及び更に具体的にはエッジリングアセンブリ200内に配置された環状電極202に、RF電力を供給するように構成される。1本のエッジリングRFフィード206が示されているが、ESC103内にはこのようなRFフィード構造が幾つか位置決めされてよいことがわかる。一部の実装形態では、複数のエッジリングRFフィード構造が、ESC103の周囲に対称的に位置決めされる。エッジリングRFフィードは、ESC103からの電気的分離を提供するように構成された絶縁された同軸コネクタとして定めることができる。
【0078】
一実装形態では、エッジリングRFフィード206は、環状電極202に接続するために、ESC103内を通って、及びエッジリングアセンブリ200内に画定された貫通穴(詳しくは後述される)を通って伸びるように構成される。
【0079】
一実装形態では、エッジリングRFフィード206は、環状棚134に到り、そこで、環状電極202に接続される別のコネクタに接続する。エッジリングRFフィード206は、幾本かあってよいので、このような対応する接続点もまた、同様に幾つかあってよいことがわかる。エッジリングRFフィード206は、ESC103のその他の部分からは遮断されていることが望ましく、したがって、一部の実装形態では、エッジリングRFフィード206は、絶縁される、及び/又は同軸コネクタ/ケーブルとして定められる。
【0080】
図2B-1は、本開示の実装形態に従う、エッジリングアセンブリ200の拡大断面図を示している。一部の実装形態では、エッジリングアセンブリ200は、上面21
3を有するエッジリング210と、該エッジリング210の下方に位置決めされる誘導体リング211とを含む。誘電体リング211の下方には、更に、部分212が位置決めされる。環状電極202は、エッジリング210と誘電体リング211との間に位置決めされる。
【0081】
概して、エッジリング210は、内径(220を参照)から外径(222を参照)に伸びる環状構造を有する。エッジリング210の内径は、基板/ウエハ105の直径未満であってよい、又は基板/ウエハ105の直径よりも大きくてよい。エッジリング210の内径には、段差エッジ232が画定され、エッジリング210の上面213から下がる段差を定めている。段差エッジ232の下部233は、該下部233の上に基板105が広がるように、ESC103の上面130よりも低い高さに画定される。下部233と上面213との間の高さの差は、例示の実施形態に示されるように、ポケット深さD1を定める。一部の実装形態では、ポケット深さD1は、約2.5~3mmの範囲である。一部の実装形態では、ポケット深さD1は、約2.75mmである。一部の実装形態では、ポケット深さD1は、約0.7~4.5mmの範囲である。エッジリングアセンブリ200の各部分は、各種の実施形態において、石英やSiCなどの材料で構成可能であることがわかる。
【0082】
環状電極202は、エッジリング210の環状構造内に埋め込まれる。環状電極202の寸法は、実装形態によって異なっていてよいことがわかる。例示の実施形態にあるように、一部の実装形態では、環状電極202は、約5~28ミリメートル(mm)の半径方向幅(W1)(電極の内径から電極の外径までの半径方向距離)を有する。一部の実装形態では、環状電極202は、約10~20mmの半径方向幅(W1)を有する。一部の実装形態では、環状電極202は、約10~15mmの半径方向幅(W1)を有する。各種の実装形態において、環状電極202の内径226は、エッジリング210の内径220以上であってよい。各種の実装形態において、環状電極202の外径228は、エッジリング210の外径222以下であってよい。したがって、環状電極202の半径方向幅W1は、エッジリング210の半径方向幅W2以下であってよい。
【0083】
一部の実装形態では、環状電極202は、少なくとも約10~15mmの最小半径方向幅(W1)を有するものとして画定される。最小半径方向幅は、所望レベルの広がりを持つプラズマシースをエッジリング210の上に提供するように定められてよい。
【0084】
一部の実装形態では、環状電極202は、約0.5~10mmの厚さを有する。一部の実装形態では、環状電極202は、約0.75~5mmの厚さを有する。一部の実装形態では、環状電極202は、約2~3mmの厚さを有する。例示の実装形態では、環状電極202は、エッジリングの内径(220を参照)に等しい最小内径と、エッジリングの外径(222を参照)に等しい最大外径とを有していてよい。
【0085】
更に、各種の実装形態において、環状電極202の上面の高さは、ESC103の上面130の高さにあってよい、又はESC103の上面130の高さよりも上方であってよい、又はESC103の上面130の高さよりも下方であってよい。一部の実装形態では、環状電極202の上面の高さは、ESC103の上面130の高さよりも0~5mm上方又は下方であるように構成される。その他の実装形態では、環状電極202の上面の高さは、(ESC103の上面130上に載っているときは)基板の上面を基準にしてもよく、この環状電極202の上面の高さは、基板105の上面の高さであるように、基板105の上面の高さよりも上方であるように、又は基板105の上面の高さよりも下方であるように構成されてよい。一部の実装形態では、環状電極202の上面の高さは、エッジリング210の上面213の下方において深さD2のところにある。一部の実装形態では、電極深さD2は、約3~6mmの範囲である。一部の実装形態では、電極深さD2は、約4~5mmの範囲である。一部の実装形態では、電極深さD2は、4.5mmである。
【0086】
環状電極202の一部は、エッジリング210の段差エッジ232の下方に配することができる。したがって、環状電極202の一部は、基板105の一部の下方に配置されてもよい。このような実装形態では、環状電極202の内径(226を参照)は、基板105の直径(244を参照)未満であり、したがって、環状電極202と基板105との間には、半径方向の重複(ROL)が存在する。一部の実装形態では、環状電極202と基板105との間のROLは、0~3mmの範囲である。その他の実装形態では、ROLの最小値が、約0~3mmの範囲であるように定められる。
【0087】
関連する寸法は、環状電極202が基板直径(224を参照)を半径方向に超える寸法(RE)である。一部の実装形態では、REは、5~25mmの範囲である。その他の実装形態では、REは、約5~10mmの範囲に最小値を有するものとして定められる。
【0088】
一部の実装形態では、環状電極202は、誘電体リング211の下面216に沿って配置された接点208を終端とするコネクタ209に接続される。誘電体リング211の下面216は、チャンバ101内においてESC103の環状棚134の上に位置決めされるように構成されることがわかる。コネクタ209は、環状電極202から下面216における接点208に向かって伸びるように構成することができる。接点208は、ESC103の環状棚134に沿って位置決めされた、エッジリングRFフィード206の終端となる対応する接点207と結合する。コネクタ209及びエッジリングRFフィード206は、ともに、絶縁された同軸コネクタとして定めることができる。接点207及び208も、同様に、その内部導体と、対応するそれぞれのコネクタ206及び209の環状シールド導体との結合を提供する同軸接点として定めることができる。これらの接点は、銅、アルミニウム、銀、金などの、RF電力に対する伝導性が高い任意の材料で作成することができる。接点は、接点間における適切な表面対表面の接触を保証するために外向きの圧力を提供するように定められてよい。例えば、別の接点に接合されていないときは、接点は、表面(例えば環状棚134又は下面216)から突き出していてよい。
【0089】
図2B-2は、本開示の実装形態に従う、ESC及びエッジリングアセンブリの切断図を示している。例示の実装形態では、エッジリングRFフィード206は、ESC103内を通るように配置されたコネクタであり、ESC103の環状棚134を通って伸びている。エッジリングRFフィード206は、更に、環状電極202に接続するために、誘電体リング211内に画定された貫通穴236を通って伸びている。
【0090】
図2Cは、本開示の実装形態に従う、エッジリングアセンブリ及びESCの断面を示している。例示の実装形態では、エッジリングアセンブリ200は、エッジリング210と、誘電体リング211とを含む。エッジリング210と誘電体リング211との間に位置決めされるのは、エッジリングアセンブリ200の半径方向幅全体に広がる環状電極202である。
【0091】
図2Dは、本開示の実装形態に従う、エッジリングアセンブリ及びESCの断面を示している。例示の実装形態では、エッジリングアセンブリ200は、エッジリング210と、誘電体リング211とを含む。エッジリング210と誘電体リング211との間に位置決めされるのは、エッジリング210の内径から伸びているがエッジリングアセンブリ200の半径方向幅全体よりも小さい半径方向幅を有する環状電極202である。
【0092】
図2Eは、本開示の実装形態に従う、複数の同心電極が埋め込まれたエッジリングアセンブリの断面を示している。例示の実装形態では、複数の同心環状電極240、242、及び244が、エッジリングアセンブリ200内に画定されている。同心環状電極240、242、及び244は、誘電体領域241及び243によって隔離される。同心環状電極240は、コネクタ246を通じて接点247に接続され、同心環状電極242は、コネクタ248を通じて接点249に接続され、同心環状電極244は、コネクタ250を通じて接点251に接続される。
【0093】
RF源262が、接点247と結合する接点260を終端とするRFフィード261を通じて同心環状電極240にRF電力を供給する。RF源265が、接点249と結合する接点263を終端とするRFフィード264を通じて同心環状電極242にRF電力を供給する。RF源268が、接点251と結合する接点266を終端とするRFフィード267を通じて同心環状電極244にRF電力を供給する。各同心環状電極240、242、及び244に供給されるRF電力は、基板105のエッジ領域において所望のプラズマシース特性及びエッチング特性を実現するために個別に調整可能であることがわかる。
【0094】
図3Aは、本開示の実装形態に従う、プラズマ処理動作時に生成されるプラズマシースを概念的に示している。概して、ESC103に印加されるバイアス電圧ゆえに、基板105の上面は、負に帯電される。したがって、陽イオンの密度が増した層を形成しているプラズマシース300が、基板105の上面を実質的に覆うように生成される。しかしながら、エッジリングアセンブリ200の露出表面が、正に帯電されるだろうゆえに、プラズマシース300は、基板105のエッジを大幅に超えて広がることはない。基板のエッジにおけるこのプラズマシースの不連続性は、基板105のエッジにおける上面に沿った反応性イオンの軌道及び密度を、プラズマシースが連続していて尚且つ一貫性を持って形成される中央寄りに位置する領域における軌道及び密度と著しく異ならせる。
【0095】
図3Bは、本開示の実装形態に従う、プラズマ処理動作時に生成されるプラズマシースを概念的に示している。例示の実装形態では、エッジリングアセンブリ200は、RF電力が印加される環状電極202を含む。これは、エッジリングアセンブリ200の露出上面に負の電荷を帯びさせ、これは、プラズマシース302を半径方向に外向きに広がらせ、エッジリングアセンブリ200を実質的に覆う領域内に形成させる。半径方向へのプラズマシース302の広がりは、イオン集束を低減するとともに、基板105の上面に垂直な方向からのイオン軌道の傾斜を減少させる。
【0096】
図4A、
図4B、
図4C、
図4D、及び
図4Eは、本開示の実装形態に従う、プラズマ処理を経ている基板のエッジ領域の断面図を示している。
図4A~4Eは、RF電力を様々な電圧で環状電極202に印加した結果として得られる電圧勾配及びイオン軌道(イオン束線が示されている)を示している。
図4A~4Eの各図では、10mTの圧力、900W(ワット)の誘導コイル電力、200sccm(立方センチメートル毎秒)のアルゴン(Ar)ガス流、及び周波数10MHzでバイアス電極104に印加される200V(ボルト)のRFバイアス電圧によって、プラズマが生成される。環状電極202には、2MHzの周波数でRF電圧が印加される。
【0097】
図4A及び
図4Bは、環状電極202に0V(電圧なし)及び100Vが印加されたときの結果をそれぞれ示している。これらの両筋書きでは、基板105のエッジ領域におけるイオン集束が著しいうえに、エッジ領域におけるイオン軌道が基板105の上面に垂直な方向に対して大きく傾斜している(ウエハのエッジに向かって半径方向内向きに傾斜している)。
図4Cに示されるように、環状電極202に300Vが印加されたときは、イオン集束が低減され、半径方向内向きへのイオン軌道の傾斜も減少する。
図4Dに示されるように、環状電極202に500Vが印加されたときは、イオン集束及びイオン軌道の傾斜が、よりいっそう減少する。
図4Eに示されるように、環状電極202に700Vが印加されたときは、エッジ領域におけるイオン軌道が、その傾斜を逆転させはじめる、即ち、基板のエッジ領域から離れるように半径方向外向きに傾斜しはじめる。また、イオン集束は完全に排除され、実際は、基板のエッジ領域においてイオン拡散が観察される。
【0098】
図5Aは、
図4A~4Eの実装形態に従う、基板の上面に沿った半径方向位置に対してArイオン束をプロットしたグラフである。上記のように、様々な電圧が環状電極202に印加され、対応するArイオン束のグラフが示された。図に示されるように、100V、300V、500V、又は700Vの電圧が印可されたときの、0から約14センチメートルまでの半径方向位置におけるArイオン束は、ほぼ同じである。
【0099】
図5Bは、
図4A~4Eの実装形態に従う、基板に沿って約13~15センチメートルの範囲(直径が300mmの基板のエッジの近く)の半径方向位置に対してArイオン束をプロットしたグラフである。図に示されるように、0V(500を参照)、100V(502を参照)、及び300V(504を参照)の電圧が印加されたときは、Arイオン束は、半径方向位置が基板の最端エッジに近づく(15cmに近づく)につれて増加する。しかしながら、500V(506を参照)及び700V(508を参照)の電圧が印加されたときは、Arイオン束は、半径方向位置が基板の最端エッジに近づく(15cmに近づく)につれて減少する。
【0100】
図6は、本開示の実装形態に従う、環状電極に印可される電圧が様々な場合における正規化エッチング速度を300mmウエハに沿った半径方向位置に対してプロットしたグラフである。圧力が40mTであり、(TCCT比1.3における)誘導コイル(TCP)電力が900W(ワット)であり、HBrガス流が450sccm(立方センチメートル毎秒)であり、O
2が4sccmであり、Heが50sccmであり、ESC温度が摂氏60度であり、バイアス電極104に周波数13.56MHzで450V(ボルト)のRFバイアス電圧が印可され、環状電極202に周波数2MHzでRF電圧が印可される条件下において、(Lam Research Corporationによって製造されている)Kiyo EX/FXチャンバ内において、ブランケットウエハに対してプラズマ処理が実施された。
【0101】
曲線600は、環状電極に0Vが印加されたときのエッチング速度を示している。図に示されるように、エッチング速度は、約135mmの半径方向位置を超えたエッジ領域において劇的に上昇する。曲線602は、環状電極に400Vが印加されたときのエッチング速度を示している。図に示されるように、エッチング速度は、依然、エッジ領域において大幅な上昇を示す。曲線604は、560Vが環状電極に印加されたときのエッチング速度を示している。図に示されるように、エッチング速度は、エッジ領域において極めて一貫している。曲線606は、環状電極に700Vが印加されたときのエッチング速度を示している。図に示されるように、エッチング速度は、今度はエッジ領域において減少する。これらの実験結果は、例えばウエハ全体の均一性を助長するなどのように所望のエッチング速度プロフィールを実現するために、環状電極に印加される電圧がどのように調整可能であるかを示している。
【0102】
図7は、本開示の実装形態に従う、エッジリング及び台座/ESCを示している。例示の実装形態では、エッジリングアセンブリ200の底側が、電極接点208を含むものとして示され、該電極接点208は、ESC103内に画定されたエッジリングRFフィード206を通じて伝送されるRF電力を受信するように構成される。電極接点208は、上述のように、エッジリングアセンブリ200内に画定された環状電極にRF電力を伝送する。ESC103内のエッジリングRFフィード206は、例えば、周囲を取り囲む絶縁シースによって、及び同軸構成を通じて、ESC103から電気的に分離されることがわかる。エッジリングRFフィード206は、エッジリングアセンブリ200の電極接点208と結合するように構成された電極接点207を画定するために、環状棚の表面134まで伸びて該表面134において終結する。エッジリングRFフィード206は、RF源204からRF電力を受信する。
【0103】
例示の実装形態では、4つの電極接点208がエッジリングアセンブリ200において対称的に分布され、対応する4つのフィード接点が環状棚の表面134において対称的に分布される。しかしながら、その他の実装形態では、接点が4つよりも少なくてよい、又は多くてよい。接点の具体的なサイズ及び形状は、可変であってよい。
【0104】
更にその他の実装形態では、エッジリングRFフィードは、ESCから離れるように側方に(半径方向に)伸びるように画定されて、チャンバの側壁を通って伸びていてよい。
【0105】
図8は、本開示の実装形態に従う、プラズマプロセスチャンバ内に配置されるように構成された静電チャック(ESC)及びエッジリングの断面を概念的に示している。例示の実装形態では、ESC103は、プラズマ処理時に基板(不図示)を支持するように構成された上面130を有する。図には、ESC103の上面130の下方に配置されたバイアス電極104も示されている。バイアス電極104は、バイアスRF電源111からRF電力を受信する。本実装形態では、ESC環状電極800に適応するために、ESC103の少なくとも上部が側方に/半径方向に延長されている。ESC環状電極800は、バイアス電極104を取り囲むために、バイアス電極104の半径よりも大きい半径方向距離に画定される。ESC環状電極800は、RFフィード804を通じてRF源802からRF電力を受信する。環状電極800に供給されるRF電力の特性は、ウエハのエッジ領域において所望のエッチング特性を提供するように調整可能である(例えば、RF電力特性には、電圧、周波数、バイアス電圧に相対的な位相、連続波/パルス状などがある)。
【0106】
図9は、本開示の実装形態に従う、プラズマプロセスチャンバ内に配置されるように構成された静電チャック(ESC)及びエッジリングの断面を概念的に示している。例示の実装形態では、(
図2Aを参照にして論じられた)エッジリング環状電極202及び(
図8を参照にして論じられた)ESC環状電極800の両方が、システムに含められる。ESC環状電極800及びエッジリング環状電極202は、RFフィード804及び206を通じてRF源900からRF電力をそれぞれ受信する。別の実装形態では、ESC環状電極800及びエッジリング環状電極202は、独立に調整可能である別々のRF電源によってそれぞれ通電される。ESC環状電極800及びエッジリング環状電極202に供給されるRF電力の特性は、ウエハのエッジ領域において所望のエッチング特性を提供するように調整可能である(例えば、RF電力特性には、電圧、周波数、バイアス電圧に相対的な位相、連続波/パルス状などがある)。
【0107】
図10は、本開示の実装形態に従う、ESCに印加される電力と環状電極に印加される電力との間における位相差が様々な場合における影響を示している。例示の断面図は、記された様々な位相角差におけるイオン束を示している。プロセスパラメータは、圧力が10mTであり、TCPが900Wであり、Arが200sccmであり、ESC主電極に印可されるのが10MHzで200Vであり、環状電極に印可されるのが10MHzで300Wである。図からわかるように、位相角の変化は、電位のトポグラフィに影響を及ぼし、その結果として、イオン束の分布及び角度に影響を及ぼす。したがって、ESCに印加されるRF電力と、環状電極に印加されるRF電力との間の位相差は、調整可能な別のパラメータを表わすことができる。
【0108】
図11Aは、本開示の実装形態に従う、エッジリングアセンブリの切断図を示している。エッジリング210と誘電体リング211との間に挟まれるのは、環状電極202である。環状電極202は、更に、環状電極202に供給されるRF電力が通る半径方向延長部1100を含む。
【0109】
図11B及び
図11Cは、本開示の実装形態に従う、プラズマプロセスチャンバの下方ボウルの内部図を示している。半径方向延長部1100(図では隠れている)は、アーク放電1102を防ぐ絶縁体ケース1102によって覆われている。同軸RFフィード1104が、チャンバの側壁1108に画定された貫通穴1106を介して配置される。同軸RFフィード1104は、環状電極202の半径方向延長部1100に接続し、RF電源からRF電力を供給する。1つの半径方向延長部が示されているが、環状電極のための接点を画定する半径方向延長部が幾つかあってよいこと、及び更にこのような半径方向延長部は環状電極の周囲に対称的に分布されてよいことがわかる。例えば、一実装形態では、環状電極202は、環状電極202の周囲に対称的に分布される4つの半径方向延長部を含み、各延長部は、対応する同軸RFフィードに接続している。別の実装形態では、環状電極のための同軸RFフィードは、チャンバの側方を通ってではなくチャンバの下からの経路で導かれてよい。
【0110】
図12Aは、本開示の実装形態に従う、エッジリングアセンブリの断面を示している。エッジリングアセンブリは、図に示されるように、石英上部リングと、石英下部リングとを含む。石英上部リングの上面の高さは、
図13を参照にして後述されるように、基板のエッジにおけるエッチング速度に影響を及ぼすように可変である。
【0111】
図12Bは、本開示の実装形態に従う、エッジリングアセンブリの断面を示している。エッジリングアセンブリは、図に示されるように、電極を中に配置された石英上部リングと、石英下部リングとを含む。石英上部リングの上面の高さは、
図13を参照にして後述されるように、基板のエッジにおけるエッチング速度に影響を及ぼすように可変である。
【0112】
図13は、本開示の実装形態に従う、HBrプラズマプロセスにおけるエッチング速度プロフィールを示している。例示されたグラフにおいて、曲線1300は、2.74mm(0.108インチ)のポケット深さを有する標準的な全石英製のエッジリングの場合における正規化エッチング速度を示している。曲線1302は、4.01mm(0.158インチ)のポケット深さを有する標準的な全石英製のエッジリングの場合における正規化エッチング速度を示している。グラフからわかるように、ポケット深さの増加は、基板のエッジ領域におけるエッチング速度を減少させる効果がある。曲線1304は、通電されていない(0Vの)電極が石英上部リングに含められているエッジリングアセンブリにおける正規化エッチング速度を示している。曲線1306は、250Wに通電された電極が石英上部リングに含められているエッジリングアセンブリの場合における正規化エッチング速度を示している。図に示されるように、電極の通電は、通電されていない場合の結果と比べてエッジ領域のエッチング速度を減少させる。
【0113】
図14は、上述されたシステムを制御するための制御モジュール1400を示している。例えば、制御モジュール1400は、プロセッサ、メモリ、及び1つ以上のインターフェースを含んでいてよい。制御モジュール1400は、システム内のデバイスを一部には検知値に基づいて制御するために用いられてよい。例えば、制御モジュール1400は、検知値及びその他の制御パラメータに基づいて、弁1402、フィルタヒータ1404、ポンプ1406、及びその他のデバイス1408の1つ以上を制御することができる。制御モジュール1400は、例として圧力計1410、流量計1412、温度センサ1414、及び/又はその他のセンサ1416が挙げられるところからの検知値を受信する。制御モジュール1400は、前駆体供給時及びプラズマ処理時におけるプロセス条件を制御するために用いられてもよい。制御モジュール1400は、通常は、1つ以上のメモリデバイスと、1つ以上のプロセッサとを含む。
【0114】
制御モジュール1400は、前駆体供給システム及びプラズマ処理装置の活動を制御してよい。制御モジュール1400は、特定のプロセスの、プロセスタイミング、供給システム温度、フィルタ間の圧力差、弁の位置、ガスの混合、チャンバ圧力、チャンバ温度、ウエハ温度、RF電力レベル、ウエハESC又は台座の位置、及びその他のパラメータを制御するための命令一式を含むコンピュータプログラムを実行する。制御モジュール1400は、また、圧力差を監視して、1本以上の経路から1本以上のその他の経路へ蒸気前駆体の供給を自動的に切り替えてもよい。実施形態によっては、制御モジュール1400に関係付けられたメモリデバイスに記憶されたその他のコンピュータプログラムが用いられてもよい。
【0115】
通常は、制御モジュール1400にユーザインターフェースが関連付けられている。ユーザインターフェースとしては、ディスプレイ1418(例えば、ディスプレイ画面、並びに/又は装置及び/若しくはプロセス条件のグラフィックソフトウェアディスプレイ)や、ポインティングデバイス、キーボード、タッチ画面、マイクロフォンなどのユーザ入力デバイス1020が挙げられる。
【0116】
前駆体供給、プラズマ処理、及びプロセス手順におけるその他のプロセスを制御するためのコンピュータプログラムは、例えば、アセンブリ言語、C、C++、Pascal、Fortranなどの、従来の任意のコンピュータ読み取り可能プログラミング言語で記述することができる。プログラムに指定されたタスクを実施するために、コンパイル済みのオブジェクトコード又はスクリプトが、プロセッサによって実行される。
【0117】
制御モジュールパラメータは、例えば、フィルタ圧力差、プロセスガスの組成及び流量、温度、圧力、RF電力レベルや低周波RF周波数などのプラズマ条件、冷却ガス圧力、並びにチャンバ壁温度などの、プロセス条件に関する。
【0118】
システムソフトウェアは、様々に設計又は構成されてよい。例えば、本発明の蒸着プロセスを実施するために必要とされるチャンバコンポーネントの動作を制御するために、様々なチャンバコンポーネントサブルーチン又は制御オブジェクトが記述されてよい。これを目的としたプログラム又はプログラム部分の例として、基板位置決めコード、プロセスガス制御コード、圧力制御コード、ヒータ制御コード、及びプラズマ制御コードが挙げられる。
【0119】
基板位置決めプログラムは、基板を台座又はESCに載せるために使用される、並びに基板とガス入口及び/又は標的などのチャンバのその他の部品との間の間隔を制御するために使用される、チャンバコンポーネントを制御するための、プログラムコードを含んでいてよい。プロセスガス制御プログラムは、ガスの組成及び流量を制御するための、並びに随意としてチャンバ内の圧力を安定化させるために蒸着前にチャンバにガスを流し込むための、コードを含んでいてよい。フィルタモニタリングプログラムは、(1つ以上の)測定された差を(1つ以上の)所定の値と比較するためのコード、及び/又は経路を切り替えるためのコードを含む。圧力制御プログラムは、チャンバの排気システムにおける例えば絞り弁を調節することによってチャンバ内の圧力を制御するためのコードを含んでいてよい。ヒータ制御プログラムは、前駆体供給システム内のコンポーネント、基板、及び/又はシステムのその他の部分を加熱するための加熱ユニットへの電流を制御するためのコードを含んでいてよい。或いは、ヒータ制御プログラムは、ヘリウムなどの伝熱ガスの、ウエハESCへの供給を制御してよい。
【0120】
処理の際に監視可能なセンサの非限定的な例として、質量流量制御モジュール、圧力計1410などの圧力センサ、供給システム内に位置付けられる熱電対、台座、又はESC(例えば温度センサ1414)が挙げられる。適切にプログラムされたフィードバック・制御アルゴリズムが、所望のプロセス条件を維持するために、これらのセンサからのデータと併せて使用されてよい。以上は、単独チャンバ又は複数チャンバを含む半導体処理ツールにおける本開示の実施形態の実装形態を説明している。
【0121】
実施形態に関する以上の説明は、例示及び説明を目的として提供されたものであり、発明の全てであること又は本開示を制限することを意図していない。特定の実施形態の個々の要素又は特徴は、総じて、その特定の実施形態に制限されず、たとえ具体的に図示又は説明されていなくても、該当するところでは、代替可能であり、選択された実施形態に使用可能である。同様に、様々に可変であってもよい。このようなヴァリエーションは、本開示からの逸脱とは見なされず、このような変更形態も、全て、本開示の範囲内に含まれることを意図される。
【0122】
以上の実施形態は、理解を明瞭にする目的で幾らか詳細に説明されてきたが、添付の特許請求の範囲内で、特定の変更及び修正が加えられてよいことが明らかである。したがって、これらの実施形態は、例示的であって限定的ではないと見なされ、本明細書で与えられる詳細に限定されず、添付の特許請求の範囲及びそれらの均等物の範囲内で変更されてよい。