(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-08
(45)【発行日】2022-12-16
(54)【発明の名称】プラズマ処理装置およびプラズマ処理方法
(51)【国際特許分類】
H05H 1/46 20060101AFI20221209BHJP
C23C 16/505 20060101ALI20221209BHJP
H01L 21/31 20060101ALI20221209BHJP
H01L 21/3065 20060101ALI20221209BHJP
【FI】
H05H1/46 M
C23C16/505
H01L21/31 C
H01L21/302 101B
(21)【出願番号】P 2019055552
(22)【出願日】2019-03-22
【審査請求日】2022-01-24
(73)【特許権者】
【識別番号】000219967
【氏名又は名称】東京エレクトロン株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】加賀谷 宗仁
(72)【発明者】
【氏名】川上 聡
(72)【発明者】
【氏名】守屋 剛
(72)【発明者】
【氏名】松土 龍夫
(72)【発明者】
【氏名】山涌 純
(72)【発明者】
【氏名】小野田 裕之
【審査官】大門 清
(56)【参考文献】
【文献】特開2001-127045(JP,A)
【文献】特開平8-31596(JP,A)
【文献】特開2000-188286(JP,A)
【文献】特開2000-164578(JP,A)
【文献】特開2006-41088(JP,A)
【文献】特開2008-60429(JP,A)
【文献】米国特許出願公開第2011/0192349(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H05H 1/46
C23C 16/505
H01L 21/31
H01L 21/3065
(57)【特許請求の範囲】
【請求項1】
処理容器と、
前記処理容器内の空間を被処理体が載置される反応室とプラズマを生成するプラズマ生成室とを仕切り、前記プラズマ生成室側の面に第1の電極が設けられ、前記プラズマ生成室内に生成されたプラズマに含まれる活性種を前記反応室に供給するための複数の貫通穴が形成された絶縁性の仕切板と、
前記プラズマ生成室に前記第1の電極と対向して配置された第2の電極と、
前記プラズマ生成室にプラズマを生成する際、前記第1の電極および前記第2の電極の何れか一方に、複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給する電力供給部と、
を有することを特徴とするプラズマ処理装置。
【請求項2】
前記電力供給部は、前記第1の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給すると共に、前記第2の電極に単一周波数の高周波電力を供給する
ことを特徴とする請求項1に記載のプラズマ処理装置。
【請求項3】
前記電力供給部は、前記第2の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力と単一周波数の高周波電力とを供給すると共に、前記第1の電極を接地またはLC回路に接続する
ことを特徴とする請求項1に記載のプラズマ処理装置。
【請求項4】
前記電力供給部は、前記第2の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給すると共に、前記第2の電極を接地またはLC回路に接続する
ことを特徴とする請求項1に記載のプラズマ処理装置。
【請求項5】
前記電力供給部は、前記第2の電極に単一周波数の高周波電力を供給すると共に、前記第1の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給する
ことを特徴とする請求項1に記載のプラズマ処理装置。
【請求項6】
前記電力供給部は、前記第2の電極を接地またはLC回路に接続する共に、前記第1の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力と単一周波数の高周波電力とを供給する
ことを特徴とする請求項1に記載のプラズマ処理装置。
【請求項7】
前記電力供給部は、前記第2の電極を接地またはLC回路に接続する共に、前記第1の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給する
ことを特徴とする請求項1に記載のプラズマ処理装置。
【請求項8】
成膜の原料ガスを前記反応室に供給して前記被処理体の表面に前記原料ガスの分子を吸着させた後、前記原料ガスの分子と反応する反応ガスを前記プラズマ生成室に供給するガス供給部をさらに有し、
前記電力供給部は、前記ガス供給部から反応ガスの供給に合わせて前記第1の電極および前記第2の電極の何れか一方に、複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給して前記反応ガスのプラズマを生成する
ことを特徴とする請求項1~7の何れか1つに記載のプラズマ処理装置。
【請求項9】
前記ガス供給部は、前記原料ガスを前記仕切板に供給し、
前記仕切板は、前記反応室側の面に、前記ガス供給部から供給される前記原料ガスを吐出する複数のガス吐出口が形成された
ことを特徴とする請求項8に記載のプラズマ処理装置。
【請求項10】
前記反応室に内に設けられ、複数の前記貫通穴を介して前記プラズマ生成室から前記反応室へのイオンの侵入を抑制する抑制部をさらに有する
ことを特徴とする請求項1~9の何れか1つに記載のプラズマ処理装置。
【請求項11】
処理容器内の空間を複数の貫通穴が形成された絶縁性の仕切板によって被処理体が載置される反応室とプラズマを生成するプラズマ生成室とを仕切った前記プラズマ生成室にプラズマ化するガスを供給し、
前記仕切板の前記プラズマ生成室側の面に設けられた第1の電極および前記プラズマ生成室に前記第1の電極と対向して配置された第2の電極の何れか一方に、複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給して前記ガスをプラズマ化する
ことを特徴とするプラズマ処理方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、プラズマ処理装置およびプラズマ処理方法に関する。
【背景技術】
【0002】
特許文献1は、原料ガスをプラズマ化し、このプラズマに基板を曝して該基板上に薄膜を形成するプラズマ処理装置を開示する。原料ガスのプラズマ化は、1kHz以下の第1のパルス変調及び該変調より短い周期をもつ第2のパルス変調を重畳するとともに該パルス変調を行う高周波波形に対し高調波を重畳した高周波電力の印加により行う。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
本開示は、被処理体に照射するイオンの密度を調整可能とする技術を提供する。
【課題を解決するための手段】
【0005】
本開示の一態様によるプラズマ処理装置は、処理容器と、仕切板と、第2の電極と、電力供給部とを有する。仕切板は、絶縁性とされ、処理容器の内部を被処理体が載置される反応室とプラズマを生成するプラズマ生成室とを仕切る。また、仕切板は、プラズマ生成室側の面に第1の電極が設けられ、プラズマ生成室内に生成されたプラズマに含まれる活性種を反応室に供給するための複数の貫通穴が形成されている。第2の電極は、プラズマ生成室に第1の電極と対向して配置されている。電力供給部は、プラズマ生成室にプラズマを生成する際、第1の電極および第2の電極の何れか一方に、複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給する。
【発明の効果】
【0006】
本開示によれば、被処理体に照射するイオンの密度を調整できる。
【図面の簡単な説明】
【0007】
【
図1】
図1は、実施形態に係るプラズマ処理装置の一例を示す概略断面図である。
【
図2】
図2は、実施形態に係る仕切板と第2プレート電極との位置関係の一例を説明するための拡大断面図である。
【
図3】
図3は、実施形態に係るDEDプロセスによるパターンの変化の一例を示す図である。
【
図4】
図4は、実施形態に係るDEDプロセスによるパターンの変化の他の一例を示す図である。
【
図5】
図5は、実施形態に係る成膜処理の一例を示すフローチャートである。
【
図6】
図6は、実施形態に係るプラズマ処理装置の他の一例を示す概略断面図である。
【発明を実施するための形態】
【0008】
以下に、開示されるプラズマ処理装置およびプラズマ処理方法の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により、開示されるプラズマ処理装置およびプラズマ処理方法が限定されるものではない。
【0009】
ところで、半導体ウエハ(以下「ウエハ」とも称する)に等方的な成膜を行う技術として、プラズマALD(Atomic Layer Deposition)が知られている。
【0010】
しかしながら、プラズマALDは、プロセス条件および装置に起因した膜厚・膜質の異方性が生じる場合がある。例えば、CCP(容量結合型プラズマ)のプラズマ処理装置を用いたプラズマALDにより、パターンが形成されたウエハに成膜を行った場合、プラズマ中に存在するイオンの直進性に起因して、パターンの上面および底面に成膜された膜に対するサイドウォールの相対的な薄膜化や膜質低下が起こる場合がある。
【0011】
したがって、プラズマALDで等方性成膜を実現するためには、ウエハに照射されるイオンの密度が低いことが好ましい。一方、プラズマ処理装置は、イオンを活用したプロセスが求められる場合もある。そこで、プラズマ処理装置は、ウエハに照射するイオンの密度を調整可能とすることが期待されている。
【0012】
[プラズマ処理装置の構成]
本実施形態に係るプラズマ処理装置の一例を説明する。
図1は、実施形態に係るプラズマ処理装置1の一例を示す概略断面図である。プラズマ処理装置1は、有底で上方が開口した略円筒状の処理容器10と、処理容器10内に設けられた載置台11とを備える。処理容器10は、接地されている。また、処理容器10の内壁は、例えば表面に耐プラズマ性の材料からなる溶射被膜が形成されたライナ(図示せず)により覆われている。
【0013】
載置台11は、例えばニッケル等の金属により形成されている。載置台11には、ウエハWが載置される。ウエハWは、被処理体の一例である。載置台11の下面は、導電性材料により形成された支持部材13に電気的に接続されており、載置台11は、支持部材13によって支持されている。支持部材13は、処理容器10の底面で支持されている。支持部材13の下端は、処理容器10の底面に電気的に接続されており、処理容器10を介して接地されている。支持部材13の下端は、載置台11とグランド電位との間のインピーダンスを下げるように調整された回路を介して処理容器10の底面に電気的に接続されていてもよい。
【0014】
載置台11には、ヒータ12が内蔵されており、載置台11に載置されるウエハWをヒータ12によって所定の温度に加熱することができる。また、載置台11内部には、冷媒を流通させるための流路(図示せず)が形成されていてもよく、処理容器10の外部に設けられたチラーユニットによって温度制御された冷媒が流路内に循環供給されてもよい。ヒータ12による加熱と、チラーユニットから供給された冷媒による冷却とにより、載置台11は、ウエハWを所定の温度に制御することができる。なお、ヒータ12を搭載せず、チラーユニットから供給される冷媒のみで温度制御を行ってもよい。
【0015】
なお、載置台11には、電極が埋め込まれていてもよい。この電極に供給された直流電圧によって発生した静電気力により、載置台11は、上面に載置されたウエハWを吸着させることができる。また、載置台11には、処理容器10の外部に設けられた図示しない搬送機構との間でウエハWを受け渡すための昇降ピン(図示せず)が設けられている。
【0016】
載置台11の上方であって処理容器10の内側面には、略円盤状に形成された上部電極30が設けられている。上部電極30は、セラミックス等の絶縁部材33を介して、載置台11の上部に支持されている。これにより、処理容器10と上部電極30とは、電気的に絶縁されている。上部電極30は、例えばニッケル(Ni)等の導電性の金属により形成されている。上部電極30は、第2の電極の一例である。
【0017】
上部電極30には、ガス供給管50が接続されている。ガス供給管50は、ガス供給部51に接続され、ガス供給部51から各種のガスが供給される。ガス供給管50を介して供給されたガスは、上部電極30の下方のプラズマ生成室42内を拡散する。なお、ガス供給管50を複数の供給管に分岐し、複数のガス導入口によりプラズマ生成室にガスを供給してもよい。また、プラズマ生成室42へ供給されるガスの均一性を高めるため、プラズマ生成室42の上部にシャワープレートを介してガス拡散空間を設け、ガス拡散空間でガスを拡散してシャワープレートからシャワー状にプラズマ生成室42にガスを供給してもよい。
【0018】
上部電極30と載置台11との間には、処理容器10内の空間を、プラズマ生成室42と反応室61とに仕切る仕切板40が設けられている。仕切板40は、上部電極30と平行になるように処理容器10内に配置されている。仕切板40は、例えば、セラミックス等の絶縁性の部材により形成されている。仕切板40は、プラズマ生成室42側となる上面に第1プレート電極43が設けられている。第1プレート電極43は、例えば、表面が陽極酸化処理されたアルミニウム等の金属によって形成される。第1プレート電極43は、第1の電極の一例である。
【0019】
また、仕切板40と載置台11との間には、第2プレート電極60が設けられている。第2プレート電極60は、例えば、表面が陽極酸化処理されたアルミニウム等の金属によって形成される。本実施形態において、第2プレート電極60は、処理容器10の側壁によって支持されている。第2プレート電極60は、処理容器10と電気的に接続されており、処理容器10を介して接地されている。すなわち、第2プレート電極60は、GND電位とされている。
【0020】
さらに
図2を参照して説明を続ける。
図2は、実施形態に係る仕切板40と第2プレート電極60との位置関係の一例を説明するための拡大断面図である。仕切板40および第1プレート電極43には、例えば
図2に示されるように、仕切板40および第1プレート電極43を厚さ方向に貫通する複数の貫通穴40aが設けられている。
【0021】
また、仕切板40は、内部にガス拡散室41が設けられている。ガス拡散室41には、下方に向かって延伸する複数のガス吐出口41aが形成されている。ガス拡散室41には、ガス供給管44が接続されている。ガス供給管44は、ガス供給部51に接続され、ガス供給部51から各種のガスが供給される。ガス供給管44を介して供給されたガスは、ガス拡散室41内を拡散し、各ガス吐出口41aから吐出される。
【0022】
第2プレート電極60には、第2プレート電極60の厚さ方向に貫通する複数の貫通穴60aが形成されている。第2プレート電極60の貫通穴60aは、水平方向において、仕切板40および第1プレート電極43の貫通穴40aが形成されていない位置に対応する位置に形成されている。すなわち、貫通穴60aは、水平方向において、貫通穴40aとは異なる位置に形成されている。これにより、仕切板40の貫通穴40aは、鉛直方向において、第2プレート電極60によって遮蔽されている。第2プレート電極60は、複数の貫通穴60aを介してプラズマ生成室42から反応室61へのイオンの侵入を抑制する。第2プレート電極60は、抑制部の一例である。
【0023】
なお、第2プレート電極60に加えて、1ないしはそれ以上の数のプレート電極を追加してもよい。追加のプレート電極の貫通穴は、直上のプレート電極の貫通穴とは異なる位置に形成されていることが望ましい。プレート電極の電位は、GND電位が望ましい。
【0024】
また、プラズマ処理装置1は、
図1、
図2に示すように、仕切板40と載置台11との間に第2プレート電極60が設けた場合、第2プレート電極60によってプラズマ生成室42から反応室61へのイオンの侵入が遮蔽される。プラズマ処理装置1は、プラズマ生成室42から反応室61へイオンを侵入させる場合、第2プレート電極60を設けなくてもよい。
図6は、実施形態に係るプラズマ処理装置の他の一例を示す概略断面図である。
図6に示すプラズマ処理装置1は、第2プレート電極60を設けていない。この場合、プラズマ処理装置1は、プラズマ生成室42で生成したイオンを第1プレート電極43の貫通穴40aを通過して反応室61に供給できる。また、プラズマ処理装置1は、プラズマを制御することでイオンの供給量を制御できる。
【0025】
図1に戻る。ガス供給管50およびガス供給管44は、ガス供給部51に接続されている。ガス供給部51は、プラズマ処理に用いる各種のガスをガス供給管50およびガス供給管44に供給する。例えば、ガス供給部51は、プラズマ処理に用いる複数のガスのガスソース、マスフローコントローラといった複数の流量制御器、及び、複数のバルブを有する。ガス供給部51は、複数のガスソースのうち選択されたガスソースからのガスの流量を調整し、当該ガスをガス供給管50およびガス供給管44に個別に供給する。例えば、プラズマALDにより成膜を行う場合、ガス供給部51は、原料ガスと反応ガスと不活性ガスとをそれぞれ個別に供給する。原料ガス、反応ガスおよび不活性ガスの具体例は、後述する。
【0026】
上部電極30には、スイッチ25が接続されている。スイッチ25は、配線25a~25cに選択的に接続先を切り替え可能とされている。配線25aには、整合器27を介して第1高周波電源20が電気的に接続されている。
【0027】
整合器27は、可変コンデンサ、インピーダンス制御回路が設けられ、容量、インピーダンスの少なくとも一方の制御が可能とされている。整合器27は、第1高周波電源20の内部インピーダンスに負荷インピーダンスを整合させる。
【0028】
第1高周波電源20は、1または複数の周波数の高周波を発生させることが可能とされている。例えば、第1高周波電源20は、50kHz~220MHzの範囲の単一周波数の高周波電力を発生させて供給することが可能とされている。また、第1高周波電源20は、複数の周波数の高周波電力を位相制御して重畳したTVW(Tailored voltage waveform)の高周波電力を供給することが可能とされている。
【0029】
また、配線25aは、スイッチ25と整合器27との間で分岐し、フィルタ24、スイッチ23を介して、負の直流電圧を供給する直流電源22が接続されている。フィルタ24は、スイッチ23を介して直流電源22から供給される直流電圧の高周波成分を抑制すると共に、第1高周波電源20から直流電源22へ流れ込む高周波電力を抑制する。
【0030】
配線25bには、LC回路28が設けられている。LC回路28は、例えば、可変容量コンデンサ28aおよびインダクタ28bが直列に接続されている。LC回路28は、可変容量コンデンサ28aの容量が調節されることにより、上部電極30の電位をグランドの電位に近づけることができる。LC回路28は、可変容量コンデンサ28aの容量が調節されることにより、共振周波数などの特性の変更が可能とされている。可変容量コンデンサの容量は、後述する制御装置100によって制御される。なお、LC回路28は、容量の値が固定のコンデンサと、インダクタンスの値が可変の可変インダクタとが直列に接続されたものであってもよい。
【0031】
配線25cは、GND29に接続されている。
【0032】
スイッチ25は、接続先を配線25a~25cに選択的に切り替えることで、上部電極30の接続先を第1高周波電源20、LC回路28およびGND29に切り替えることができる。
【0033】
第1プレート電極43には、スイッチ45が接続されている。スイッチ45は、配線45a~45cに選択的に接続先を切り替え可能とされている。配線45aには、整合器49を介して第2高周波電源46が電気的に接続されている。
【0034】
整合器49は、可変コンデンサ、インピーダンス制御回路が設けられ、容量、インピーダンスの少なくとも一方の制御が可能とされている。整合器49は、第2高周波電源46の内部インピーダンスに負荷インピーダンスを整合させる。
【0035】
第2高周波電源46は、第1高周波電源20と同様に、1または複数の周波数の高周波を発生させることが可能とされている。例えば、第2高周波電源46は、50kHz~220MHzの範囲の単一周波数の高周波電力を発生させて供給することが可能とされている。また、第2高周波電源46は、複数の周波数の高周波電力を位相制御して重畳したTVWの高周波電力を供給することが可能とされている。
【0036】
配線45bには、LC回路47が設けられている。LC回路47は、例えば、可変容量コンデンサ47aおよびインダクタ47bが直列に接続されている。LC回路47は、可変容量コンデンサ47aの容量が調節されることにより、仕切板40の電位をグランドの電位に近づけることができる。LC回路47は、可変容量コンデンサ47aの容量が調節されることにより、共振周波数などの特性の変更が可能とされている。可変容量コンデンサの容量は、後述する制御装置100によって制御される。なお、LC回路47は、容量の値が固定のコンデンサと、インダクタンスの値が可変の可変インダクタとが直列に接続されたものであってもよい。
【0037】
配線45cは、GND48に接続されている。
【0038】
スイッチ45は、接続先を配線45a~45cに選択的に切り替えることで、第1プレート電極43の接続先を第2高周波電源46、LC回路47およびGND48に切り替えることができる。
【0039】
なお、実施形態に係るプラズマ処理装置1は、載置台11に整合器75を介して第3高周波電源76を電気的に接続してもよい。整合器75は、可変コンデンサ、インピーダンス制御回路が設けられ、容量、インピーダンスの少なくとも一方の制御が可能とされている。整合器75は、第3高周波電源76の内部インピーダンスに負荷インピーダンスを整合させる。プラズマ処理装置1は、第3高周波電源76により載置台11に電圧を印加することで、プラズマ生成室42を通過するイオンの量を増加させることができる。また、プラズマ処理装置1は、第3の高周波電源から載置台11に電圧を印加して反応室61でプラズマを生成することで、例えば、プラズマをダイレクトに用いた薄膜の改質処理や、異方性エッチング、原子層エッチングを行うことができる。
【0040】
処理容器10の底面には、処理容器10内を排気する排気装置70が排気管71を介して接続されている。排気管71には、排気装置70による排気量を調節する調節バルブ72が設けられている。排気装置70を駆動することにより、排気管71を介して処理容器10内のガスが排気され、調節バルブ72の開度を調整することにより、処理容器10内が所定の真空度まで減圧される。
【0041】
処理容器10の側壁には、ウエハWを搬入および搬出するための開口14が形成されている。開口14は、ゲートバルブGによって開閉される。
【0042】
プラズマ処理装置1の各部は、制御装置100によって制御される。制御装置100は、メモリおよびプロセッサを有する。プロセッサは、メモリに格納されたプログラムやレシピを読み出して実行することにより、プラズマ処理装置1の各部を制御する。本実施形態において、制御装置100は、プラズマALDにより、載置台11上のウエハW上に膜を成膜するように、プラズマ処理装置1の各部を制御する。
【0043】
次に、プラズマ処理装置1を用いたプラズマ処理の具体例を説明する。以下では、プラズマ処理装置1を用いてプラズマALDにより成膜を行う場合を説明する。
【0044】
例えば、載置台11上にウエハWが載置され、ゲートバルブGが閉じられた後、制御装置100は、排気装置70を駆動し、調節バルブ72の開度を調整することにより、処理容器10内を所定の真空度まで減圧する。そして、制御装置100は、ガス供給部51を制御して、成膜用の原料ガスと、反応ガスと、不活性ガスとを供給してプラズマALDを実施する。
【0045】
ここで、SiO2膜を成膜する場合、原料ガスとしては、例えば、BDEAS(ビスジエチルアミノシラン)、DIPAS(ジイソプロピルアミノシラン)、DMAS(ジメチルアミノシラン)、TDMAS(トリジメチルアミノシラン)等のアミノシランガスが用いられる。反応ガスとしては、酸素(O2)ガス等の酸化ガスを用いることができる。不活性ガスとしては、アルゴン(Ar)ガス、Heガス等を用いることができる。
【0046】
また、TiO2膜を成膜する場合、原料ガスとしては、例えば、TiCl4、テトラ(イソプロポキシ)チタン(TTIP)、四臭化チタン(TiBr4)、四ヨウ化チタン(TiI4)、テトラキスエチルメチルアミノチタン(TEMAT)、テトラキスジメチルアミノチタン(TDMAT)、テトラキスジエチルアミノチタン(TDEAT)等が挙げられる。反応ガスとしては、酸素(O2)ガス等の酸化ガスを用いることができる。不活性ガスとしては、N2ガス、Arガス、Heガス等を用いることができる。
【0047】
また、SiN膜を成膜する場合、原料ガスとしては、例えば、BDEAS(ビスジエチルアミノシラン)、DIPAS(ジイソプロピルアミノシラン)、DMAS(ジメチルアミノシラン)、TDMAS(トリジメチルアミノシラン)等のアミノシランガス、ジクロロシラン(DCS)、ヘキサクロロジシラン(HCDS)、ジヨードシラン(DIS)等のハライドガスが挙げられる。反応ガスとしては、窒素(N2)ガス、NH3ガス等を用いることができる。不活性ガスとしては、アルゴンガス、Heガス等を用いることができる。
【0048】
例えば、制御装置100は、吸着工程を実行する。吸着工程では、ガス供給部51から原料ガスをガス供給管44を介してガス拡散室41に供給する。ガス供給管44を介して供給された原料ガスは、ガス拡散室41内を拡散し、各ガス吐出口41aから反応室61内にシャワー状に供給される。反応室61内に供給された原料ガスの分子は、載置台11上のウエハWの表面に吸着する。なお、ウエハW表面へ供給するのは、原料ガス自身の他、プラズマで解離されたラジカルでもよく、熱分解されたプリカーサでもよい。
【0049】
次に、制御装置100は、ガス供給部51からの原料ガスの供給を停止する。そして、制御装置100は、第1のパージ工程を実行する。第1のパージ工程では、ガス供給部51から不活性ガスをガス供給管50およびガス供給管44を介してプラズマ生成室42およびガス拡散室41に供給する。プラズマ生成室42およびガス拡散室41内に供給された不活性ガスは、仕切板40の貫通穴40aおよび第2プレート電極60の貫通穴60aを介して反応室61内にシャワー状に供給される。反応室61に供給された不活性ガスにより、ガス供給部51、ガス供給管44、ガス拡散室41および反応室61に残留した原料ガスおよびウエハWの表面に過剰に吸着した原料ガスの分子が除去される。
【0050】
次に、制御装置100は、ガス供給部51からの不活性ガスの供給を停止する。そして、制御装置100は、反応工程を実行する。反応工程では、ガス供給部51から反応ガスをガス供給管50を介してプラズマ生成室42に供給する。プラズマ生成室42内に供給された反応ガスは、プラズマ生成室42内を拡散する。
【0051】
そして、制御装置100は、第1高周波電源20、スイッチ25、第2高周波電源46およびスイッチ45を制御して、上部電極30および第1プレート電極43に高周波電力を印加する。また、制御装置100は、スイッチ23をオンに制御し、高周波電力に直流電源22から供給された所定の大きさの負の直流電圧を重畳させる。
【0052】
ここで、本実施形態では、上部電極30および第1プレート電極43に印加する電圧の組み合わせとして、以下の6つのパターンに分けられる。
【0053】
第1パターン:上部電極30に単一周波数の高周波電力を印加し、第1プレート電極43にTVWの高周波電力を印加する。
第2パターン:上部電極30に単一周波数の高周波電力とTVWの高周波電力を重畳して印加し、第1プレート電極43をGND48もしくはLC回路47に接続する。
第3パターン:上部電極30にTVWの高周波電力を印加し、第1プレート電極43をGND48もしくはLC回路47に接続する。
第4パターン:上部電極30にTVWの高周波電力を印加し、第1プレート電極43に単一周波数の高周波電力を印加する。
第5パターン:上部電極30をGNDもしくはLC回路に接続し、第1プレート電極43に単一周波数の高周波電力とTVWの高周波電力を重畳して印加する。
第6パターン:上部電極30をGNDもしくはLC回路に接続し、第1プレート電極43にTVWの高周波電力を印加する。
【0054】
制御装置100は、第1パターンおよび第4パターンの場合、スイッチ25を第1高周波電源20と接続する配線25aに接続し、スイッチ45を第2高周波電源46と接続する配線45aに接続する。また、制御装置100は、第2パターンまたは第3パターンの場合、スイッチ25を第1高周波電源20と接続する配線25aに接続し、スイッチ45をGND48と接続する配線45cもしくはLC回路47と接続する配線45bに接続する。また、制御装置100は、第5パターンまたは第6パターンの場合、スイッチ25をGND29と接続する配線25cもしくはLC回路28と接続する配線25bに接続し、スイッチ45を第2高周波電源46と接続する配線45aに接続する。そして、制御装置100は、第1高周波電源20および第2高周波電源46を制御し、第1~第6パターンに応じて上部電極30および第1プレート電極43に単一周波数の高周波電力、TVWの高周波電力を印加する。TVWの高周波電力は、具体的には異なる周波数の高周波電圧を重畳し、位相を制御することにより生成する。例えば、第1高周波電源20および第2高周波電源46は、基本波の高周波電力に対して、基本波の整数倍の周波数となる1または複数の高周波電力の位相を制御して重畳することでTVWの高周波電力を生成する。TVWで重畳する周波数としては、基本波の周波数をfとして、例えば、以下のような周波数の組み合わせが挙げられる。
【0055】
・f+2f
・f+3f+5f
・f+2f+3f
【0056】
基本波の周波数fは、100kHz~100MHzの範囲が好ましい。負性プラズマの場合は、周波数が低い方が好ましく、例えば、400kHzとする。一方、正性プラズマの場合は、周波数が高い方が好ましく、例えば、60MHzとする。位相は、上部電極30に高周波電力を印加する場合には270°が好ましく、下部電極43または11に印加する場合には90°とすることが好ましい。
【0057】
単一周波数の高周波電力は、100kHz~220MHzの範囲が好ましい。負性プラズマの場合は、周波数が低い方が好ましく、例えば、400kHzとする。一方、正性プラズマの場合は、周波数が高い方が好ましく、例えば、60MHzとする。
【0058】
上部電極30および第1プレート電極43に印加された高周波電力は、プラズマ生成室42内に放射される。これにより、プラズマ生成室42では、反応ガスのプラズマが生成される。プラズマ生成室42内に発生したプラズマには、電子、イオン、および活性種が含まれる。
【0059】
プラズマ処理装置1は、TVWの高周波電力として重畳する周波数の組み合わせや位相を制御することにより、プラズマ生成室42内に発生するプラズマシースの厚さを制御できる。プラズマシースの厚さは、電圧を印加する領域とGND領域の面積比、印加する電圧波形状、基本波と高調波の位相差、基本波と高調波のどちらの位相を動かすか、といった因子により変化する。電圧を印加する領域とGND領域の面積比は、プラズマ処理装置1の装置形状により決定されるため、実質的にはその他の因子を変化させることでプラズマシースの厚さを制御する。例えば、f+2fを重畳した場合、基本波(f)と高調波(2f)の位相差を変化させるとプラズマシースの厚さが周期的に変化する。また、基本波と高調波の振幅や電圧波形状(例えば、sin波であるかcos波であるか)を変化させるとプラズマシースの厚さの変化量およびプラズマシースの厚さの周期的な変化の位相が変化する。プラズマシースの厚さが変わると、電子やイオン等の荷電粒子の加速度が変わる。よって、制御装置100は、TVWの高周波電力を制御して、プラズマシースの厚さを変えることで、プラズマ中の荷電粒子のエネルギーを制御できる。例えば、プラズマシースの厚さを変えることで、プラズマ中のイオンのエネルギーを変えることができる。したがって、得たい目的を鑑みて最適なプラズマシース厚さを選択することにより最適なイオンの寄与度を選択することが可能である。また、TVWにより電子温度・電子密度・ラジカル解離・イオンエネルギーを独立で制御することも可能であり、プロセスに応じてこれらのパラメータを独立制御することができる。
【0060】
第1プレート電極43は、プラズマから入熱して発熱する。また、第1プレート電極43は、電子やイオン等の荷電粒子が加速されて表面に入射することで、表面が消耗する。しかし、プラズマシースの厚さを薄くすることで、プラズマから入熱量を低下させることができる。また、プラズマシースの厚さを薄くして、荷電粒子のエネルギーを低下させることで、第1プレート電極43の消耗を抑えることができる。
【0061】
また、第2パターンおよび第3パターンにおいて第1プレート電極43をGND48に接続した場合、第1プレート電極43の表面に接触した電子やイオン等の荷電粒子の電荷は中和される。また、第1プレート電極43の表面に接触しなかった荷電粒子は、第1プレート電極43の貫通穴40aを通過する。ここで、本実施形態における貫通穴40aは、例えば
図2に示されるように、鉛直方向において、第2プレート電極60によって遮蔽されている。このため、貫通穴40a内を通過した荷電粒子は、第2プレート電極60の上面62に接触する。そして、第2プレート電極60の上面62において、イオンの電荷が電子の電荷によって中和される。このため、第2プレート電極60の貫通穴60aを介して反応室61内に侵入するイオンが減少する。これにより、イオンによってウエハWに生じるダメージが低減される。
【0062】
一方、
図6に示したように、第2プレート電極60を設けていない場合は、プラズマ生成室42で生成した荷電粒子が第2プレート電極60によって遮蔽されなくなるため、第1プレート電極43の貫通穴40aを介して荷電粒子を反応室61に供給できる。さらに、第3高周波電源76から載置台11に電圧を印加することで、プラズマ生成室42を通過するイオンの量を増加させることができる。
【0063】
第1パターンから第6パターンは、イオン透過率を調整でき、ウエハWに照射するイオンの密度を調整できる。また、第1パターンから第6パターンは、何れもプラズマシースの厚さを制御できる。これにより、プラズマシースの厚さを薄くすることで、プラズマから入熱量を低下させることができる。また、プラズマシースの厚さを薄くして、荷電粒子のエネルギーを低下させることで、第1プレート電極43の消耗や発熱を抑えることができる。特に、第1パターン、第5パターンおよび第6パターンは、イオン透過率の制御性が高い。一方、第2パターン、第3パターンおよび第4パターンは、イオン透過率の変化量が比較的小さく、解離制御を優先的に行うことができる。
【0064】
また、第1パターンもしくは、第2パターンおよび第3パターンにおいて第1プレート電極43をLC回路47に接続した場合、荷電粒子の電荷の第1プレート電極43でのイオンの遮蔽量の調整できるため、反応室61内に侵入するイオン密度を調整できる。
【0065】
一方、プラズマに含まれる活性種は、電気的に中性であるため、活性種の進路が第1プレート電極43や第2プレート電極60の電位に影響されず、電離していないガスと同様に供給が可能である。このため、第1プレート電極43の貫通穴40aに侵入した活性種は、例えば
図2の点線矢印に示されるように、第2プレート電極60の貫通穴60aを通って、反応室61に供給される。反応室61に供給された活性種は、ウエハW上の原料ガスの分子と反応し、膜を形成する。
【0066】
次に、制御装置100は、ガス供給部51からの反応ガスの供給を停止する。また、制御装置100は、第1高周波電源20、第2高周波電源46を制御して、上部電極30および第1プレート電極43への高周波電力の印加を停止し、スイッチ45をオフに制御する。また、制御装置100は、スイッチ23をオフに制御することにより、直流電源22から上部電極30への負の直流電圧の印加を停止する。そして、制御装置100は、第2のパージ工程を実行する。第2のパージ工程では、ガス供給部51から不活性ガスをガス供給管50およびガス供給管44を介してプラズマ生成室42およびガス拡散室41に供給する。プラズマ生成室42およびガス拡散室41内に供給された不活性ガスは、仕切板40の貫通穴40aおよび第2プレート電極60の貫通穴60aを介して反応室61内にシャワー状に供給される。反応室61に供給された不活性ガスにより、ウエハWの表面に残留した反応ガスおよび揮発性の反応副生成物が除去される。
【0067】
制御装置100は、吸着工程、第1のパージ工程、反応工程、および第2のパージ工程を、所定サイクル繰り返すことにより、ウエハWの表面に所定の膜厚の膜を形成する。
【0068】
このように、本実施形態に係るプラズマ処理装置1は、反応室61に供給するイオンの密度を制御できる。これにより、プラズマ処理装置1は、例えば、パターンが形成されたウエハWに成膜を行う場合、反応室61内に侵入するイオンの密度が低下させることで、パターンのサイドウォールの相対的な薄膜化や膜質低下が起こることを抑制できる。また、プラズマ処理装置1は、イオン密度を制御できるため、イオンを活用したプロセスを実施することもできる。
【0069】
ここで、プラズマ生成室42と反応室61とを分けるだけであれば、プラズマ生成室42と反応室61とを別々の装置内で実現し、配管を介してプラズマ生成室42と反応室61とを接続する、いわゆるリモートプラズマの構成を採用することも考えられる。しかし、この場合、プラズマに含まれる活性種が、配管内を流れる過程で失活してしまう場合があり、反応室61内に十分な量の活性種を供給することが難しい。
【0070】
これに対し、本実施形態のプラズマ処理装置1は、プラズマ生成室42と反応室61とが仕切板40を介して隣接している。このため、プラズマ生成室42で生成されたプラズマに含まれる多くの活性種を、失活することなく反応室61へ導くことが可能となる。
【0071】
また、大量の活性種を供給するだけであれば、CCPよりも電子密度が高いICP(Inductively Coupled Plasma)やSWP(Surface Wave Plasma)等のプラズマ生成方式によりプラズマを生成することも考えられる。しかし、ICPやSWP等のプラズマ生成方式では、CCPよりもプラズマ生成室42の容積を大きくする必要がある。このため、ALDのようにガスの置換時間が処理のスループットに大きく影響する成膜方式にICPやSWP等のプラズマ生成方式を適用した場合には、スループットの向上が難しい。
【0072】
これに対し、本実施形態のプラズマ処理装置1では、CCPによりプラズマを生成するため、ICPやSWP等のプラズマ生成方式に比べてプラズマ生成室42の容積を小さくすることができる。これにより、ガス置換をより高速に実現することができ、ALDによる成膜処理のスループットを向上させることができる。
【0073】
次に、プラズマ処理装置1を用いた半導体プロセスの一例を説明する。半導体プロセス工程の微細化・複雑化に伴い、トレンチもしくはホールを埋めるギャップ埋め込み(Gap Fill)工程の難度が増している。例えば、ギャップ埋め込み工程では、開口が数十nm以下で、アスペクト比が10以上のトレンチもしくはホール構造に均一かつシームレスにSiNを埋め込む必要性がある。
【0074】
このように微細かつ高アスペクトの構造に対し、等方的にSiNを成膜し、埋め込みを行うことは可能である。この場合、トレンチの両壁もしくはホールの外周部から成膜が開始、進行し、最終的に対向するSiN膜どうしが接触して埋め込みが完了する。しかしながら、この場合には最終的に接触する部分にシームができてしまう。シームが存在する部分ではその他の部分に比較して膜質が異なる場合があり、たとえば後工程でシーム部分から優先的にエッチングが進行し、デバイス欠陥となる場合がある。さらに、プラズマを使用した従来の成膜を実施した場合、酸化もしくは窒化反応に寄与するラジカルの失活により、トレンチもしくはホールの上部の成膜レートが下部よりも高くなる現象が発生する。このような場合、トレンチもしくはホールの上部が先に埋まり、下部には十分成膜されない。特に、前工程で実施されたエッチングの影響で、トレンチもしくはホールの上部が中間よりも狭いボーイング(Bowing)形状となっている場合、上部に多く成膜されるため、トレンチもしくはホールを均一かつシームレスな埋め込みをすることがさらに難しくなる。
【0075】
これを解決するには、トレンチもしくはホールの底からボトムアップで成膜を行う必要がある。従来の酸化膜や窒化膜の成膜では、パターンのサイドとボトムで成膜レート差を意図的に生じさせることが困難であるため、完全なボトムアップ成膜は難しい。
【0076】
一方、成膜とエッチングを交互に行うDED(Depo-Etch-Depo)プロセスを実施することで、埋め込みの妨げとなるトップおよびサイドの膜の除去が可能となり、疑似的なボトムアップ成膜の実現が可能である。以下では、本実施形態に係るプラズマ処理装置1を用いて、DED(Depo-Etch-Depo)プロセスを実施することで、疑似的なボトムアップ成膜の実施する例を説明する。
【0077】
図3は、実施形態に係るDEDプロセスによるパターンの変化の一例を示す図である。
図3には、ウエハWが示されている。ウエハW上には、ホール82が形成されたパターン81が設けられている。
【0078】
図3(A)に示すように、ウエハWにSiN膜83を等方性で成膜する。例えば、本実施形態に係るプラズマ処理装置1により、上述した第1パターンの高周波電力でプラズマALDを実施して、SiN膜83を成膜する。第1パターンでは、反応室61内に侵入するイオン密度が低下することで、
図3(A)に示すように、SiN膜83が均一に成膜される。
【0079】
次に、SiN膜83の異方性エッチングを行う。異方性エッチングは、プラズマ処理装置1で実施してもよく、他のプラズマ処理装置で実施してもよい。例えば、本実施形態に係るプラズマ処理装置1でエッチングを実施する場合、制御装置100は、ガス供給部51から、例えば、NF
3とH
2などのエッチングガスをガス供給管44に供給する。ガス供給管44に供給されたエッチングガスは、ガス拡散室41内を拡散し、各ガス吐出口41aから反応室61内にシャワー状に供給される。そして、制御装置100は、スイッチ45を第2高周波電源46と接続する配線45aに接続すると共に、第2高周波電源46を制御して、第2プレート電極60に50kHz~220MHzの範囲の単一周波数の高周波電力もしくは複数の周波数を重畳した高周波電力を印加する。供給されるラジカルの流量と圧力を調節し、パターンの下部までラジカルが十分に到達しない(パターンの途中で失活する)ように制御すると、
図3(B)に示すように、SiN膜83は、上部が多くエッチングされてホール82の下部ほど多く膜が残留する。DEDプロセスでは、このような成膜とエッチングを交互に繰り返し実施することでSiN膜83の疑似的なボトムアップ成膜が実現できる。
【0080】
図4は、実施形態に係るDEDプロセスによるパターンの変化の他の一例を示す図である。
図4には、
図3と同様のウエハWが示されている。
【0081】
図4(A)に示すように、ウエハWにSiN膜83を異方的に成膜する。異方性の成膜は、プラズマ処理装置1で実施してもよく、他のプラズマ処理装置で実施してもよい。例えば、本実施形態に係るプラズマ処理装置1により従来のプラズマALDを実施する。例えば、制御装置100は、本実施形態に係るプラズマALDの吸着工程、第1のパージ工程、第2のパージ工程を実施する。また、制御装置100は、本実施形態に係る反応工程において、ガス供給部51から反応ガスをガス供給管44に供給する。そして、制御装置100は、スイッチ45を第2高周波電源46と接続する配線45aに接続すると共に、第2高周波電源46を制御して、第2プレート電極60に50kHz~220MHzの範囲の単一周波数の高周波電力もしくは複数の周波数を重畳した高周波電力を印加する。これにより、反応室61では、反応ガスのプラズマが生成され、ウエハWにSiN膜83が成膜される。SiN膜83は、プラズマ中に存在するイオンの直進性に起因して、ホール82のサイドウォール部分が薄く成膜される。
【0082】
次に、SiN膜83の等方性エッチングを行う。等方性エッチングは、プラズマ処理装置1で実施してもよく、他のプラズマ処理装置で実施してもよい。例えば、本実施形態に係るプラズマ処理装置1によりプラズマALEを実施する。供給されるラジカルの流量と圧力等のプロセスパラメータを調節し、パターンの下部までラジカルが十分に到達するように(等方的にエッチングがなされるように)制御すると、
図4(B)に示すように、SiN膜83は、ホール82の下部とパターン81の上面に多く膜が残留する。DEDプロセスでは、このような成膜とエッチングを交互に繰り返し実施することでSiN膜83の疑似的なボトムアップ成膜が実現できる。なお、等方性エッチングは、プラズマを用いず、熱を利用したエッチングであってもよい。また、等方性エッチングは、大気圧雰囲気下での薬液によるエッチングであってもよい。
【0083】
[プラズマ処理]
次に、上記のように構成されたプラズマ処理装置1を用いて行われるプラズマ処理について説明する。以下では、プラズマ処理として、プラズマALDによる成膜処理の流れを説明する。
図5は、実施形態に係る成膜処理の一例を示すフローチャートである。
【0084】
まず、ゲートバルブGが開かれ、図示しないロボットアームにより、ウエハWが処理容器10内に搬入され、載置台11上に載置される(S100)。そして、ゲートバルブGが閉じられる。そして、制御装置100は、排気装置70を駆動し、調節バルブ72の開度を調整することにより、処理容器10内を所定の真空度まで減圧する(S101)。
【0085】
次に、制御装置100は、吸着工程を実行する(S102)。ガス供給部51から原料ガスをガス供給管44を介してガス拡散室41に供給する。ガス供給管44を介して供給された原料ガスは、ガス拡散室41内を拡散し、各ガス吐出口41aから反応室61内にシャワー状に供給される。反応室61内に供給された原料ガスの分子は、載置台11上のウエハWの表面に吸着する。そして、制御装置100は、ガス供給部51からの原料ガスの供給を停止する。
【0086】
次に、制御装置100は、第1のパージ工程を実行する(S103)。第1のパージ工程では、ガス供給部51から不活性ガスをガス供給管50およびガス供給管44を介してプラズマ生成室42およびガス拡散室41に供給する。プラズマ生成室42およびガス拡散室41内に供給された不活性ガスは、仕切板40の貫通穴40aおよび第2プレート電極60の貫通穴60aを介して反応室61内にシャワー状に供給される。反応室61に供給された不活性ガスにより、ウエハWの表面に過剰に吸着した原料ガスの分子が除去される。そして、制御装置100は、ガス供給部51からの不活性ガスの供給を停止する。
【0087】
次に、制御装置100は、反応工程を実行する(S104~S106)。反応工程では、ガス供給部51から反応ガスをガス供給管50を介してプラズマ生成室42に供給する(S104)。プラズマ生成室42内に供給された反応ガスは、プラズマ生成室42内を拡散する。
【0088】
そして、制御装置100は、第1高周波電源20、スイッチ25、第2高周波電源46およびスイッチ45を制御して、上部電極30および第1プレート電極43に高周波電力を印加する(S105)。また、制御装置100は、スイッチ23をオンに制御し、高周波電力に直流電源22から供給された所定の大きさの負の直流電圧を重畳させる(S106)。これにより、プラズマ生成室42では、反応ガスのプラズマが生成される。生成されたプラズマ中の活性種は、仕切板40の貫通穴40aおよび第2プレート電極60の貫通穴60aを介して、反応室61内に供給される。反応室61内に供給された活性種が、ウエハW上の原料ガスの分子と反応することにより、ウエハW上に膜が形成される。そして、制御装置100は、ガス供給部51からの反応ガスの供給を停止する。また、制御装置100は、第1高周波電源20、第2高周波電源46を制御して、上部電極30および第1プレート電極43への高周波電力の印加を停止し、スイッチ25、スイッチ45をオフに制御する。また、制御装置100は、スイッチ23をオフに制御することにより、直流電源22から上部電極30への負の直流電圧の印加を停止する。
【0089】
次に、制御装置100は、第2のパージ工程を実行する(S107)。第2のパージ工程では、ガス供給部51から不活性ガスをガス供給管50およびガス供給管44を介してプラズマ生成室42およびガス拡散室41に供給する。プラズマ生成室42およびガス拡散室41内に供給された不活性ガスは、仕切板40の貫通穴40aおよび第2プレート電極60の貫通穴60aを介して反応室61内にシャワー状に供給される。反応室61に供給された不活性ガスにより、ウエハWの表面に残留した反応ガスおよび揮発性の反応副生成物が除去される。そして、制御装置100は、ガス供給部51からの不活性ガスの供給を停止する。
【0090】
次に、制御装置100は、ステップS102~S107の処理が所定回数繰り返されたか否かを判定する(S108)。ステップS102~S107の処理が所定回数繰り返されていない場合(S108:No)、制御装置100は、再びステップS102に示された処理を実行する。一方、ステップS102~S107の処理が所定回数繰り返された場合(S108:Yes)、ゲートバルブGが開かれ、図示しないロボットアームにより、ウエハWが処理容器10から搬出される(S109)。そして、本フローチャートに示された成膜処理が終了する。
【0091】
なお、プラズマ処理装置1は、第3高周波電源76から載置台11に以下のように高周波電力を供給して薄膜の改質処理や、異方性エッチング、原子層エッチングを行ってもよい。例えば、プラズマ処理装置1は、反応室61でプラズマを生成することで、プラズマをダイレクトに用いた薄膜の改質処理を実施する。例えば、反応室61にH
2/Arガスを供給しつつプラズマを生成することで、SiNの膜質を改善できる。具体的には、エッチングレートが低くなる。Hイオンを異方的に照射し、パターンの上面・底面のエッチングレートを低くすることで、
図4(A)のように膜厚を厚くしなくても等方エッチングにより、
図4(A)の形状が実現できる。改質処理のタイミングは、S102の後、S103の後、S106の後、S107の後もしくはそれらの組み合わせが考えられる。また、改質処理は、ステップS102~S107のサイクル毎に実施しなくもよく、数サイクルに1回もしくは成膜後に1回実施してもよい。また、プラズマ処理装置1は、反応室61でプラズマを生成することでプラズマをダイレクトに用いた異方性エッチングを実施できる。また、プラズマ処理装置1は、反応室61でプラズマを生成することで、プラズマをダイレクトに用いた原子層エッチングを実施できる。
【0092】
以上のように、本実施形態に係るプラズマ処理装置1は、処理容器10と、仕切板40と、第2の電極(上部電極30)と、電力供給部(第1高周波電源20、スイッチ45、第2高周波電源46等)とを有する。仕切板40は、絶縁性とされ、処理容器10内の空間を被処理体(ウエハW)が載置される反応室61とプラズマを生成するプラズマ生成室42とを仕切る。また、仕切板40は、プラズマ生成室42側の面に第1の電極(第1プレート電極43)が設けられ、プラズマ生成室42内に生成されたプラズマに含まれる活性種を反応室61に供給するための複数の貫通穴40aが形成されている。第2の電極は、プラズマ生成室42に第1の電極と対向して配置される。電力供給部は、プラズマ生成室42にプラズマを生成する際、第1の電極および第2の電極の何れか一方に、複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給する。これにより、プラズマ処理装置1は、被処理体に照射するイオンの密度を調整できる。
【0093】
また、電力供給部は、第1の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給すると共に、第2の電極に単一周波数の高周波電力を供給する。これにより、プラズマ処理装置1は、イオン透過率を制御性よく制御でき、反応室61内に侵入するイオン密度を調整できる。
【0094】
また、電力供給部は、第2の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力と単一周波数の高周波電力とを供給すると共に、第1の電極を接地(GND48)またはLC回路47に接続する。これにより、プラズマ処理装置1は、イオンの遮蔽量を調整でき、また、ラジカルの解離制御を行うことができる。
【0095】
また、電力供給部は、第2の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給すると共に、第2の電極を接地またはLC回路47に接続する。これにより、プラズマ処理装置1は、イオンの遮蔽量を調整でき、また、ラジカルの解離制御を行うことができる。
【0096】
また、電力供給部は、第2の電極に単一周波数の高周波電力を供給すると共に、第1の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給する。これにより、プラズマ処理装置1は、イオンの遮蔽量を調整でき、また、ラジカルの解離制御を行うことができる。
【0097】
また、電力供給部は、第2の電極を接地(GND29)またはLC回路28に接続する共に、第1の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力と単一周波数の高周波電力とを供給する。これにより、プラズマ処理装置1は、イオン透過率を制御性よく制御でき、反応室61内に侵入するイオン密度を調整できる。
【0098】
また、電力供給部は、第2の電極を接地(GND29)またはLC回路28に接続する共に、第1の電極に複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給する。これにより、プラズマ処理装置1は、イオン透過率を制御性よく制御でき、反応室61内に侵入するイオン密度を調整できる。
【0099】
また、プラズマ処理装置1は、ガス供給部51をさらに有する。ガス供給部51は、成膜の原料ガスを反応室61に供給して被処理体の表面に原料ガスの分子を吸着させた後、原料ガスの分子と反応する反応ガスをプラズマ生成室42に供給する。電力供給部は、ガス供給部51から反応ガスの供給に合わせて第1の電極および第2の電極の何れか一方に、複数の周波数の高周波電力を位相制御して重畳した高周波電力を供給して反応ガスのプラズマを生成する。これにより、プラズマ処理装置1は、成膜される膜のサイドウォールの薄膜化や膜質低下が起こることを抑制できる。
【0100】
また、ガス供給部51は、原料ガスを仕切板40に供給する。仕切板40は、反応室61側の面に、ガス供給部51から供給される原料ガスを吐出する複数のガス吐出口41aが形成されている。これにより、プラズマ処理装置1は、プラズマ生成室42に原料ガスが流れることを抑制でき、プラズマ生成室42内で膜が形成されることを抑制できる。
【0101】
また、プラズマ処理装置1は、抑制部(第2プレート電極60)をさらに有する。抑制部は、反応室61に内に設けられ、複数の貫通穴40aを介してプラズマ生成室42から反応室61へのイオンの侵入を抑制する。これにより、プラズマ処理装置1は、反応室61へのイオンの侵入を抑制できる。
【0102】
以上、実施形態について説明してきたが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は、多様な形態で具現され得る。また、上記の実施形態は、請求の範囲およびその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
【0103】
例えば、実施形態では、被処理体を半導体ウエハとした場合を例に説明したが、これに限定されるものではない。被処理体は、ガラス基板など、他の基板であってもよい。
【0104】
また、上記した実施形態では、第1プレート40にプリカーサ供給用のガス供給管44およびプレート内部の流路41を設けた場合を説明したが、これに限定されるものではない。第1プレート40にガス供給管44およびプレート内部の流路41を設けず、ガス供給管50のみを用いてプリカーサ、反応ガス、パージガスを交互に供給してもよい。また、上記の実施形態では、S103およびS107のパージ工程が終了した段階でパージガスを停止したが、S102からS108のすべての工程でパージガスを常時流していてもよい。また、上記した実施形態では、S104で反応ガスの供給を開始し、S106が終了した段階で反応ガスの供給を停止したが、例えば、プラズマALDによるSiO2成膜プロセスにおける酸素ガスのようにプラズマを形成しない状態でプリカーサに対して不活性なガスを反応ガスとして使用する場合には、S102からS108のすべての工程で反応ガスを常時流していてもよい。
【0105】
また、上記した実施形態では、処理容器10を有底で上方が開口した略円筒状の形状とし、処理容器10の上方の開口を上部電極30および絶縁部材33により封止した場合を例に説明したが、これに限定されるものではない。処理容器10は、上方が開口を絶縁部材で封止し、封止した絶縁部材の内面側に上部電極30を配置してもよい。
【0106】
また、上記した実施形態のプラズマ処理装置1は、プラズマを生成する際に上部電極30に負の直流電圧を供給する場合を例に説明したが、これに限定されるものではない。上部電極30には、負の直流電圧を供給しなくてもよい。
【0107】
また、上記した実施形態のプラズマ処理装置1は、ウエハWに対してプラズマALDを行う装置であるが、開示の技術は成膜装置以外のプラズマ処理装置に対しても適用可能である。成膜装置以外のプラズマ処理装置としては、例えば、ウエハWをエッチングするプラズマエッチング装置や表面改質処理装置が挙げられる。
【符号の説明】
【0108】
1 プラズマ処理装置
10 処理容器
20 第1高周波電源
30 上部電極
40 仕切板
40a 貫通穴
42 プラズマ生成室
43 第1プレート電極
45 スイッチ
46 第2高周波電源
48 GND
47 LC回路
51 ガス供給部
60 第2プレート電極
61 反応室
W ウエハ