(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-28
(45)【発行日】2022-12-06
(54)【発明の名称】活性エネルギー線硬化型コンクリート保護材料
(51)【国際特許分類】
C04B 41/63 20060101AFI20221129BHJP
C09D 4/02 20060101ALI20221129BHJP
C09D 175/14 20060101ALI20221129BHJP
【FI】
C04B41/63
C09D4/02
C09D175/14
(21)【出願番号】P 2018108628
(22)【出願日】2018-06-06
【審査請求日】2021-04-22
(73)【特許権者】
【識別番号】000002886
【氏名又は名称】DIC株式会社
(74)【代理人】
【識別番号】100177471
【氏名又は名称】小川 眞治
(74)【代理人】
【識別番号】100163290
【氏名又は名称】岩本 明洋
(74)【代理人】
【識別番号】100149445
【氏名又は名称】大野 孝幸
(72)【発明者】
【氏名】入江 博美
【審査官】小川 武
(56)【参考文献】
【文献】特開2004-231762(JP,A)
【文献】国際公開第2013/161812(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C04B41/62-41/72,
C09D175/14-175/16
E01C7/30,E01D11/00,
E04F13/14,E04G23/02
(57)【特許請求の範囲】
【請求項1】
ウレタン(メタ)アクリレート(A)、(メタ)アクリル単量体(B)、及び光重合開始剤(C)を含有し、前記ウレタン(メタ)アクリレート(A)の重量平均分子量が7,000~20,000の範囲であり、平均官能基数が0.5~1.5の範囲であり、
前記(メタ)アクリル単量体(B)が、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、3-メチルブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、及びイソアミル(メタ)アクリレートからなる群より選ばれる1以上の脂肪族(メタ)アクリル単量体と、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、アクリロイルモルホリン、ジメチルアミノプロピル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、及びヒドロキシエチルアクリルアミドからなる群より選ばれる1以上の窒素原子を有する(メタ)アクリル単量体とを含むものであり、前記(メタ)アクリル単量体(B)の含有量が前記ウレタン(メタ)アクリレート(A)100質量部に対して、30~500質量部の範囲であることを特徴とする活性エネルギー線硬化型コンクリート保護材料。
【請求項2】
前記光重合開始剤(C)が、前記ウレタン(メタ)アクリレート(A)及び前記(メタ)アクリル単量体(B)の合計100質量部に対して、0.1~10質量部の範囲である請求項1記載の活性エネルギー線硬化型コンクリート保護材料。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、活性エネルギー線硬化型コンクリート保護材料に関する。
【背景技術】
【0002】
屋外コンクリート構造物の防水材料には、短時間で施工を完了できる速硬化性に加え、低温条件下においても基材に追従する柔軟性が求められる。このような材料としては、ウレタン(メタ)アクリレート、(メタ)アクリル単量体、及び光重合開始剤を含有するコンクリート保護材料が提案されている(例えば、特許文献1参照。)。
【0003】
しかしながら、この材料は粘度が高く、スプレー適性等の作業性が不十分であるという問題があった。そこで、低粘度で、速硬化性に優れ、柔軟性に優れる塗膜が得られる材料が求められていた。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明が解決しようとする課題は、低粘度で優れた作業性を有し、速硬化性に優れ、柔軟性に優れる塗膜が得られるコンクリート保護材料を提供することである。
【課題を解決するための手段】
【0006】
本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、特定のウレタン(メタ)アクリレート、(メタ)アクリル単量体、及び光重合開始剤を特定の質量比で含有する活性エネルギー線硬化型コンクリート保護材料が、低粘度で優れた作業性を有し、速硬化性に優れ、ひび割れ追従性に優れる高伸度の塗膜が得られることを見出し、本発明を完成した。
【0007】
すなわち、本発明は、ウレタン(メタ)アクリレート(A)、(メタ)アクリル単量体(B)、及び光重合開始剤(C)を含有し、前記ウレタン(メタ)アクリレート(A)の重量平均分子量が7,000~20,000の範囲であり、平均官能基数が0.5~1.5の範囲であり、前記(メタ)アクリル単量体(B)の含有量が前記ウレタン(メタ)アクリレート(A)100質量部に対して、30~500質量部の範囲であることを特徴とする活性エネルギー線硬化型コンクリート保護材料を提供するものである。
【発明の効果】
【0008】
本発明の活性エネルギー線硬化型コンクリート保護材料は、低粘度で優れた作業性を有し、速硬化性に優れ、ひび割れ追従性に優れる高伸度の塗膜が得られることから、コンクリート補修材、コンクリート用防水材などの各種土木建築材料の施工の際に好適に用いることができる。
【発明を実施するための形態】
【0009】
本発明のコンクリート保護材料は、ウレタン(メタ)アクリレート(A)、(メタ)アクリル単量体(B)、及び光重合開始剤(C)を含有し、前記ウレタン(メタ)アクリレート(A)の重量平均分子量が7,000~20,000の範囲であり、平均官能基数が0.5~1.5の範囲であり、前記(メタ)アクリル単量体(B)が前記ウレタン(メタ)アクリレート(A)100質量部に対して、30~500質量部の範囲であるものである。
【0010】
なお、本発明において、「(メタ)アクリレート」とは、メタクリレートとアクリレートの一方又は両方をいい、「(メタ)アクリル単量体」とは、アクリル単量体とメタクリル単量体の一方又は両方をいい、「(メタ)アクリルロイル」とは、アクリロイルとメタクリロイルの一方又は両方をいい、「(メタ)アクリル化合物」とは、アクリル化合物とメタクリル化合物の一方又は両方をいう。
【0011】
また、本発明において、ウレタン(メタ)アクリレート(A)の平均官能基数は、重量平均分子量を(メタ)アクリロイル基当量で除した値とする。
【0012】
前記ウレタン(メタ)アクリレート(A)としては、例えば、ポリオール(a1)、ポリイソシアネート(a2)、及び、水酸基又はイソシアネート基を有する(メタ)アクリル化合物(a3)を反応させて得られたものを用いることができる。
【0013】
前記ポリオール(a1)としては、例えば、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、アクリルポリオール、ポリブタジエンポリオール等を用いることができる。これらのポリオールは単独で用いても2種以上を併用してもよい。これらの中でも、ひび割れ追従性をより向上できることから、ポリエーテルポリオールを用いることが好ましい。
【0014】
前記ポリエーテルポリオールとしては、例えば、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等のアルキレンオキサイドの1種または2種以上を、2以上の活性水素を有する化合物に付加重合させ得られた生成物や、テトラヒドロフランを開環重合して得られるポリテトラメチレングリコール、テトラヒドロフランとアルキル置換テトラヒドロフランを共重合させた変性ポリテトラメチレングリコールや、ネオペンチルグリコールとテトラヒドロフランを共重合させた変性ポリテトラメチレングリコール等を用いることができる。
【0015】
前記2以上の活性水素を有する化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、1,5-ヘキサンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール、1,11-ウンデカンジオール、1,12-ドデカンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、2-ブチル-2-エチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2-エチル-1,3-プロパンジオール、3-メチル-1,5-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2-メチル-1,8-オクタンジオール、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、4,4’-ビスフェノール等の比較的低分子量のジヒドロキシ化合物;1,2-シクロブタンジオール、1,3-シクロペンタンジオール、1,4-シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、1,4-シクロヘキサンジメタノール、ヒドロキシプロピルシクロヘキサノール、トリシクロ[5,2,1,0,2,6]デカン-ジメタノール、ビシクロ[4,3,0]-ノナンジオール、ジシクロヘキサンジオール、トリシクロ[5,3,1,1]ドデカンジオール、ビシクロ[4,3,0]ノナンジメタノール、トリシクロ[5,3,1,1]ドデカン-ジエタノール、ヒドロキシプロピルトリシクロ[5,3,1,1]ドデカノール、スピロ[3,4]オクタンジオール、ブチルシクロヘキサンジオール、1,1’-ビシクロヘキシリデンジオール、シクロヘキサントリオール、水素添加ビスフェールA、1,3-アダマンタンジオール等の脂環式ポリオール;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオール;ポリヘキサメチレンアジペート、ポリヘキサメチレンサクシネート、ポリカプロラクトン等のポリエステルポリオールなどを用いることができる。
【0016】
前記ポリオール(a1)の数平均分子量としては、柔軟性等がより向上することから、200~10,000の範囲であることが好ましく、400~5,000の範囲であることがより好ましい。
【0017】
本発明における平均分子量は、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定した値を示す。
【0018】
前記ポリイソシアネート(a2)としては、例えば、キシリレンジイソシアネート、フェニレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフタレンジイソシアネート等の芳香族ジイソシアネート;ヘキサメチレンジイソシアネート、リジンジイソシアネート、シクロヘキサンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,2-ビス(イソシアナートメチル)シクロヘキサン、1,3-ビス(イソシアナートメチル)シクロヘキサン、1,4-ビス(イソシアナートメチル)シクロヘキサン、テトラメチルキシリレンジイソシアネート等の脂肪族または脂環構造を有するジイソシアネートなどを用いることができる。これらのポリイソシアネートは単独で用いても2種以上を併用してもよい。これらの中でも、黄変し難いことから、脂肪族または脂環構造を有するジイソシアネートを用いることが好ましい。
【0019】
前記水酸基又はイソシアネート基を有する(メタ)アクリル化合物(a3)は、ウレタン(メタ)アクリレート(A)中に(メタ)アクリロイル基を導入する目的で用いるものである。
【0020】
前記化合物(a3)として用いることができる水酸基を有する(メタ)アクリル化合物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート、ヒドロキシエチルアクリルアミド等の水酸基を有する(メタ)アクリル酸アルキルエステル;トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の水酸基を有する多官能(メタ)アクリレート;ポリエチレングリコールモノアクリレート、ポリプロピレングリコールモノアクリレートなどを用いることができる。これらの中でも、反応性に優れることから、水酸基を有するアクリル酸アルキルエステルを用いることが好ましく、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート、ヒドロキシエチルアクリルアミドを用いることがより好ましい。
【0021】
また、前記化合物(a3)として用いることができるイソシアネート基を有する(メタ)アクリル化合物としては、例えば、2-(メタ)アクリロイルオキシエチルイソシアネート、2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、1,1-ビス((メタ)アクリロイルオキシメチル)エチルイソシアネート等を用いることができる。これらの中でも、イソシアネートの反応性及び光硬化性がより向上することから、 2-(メタ)アクリロイルオキシエチルイソシアネートを用いることが好ましく、2-アクリロイルオキシエチルイソシアネートがより好ましい。
【0022】
前記化合物(a3)として水酸基を有する(メタ)アクリル化合物を用いる場合の前記ウレタン(メタ)アクリレート(A)の製造方法としては、例えば、無溶剤下で、前記ポリオール(a1)と前記(メタ)アクリル化合物(a3)とを反応系中に仕込んだ後に、前記ポリイソシアネート(a2)を供給し、混合、反応させることによって製造する方法や、無溶剤下で、前記ポリオール(a1)と前記ポリイソシアネート(a2)とを反応させることによってイソシアネート基を有するウレタンプレポリマーを得、次いで、水酸基を有する前記(メタ)アクリル化合物(a3)を供給し、混合、反応させることによって製造する方法等を用いることができる。前記反応はいずれにおいても、20~120℃の条件下で30分間~24時間行うことが好ましい。
【0023】
また、前記化合物(a3)としてイソシアネート基を有する(メタ)アクリル化合物を用いる場合のウレタン(メタ)アクリレート(A)の製造方法としては、例えば、無溶剤下で、前記ポリオール(a1)と前記ポリイソシアネート(a2)とを仕込み、反応させることによって水酸基を有するウレタンプレポリマーを得、次いで、イソシアネート基を有する前記(メタ)アクリル化合物(a3)を供給し、混合、反応させることによって製造する方法等を用いることができる。前記反応はいずれにおいても、20~120℃の条件下で30分~24時間行うことが好ましい。
【0024】
前記ウレタン(メタ)アクリレート(A)の製造は、有機溶剤の存在下で行っても良い。
【0025】
前記化合物(a3)として水酸基を有する(メタ)アクリル化合物を用いる場合における、前記ポリオール(a1)と前記ポリイソシアネート(a2)と前記(メタ)アクリル化合物(a3)との反応は、前記ポリイソシアネート(a2)中のイソシアネート基の当量数(NCO)と、前記ポリオール(a1)中の水酸基の当量数と前記(メタ)アクリル化合物(a3)中の水酸基の当量数とを合計した水酸基の当量数(OH)との当量比[(NCO)/(OH)]が、0.75~1の範囲で行うことが、得られるウレタン(メタ)アクリレート(A)の分子量を制御する上で好ましい。また、前記当量比[(NCO)/(OH)]が1を超える場合は、ウレタン(メタ)アクリレート(A)のイソシアネート基を失活させることを目的として、メタノールなどのアルコールを用いることが好ましい。
【0026】
また、ウレタン(メタ)アクリレート(A)を製造する際には、必要に応じて重合禁止剤やウレタン化触媒等を用いてもよい。
【0027】
前記重合禁止剤としては、例えば、3,5-ビスターシャリーブチル-4-ヒドロキシトルエン、ハイドロキノン、メチルハイドロキノン、ハイドロキノンモノメチルエーテル(メトキノン)、4-ターシャリーブチルカテコールメトキシフェノール、2,6-ジターシャリーブチルクレゾール、フェノチアジン、テトラメチルチウラムジスルフィド、ジフェニルアミン、ジニトロベンゼン等を用いることができる。
【0028】
前記ウレタン化触媒としては、例えば、トリエチルアミン、トリエチレンジアミン、N-メチルモルホリン等の含窒素化合物;酢酸カリウム、ステアリン酸亜鉛、オクチル酸錫等の金属塩;ジブチルチンラウレート、ジルコニウムテトラアセチルアセトネート等の有機金属化合物などを用いることができる。
【0029】
前記ウレタン(メタ)アクリレート(A)は、光照射や加熱等によってラジカル重合を進行させる(メタ)アクリロイル基を有するものである。前記ウレタン(メタ)アクリレート(A)の(メタ)アクリロイル基当量としては、低粘度と柔軟性を両立できる点から、5,000~40,000g/eqの範囲が好ましく、6,000~30,000g/eqの範囲がより好ましい。なお、前記(メタ)アクリロイル基当量は、前記ポリオール(a-1)と前記ポリイソシアネート(a-2)と前記(メタ)アクリル化合物(a-3)との合計質量を、前記ウレタン(メタ)アクリレート(A)中に存在する(メタ)アクリルロイル基の当量で除した値を示す。
【0030】
前記ウレタン(メタ)アクリレート(A)の重量平均分子量は、低粘度で優れた硬化性及び塗膜柔軟性を発現できることから、7,000~20,000の範囲であるが、より低粘度で良好な作業性を付与できることから、7,000~18,000の範囲が好ましい。
【0031】
前記ウレタン(メタ)アクリレート(A)の平均官能基数は、低粘度で優れた硬化性及び塗膜柔軟性を発現できることから、0.5~1.5の範囲であるが、0.5~1.3の範囲が好ましい。
【0032】
前記(メタ)アクリル単量体(B)としては、例えば、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等の脂環構造を有する(メタ)アクリル単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルブチル(メタ)アクリレート、n-ペンチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、3-メチルブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ネオペンチル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、イソアミル(メタ)アクリレート等の脂肪族(メタ)アクリル単量体;3-メトキシブチル(メタ)アクリレート)、2-メトキシエチル(メタ)アクリレート、3-メトキシプロピル(メタ)アクリレート、2-メトキシブチル(メタ)アクリレート、オキシエチレンの付加モル数が1~15の範囲のメトキシポリエチレングリコールアクリレート、エトキシ-ジエチレングリコール(メタ)アクリレート、エチルカルビトール(メタ)アクリレート等のエーテル基を有する(メタ)アクリル単量体;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の水酸基を有する(メタ)アクリル単量体;ベンジル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシポリエチレングリコールアクリレート、フェニル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート等の芳香族(メタ)アクリル単量体;(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、アクリロイルモルホリン、ジメチルアミノプロピル(メタ)アクリルアミド、イソプロピル(メタ)アクリルアミド、ジエチル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、ヒドロキシエチルアクリルアミド等の窒素原子を有する(メタ)アクリル単量体などを用いることができる。これらの(メタ)アクリル単量体は単独で用いても2種以上を併用してもよい。
【0033】
前記(メタ)アクリル単量体(B)の使用量は、低粘度で優れた硬化性及び塗膜柔軟性を発現できることから、前記ウレタン(メタ)アクリレート(A)100質量部に対して、30~500質量部の範囲であるが、50~400質量部の範囲が好ましく、80~300質量部の範囲がより好ましい。
【0034】
前記光重合開始剤(C)としては、例えば、4-フェノキシジクロロアセトフェノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、4-(2-ヒドロキシエトキシ)-フェニル(2-ヒドロキシ-2-プロピル)ケトン、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2,2-ジメトキシ-2-フェニルアセトフェノン等のアセトフェノン化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインイソエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン化合物;ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’-ジメチル-4-メトキシベンゾフェノン等のベンゾフェノン化合物;チオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントン、2-メチルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン化合物;4,4’-ジメチルアミノチオキサントン(別名=ミネラーズケトン)、4,4’-ジエチルアミノベンゾフェノン、α-アシロキシムエステル、ベンジル、メチルベンゾイルホルメート(「バイアキュア55」)、2-エチルアンスラキノン等のアンスラキノン化合物;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルフォスフィンオキサイド化合物;3,3’,4,4’-テトラ(tert-ブチルオパーオキシカルボニル)ベンゾフェノン、アクリル化ベンゾフェノン等を用いることができる。
【0035】
前記光重合開始剤(C)としては、硬化性がより向上することから、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイドを用いることが好ましい。
【0036】
前記光重合開始剤(C)の使用量は、硬化性及び塗膜柔軟性のバランスがより向上することから、前記ウレタン(メタ)アクリレート(A)及び前記(メタ)アクリル単量体(B)の合計100質量部に対して、0.01~20質量部の範囲が好ましく、0.05~15質量部の範囲がより好ましく、0.1~10質量部の範囲が特に好ましい。
【0037】
本発明の活性エネルギー線硬化型コンクリート保護材料は、前記ウレタン(メタ)アクリレート(A)、前記(メタ)アクリル単量体(B)、及び前記光重合開始剤(C)を必須成分として含有するものであるが、必要に応じてその他の添加剤等を含有していてもよい。
【0038】
前記その他の添加剤としては、例えば、重合禁止剤、酸化防止剤、光安定剤、溶媒、防錆剤、チキソ付与剤、増感剤、レベリング剤、粘着付与剤、帯電防止剤、難燃剤硬化剤、硬化促進剤、顔料、充填剤、補強材、骨材、石油ワックス等が挙げられる。
【0039】
本発明の活性エネルギー線硬化型コンクリート保護材料を硬化させる活性エネルギー線としては、紫外線、電子線、α線、β線、γ線のような電離放射線であるが、具体的なエネルギー源または硬化装置としては、例えば、殺菌灯、紫外線用蛍光灯、カーボンアーク、キセノンランプ、複写用高圧水銀灯、中圧または高圧水銀灯、超高圧水銀灯、無電極ランプ、メタルハライドランプ、蛍光ケミカルランプ、自然光等を光源とする紫外線、または走査型、カーテン型電子線加速器による電子線等が挙げられる。
【0040】
本発明の活性エネルギー線硬化型コンクリート用保護材料は、例えば、セメントコンクリート、アスファルトコンクリート、モルタルコンクリート、レジンコンクリート、透水コンクリート、ALC(Autoclaved Lightweight Aerated Concrete)板等のコンクリートの保護材料として用いることができる。
【0041】
本発明の活性エネルギー線硬化型コンクリート保護材料は、硬化性に優れ、柔軟性に優れる塗膜が得られることから、コンクリート補修材、防水材などの各種土木建築材料の施工の際に好適に用いることができる。
【実施例】
【0042】
以下に本発明を具体的な実施例を挙げてより詳細に説明する。なお、平均分子量は、下記のGPC測定条件で測定したものである。
【0043】
[GPC測定条件]
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
「TSKgel G5000」(7.8mmI.D.×30cm)×1本
「TSKgel G4000」(7.8mmI.D.×30cm)×1本
「TSKgel G3000」(7.8mmI.D.×30cm)×1本
「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
【0044】
(単分散ポリスチレン)
東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
【0045】
(合成例1:ウレタン(メタ)アクリレート(A-1)の合成)
攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、数平均分子量3000のポリオキシプロピレングリコール(以下、「PPG3000」と略記する。)を85.5質量部、数平均分子量1000のポリテトラメチレングリコール(以下、「PTMG1000」と略記する。)400.2質量部、数平均分子量400のポリエチレングリコール(以下、「PEG400」と略記する。)103.0質量部、2-ヒドロキシエチルアクリレート(以下、「HEA」と略記する。)8.5質量部、2,6-ジ-ターシャリーブチル-クレゾール(以下、「BHT」と略記する。)を1.5質量部、p-メトキシフェノール0.2質量部を添加した。反応容器内温度が40℃になるまで昇温した後、イソホロンジイソシアネート(以下、「IPDI」と略記する)98.8質量部添加した。そこで、ジオクチルスズジネオデカネート0.01質量部添加し、1時間かけて80℃まで昇温した。その後、80℃で12時間ホールドし、全てのイソシアネート基が消失していることを確認後、冷却し、アクリロイル基当量13,000g/eq、重量平均分子量13,500、平均官能基数1.04のウレタン(メタ)アクリレート(A-1)を得た。
【0046】
(合成例2:ウレタン(メタ)アクリレート(A-2)の合成)
攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、PPG3000 85.1質量部、PTMG1000 200.2質量部、PEG400 103.9質量部、HEA 6.4質量部、BHT 1.5質量部、p-メトキシフェノール0.2質量部を添加した。反応容器内温度が40℃になるまで昇温した後、IPDI 97.6質量部添加した。そこで、ジオクチルスズジネオデカネート0.01質量部添加し、1時間かけて80℃まで昇温した。その後、80℃で12時間ホールドし、全てのイソシアネート基が消失していることを確認後、冷却し、アクリロイル基当量13,000g/eq、重量平均分子量10,000、平均官能基数0.76のウレタン(メタ)アクリレート(A-2)を得た。
【0047】
(合成例3:ウレタン(メタ)アクリレート(A-3)の合成)
攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、PPG3000 77.9質量部、PTMG1000 205.7質量部、PEG400 98.2質量部、HEA 6.3質量部、BHT 1.5質量部、p-メトキシフェノール0.2質量部を添加した。反応容器内温度が40℃になるまで昇温した後、IPDI 102.8質量部添加した。そこで、ジオクチルスズジネオデカネート0.01質量部添加し、1時間かけて80℃まで昇温した。その後、80℃で12時間ホールドし、全てのイソシアネート基が消失していることを確認後、冷却し、アクリロイル基当量9,000g/eq、重量平均分子量13,500、平均官能基数1.33のウレタン(メタ)アクリレート(A-3)を得た。
【0048】
(合成例4:ウレタン(メタ)アクリレート(A-4)の合成)
攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、数平均分子量2000のポリオキシプロピレングリコール(以下、「PPG2000」と略記する。)を916.8質量部、HEA 9.1質量部、BHT 1.5質量部、p-メトキシフェノール0.2質量部を添加した。反応容器内温度が40℃になるまで昇温した後、IPDI 93.2質量部添加した。そこで、ジオクチルスズジネオデカネート0.01質量部添加し、1時間かけて80℃まで昇温した。その後、80℃で12時間ホールドし、全てのイソシアネート基が消失していることを確認後、冷却し、アクリロイル基当量13,000g/eq、重量平均分子量13,500、平均官能基数1.04のウレタン(メタ)アクリレート(A-4)を得た。
【0049】
(合成例5:ウレタン(メタ)アクリレート(A-5)の合成)
攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、数平均分子量2000の水添ポリブタジエンポリオール(以下、「GI-2000」と略記する。)を1042.2質量部、HEA 10.2質量部、BHT 1.5質量部、p-メトキシフェノール0.2質量部を添加した。反応容器内温度が40℃になるまで昇温した後、IPDI 90.8質量部添加した。そこで、ジオクチルスズジネオデカネート0.01質量部添加し、1時間かけて80℃まで昇温した。その後、80℃で12時間ホールドし、全てのイソシアネート基が消失していることを確認後、冷却し、アクリロイル基当量13,000g/eq、重量平均分子量13,500、平均官能基数1.04のウレタン(メタ)アクリレート(A-5)を得た。
【0050】
(合成例6:ウレタン(メタ)アクリレート(A-6)の合成)
攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、数平均分子量2000のポリエステルポリオール(以下、「P-2010」と略記する。)を915.3質量部、HEA 9.1質量部、BHT 1.5質量部、p-メトキシフェノール0.2質量部を添加した。反応容器内温度が40℃になるまで昇温した後、IPDI 93.3質量部添加した。そこで、ジオクチルスズジネオデカネート0.01質量部添加し、1時間かけて80℃まで昇温した。その後、80℃で12時間ホールドし、全てのイソシアネート基が消失していることを確認後、冷却し、アクリロイル基当量13,000g/eq、重量平均分子量13,500、平均官能基数1.04のウレタン(メタ)アクリレート(A-6)を得た。
【0051】
(合成例7:ウレタン(メタ)アクリレート(A-7)の合成)
攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、PPG3000 82.0質量部、PTMG1000 208.8質量部、PEG400 99.9質量部、HEA 3.6質量部、BHT 1.5質量部、p-メトキシフェノール0.2質量部を添加した。反応容器内温度が40℃になるまで昇温した後、IPDI 104.5質量部添加した。そこで、ジオクチルスズジネオデカネート0.01質量部添加し、1時間かけて80℃まで昇温した。その後、80℃で12時間ホールドし、全てのイソシアネート基が消失していることを確認後、冷却し、アクリロイル基当量16,346g/eq、重量平均分子量20,000、平均官能基数1.22のウレタン(メタ)アクリレート(A-7)を得た。
【0052】
(合成例8:ウレタン(メタ)アクリレート(A-8)の合成)
攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、PPG3000 82.4質量部、PTMG1000 209.8質量部、PEG400 101.1質量部、HEA 3.0質量部、BHT 1.5質量部、p-メトキシフェノール0.2質量部を添加した。反応容器内温度が40℃になるまで昇温した後、IPDI 105.5質量部添加した。そこで、ジオクチルスズジネオデカネート0.01質量部添加し、1時間かけて80℃まで昇温した。その後、80℃で12時間ホールドし、全てのイソシアネート基が消失していることを確認後、冷却し、アクリロイル基当量19,230g/eq、重量平均分子量20,000、平均官能基数1.04のウレタン(メタ)アクリレート(A-8)を得た。
【0053】
(合成例9:ウレタン(メタ)アクリレート(RA-1)の合成)
攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、PPG3000 78.5質量部、PTMG1000 199.9質量部、PEG400 96.4質量部、HEA 8.4質量部、BHT 1.5質量部、p-メトキシフェノール0.2質量部を添加した。反応容器内温度が40℃になるまで昇温した後、IPDI 102.8質量部添加した。そこで、ジオクチルスズジネオデカネート0.01質量部添加し、1時間かけて80℃まで昇温した。その後、80℃で12時間ホールドし、全てのイソシアネート基が消失していることを確認後、冷却し、アクリロイル基当量6,750g/eq、重量平均分子量13,500、平均官能基数2.00のウレタン(メタ)アクリレート(RA-1)を得た。
【0054】
(合成例10:ウレタン(メタ)アクリレート(RA-2)の合成)
攪拌機、還流冷却管、窒素導入管、温度計を備えた反応容器に、PPG3000 81.3質量部、PTMG1000 207.2質量部、PEG400 99.8質量部、HEA 4.5質量部、BHT 1.5質量部、p-メトキシフェノール0.2質量部を添加した。反応容器内温度が40℃になるまで昇温した後、IPDI 105.8質量部添加した。そこで、ジオクチルスズジネオデカネート0.01質量部添加し、1時間かけて80℃まで昇温した。その後、80℃で12時間ホールドし、全てのイソシアネート基が消失していることを確認後、冷却し、アクリロイル基当量13,000g/eq、重量平均分子量21,000、平均官能基数1.62のウレタン(メタ)アクリレート(RA-2)を得た。
【0055】
(実施例1:活性エネルギー線硬化型コンクリート保護材料(1)の調製及び評価)
攪拌機、還流冷却管、温度計を備えた遮光容器に、合成例1で得たウレタン(メタ)アクリレート(A-1)40質量部、ノルマルオクチルアクリレート(以下、「nOA」と略記する。)45質量部、アクリロイルモルホリン(以下、「ACMO」と略記する。)15質量部、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド(以下、「光重合開始剤(C-1)」と略記する。)1.5質量部、デカン二酸ビス(2,2,6,6-テトラメチル-1-(オクチルオキシ)-4-ピペリジニル)エステル0.5質量部、トリフェニルホスフィン0.5質量部、3-グリシドキシプロピルトリエトキシシラン0.1質量部を添加し、80℃で均一になるまで撹拌した。その後、200メッシュ金網で濾過し、活性エネルギー線硬化型コンクリート保護材料(1)を得た。
【0056】
[粘度の評価]
上記で得られた活性エネルギー線硬化型コンクリート保護材料(1)を25℃の条件下、B型粘度計(東機産業株式会社製「TV-22」)で測定し、下記の基準により評価した。
○:2,000mPa・s未満
×:2,000mPa・s以上
【0057】
[耐アルカリ性の評価]
コンクリートモルタル上に、活性エネルギー線硬化型コンクリート保護材料(1)を膜厚が500μmとなるように塗布した後、蛍光ケミカルランプ(3mW)を5分間照射し、試験体を得た。本試験体を飽和水酸化カルシウム水溶液に40℃で30日間、半浸漬した後、塗膜外観の変化の有無を評価した。
○:変化なし
×:膨れあり
【0058】
[ゲル分率の測定]
剥離PETフィルム上に、活性エネルギー線硬化型コンクリート保護材料(1)を膜厚が500μmとなるように塗布した後、蛍光ケミカルランプ(3mW)を5分間照射し、硬化塗膜を得た。この硬化塗膜を50×10mmに加工し、トルエンに24時間浸漬した。浸漬後、80℃で4時間乾燥し、下記式によりゲル分率(%)を算出し、下記の基準により硬化性を評価した。
ゲル分率(%)=(トルエン浸漬後の塗膜の質量/トルエン浸漬前の塗膜の質量)×100(%)
○:ゲル分率が50%以上
×:ゲル分率が50%未満
【0059】
[引張伸度の測定]
上記で得られた活性エネルギー線硬化型コンクリート保護材料(1)を、表面を離型処理された厚さ50μmのポリエチレンテレフタレートフィルム(離型PET50)の表面に、UV照射後における膜厚が175μmとなるように塗布し、離型PET50を貼り合せた。その後、UV照射装置にて、離型PET50透過後のUV-A領域の波長の積算光量が1000mJ/cm2となるようにUV照射し、塗膜を作成した。
上記で得た塗膜について、JIS K 6911に準拠し、引張試験を実施し、下記の基準により柔軟性を評価した。
○:伸度が1000%以上
×:伸度が1000%未満
【0060】
[ひび割れ追従性の評価]
120×70×10mm(ノッチ入り)のモルタル板に上記で得られた活性エネルギー線硬化型コンクリート保護材料(1)を膜厚500μmとなるように塗布した後、蛍光ケミカルランプを用いて照度3.0mWの紫外線を5分間照射して評価用試験体を得た。本試験体をJSCE-K-532に準拠してひび割れ追従性を評価した。試験開始から塗膜が破断し始めるまでの変位量(mm)を測定し、下記の基準により、ひび割れ追従性を評価した。
○:変位量が5mm以上
×:変位量が5mm未満
【0061】
(実施例2~8:活性エネルギー線硬化型コンクリート保護材料(2)~(8)の調製及び評価)
実施例1で用いたウレタン(メタ)アクリレート(A-1)を、ウレタン(メタ)アクリレート(A-2)~(A-8)に変更した以外は、実施例1と同様に、活性エネルギー線硬化型コンクリート保護材料(2)~(8)を調製後、各物性を評価した。
【0062】
(実施例9~13:活性エネルギー線硬化型コンクリート保護材料(9)~(13)の調製及び評価)
実施例1で用いたウレタン(メタ)アクリレート、(メタ)アクリル単量体、及び光重合開始剤を、表2の通りに変更した以外は、実施例1と同様に、活性エネルギー線硬化型コンクリート保護材料(9)~(13)を調製後、各物性を評価した。
【0063】
(比較例1~4:活性エネルギー線硬化型コンクリート保護材料(R1)~(R4)の調製及び評価)
実施例1で用いたウレタン(メタ)アクリレート、及び(メタ)アクリル単量体を、表3の通りに変更した以外は、実施例1と同様に、活性エネルギー線硬化型コンクリート保護材料(R1)~(R4)を調製後、各物性を評価した。
【0064】
上記で得られた活性エネルギー線硬化型コンクリート保護材料(1)~(13)、及び(R1)~(R4)の組成及び評価結果を表1~3に示す。
【0065】
【0066】
【0067】
【0068】
上記の表中の略号は、下記のものである。
「IBXA」:イソボルニルアクリレート
「CHA」:シクロヘキシルアクリレート
「C-2」:1-ヒドロキシシクロヘキシルフェニルケトン
【0069】
実施例1~13の本発明のコンクリート保護材料は、低粘度で優れた作業性を有し、速硬化性に優れ、柔軟性に優れる塗膜が得られることが確認された。
【0070】
比較例1は、ウレタン(メタ)アクリレートの平均官能基数が上限の1.5を超える例であるが、得られる塗膜のひび割れ追従性が不十分であることが確認された。
【0071】
比較例2は、ウレタン(メタ)アクリレートの重量平均分子量が上限の20,000を超える例であるが、高粘度であることが確認された。
【0072】
比較例3は、ウレタン(メタ)アクリレート(A)に対する(メタ)アクリル単量体(B)の質量%が上限である500質量%を超える例であるが、得られる塗膜のゲル分率(硬化性)及び耐アルカリ性が不十分であることが確認された。
【0073】
比較例4は、ウレタン(メタ)アクリレート(A)に対する(メタ)アクリル単量体(B)の質量%が下限である30質量%未満の例であるが、高粘度であることが確認された。