(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-13
(45)【発行日】2022-12-21
(54)【発明の名称】光ファイバ用多孔質ガラス母材の製造方法
(51)【国際特許分類】
C03B 37/018 20060101AFI20221214BHJP
C03B 8/04 20060101ALI20221214BHJP
G02B 6/02 20060101ALI20221214BHJP
【FI】
C03B37/018 Z
C03B8/04 J
G02B6/02 356A
(21)【出願番号】P 2022065525
(22)【出願日】2022-04-12
(62)【分割の表示】P 2019109084の分割
【原出願日】2019-06-11
【審査請求日】2022-04-26
(73)【特許権者】
【識別番号】000002060
【氏名又は名称】信越化学工業株式会社
(74)【代理人】
【識別番号】100166545
【氏名又は名称】折坂 茂樹
(72)【発明者】
【氏名】野田 直人
(72)【発明者】
【氏名】飯沼 均
【審査官】須藤 英輝
(56)【参考文献】
【文献】特開2020-200225(JP,A)
【文献】特表2014-517801(JP,A)
【文献】特表2015-505809(JP,A)
【文献】特開平11-255522(JP,A)
【文献】特開2011-230937(JP,A)
【文献】特開2018-145065(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C03B 37/00-37/16
C03B 8/04
G02B 6/02
(57)【特許請求の範囲】
【請求項1】
有機シロキサンの原料液の流量を液体マスフローコントローラによって制御する工程と、
前記液体マスフローコントローラから供給される原料液を原料液配管によって気化器の原料液ノズルに導く工程と、
前記原料液を前記原料液ノズルから前記気化器内に噴出する工程と、
前記気化器内において噴出した原料液とキャリアガスとを混合し原料液を気化させて原料ガスとキャリアガスとが混合した混合ガスにする工程と、
前記混合ガスをバーナに供給する工程と、
前記バーナにおいて前記混合ガスを可燃性ガスおよび助燃性ガスとともに燃焼してSiO
2微粒子を生成する工程と、
前記SiO
2微粒子を出発コア母材に堆積させ、光ファイバ用多孔質ガラス母材を形成する工程と、
前記キャリアガス、前記可燃性ガス、および前記助燃性ガスの供給を維持しつつ、前記原料液配管の流路上に設けた開閉弁を閉じて前記液体マスフローコントローラからの原料液の供給を停止する工程と
、
前記原料液配管の前記開閉弁と前記原料液ノズルとの間で合流するパージガス供給配管からパージガスを前記原料液配管に供給する工程と
を備える光ファイバ用多孔質ガラス母材の製造方法。
【請求項2】
前記混合ガスに酸素ガスを追加混合して前記バーナに供給する工程をさらに備える請求項
1に記載の製造方法。
【請求項3】
前記パージガス供給配管から供給されるパージガスの流量をL
P、追加混合される酸素ガスの流量をL
O2とし、前記パージガスを前記原料液配管に供給する工程において、L
O2/L
P>14となるように、それぞれ前記パージガスおよび前記酸素ガスを供給することを特徴とする請求項
2に記載の製造方法。
【請求項4】
前記パージガス供給配管から供給されるパージガスの流量をL
P、前記気化器内に供給されるキャリアガスの流量をL
Cとし、前記パージガスを前記原料液配管に供給する工程において、L
C/L
P>10となるように、それぞれ前記パージガスおよび前記キャリアガスを供給することを特徴とする請求項1から
3のいずれか1項に記載の製造方法。
【請求項5】
前記キャリアガスは、窒素、アルゴン、およびヘリウムのいずれかであることを特徴とする請求項1から
4のいずれか1項に記載の製造方法。
【請求項6】
前記有機シロキサンは、オクタメチルシクロテトラシロキサン(OMCTS)であることを特徴とする請求項1から
5のいずれか1項に記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、有機シロキサンを原料として用いた光ファイバ用多孔質ガラス母材の製造方法に関する。
【背景技術】
【0002】
光ファイバ用プリフォームは、例えば、VAD法などで製造されたコア母材上に、OVD法などでSiO2微粒子を外付け堆積し、焼結して製造される。SiO2微粒子をコア母材上に外付け堆積するためのケイ素化合物原料として、分子内にCl(塩素)を含まない有機ケイ素化合物がSiO2微粒子の出発原料として使用されることがある。このような有機ケイ素化合物の例として、工業規模で利用可能な高純度の有機シロキサンであるオクタメチルシクロテトラシロキサン(OMCTS)が挙げられる。特許文献1は、OMCTSをバーナに供給し、酸水素炎中でガラス微粒子を合成する技術を開示している。
【0003】
OMCTSを出発原料とする場合、SiO
2微粒子は下記の[化1]式に示される反応により生成される。
【化1】
【0004】
このように、バーナに供給するケイ素化合物原料として、OMCTSに代表されるハロゲンフリーな有機シロキサンを用いると、塩酸が排出されない。このため、製造装置材料や排気の取り扱いの自由度が高いという利点がある。
【0005】
有機シロキサンを出発原料とするSiO2微粒子の堆積は、例えば以下のように実施される。
はじめに、有機シロキサン原料液を液体マスフローコントローラで流量制御しつつ、気化器に導入する。続いて、気化器内において原料液ノズルから噴射した原料液とキャリアガスとを混合し、原料液を気化し、気体状態の原料ガスを生成する。原料ガスは気化器の下流にて酸素ガスと混合し原料混合ガスとなる。原料混合ガス、可燃性ガス、および助燃性ガスをバーナに供給し、そこで燃焼反応によりSiO2微粒子を生成する。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
生成されたSiO2微粒子をコア母材上に堆積させる。所定量のSiO2微粒子を堆積させた後、気化器への原料供給を停止する。このとき、液体マスフローコントローラよりも下流の原料液配管ならびに原料液ノズルには原料液が溜まった状態であり、原料液の沸点以上に加熱された気化器内において原料液ノズルの先端部に重合生成物やゲル状物質を生じやすい。
【0008】
本発明は、上記課題に鑑みてなされたものであり、その目的は、オクタメチルシクロテトラシロキサン(OMCTS)に代表される有機シロキサン原料について、原料供給停止中に気化器内の原料液ノズルの先端部で重合生成物やゲル状物質が生成されることを防止することにある。
【課題を解決するための手段】
【0009】
すなわち上記の課題を解決すべく、本発明に係る光ファイバ用多孔質ガラス母材の製造装置は、有機シロキサンの原料液の流量を制御する液体マスフローコントローラと、原料液とキャリアガスとを混合し原料液を気化させて原料ガスとキャリアガスとが混合した混合ガスにする気化器と、気化器内に原料液を噴出する原料液ノズルと、気化器内にキャリアガスを供給するキャリアガス供給配管と、液体マスフローコントローラから供給される原料液を原料液ノズルに導く原料液配管と、混合ガスを可燃性ガスおよび助燃性ガスとともに燃焼してSiO2微粒子を生成するバーナと、混合ガスをバーナに供給する混合ガス配管と、原料液配管の流路上に設けられる開閉弁と、原料液配管に開閉弁と原料液ノズルとの間で合流しパージガスを供給するパージガス供給配管とを備える。
【0010】
本発明に係る製造装置は、パージガス供給配管に供給するパージガスの流量を調節する手段をさらに備えてもよい。また、キャリアガス供給配管に供給するキャリアガスの流量を調節する手段をさらに備えてもよい。
【0011】
本発明に係る製造装置は、混合ガス配管の途中で酸素ガスを合流させる酸素ガス供給配管をさらに備えてもよい。この場合、パージガス供給配管から供給されるパージガスの流量をLP、酸素ガス供給配管から供給される酸素ガスの流量をLO2としたときに、パージガスの開閉弁を閉じて原料供給を停止した状態において、パージガス供給配管および酸素ガス供給配管から、LO2/LP>14となるように、それぞれパージガスおよび酸素ガスを供給するとよい。
【0012】
本発明では、パージガス供給配管から供給されるパージガスの流量をLP、キャリアガス供給配管から供給されるキャリアガスの流量をLCとしたときに、開閉弁を閉じて原料供給を停止した状態において、パージガス供給配管およびキャリアガス供給配管から、LC/LP>10となるように、それぞれパージガスおよびキャリアガスを供給するとよい。
【0013】
また、本発明に係る光ファイバ用多孔質ガラス母材の製造方法は、有機シロキサンの原料液の流量を液体マスフローコントローラによって制御する工程と、液体マスフローコントローラから供給される原料液を原料液配管によって気化器の原料液ノズルに導く工程と、原料液を原料液ノズルから気化器内に噴出する工程と、気化器内において噴出した原料液とキャリアガスとを混合し原料液を気化させて原料ガスとキャリアガスとが混合した混合ガスにする工程と、混合ガスをバーナに供給する工程と、バーナにおいて混合ガスを可燃性ガスおよび助燃性ガスとともに燃焼してSiO2微粒子を生成する工程と、前記SiO2微粒子を出発コア母材に堆積させ、光ファイバ用多孔質ガラス母材を形成する工程と、原料液配管の流路上に設けた開閉弁を閉じて液体マスフローコントローラからの原料液の供給を停止する工程と、原料液配管の開閉弁と原料液ノズルとの間で合流するパージガス供給配管からパージガスを原料液配管に供給する工程とを備える。
【0014】
本発明に係る製造方法は、混合ガスに酸素ガスを追加混合してバーナに供給する工程をさらに備えるとよい。この場合、パージガス供給配管から供給されるパージガスの流量をLP、追加混合される酸素ガスの流量をLO2としたときに、パージガスを原料液配管に供給する工程において、LO2/LP>14となるように、それぞれパージガスおよび酸素ガスを供給するとよい。
【0015】
本発明に係る製造方法は、パージガス供給配管から供給されるパージガスの流量をLP、気化器内に供給されるキャリアガスの流量をLCとしたときに、パージガスを原料液配管に供給する工程において、LC/LP>10となるように、それぞれパージガスおよびキャリアガスを供給するとよい。
【0016】
本発明では、キャリアガスは、窒素、アルゴン、およびヘリウムのいずれかとするとよい。また、有機シロキサンは、オクタメチルシクロテトラシロキサン(OMCTS)とするとよい。
【発明の効果】
【0017】
本発明によれば、オクタメチルシクロテトラシロキサン(OMCTS)に代表される有機シロキサン原料について、原料液ノズルの先端部で重合生成物やゲル状物質が生成されることを防止することができる。
【図面の簡単な説明】
【0018】
【
図1】本実施形態の光ファイバ用多孔質ガラス母材製造装置における気化器の周辺の供給フロー図である。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態について詳細に説明するが、本発明は、これらに限定されるものではない。
図1は、本実施形態の光ファイバ用多孔質ガラス母材製造装置における気化器の周辺の供給フロー図である。原料タンク100に収容された原料液101は、液体マスフローコントローラ1で流量制御され、原料液配管101a、101bを通して気化器2に供給される。原料液101は気化器2内の原料液ノズル3の先端部より噴出し、同じく気化器2に導入されたキャリアガス102によって微細な液滴とされ、加熱される。これにより原料液101は気化され、原料ガスとキャリアガス102とが混合した混合ガス103となる。混合ガス103は、混合ガス配管103aを介してバーナ4に供給される。混合ガス103は、可燃性ガス104および助燃性ガス105とともに燃焼され、SiO
2微粒子が生成される。このとき原料ガスの燃焼を促進するため、混合ガス配管103aの途中で酸素ガス供給配管106aから供給される酸素ガス106を合流させ、混合ガスに酸素ガス106を混合してからバーナ4に供給してもよい。このようにSiO
2微粒子を生成しながら、往復移動手段(不図示)によりバーナ4を出発コア母材に沿って相対的に往復移動させることで、出発コア母材に対し外付け堆積を行う。
【0020】
気化器2の温度は、原料液101を効率よく気化し、かつ原料液101の重合を防ぐという観点に基づき設定される。有機シロキサン原料としてOMCTSを用いる場合、気化器2の温度を160℃以上220℃以下の温度に設定するのが好ましい。温度が低いと原料液の蒸気圧が低下し160℃を下回ると気化効率が著しく低下する。220℃を超えると、特に原料液ノズル3の付近で原料液101由来の重合物が析出する恐れがある。また、気化器2の下流に配されるバーナ4までの混合ガス配管103aは、混合ガス103中の原料ガスが液化しないように原料ガスの液化温度よりも高くなるように加熱することが好ましい。原料ガスの液化温度は実験により求めることが出来るほか、配管内圧力と混合ガス103中の原料成分のモル比率とから求めた原料ガス分圧Psを用いてAntoine式(式(1))から逆算して液化温度Tを簡便に求めることもできる。
【数1】
式中、A、B、およびCは原料種に応じて求められた係数である。
【0021】
例えば、原料として有機シロキサンのOMCTSを用いる場合、A=8.8828、B=1358.7、C=175.06という係数が知られており、これを用いるとOMCTSの分圧が30kPaの場合、Tは133℃になる。なお、式(1)はデータをフィッティングした実験式に過ぎないうえ、混合ガス103の流量変化などの影響で瞬間的にあるいは局所的に配管温度が数℃低下する可能性もある。このため、余裕をもって原料ガスの再液化を防ぐために、実際には混合ガス配管103aを、式(1)を用いて求めた液化温度Tよりも少なくとも20℃以上高い温度になるように加熱するのが好ましい。また、混合ガス配管103aの温度が220℃を超えると、混合ガス配管103aの内壁に原料物質由来の重合物が析出しやすくなるので、混合ガス配管103aの温度は220℃以下に抑えるのが好ましい。
【0022】
外付け堆積量が所定量に達した時点で、原料液配管101aと原料液配管101bとの間に設置した開閉弁5を閉じて原料液の供給を停止する。その後、開閉弁5よりも下流側の原料液配管101bに合流するパージガス供給配管107aからパージガス107を供給し、原料液配管101bならびに原料液ノズル3に溜まった原料液101を気化器2にパージする。パージガスは原料液と反応しにくい不活性ガスを用いるとよく、例えば、窒素、アルゴン、ヘリウムなどを用いるとよい。
【0023】
原料液101をパージした後も、気化器2内にキャリアガス102を供給し続けるとよい。こうすることにより、パージされた原料液が気化器2内で蒸発し原料ガスとなり、キャリアガス102と同伴され、混合ガス配管103aを通ってバーナ4に排出される。この際、パージされた原料液が全て蒸発するまでの間、バーナ4に可燃性ガス104および助燃性ガス105も供給して燃焼反応を継続するとよい。このようにすれば、未反応の原料ガスが凝縮して堆積容器の内壁を汚すのを防ぐことができる。このとき、パージされた原料液に起因してバーナ4から噴出するSiO2微粒子を多孔質ガラス母材の外周に更に堆積させてもよい。
【0024】
原料液101の供給を一旦停止して母材製造を完了した後、次の母材を製造するために開閉弁5を開いて再び原料液101の供給を開始する際、原料液101が原料液配管101bおよび原料液ノズル3内に残留するパージガスを完全に置換するまで時間がかかる。このため、原料液配管101bおよび原料液ノズル3におけるパージガスによってパージされる部分の容積はできる限り小さくするのが好ましい。原料としてOMCTSを用いる場合、パージされる原料液配管101bおよび原料液ノズル3の容積をV1[ml]、原料の液体マスフローコントローラのフルレンジ流量をF[g/min]としたときに、(0.95×60×V1)/F<10とするのが好ましい。より好ましくは(0.95×60×V1)/F<5とするのがよい。さらに好ましくは(0.95×60×V1)/F<1とするのがよい。なお、0.95[g/ml]は常温でのOMCTSの比重である。
【0025】
OMCTS以外の原料(比重をSとする)に一般化した場合、(S×60×V1)/F<10とすることが好ましく、(S×60×V1)/F<5とすることがより好ましく、(S×60×V1)/F<1とすることがさらに好ましい。
【0026】
配管の容積を小さくするべく、原料液配管の内径を細くしてもよく、原料液配管の長さを短くしても良い。原料液配管の内径を細くする場合、圧力損失が大きくなって製造中の原料液供給に影響が出ないように、原料の液体マスフローコントローラのフルレンジ流量Fを流したとき、原料液配管101b部にかかる圧力損失が10kPa以下となるように、原料液配管の内径と長さを調節するのが好ましい。圧力損失を5kPa以下とするのがより好ましく、1kPa以下とするのがより好ましい。
【0027】
このようにすれば、原料供給を停止した後、ガスパージされる容積が小さくなるため、次回原料供給を開始するときに、原料液配管101bおよび原料液ノズル3のみを原料液101に置換すればよく、液体マスフローコントローラ1で流量を制御した後、短時間でバーナ4まで原料が供給される。原料供給を開始した直後は、液体マスフローコントローラで供給する流量を(例えばフルレンジに設定するなどして)一時的に高めれば、更に置換時間を短縮できる。
【0028】
堆積終了後、原料供給を停止した後に、原料液配管101bや原料液ノズル3に残留している原料液101をパージする際、パージガス107の流量がキャリアガス102の流量に対して大きすぎると、バーナ4の出口で液化や不完全燃焼を起こしやすくなる。液化や不完全燃焼を起こして、未反応の原料液滴が製造中の多孔質ガラス母材の表面に付着したり、堆積するスート層の密度が局所的に低下したりすると、そこを起点として母材にひび割れが入る原因となる。液化は、パージされた原料液が気化器2内で十分に気化せずに液滴のままバーナ4に向かって放出されたり、混合ガス中の原料成分が高濃度となった状態でバーナ4に供給されることによってバーナ4近傍の低温部で凝縮したりして生じる。不完全燃焼は、混合ガス中の原料成分に対してバーナ4に供給される酸素ガス106や助燃性ガス105の流量が不足して生じる。
【0029】
原料液配管101bおよび原料液ノズル3に残留している原料液101はパージガス107に押し出されて気化器2内に噴出し、そこで気化する。気化器2内で気化した原料ガスの体積は供給された原料液の約100倍程度となるため、これを考慮してパージガスの流量がキャリアガスの流量に対して過度に大きくならないようにパージガスの流量を調節して流すのが好ましい。パージガス流量をLP[SLM]としたときに、原料液配管101bおよび原料液ノズル3に残留した原料液はパージガスによって、式(2)に従い流量Q1[g/min]で押し出される。
Q1=0.95×1000×LP ・・・(2)
【0030】
また、キャリアガス流量をLc[SLM]、気化器温度T
V[℃]における原料ガス(たとえば、気化したOMCTS)の飽和蒸気圧をPs[atm]、気化器内全圧をP[atm]、原料の分子量をM[g/mol]としたときに、原料流量Q
2[g/min]は式(3)で表される。
【数2】
【0031】
パージされる原料液配管101bおよび原料液ノズル3の容積をV
1[ml]としたとき、少なくともパージガスを流し始めてから時間が1000V
1/L
Pを経過するまでの間は、パージガスによって押し出される原料が気化不十分とならないように、Q
1<3×Q
2の関係を満たすように、パージガス流量Lpおよびキャリアガス流量Lcを調節するとよい。また、気化器2内の温度T
V[℃]における原料(例えばOMCTS)の飽和蒸気圧Ps[atm]は式(1)より求められる。原料液配管101bや原料液ノズル3をパージするパージガス供給配管107aには、
図1に示すように流量調節手段6を設けるとよい。流量調節手段6には、ニードル弁などの調整弁を使用してもよく、気体用のマスフローコントローラを用いてもよい。オリフィスなどの圧力損失部を設置して、前後の圧力を調節してもよい。こうしてキャリアガス流量をL
C、パージされる原料液配管101bおよび原料液ノズル3の容積をV
1としたとき、少なくともパージガスを流し始めてから時間がV
1/L
Pを経過するまでの間はL
CをL
C/L
P>10となるように調節するのが好ましく、L
C/L
P≧20とするとより好ましい。また、気化器2からバーナ4に向けて排出される混合ガスに対して酸素ガスを更に混合するとよい。そして、混合する酸素ガスの流量をL
O2、気化器2の容積をV
2としたときに、少なくともパージガスを流し始めてから時間がV
2/(L
C+L
P)を経過するまでの間はL
O2/L
P>14となるように流量を調節するのが好ましく、L
O2/L
P≧23とするとより好ましい。
【0032】
原料液配管101bや原料液ノズル3をパージするパージガス供給配管107aには、
図1に示すように、流量調節手段6の上流に開閉弁7を備えるとよい。開閉弁7は気化器2に原料液101が供給されているときには閉じ、原料の供給が停止し、ガスパージをするときに開く。開閉弁7を流量調節手段6の上流に設けることにより、ガスパージをするとき、開閉弁7が開いた直後から流量調節手段6に上流からのパージガスの圧力が掛かり始めてパージガスの流量が徐々に上昇する。このため、L
C/L
PやL
O2/L
Pを所定範囲に調整しやすい。また、流量調節手段6の下流に逆止弁8を備えておくことが好ましい。逆止弁8を設けることにより、原料を供給しているときにパージガス供給配管107aに原料液101が逆流するのを防ぐことができる。逆止弁8の代わりに開閉弁を用いてもよく、その場合は原料供給を停止しているときには開閉弁を開き、原料を供給しているときには開閉弁を閉じるとよい。
【0033】
原料供給を停止しているときには、開閉弁5は閉じた状態になるので、液体マスフローコントローラ1から開閉弁5までの原料液配管101aに溜まった原料液101が周囲温度変化によって圧力変動を起こすのを防ぐため、原料液配管101aの途中で分岐する原料液分岐配管101cを設けるとよい。原料液分岐配管101cに開閉弁9を設け、開閉弁5を閉じて原料供給を停止しているときには、開閉弁9を開けた状態にする。原料液分岐配管101cの先は、
図1に示したように原料タンク100に接続してもよいし、不図示の回収タンクとつなげてもよい。また、これらのタンク内の圧力が上昇したときには背圧弁等を使って脱圧できるようにしてもよい。また、開閉弁5を開いて原料を供給する時には、開閉弁9を閉じ、気化器2側にのみ原料液101が供給されるようにする。
【実施例】
【0034】
[実施例1]
有機シロキサンの原料液101としてOMCTS、キャリアガス102として窒素(N2)ガス、可燃性ガス104として水素(H2)ガス、助燃性ガス105として酸素(O2)ガスを用いた。なお、助燃性ガス105は、流量を独立して設定可能な第1助燃性ガスおよび第2助燃性ガス(いずれもO2ガス)として供給した。第1助燃性ガスおよび第2助燃性ガスは、バーナにおける互いに異なる噴出ポートから噴出された。外付け堆積を終了した後、原料は0g/minまで流量減少を行った。一方、原料以外のガスは流し続け、複数本のバーナを用い多孔質ガラス母材の堆積表面部を焼き締めた。
【0035】
このとき、キャリアガス102の流量Lcは21SLM、原料ガスとキャリアガス102との混合ガス103に追加混合する酸素ガス106の流量LO2は30SLM、可燃性ガス104は250SLM、第1助燃性ガスは25SLM、第2助燃性ガスは75SLMに設定し、それぞれ供給を行った。原料流量が0g/minになると同時に開閉弁5を閉じ、開閉弁9を開放した。その後、開閉弁7を開けることでパージガス供給配管107aより原料液配管101bおよび原料液ノズル3に残留した原料液101のパージを行った。パージガス107としては窒素(N2)ガスを使用し、流量L
P
を0.3SLMとして供給した。気化器2の温度は200℃とした。以上の条件のもと、パージを行ったところ、バーナ4の出口での不完全燃焼および液化を防ぐことができた。また、原料液ノズル3の先端部で重合生成物やゲル状物質が生成されることを防止することができた。
【0036】
[実施例2]
パージガス107の流量Lpを0.9SLMにした以外は、実施例1と同様の条件にて外付け堆積と堆積表面部の焼き締めを行った。その結果、パージ時におけるバーナ4の出口での不完全燃焼および液化を防ぐことができた。また、原料液ノズル3の先端部で重合生成物やゲル状物質が生成されることを防止することができた。
【0037】
[実施例3]
パージガス107の流量Lpを1.5SLMにした以外は、実施例1と同様の条件にて外付け堆積と堆積表面部の焼き締めを行った。その結果、パージ時においてバーナ4の出口で不完全燃焼が発生した。なお、原料液ノズル3の先端部では、重合生成物やゲル状物質が生成されることを防止することができた。
【0038】
[実施例4]
パージガス107の流量Lpを3.0SLMにした以外は、実施例1と同様の条件にて外付け堆積と堆積表面部の焼き締めを行った。その結果、パージ時においてバーナ4の出口で不完全燃焼および液化が発生した。なお、原料液ノズル3の先端部では、重合生成物やゲル状物質が生成されることを防止することができた。
【0039】
表1は、各実施例および比較例におけるパージガス107の流量Lp、混合ガス103に追加混合する酸素ガス106の流量L
O2、およびキャリアガス102の流量Lcと、そのときの不完全燃焼および液化の有無とを示している。
【表1】
【0040】
以上で説明した通り、いずれの実施例でも、原料供給停止中にパージガス107により原料液101のパージを行うことにより、気化器2内の原料液ノズル3の先端部で重合生成物やゲル状物質が生成されることを防止することができた。また、バーナ4の出口での液化を防ぐ観点から、LC/LP>10となるように調節するのが好ましく、LC/LP≧20とするとより好ましいことがわかった。また、不完全燃焼を防ぐ観点から、LO2/LP>14となるように流量を調節するのが好ましく、LO2/LP≧23とするとより好ましいことがわかった。
【符号の説明】
【0041】
1 液体マスフローコントローラ
2 気化器
3 原料液ノズル
4 バーナ
5 開閉弁
6 流量調節手段
7 開閉弁
8 逆止弁
9 開閉弁
10 流量調節手段
11 流量調節手段
101 原料液
102 キャリアガス
103 混合ガス
104 可燃性ガス
105 助燃性ガス
106 酸素ガス
107 パージガス
101a,101b 原料液配管
101c 原料液分岐配管
102a キャリアガス供給配管
103a 混合ガス配管
106a 酸素ガス供給配管
107a パージガス供給配管