(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-14
(45)【発行日】2022-12-22
(54)【発明の名称】二次パージ対応ALDシステムにおけるシャワーヘッド裏側の寄生プラズマを抑制するための方法及び装置
(51)【国際特許分類】
H01L 21/316 20060101AFI20221215BHJP
H01L 21/31 20060101ALI20221215BHJP
C23C 16/455 20060101ALI20221215BHJP
【FI】
H01L21/316 X
H01L21/31 C
C23C16/455
【外国語出願】
(21)【出願番号】P 2020138491
(22)【出願日】2020-08-19
(62)【分割の表示】P 2015144504の分割
【原出願日】2015-07-22
【審査請求日】2020-09-17
(32)【優先日】2014-07-30
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】エイドリアン・ラボイエ
(72)【発明者】
【氏名】フー・カン
(72)【発明者】
【氏名】クマル・プルショッタム
(72)【発明者】
【氏名】シャンカー・スワミナタン
(72)【発明者】
【氏名】チエン・ジュン
(72)【発明者】
【氏名】フランク・エル.パスクァーレ
(72)【発明者】
【氏名】クロエ・バルダッセローニ
【審査官】宇多川 勉
(56)【参考文献】
【文献】特開2014-012891(JP,A)
【文献】特開2005-142355(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/316
H01L 21/31
C23C 16/455
(57)【特許請求の範囲】
【請求項1】
半導体基板上に材料の膜を堆積させるための装置であって、
処理チャンバと、
前記処理チャンバ内の基板ホルダと、
前記処理チャンバに膜前駆体及び一次パージガスを流し込むためのシャワーヘッドと、
前記処理チャンバに二次パージガスを流し込むためのシャワーヘッド環であって、前記シャワーヘッドの柄の周りに配置されているシャワーヘッド環と、
前記シャワーヘッドを通る膜前駆体流及び一次パージガス流を制御するための1つ以上の一次流量弁と、
前記シャワーヘッド環を通る二次パージガス流を制御するための1つ以上の二次流量弁
と、
前記処理チャンバから一次パージガス及び二次パージガスを除去するための並びに前記処理チャンバ内において前記
半導体基板を取り巻く空間から膜前駆体を除去するための弁操作式真空源と、
前記処理チャンバ内においてプラズマを発生させるためのプラズマ発生器と、
半導体基板上に材料の膜を堆積させるために前記1つ以上の一次流量弁、前記1つ以上の二次流量弁、前記弁操作式真空源、及び前記プラズマ発生器を操作するための機械読み取り可能命令を含む1つ以上のコントローラであって、
(a)前記処理チャンバに膜前駆体を流し込むように前記1つ以上の一次流量弁を操作するための命令と、
(b)処理チャンバ内において膜前駆体が前記
半導体基板上に吸着して吸着制限層を形成するように前記処理チャンバ内の条件を制御するための命令と、
(c)前記処理チャンバに不活性ガスを含む一次パージガスを流し込むように前記1つ以上の一次流量弁を操作するための及び前記処理チャンバを真空に排気し、それによって吸着膜前駆体を取り巻く空間から少なくとも一部の未吸着膜前駆体を除去するように前記弁操作式真空源を操作するための命令と、
(d)前記吸着膜前駆体の反応を活性化させて前記
半導体基板上に膜層を形成させるプラズマを前記処理チャンバ内において発生させるように前記プラズマ発生器を操作するための命令と、
(e)(d)において前記反応が活性化されている間に、O
2
を二次パージガス
として前記処理チャンバに流し込むように前記1つ以上の二次流量弁を操作するための命令と、を含む、1つ以上のコントローラと、
を備える、装置。
【請求項2】
請求項1に記載の装置であって、
前記一次パージガスは、Ar及び/又はN
2を含む、装置。
【請求項3】
半導体基板上に材料の膜を堆積させるための装置であって、
処理チャンバと、
前記処理チャンバ内の基板ホルダと、
前記処理チャンバに膜前駆体及び一次パージガスを流し込むためのシャワーヘッドと、
前記処理チャンバに二次パージガスを流し込むためのシャワーヘッド環であって、前記シャワーヘッドの柄の周りに配置されているシャワーヘッド環と、
前記シャワーヘッドを通る膜前駆体流及び一次パージガス流を制御するための1つ以上の一次流量弁と、
前記シャワーヘッド環を通る二次パージガス流を制御するための1つ以上の二次流量弁と、
前記処理チャンバから一次パージガス及び二次パージガスを除去するための並びに前記処理チャンバ内において前記
半導体基板を取り巻く空間から膜前駆体を除去するための弁操作式真空源と、
前記処理チャンバ内においてプラズマを発生させるためのプラズマ発生器と、
半導体基板上に材料の膜を堆積させるために前記1つ以上の一次流量弁、前記1つ以上の二次流量弁、前記弁操作式真空源、及び前記プラズマ発生器を操作するための機械読み取り可能命令を含む1つ以上のコントローラであって、
(a)前記処理チャンバに膜前駆体を流し込むように前記1つ以上の一次流量弁を操作するための命令と、
(b)処理チャンバ内において膜前駆体が前記
半導体基板上に吸着して吸着制限層を形成するように前記処理チャンバ内の条件を制御するための命令と、
(c)前記処理チャンバに一次パージガスを流し込むように前記1つ以上の一次流量弁を操作するための及び前記処理チャンバを真空に排気しそれによって吸着膜前駆体を取り巻く空間から少なくとも一部の未吸着膜前駆体を除去するように前記弁操作式真空源を操作するための命令と、
(d)前記吸着膜前駆体の反応を活性化させて前記
半導体基板上に膜層を形成させるプラズマを前記処理チャンバ内において発生させるように前記プラズマ発生器を操作するための命令と、
(e)(d)において前記反応が活性化されている間に
O
2
を二次パージガス
として前記処理チャンバに流し込むように前記1つ以上の二次流量弁を操作するための命
令と、
(f)(a)~(d)の最中に前記二次パージガスを前記処理チャンバに流し込むように前記1つ以上の二次流量弁を操作するための命令と、
を含む、1つ以上のコントローラと、
を備える装置。
【請求項4】
半導体基板上に材料の膜を堆積させるための装置であって、
処理チャンバと、
前記処理チャンバ内の基板ホルダと、
膜前駆体及び一次パージガスを前記処理チャンバに流し込むためのシャワーヘッドと、
二次パージガスを前記処理チャンバに流し込むためのシャワーヘッド環であって、前記シャワーヘッドの柄の周りに配置されているシャワーヘッド環と、
前記シャワーヘッドを通る膜前駆体流及び一次パージガス流を制御するための1つ以上の一次流量弁と、
前記シャワーヘッド環を通る二次パージガス流を制御するための1つ以上の二次流量弁と、
前記処理チャンバから一次パージガス及び二次パージガスを除去するための並びに前記処理チャンバ内において前記
半導体基板を取り巻く空間から膜前駆体を除去するための弁操作式真空源と、
前記処理チャンバ内においてプラズマを発生させるためのプラズマ発生器と、
半導体基板上に材料の膜を堆積させるために前記1つ以上の一次流量弁、前記1つ以上の二次流量弁、前記弁操作式真空源、及び前記プラズマ発生器を操作するための機械読み取り可能命令を含む1つ以上のコントローラであって、
(a)前記処理チャンバに膜前駆体を流し込むように前記1つ以上の一次流量弁を操作するための命令と、キャリアガス流は、前記処理チャンバに前記膜前駆体を流し込むために使用され、
(b)処理チャンバ内において膜前駆体が前記
半導体基板上に吸着して吸着制限層を形成するように前記処理チャンバ内の条件を制御するための命令と、
(c)前記処理チャンバに一次パージガスを流し込むように前記1つ以上の一次流量弁を操作するための及び前記処理チャンバを真空に排気しそれによって吸着膜前駆体を取り巻く空間から少なくとも一部の未吸着膜前駆体を除去するように前記弁操作式真空源を操作するための命令と、
(d)前記吸着膜前駆体の反応を活性化させて前記
半導体基板上に膜層を形成させるプラズマを前記処理チャンバ内において発生させるように前記プラズマ発生器を操作するための命令と、
(e)(d)において前記反応が活性化されている間に、O
2
を二次パージガス
として前記処理チャンバに流し込むように前記1つ以上の二次流量弁を操作するための命令と、を含む、1つ以上のコントローラと、
を備える、装置。
【請求項5】
請求項4に記載の装置であって、
前記キャリアガスは、不活性ガスを含む、装置。
【請求項6】
請求項5に記載の装置であって、
前記キャリアガスは、N
2及び/又はArを含む、装置。
【請求項7】
半導体基板上に材料の膜を堆積させるための装置であって、
処理チャンバと、
前記処理チャンバ内の基板ホルダと、
前記処理チャンバに膜前駆体及び一次パージガスを流し込むためのシャワーヘッドと、
前記処理チャンバに二次パージガスを流し込むためのシャワーヘッド環であって、前記シャワーヘッドの柄の周りに配置されているシャワーヘッド環と、
前記シャワーヘッドを通る膜前駆体流及び一次パージガス流を制御するための1つ以上の一次流量弁と、
前記シャワーヘッド環を通る二次パージガス流を制御するための1つ以上の二次流量弁と、
前記処理チャンバから一次パージガス及び二次パージガスを除去するための並びに前記処理チャンバ内において前記
半導体基板を取り巻く空間から膜前駆体を除去するための弁操作式真空源と、
前記処理チャンバ内においてプラズマを発生させるためのプラズマ発生器と、
半導体基板上に材料の膜を堆積させるために前記1つ以上の一次流量弁、前記1つ以上の二次流量弁、前記弁操作式真空源、及び前記プラズマ発生器を操作するための機械読み取り可能命令を含む1つ以上のコントローラであって、
(a)前記処理チャンバに膜前駆体を流し込むように前記1つ以上の一次流量弁を操作するための命令と、
(b)処理チャンバ内において膜前駆体が前記
半導体基板上に吸着して吸着制限層を形成するように前記処理チャンバ内の条件を制御するための命令と、
(c)前記処理チャンバに一次パージガスを流し込むように前記1つ以上の一次流量弁を操作するための及び前記処理チャンバを真空に排気しそれによって吸着膜前駆体を取り巻く空間から少なくとも一部の未吸着膜前駆体を除去するように前記弁操作式真空源を操作するための命令と、
(d)前記吸着膜前駆体の反応を活性化させて前記
半導体基板上に膜層を形成させるプラズマを前記処理チャンバ内において発生させるように前記プラズマ発生器を操作するための命令と、
(e)(d)において前記反応が活性化されている間に、O
2
を二次パージガス
として前記処理チャンバに流し込むように前記1つ以上の二次流量弁を操作するための命令と、
(g)前記
半導体基板上に(1枚以上の)更なる層を堆積させるために(a)~(d)を1回以上繰り返すための命令と、を含む、1つ以上のコントローラと、
を備える、装置。
【請求項8】
半導体基板上に材料の膜を堆積させるための装置であって、
処理チャンバと、
前記処理チャンバ内の基板ホルダと、
前記処理チャンバに膜前駆体及び一次パージガスを流し込むためのシャワーヘッドと、
前記処理チャンバに二次パージガスを流し込むためのシャワーヘッド環であって、前記シャワーヘッドの柄の周りに配置されているシャワーヘッド環と、
前記シャワーヘッドを通る膜前駆体流及び一次パージガス流を制御するための1つ以上の一次流量弁と、
前記シャワーヘッド環を通る二次パージガス流を制御するための1つ以上の二次流量弁と、
前記処理チャンバから一次パージガス及び二次パージガスを除去するための並びに前記処理チャンバ内において前記
半導体基板を取り巻く空間から膜前駆体を除去するための弁操作式真空源と、
前記処理チャンバ内においてプラズマを発生させるためのプラズマ発生器と、
半導体基板上に材料の膜を堆積させるために前記1つ以上の一次流量弁、前記1つ以上の二次流量弁、前記弁操作式真空源、及び前記プラズマ発生器を操作するための機械読み取り可能命令を含む1つ以上のコントローラであって、
(a)前記処理チャンバに膜前駆体を流し込むように前記1つ以上の一次流量弁を操作するための命令と、
(b)処理チャンバ内において膜前駆体が前記
半導体基板上に吸着して吸着制限層を形成するように前記処理チャンバ内の条件を制御するための命令と、
(c)前記処理チャンバに一次パージガスを流し込むように前記1つ以上の一次流量弁を操作するための及び前記処理チャンバを真空に排気しそれによって吸着膜前駆体を取り巻く空間から少なくとも一部の未吸着膜前駆体を除去するように前記弁操作式真空源を操作するための命令と、
(d)前記吸着膜前駆体の反応を活性化させて前記
半導体基板上に膜層を形成させるプラズマを前記処理チャンバ内において発生させるように前記プラズマ発生器を操作するための命令と、
(e)(d)において前記反応が活性化されている間に、O
2
を二次パージガス
として前記処理チャンバに流し込むように前記1つ以上の二次流量弁を操作するための命令と、
(h)(a)の最中の少なくとも一部の時間に前記処理チャンバに前記二次パージガスを流し込むように前記1つ以上の二次流量弁を操作するための命令と、を含む、1つ以上のコントローラと、
を備える、装置。
【請求項9】
半導体基板上に材料の膜を堆積させるための装置であって、
処理チャンバと、
前記処理チャンバ内の基板ホルダと、
前記処理チャンバに膜前駆体及び一次パージガスを流し込むためのシャワーヘッドと、
前記処理チャンバに二次パージガスを流し込むためのシャワーヘッド環であって、前記シャワーヘッドの柄の周りに配置されているシャワーヘッド環と、
前記シャワーヘッドを通る膜前駆体流及び一次パージガス流を制御するための1つ以上の一次流量弁と、
前記シャワーヘッド環を通る二次パージガス流を制御するための1つ以上の二次流量弁と、
前記処理チャンバから一次パージガス及び二次パージガスを除去するための並びに前記処理チャンバ内において前記
半導体基板を取り巻く空間から膜前駆体を除去するための弁操作式真空源と、
前記処理チャンバ内においてプラズマを発生させるためのプラズマ発生器と、
半導体基板上に材料の膜を堆積させるために前記1つ以上の一次流量弁、前記1つ以上の二次流量弁、前記弁操作式真空源、及び前記プラズマ発生器を操作するための機械読み取り可能命令を含む1つ以上のコントローラであって、
(a)前記処理チャンバに膜前駆体を流し込むように前記1つ以上の一次流量弁を操作するための命令と、
(b)処理チャンバ内において膜前駆体が前記
半導体基板上に吸着して吸着制限層を形成するように前記処理チャンバ内の条件を制御するための命令と、
(c)前記処理チャンバに一次パージガスを流し込むように前記1つ以上の一次流量弁を操作するための及び前記処理チャンバを真空に排気しそれによって吸着膜前駆体を取り巻く空間から少なくとも一部の未吸着膜前駆体を除去するように前記弁操作式真空源を操作するための命令と、
(d)前記吸着膜前駆体の反応を活性化させて前記
半導体基板上に膜層を形成させるプラズマを前記処理チャンバ内において発生させるように前記プラズマ発生器を操作するための命令と、
(e)(d)において前記反応が活性化されている間に、O
2
を二次パージガス
として前記処理チャンバに流し込むように前記1つ以上の二次流量弁を操作するための命令と、
(i)(a)、(b)、(c)、及び(d)のそれぞれの最中の少なくとも一部の時間に前記処理チャンバに前記二次パージガスを流し込むように前記1つ以上の二次流量弁を操作するための命令と、を含む、1つ以上のコントローラと、
を備える、装置。
【発明の詳細な説明】
【背景技術】
【0001】
半導体産業におけるデバイス及び特徴の更なる小型化、並びに集積回路(IC)設計における3Dデバイス構造(例えば、IntelのTri-Gateトランジスタアーキテクチャ)の更なる普及にともなって、薄い共形膜(下方の構造の形状と比べて、たとえ平坦ではなくても厚さが均一な材料膜)を堆積させる能力の重要性が、益々高まっている。原子層堆積(ALD)は、共形膜の堆積に良く適した膜形成技術である。なぜならば、ALDは、その1つのサイクルで薄い材料層を1枚堆積させるのみであり、その堆積される層の厚さは、膜を形成する化学反応自体に先立って基板表面上に吸着され得る(すなわち、吸着制限層を形成する)1種以上の膜前駆体反応物の量によって制限されるからである。所望の厚さの膜を構築するために複数の「ALDサイクル」が使用されてよく、結果として得られる膜は、各層が薄くて且つ共形であるゆえに、下方のデバイス構造の形状に実質的に合致する。
【0002】
しかしながら、ALDプロセスには、多くの課題が伴う。これらの課題は、多くの場合、ALDがその1つのサイクルで薄い吸着制限層を1層堆積させるのみであり、したがって、十分な厚さの膜を構築するためには多くのALDサイクルが必要とされ、堆積プロセスを達成するために使用される装置の一連の操作の繰り返しが必要であるという事実と関係がある。したがって、ウエハ処理の速度を向上させるとともに、ALD操作を実施するために使用される基板処理ハードウェアの寿命要件及び整備要件も向上させる、改善された方法及び装置が求められている。
【発明の概要】
【0003】
二次パージの使用によって半導体基板上に材料の膜を堆積させる方法が開示される。この方法は、処理チャンバに膜前駆体を流し込むこと、膜前駆体が基板上に吸着制限層を形成するように、処理チャンバ内において膜前駆体を基板上に吸着させること、を含んでいてよい。方法は、更に、一次パージガスによって処理チャンバをパージすることによって、吸着前駆体を取り巻く空間から少なくとも一部の未吸着膜前駆体を除去すること、その後、処理チャンバに二次パージガスが流し込まれている間に上記吸着膜前駆体を反応させ、その結果として基板上に膜層を形成させること、を含んでいてよい。二次パージガスは、O2のイオン化エネルギ及び/又は解離エネルギ以上のイオン化エネルギ及び/又は解離エネルギ以上を有する化学種を含んでいてよい。
【0004】
半導体基板上に材料の膜を堆積させるための装置も開示される。この装置は、処理チャンバと、この処理チャンバ内の基板ホルダと、処理チャンバに膜前駆体及び一次パージガスを流し込むためのシャワーヘッドと、処理チャンバに二次パージガスを流し込むためのシャワーヘッド環と、シャワーヘッドを通る膜前駆体流及び一次パージガス流を制御するための1つ以上の一次流量弁と、シャワーヘッド環を通る二次パージガス流を制御するための1つ以上の二次流量弁と、処理チャンバから一次パージガス及び二次パージガスを除去するための並びに処理チャンバ内において基板を取り巻く空間から膜前駆体を除去するための弁操作式真空源と、処理チャンバ内においてプラズマを発生させるためのプラズマ発生器と、半導体基板上に材料の膜を堆積させるために1つ以上の弁、真空源、及びプラズマ発生器を操作するための機械読み取り可能命令を含む1つ以上のコントローラと、を含んでいてよい。コントローラの命令は、処理チャンバに膜前駆体を流し込むように(1つ以上の)一次流量弁を操作するための命令と、処理チャンバ内において膜前駆体が基板上に吸着して吸着制限層を形成するように処理チャンバ内の条件を制御するための命令と、処理チャンバに一次パージガスを流し込むように(1つ以上の)一次流量弁を操作するための及び処理チャンバを真空に排気しそれによって吸着前駆体を取り巻く空間から少なくとも一部の未吸着膜前駆体を除去するように弁操作式真空源を操作するための命令と、吸着膜前駆体の反応を活性化させて基板上に膜層を形成させるプラズマを処理チャンバ内において発生させるようにプラズマ発生器を操作するための命令と、吸着膜前駆体の反応がプラズマによって活性化されている間にO2を含む二次パージガスを処理チャンバに流し込むように(1つ以上の)二次流量弁を操作するための命令と、を含んでいてよい。
【図面の簡単な説明】
【0005】
【
図1】処理ステーションが1つである処理チャンバを有する基板処理装置を示す概略図である。
【
図2】2つのプロセスステーションへの/からの基板の取り込み/取り出しのための基板取扱ロボットと、装置を操作するためのコントローラとを有する4ステーション式基板処理装置を示す図である。
【
図3】シャワーヘッドとシャワーヘッド環とを有する1ステーション式基板処理装置の処理チャンバを示す断面図であり、一次パージガス及び二次パージガスの流路が描かれている。
【
図4】処理チャンバ内においてシャワーヘッドの後方に発生する寄生プラズマの存在及び強さを示すために使用される堆積速度対RF電力のグラフである。
【
図5】ALDプロセスを通じて基板上に材料の膜を形成するための一連の操作の一例を示すフローチャートである。
【
図6】基板処理チャンバ内のシャワーヘッド及びシャワーヘッド環を示す更に詳細な断面図であり、やはり、一次パージガス及び二次パージガスの流路が示されている。
【
図7】シャワーヘッド環の一例を示す斜視図である。
【
図8】
図7のシャワーヘッド環のための流体コネクタの一例を示す斜視図である。
【
図9A】
図6のシャワーヘッドの板の一例を示す上面図である。
【
図9B】
図6のシャワーヘッドの板の一例を示す底面図である。
【発明を実施するための形態】
【0006】
以下の説明では、本発明の完全な理解を与えるために、数々の具体的詳細が明記されている。しかしながら、本発明は、これらの詳細の一部又は全部を伴わずとも実施され得る。また、本発明を不必要に不明瞭にしないために、周知のプロセス操作の詳細な説明は、省略されている。本発明は、特定の詳細な実施形態との関連のもとで説明されているが、これらの特定の詳細な実施形態は、本発明の概念の範囲を本明細書で開示される範囲に制限することを意図していない。
【0007】
本明細書で開示されるのは、原子層堆積(ALD)を通じて共形膜を堆積させるために使用される半導体基板処理チャンバ内において寄生プラズマの発生を抑制するための方法及び装置である。
【0008】
ALDは、各サイクルで薄い材料層1枚のみ(多くの場合、単分子層1枚分の厚さに過ぎない)を堆積させる複数の「ALDサイクル」を実施することによって所望の厚さの材料の膜を堆積させるために使用される。以下で詳しく説明されるように、処理チャンバ内において基板上に1枚の材料層を堆積させるための基本のALDサイクルは、(i)膜前駆体を、それが基板上に吸着制限層を形成するように基板上に吸着させること、(ii)吸着前駆体を取り巻く空間から、未吸着膜前駆体(の少なくとも一部)を除去すること、(iii)未吸着膜前駆体を除去した後に、吸着膜前駆体を反応させて、基板上に膜層を形成させること、を含んでいてよい。多くの場合、ALDサイクルは、更に、(iv)基板上に形成された膜層を取り巻く空間から脱離膜前駆体及び/又は反応副生成物を除去することを含む。
【0009】
操作(ii)及び操作(iv)における除去は、基板を取り巻く空間をパージする、ポンプで基準圧力まで下げる(「ポンプで基準圧力にする」)などを通じて成されてよい。一部の実施形態では、これらのパージは、論理上、本明細書で「一次パージ」又は「バーストパージ」と呼ばれるものと「二次パージ」と呼ばれるものとに分けられる。一次パージは、本明細書で「一次パージガス」として言及されるガスの使用を伴い、このガスは、「一次パージガス源」から発せられて、一次パージガス流路をたどり、1つ以上の一次パージガス入口を通って処理チャンバに導入される。同様に、二次パージは、本明細書で「二次パージガス」として言及されるガスの使用を伴い、このガスは、「二次パージガス源」から発せられて、二次パージガス流路をたどり、1つ以上の二次パージガス入口を通って処理チャンバに導入される。
【0010】
一次パージは、通常は、操作(ii)の最中に生じ、操作(iv)において別のパージが成される実施形態では、そのパージの最中にも生じる。しかしながら、一次パージは、通常は、操作(i)及び操作(iii)の最中には生じず、一部の実施形態では、操作(iii)における反応に先立って、実質的に全ての一次パージガスが処理チャンバから除去することができる。したがって、一次パージは、一次パージガスの流れが間欠的であるゆえに、本明細書では(「バーストパージガス」を用いる)「バーストパージ」とも呼ばれる。一次パージという用語と、バーストパージという用語は、本明細書では同義として使用される。
【0011】
本明細書で「二次パージ」と呼ばれるものは、「一次パージ」とは区別して捉えられる。一次パージとは対照的に、二次パージの最中は、ガスは、操作(iii)において反応が発生している間に、基板表面上で起きている反応プロセスを実質的に妨害しない、すなわち干渉しないやり方で処理チャンバに流し込まれてよい。一部の実施形態では、二次パージガスは、操作(i)~(ii)、及び/又は(iv)の最中に処理チャンバに流し込まれてもよく、そのうちの特定の実施形態では、操作(i)~(iv)の最初から最後まで継続的に処理チャンバに流し込まれてよい。
【0012】
処理チャンバに入る二次パージガスの流量は、実施形態に応じて、処理チャンバに入る一次パージガスの流量と異なっていてよい。一部の実施形態では、一次パージガスは、約1,000~100,000sccmの、又はより好ましくは約5,000~45,000sccmの、又はひいては約10,000~30,000sccmの流量で、処理チャンバに流し込まれてよい。一部の実施形態では、二次パージガスは、約1~50,000sccmの、又はより好ましくは約1~30,000sccmの、又はひいては約1,000~20,000sccmの流量で、処理チャンバに流し込まれてよい。
【0013】
ALDプロセスにおける二次パージの使用は、二次パージが操作(iii)の最中に実行されることに関係して、及び二次パージガスが(一次パージの場合のように)基板に直接向けられるのではなく処理チャンバ内の遠隔領域に向けられることに関係して、幾つかの有益な効果を有するだろう。チャンバ内の遠隔領域、すなわち基板表面のすぐ近くではない領域への二次パージガスの流れは、余分な未吸着膜前駆体を処理チャンバから除去するのに有用であり、更には、チャンバ内のそれらの遠隔領域に最初に膜前駆体が流れ込むのを防ぐにも役立つだろう。後者を実現するためには、二次パージは、膜前駆体がチャンバに流れ込む操作(i)の最中にも実行されることになる。操作(iii)の最中における二次パージの利用は、チャンバの内表面を、例えば、基板表面で起きる反応プロセスの最中にそこから前駆体が脱離し次いでチャンバ側壁上などのどこか他の場所に再吸着されて再反応する結果として発生するかもしれないあらゆる誤った堆積から保護する。二次パージを利用する機能を備えた基板処理装置の詳細な例を説明する前に、先ず、膜堆積装置の概要が説明される。
【0014】
膜堆積装置の概要
半導体基板上に膜を堆積させるための操作は、通常は、
図1に示されるような基板処理装置において実施することができる。以下で更に詳しく説明される
図1の装置100は、真空ポンプ118によって真空下に維持可能な内部空間内に1つの基板ホルダ108(例えば、台座)を伴う1つの処理チャンバ102を有する。チャンバには、(例えば)膜前駆体、キャリアガス及び/又はパージガス及び/又はプロセスガス、二次反応物などの供給のために、ガス供給システム101及びシャワーヘッド106も流体的(流体連通可能)に結合されている。
図1には、処理チャンバ内においてプラズマを発生させるための装備も示されており、以下で更に詳しく説明される。いずれにせよ、以下で詳しく説明されるように、
図1で図解される装置は、半導体基板に対してALDなどの膜堆積操作を実施するための基本的な装備を提供するものである。
【0015】
状況次第では、
図1のような基板処理装置でも十分かもしれないが、時間がかかる膜堆積操作が関わる場合は、複数の堆積操作を複数の半導体基板に対して並列に同時に実施することによって基板処理のスループットを高めることが有利だろう。この目的のためには、
図2に図解されるようなマルチステーション式基板処理装置が用いられてよい。
図2の基板処理装置200は、やはり1つの基板処理チャンバ214を用いているが、処理チャンバの壁によって定められた1つの内部空間内に、複数の基板プロセスステーションがあり、各プロセスステーションは、そのプロセスステーションにおいてウエハホルダによって保持されている基板に対して処理操作を実施するために使用されてよい。この特定の実施形態では、マルチステーション式基板処理装置200は、4つのプロセスステーション201、201、203、及び204を有するものとして示されている。装置は、また、プロセスステーション201及び202に基板を搭載するために、この場合は基板取扱ロボット226である基板搭載機器と、様々なプロセスステーション201、202、203、及び204間で基板を移送するために、この場合は基板カルーセル290である基板移送機器とを用いる。その他の類似のマルチステーション基板処理装置は、実施形態、及び例えば所望の並列ウエハ処理レベル、サイズ/スペースの制限、コストの制約などに応じ、更に多い又は少ないプロセスステーションを有していてもよい。また、後ほど更に詳しく説明される
図2には、原子層堆積(ALD)操作において一次パージガス及び二次パージガスを伴う基板堆積操作を効率良く実施するという目標にも有用なコントローラ
250も示されている。
【0016】
図2に示されるようなマルチステーション式基板処理装置の使用を通じて装備コスト及び運転費用の両方に関して様々な効率化が実現され得ることに留意せよ。例えば、4つ全てのプロセスステーションのために1つの高真空環境を形成するために、1つの真空ポンプ(
図2には示されていないが、例えば
図1における118)が使用されてよく、4つ全てのプロセスステーションに対し、消費されたプロセスガスなどを排出させるために使用することができる。実施形態によっては、各プロセスステーションは、ガス供給のために自身専用のシャワーヘッド(例えば
図1における106を参照せよ)を有していてよく、ただし、ガス供給システム(例えば
図1における101)に関しては、同じものを共有していてよい。同様に、プロセスステーション間では、プラズマを発生させる装備のうちの特定の構成要素(例えば電源)が共有されてよく、ただし、実施形態によっては、(例えば、プラズマ発生電位を印加するためにシャワーヘッドが使用される場合などでは(以下の
図1の議論を参照せよ)、)特定の構成要素がプロセスステーョン特有であってよい。ただし、再度述べるが、このような効率性は、反応チャンバごとに2、3、5、6、7、8、9、10、11、12、13、14、15、又は16、又は更に多くなどのように、処理チャンバごとに更に多い又は少ない数のプロセスステーションを使用することによって、実現の程度が高められても抑えられてもよいことが理解される。
【0017】
二次パージの実装及び用途
シャワーヘッド設計を利用する基板処理装置は、特に、二次パージの使用から恩恵を受けるだろう。このような設計では、シャワーヘッドの主目的は、操作(i)における基板表面への吸着のために処理チャンバに膜前駆体が導入されるメカニズムを提供することにある。シャワーヘッド設計は、点源として機能する数本のノズルのみで実現されるよりも空間的に均一に膜前駆体流が基板方面に分配されることを可能にする。シャワーヘッドは、また、適切な電位の印可を受けて、表面反応の活性化につながる操作(iii)におけるプラズマ発生のために使用される2つの電極のうちの1つとして機能してよい。これらの目的に加えて、シャワーヘッドは、操作(ii)及び/又は(iv)の最中に処理チャンバに一次パージガス流を導入するためにも使用されてよく、その際は、一次パージガスに関しても、より優れた空間的均一性を達成することができる。しかしながら、処理チャンバにパージガスを導入するこの方法に伴う問題は、上記の流れが、通常はシャワーヘッド後方の空所を効果的にパージするものではないことである。このため、シャワーヘッドの裏側やシャワーヘッド後方/上方のチャンバ壁などにおける望ましくない堆積を最小限に抑える又は防ぐことができるという点で、シャワーヘッド後方/上方の空間/空所に直接入る二次パージガス流が、極めて有益だろう。
【0018】
このような実施形態の1つが、
図3に図解されている。
図3は、処理チャンバ102と、シャワーヘッド106と、シャワーヘッド環330とを有する1ステーション式基板処理装置300の断面を示しており、一次パージガス流路310及び二次パージガス流路320がそれぞれ描かれている。
図3に示される構成では、一次パージガス源312からの一次パージガスが、シャワーヘッド106を通じてチャンバ102に流れ込み、二次パージガス源322からの二次パージガスが、シャワーヘッド環330を通じてチャンバ102に流れ込む。したがって、ここでの二次パージガスは、シャワーヘッド106の裏側の中心軸の近くで処理チャンバ102に導入され、台座108上に保持されている基板112の面に実質的に平行な流れで導入される。このように導入される二次パージガスは、(図中、矢印で図示されているように)クロス板
303の付近においてチャンバから出る前に、シャワーヘッドを回り込み、チャンバの側壁沿いに下っていくだろう。このようにして、二次パージガスは、チャンバ102の内壁への堆積を最小限に抑える及び/又は防ぐことができる。一部の例では、シャワーヘッド後方の空所内におけるパージガス流は、ペクレ条件(通常は、ペクレ数が1よりも大きいこと)を満たしており、したがって、上記空所内では、前駆体の逆拡散(又は逆流)が阻止され、その結果、望ましくない堆積を最小限に抑えつつも、有効チャンバ体積が縮小される。
【0019】
総じて
図3にしたがって実現される二次パージガスの使用による更なる利点は、処理チャンバが、極めて高価であろう膜前駆体の代わりに不活性ガスを使用してチャンバ圧力を蓄積可能であることである。高いチャンバ圧力は、膜前駆体に対してエアカーテンの役割を果たすことによって、随所における前駆体の分圧を下げつつも、基板領域における前駆体の分圧を高めることができる。高いチャンバ圧力は、また、それ自体が、チャンバの内表面/内壁における誤った堆積を低減させられるうえに、高圧レジームゆえの寄生プラズマ発生(後ほど更に詳しく論じられる)の機会(又は強さ)も抑えることができる。
【0020】
図3に図解されるものと同様な、一次パージガス流及び二次パージガス流を発生させるために利用可能な適切なシャワーヘッド及びシャワーヘッド環が、
図6~9との関連のもとで、後ほど更に詳しく説明される。このような二次パージガスの使用、シャワーヘッドの裏側へのその導入、及び関連の装置の詳細は、2012年10月24日に出願された発明の名称を「SUPPRESSION OF PARASITIC DEPOSITION IN A SUBSTRATE PROCESSING SYSTEM BY SUPPRESSING PRECURSOR FLOW AND PLASMA OUTSIDE OF SUBSTRATE REGION(基板領域の外における前駆体流及びプラズマを抑制することによる、基板処理システムにおける寄生堆積の抑制)」とする、先行する米国特許出願第13/659,231号でも説明されている。この出願は、米国特許公報第2013/0344245号として公開され、その全体をあらゆる目的のために参照によって本明細書に組み込まれる。
【0021】
二次パージを利用する方法及び装置における寄生プラズマの抑制
二次パージは、通常は、ALDプロセスにおける膜形成反応操作(上記の操作(iii))の最中に進行中であるので、二次パージガスとしては、膜形成反応に干渉しないように、不活性ガスが選ばれるのが一般的である。先行研究では、二次パージガスとして、N2が選ばれることが多かった。しかしながら、二重パターン形成などの特定の用途では、堆積膜の窒素含量が厳密に制御されなければならず、また、二次パージガスとしてのN2の使用は堆積膜への窒素の取り込みを招くことが多いゆえに、N2は、優れた選択肢ではないことが多い。
【0022】
これは、以下の表1に示されている。表1は、一次/バーストパージ(「BP」)ガス、二次パージ(「2ndP」)ガス、及びキャリアガスを4つの異なる組み合わせで使用して堆積された4種類の膜組成を示している。シリコン及び酸素の含量は、大体のイオン数で挙げられ、窒素、水素、及び炭素の含量は、一立方センチメートルあたりの数を単位とした密度で挙げられる。膜組成は、二次イオン質量分析法(「SIMS」)を使用して測定された。表の1行目は、一次パージガス、二次パージガス、及びキャリアガスとしてN2を使用して用意された基準膜組成を示している。この基準組成と比べて、表の2行目は、一次/バーストパージガス及び二次パージガスの両方としてのN2をArで置き換えると、堆積膜内の窒素濃度が(Siイオン数で計って)約40%減少することを示している。表1の3行目に挙げられた例は、一次/バーストパージガスをArで置き換える一方で二次パージガスとしてはN2を維持すると、同様なN2濃度の減少を得られないことを示している。一次/バーストパージガスとしてArを使用するだけでは、同程度の窒素濃度の減少が達成されないので、一次/バーストパージガスの選択は、堆積膜内のN濃度に大きく影響しないと結論付けられる。これは、堆積膜に取り込まれる可能性がある一次/バーストパージガスが、膜形成反応工程(上記の操作(iii))の最中には処理チャンバ内に存在しない(又はほとんど存在しない)ことに基づいて、理論的に説明することができる。これに対し、二次パージガスは、通常、膜形成反応工程(操作(iii))の最中に存在しており、ゆえに、堆積膜に化学種を与え得る。この分析を更に支持するものとして、表1の最後の行は、一次/バーストパージガス及びキャリアガスの両方としてArが使用される場合の膜組成を挙げている。これが基準組成と比べてN含量の減少をもたらさない事実は、堆積膜への主要な窒素提供元が二次パージガスであるという分析を支持している。
【0023】
【0024】
以上のSIMS実験は、したがって、ALDプロセスにおける不活性二次パージガスとしてN
2の代わりにアルゴン(Ar)を使用することが、結果として得られる堆積膜内のN含量を制御する/減少させるのに有効であることを示している。しかしながら、Arによる実験は、N
2とは異なる理由ではあるが、Arもやはり、二次パージガスとしては理想とは言えないことを明らかにしている。なぜならば、操作(iii)における膜形成反応は、通常はプラズマによって活性化され、プラズマによって発生したRF場は、二次パージの最中に処理チャンバ内に存在しているのが一般的であるからである。実験によると、このRF場は、基板表面の付近に、吸着膜前駆体の表面反応を活性化させるために使用されるプラズマである「メインプラズマ」を発生させるのに加えて、チャンバ内の遠隔領域に、「寄生プラズマ」も形成する恐れがある。例えば、
図3に示される実施形態で成されるように、膜前駆体及び一次パージガスの両方を分配するためにシャワーヘッドが使用され、このシャワーヘッドの上方/後方から二次パージガスが分配される実装形態では、処理チャンバ内におけるシャワーヘッドの後方/上方の領域に、強い/密な寄生プラズマが発生することがわかっている。この意図せぬプラズマは、非常に明るく、したがって、恐らくは非常に密である/強いことが認められている。更に、シャワーヘッドの上部と、処理チャンバの上壁/天井との間の領域の体積は、相当に大きいので、このプラズマは、体積的にかなり大きいと考えられ、それに結合されて高いプラズマ密度を有するので、基板上における膜形成反応を活性化させるために使用されるメインプラズマから、大量の電力を引き出す恐れがある。
【0025】
寄生プラズマの形成は、したがって、様々な理由から望ましくないとされる。先ず、寄生プラズマは、メインプラズマから電力を引き出してその密度を落ち込ませる恐れがある「未制御の」電力溜めである。更に、寄生プラズマの密度及びそれによる電力引き出しは、様々な要因に基づいて変動し得るので、(膜形成反応を活性化させる)メインプラズマに対するその影響もまた、変動し得るうえに予測不能であり、したがって、ウエハ間のばらつきを招く大きな要因になる恐れがある。また、寄生プラズマは、結果としてチャンバ壁の表面への堆積を促すかもしれず、このような堆積は、基板上の堆積膜を汚染させる粒子の源として機能する恐れがある。したがって、強い/密な寄生プラズマを伴う操作は、ウエハ間の再現性、ツールのズレ、プロセス粒子の性能、シャワーヘッド構成要素及び/若しくはその他のチャンバ構成要素の腐食の増加に関係した長期的な問題、並びに/又は生産性に関係したその他の問題を招く可能性が高く、したがって、これらの望ましくない結果を防ぐ/最小限に抑えるためには、ALDプロセスにおける寄生プラズマの発生を部分的に又は完全に抑制/排除することが重要な目標になる。
【0026】
この問題を解決するためのアプローチは、1つには、強いプラズマを容易に(又は全く)形成せずしかも(操作(iii)における)膜形成反応に干渉しない又は膜の中身を不利に変化させない二次パージガスを思慮深く選択することである。このような選択肢の1つが、分子酸素(O2)である。一次パージガスとしてのArとともに二次パージガスとしてO2が使用されるときは、シャワーヘッドの後方で発生する寄生プラズマが、一次パージガス及び二次パージガスの両方としてArを使用するときに発生するだろう寄生プラズマと比べて大幅に弱いことがわかっている。
【0027】
特定の理論に縛られることなく、O2が使用されるときの寄生プラズマがArの場合と比べて弱いことの理由は、O2をベースにしたプラズマが、Arをベースにしたプラズマと比べて、それを維持するために大幅に高いレベルのRF電力を必要とするからだと考えらえる。これは、恐らくは、酸素-酸素分子結合に関係付けられた解離エネルギが大きいこと、及び酸素原子に関係付けられたイオン化エネルギが高いことに起因する。したがって、O2をベースにしたプラズマは、(Arをベースにしたプラズマなどの)その他のタイプのプラズマと比べて、プラズマを維持するためのRF電力が同じ場合の電子密度が低いことがわかっており、したがって、総じて、「弱プラズマ」と呼ぶことができる。このように、ALDサイクルのプラズマ活性化工程では、シャワーヘッドと基板との間にArプラズマを発生させる/点火するために使用されるRF電力及びシャワーヘッド電圧は、シャワーヘッド上方の空所内にO2プラズマを発生させる/点火するには不十分である、又はたとえもし幾らかの点火があったとしても、そのO2プラズマは非常に弱い(そして明らかに暗い)。好ましい二次パージガスのその他の特性に関しては、Ar/O2混合は、N2と異なり、代表的なプラズマALD表面反応と共存可能であることがわかっているのみならず、O2の存在によって(少なくとも一部の実施形態では)膜の品質が向上することも実際にわかっている。
【0028】
特定の例について、Arをベースにした寄生プラズマの存在によってメインプラズマからRF電力が引き出される程度、及びO2を二次パージガスとして使用することによって達成され得る改善の程度を詳述して定量化するために、数値的な研究及び実験的な研究が実施されている。
【0029】
表IIは、一次/バーストパージガス、二次パージガス、及びRF電力レベルの様々な組み合わせからなる5つの異なるプロセス条件集合を挙げている。挙げられた5つのプロセス条件集合のそれぞれにしたがって、1枚のウエハが処理された。表に示されるデータは、左から順に、ワット単位のRF電力レベル、オングストローム(Å)単位の平均堆積膜厚さ(各ウエハの表面上の49個の地点で測定される)、NU%(厚さの不均一性のパーセンテージ)(1標準偏差、やはり、各ウエハの表面上の49個の地点で測定される)、堆積膜厚さの範囲(堆積膜の最も薄い地点と最も厚い地点との間の差)、NU%(R/2)(「半区間不均一性」と呼ばれる統計的測定値であり、1/2×(最大厚さ-最小厚さ)/平均厚さ×100%として定義される)、プロセスステーションごとの堆積サイクル数(4つのプロセスステーションが使用された)、ALDサイクルごとの堆積速度(例えば、1.5408Å/サイクル=349.8Å/(58サイクル×4))、一次/二次パージガスの組み合わせとしてN2/N2を使用した場合と比べた推定電力供給レベル、及び(やはり、N2/N2を使用した場合と比べた)電力損失のパーセンテージである。
【0030】
【0031】
表IIで用いられる手順は、寄生プラズマの不在下における堆積速度とRF電力レベルとの間の定量的関係を確立し、次いで、寄生プラズマの存在に起因して電力が失われる程度を推定するために二次パージガスとしてAr及びO
2を使用して再び堆積速度を測定するものである。したがって、表IIにおける先頭から3つ目までのエントリは、一次パージガス及び二次パージガスの両方としてN
2を使用しエントリごとにRF電力レベルを変えて行った実験に対応している。これら3つのデータ点は、次いで、堆積速度(「堆速」)対RF電力レベルのグラフである
図4にプロットされ、堆積速度と電力との間の関係を示すために、算出された最良適合線が図に示された。
【0032】
表IIにおける4番目のエントリは、次いで、一次/バーストパージガス及び二次パージガスの両方としてArが使用される堆積実験の結果を示している。表は、堆積速度が、N
2を使用して1600WのRF電力で得られた1.508Å/サイクルから、1600Wにおける1.66Å/サイクルまで増加したことを示している。次いで、
図4における関係から、電力損失が、N
2を使用した場合のおおよそ47%であることが推定された(堆積速度は、電力レベルに反比例する。
図4を参照。)。
【0033】
最後に、表IIにおける5番目のエントリは、二次パージガスとしてArをO2で置き換えたことによる効果を示している。表は、この実験では、堆積速度が、1600Wにおける1.545Å/サイクルまで戻り、N2を使用した場合の堆積速度にずっと近くなったことを示している。これは、寄生プラズマの存在に起因する電力損失が、N2を使用した場合の僅か11%であったことに相当し、これは、Arを使用する場合と比べて大幅な改善である。
【0034】
したがって、分子酸素の使用によって、上述された問題が大きく緩和されたことがわかる。要するに、データ及び関連の計算は、寄生プラズマによって消費されるRF電力が、処理ステーションに供給されるRF電力の合計の50%近くになり得るのに対し、O2への置き換えによって、電力損失が、(少なくともこの例では)10%近くまで軽減され得ることを示している。以上の分析を一般化すると、アルゴンの又は操作(iii)における反応活性化プラズマを支援するために使用されるその他の種のイオン化エネルギと比べて大きいイオン化エネルギ及び解離エネルギを有する化学種が、二次パージガスとして優れた候補であり得ることが結論付けられる。もちろん、それらの存在/使用は、膜形成反応と及び(N2の場合ではなくO2の場合の)堆積膜の所望特性と共存可能でもなければならない。表IIIは、以上の点をまとめたものである。
【0035】
【0036】
原子層堆積技術及び堆積膜の詳細な説明
上述されたように、デバイスの小型化が進むにつれて、並びにICが3Dトランジスタ及びその他の3D構造の利用に移行するにつれて、正確な量(厚さ)の共形膜材料を堆積させる能力の重要性が、益々増している。共形膜材料としては、特に誘電体が挙げられるが、様々なドーパント含有材料も可能である。原子層堆積は、共形膜の堆積を実現する技術の1つであり、通常は、複数の堆積サイクルによって所望の膜厚を実現する。
【0037】
活性化された気相反応を使用して膜を堆積させる化学気相成長(CVD)プロセスとは対照的に、ALDプロセスは、表面介在性の成膜反応を使用して膜を一層ずつ堆積させる。例えば、ALDプロセスの一種では、第1の膜前駆体(P1)が、気相の形で処理チャンバに導入され、基板に暴露され、基板の表面上(の通常は表面活性部位が集中しているところ)に吸着される。P1の分子の一部は、基板表面上に、P1の化学吸着種及び物理吸着分子を含む凝縮相を形成することができる。次いで、気相及び物理吸着P1を除去して化学吸着種のみを残留させるために、基板表面を取り巻く空間が排気される。次いで、第2の前駆体(P2)が、その分子の一部が基板表面に吸着するように処理チャンバに導入されてよい。処理チャンバ内において基板を取り巻く空間は、今度は未結合P2を除去するために、再び排気されてよい。続いて、基板に提供されるエネルギ(熱エネルギ又はプラズマエネルギ)が、吸着分子P1とP2との間の表面反応を活性化させ、膜層を形成する。最後に、基板を取り巻く空間は、未反応P1及び/若しくはP2、並びに/又は反応副生成物が存在する場合に、除去するために、再び排気され、ALDの1サイクルを終了させる。
【0038】
多様な化学物質を有する共形膜を堆積させるためのALD技術、及び基本的なALDプロセス手順に対する多くのヴァリエーションが、2011年4月11日に出願され発明の名称を「PLASMA ACTIVATED CONFORMAL FILM DEPOSITION(プラズマによって活性化される共形膜堆積)」とする米国特許出願第13/084,399号(代理人整理番号第NOVLP405号)、2011年9月23日に出願され発明の名称を「PLASMA ACTIVATED CONFORMAL DIELECTRIC FILM DEPOSITION(プラズマによって活性化される共形誘電体膜堆積)」とする米国特許出願第13/242,084号、すなわち今現在の米国特許第8,637,411号(代理人整理番号第NOVLP427号)、2011年9月1日に出願され発明の名称を「PLASMA ACTIVATED CONFORMAL DIELECTRIC FILM DEPOSITION(プラズマによって活性化される共形誘電体膜堆積)」とする米国特許出願第13/244,240号(代理人整理番号第NOVLP428号)、並びに2012年9月7日に出願され発明の名称を「CONFORMAL DOPING VIA PLASMA ACTIVATED ATOMIC LAYER DEPOSITION AND CONFORMAL FILM DEPOSITION(プラズマによって活性化される原子層堆積及び共形膜堆積を通じた共形ドーピング)」とする米国特許出願第13/607,386号(代理人整理番号第NOVLP488号)で詳しく説明されており、これらの各出願は、あらゆる目的のために、その全体を参照によって本明細書に組み込まれる。これらの先行出願に説明されるように、基板上に1枚の材料層を堆積させるための基本的なALDサイクルは、(i)膜前駆体を、それが基板上に吸着制限層を形成するように基板上に吸着させることと、(ii)吸着前駆体を取り巻く空間から未吸着膜前駆体を除去することと、(iii)吸着膜前駆体を反応させて、基板上に膜層を形成させることと、(iv)脱離膜前駆体及び/又は反応副生成物を、基板上に形成された膜層を取り巻く空間から除去することと、を含んでいてよい。操作(ii)及び(iv)における除去は、基板を取り巻く空間をパージする、排気する、ポンプで基準圧力まで下げる(「ポンプで基準圧力にする」)などを通じて成されてよい。なお、この基本のALD手順の操作(i)~(iv)は、必ずしも上述の例にあるような2種類の化学吸着反応種P1及びP2を伴う必要も、ましてや第2の反応種を伴う必要もないことが留意される。ただし、関係する所望の堆積化学物質次第では、これらの可能性/選択肢が採用されることがある。
【0039】
しかしながら、ALDの吸着制限特性ゆえに、ALDの1サイクルは、薄い材料膜を1枚堆積させるに過ぎず、多くの場合、単一の分子材料層のみである。例えば、膜前駆体注入操作の暴露時間及び(基板表面に対する)膜前駆体の粘着係数次第では、各ALDサイクルで堆積される膜層は、僅か約0.5~3オングストロームの厚さになるかもしれない。したがって、代表的なALDサイクルにおける操作手順、すなわちまさに今説明された操作(i)~(iv)は、所望の厚さの共形膜を形成するために、複数回にわたって繰り返されるのが一般的である。したがって、一部の実施形態では、操作(i)~(iv)は、少なくとも1回、又は少なくとも2回、又は少なくとも3回、又は少なくとも5回、又は少なくとも7回、又は少なくとも10回にわたって立て続けに連続して繰り返される。ALD膜は、ALDサイクルごとにおおよそ0.1Å以上で2.5Å以下の、又はALDサイクルごとにおおよそ0.2Å以上で2.0Å以下の、又はALDサイクルごとにおおよそ0.3Å以上で1.8Å以下の、又はALDサイクルごとにおおよそ0.5Å以上で1.5Å以下の、又はALDサイクルごとにおおよそ0.1Å以上で1.5Å以下の、又はALDサイクルごとにおおよそ0.2Å以上で1.0Å以下の、又はALDサイクルごとにおおよそ0.3Å以上で1.0Å以下の、又はALDサイクルごとにおおよそ0.5Å以上で1.0Å以下の堆積速度で堆積されてよい。
【0040】
一部の膜形成化学物質の場合、「膜前駆体」と呼ばれるものに加えて補助反応物又は副反応物が用いられてもよい。このような特定の実施形態では、補助反応物又は副反応物は、工程(i)~(iv)が繰り返される間に、工程(i)~(iv)の一部又は全部において継続的に流されてよい。このその他の反応性化学種(補助反応物や副反応物など)は、一部の実施形態では、(前駆体P1及びP2を伴う上述の例にあるように、)膜前駆体との反応に先立って膜前駆体とともに基板表面上に吸着されてよく、ただし、その他の実施形態では、それ自体が基板の表面上に事前に吸着されることなく吸着膜前駆体とその接触時に反応することができる。また、一部の実施形態では、吸着膜前駆体を反応させる操作(iii)は、吸着膜前駆体をプラズマに接触させることを伴ってよい。プラズマは、基板表面上における膜形成反応を駆り立てるためのエネルギを提供することができる。このような特定の実施形態では、プラズマは、適切なRF電極の印加によって反応チャンバ内において生成される(ただし、実施形態によっては遠隔的に生成されることもある)酸化プラズマであってよい。その他の実施形態では、酸化プラズマの代わりに不活性プラズマが使用されてよい。酸化プラズマは、O2、N2O、又はCO2などの1種以上の酸化剤で形成されてよく、随意として、Ar、N2、又はHeなどの1種以上の希釈剤を含んでいてよい。一実施形態では、酸化プラズマは、O2及びArで形成される。適切な不活性プラズマは、He又はArなどの1種以上の不活性ガスで形成されてよい。ALDプロセスに対する更なるヴァリエーションは、まさに上記で引用された(参照によって組み込まれた)先行特許出願で詳しく説明されている。
【0041】
したがって、
図5のフローチャートによって、ALDプロセスを通じて基板上に膜材料の層を形成するための基本的な操作手順が図解される。図に示されるように、基板上に1枚の膜層を形成するためのALDプロセスは、膜前駆体をそれが基板上に吸着制限層を形成するように基板上に吸着させる操作511から開始してよく、次いで、吸着前駆体を取り巻く空間から未吸着膜前駆体の少なくとも一部を除去する操作512が続いてよい。その後、操作513において、吸着膜前駆体は、反応されて基板上に膜層を形成する。最後に、(
図5において破線で引かれたボックスによって示されるように、)一部の実施形態では、膜形成反応の化学物質次第では、操作513における吸着前駆体の反応後に脱離膜前駆体及び/又は反応副生成物が存在するときに、操作513の後に、膜層を取り巻く空間からそれらの脱離膜前駆体及び/又は反応副生成物を除去するための操作514が続くことができる。
【0042】
以上の一連の操作511~514は、結果として1枚の膜層を形成させる1つのALDサイクルを表している。しかしながら、ALDを通じて形成される1枚の膜層は、非常に薄いのが一般的であり、多くの場合、単分子の厚さに過ぎないので、十分な厚さの膜を構築するために、複数のALDサイクルが順次繰り返される。したがって、再び
図5に言及し、例えばN層の膜(又は等しくは、N枚の膜層と言うかもしれない)の堆積が所望されるならば、複数のALDサイクル(操作511~514)が順次繰り返され、各ALDサイクルが操作514によって締めくくられた後は、操作515において、NサイクルのALDが実施されたか否かが判定される。N回サイクルが実施されると、膜形成操作は終結し、反対に、まだ実施されていないならば、プロセス手順は、別のALDサイクルを開始させるために操作511に戻る。
【0043】
一部の実施形態では、多層堆積膜は、たとえば、1種類の組成を有する複数の層を共形的に順次堆積させ、次いで、別の種類の組成を有する複数の層を共形的に順次堆積させ、次いで、これら2つの手順が交替で繰り返され得ることによって形成された、交互に組成が異なる複数の領域/部分を含んでいてよい。堆積ALD膜が有するこれらの特性の一部が、例えば、2012年9月7日に出願され発明の名称を「CONFORMAL DOPING VIA PLASMA ACTIVATED ATOMIC LAYER DEPOSITION AND CONFORMAL FILM DEPOSITION(プラズマによって活性化される原子層堆積及び共形膜堆積を通じた共形ドーピング)」とする米国特許出願第13/607,386号(代理人整理番号第NOVLP488号)で説明されており、この出願は、あらゆる目的のために、その全体を参照によって本明細書に組み込まれる。下方の対象IC構造又は基板領域をドーピングするために使用される膜などの、交互に組成が異なる部分を有する共形膜の更なる例、並びにこれらの膜を形成する方法が、2011年4月11年に出願され発明の名称を「PLASMA ACTIVATED CONFORMAL FILM DEPOSITION(プラズマによって活性化される共形膜堆積)」とする米国特許出願第13/084,399号(代理人整理番号第NOVLP405号)、2011年9月23日に出願され発明の名称を「PLASMA ACTIVATED CONFORMAL DIELECTRIC FILM DEPOSITION(プラズマによって活性化される共形誘電体膜堆積)」とする米国特許出願第13/242,084号、すなわち今現在の米国特許第8,637,411号(代理人整理番号第NOVLP427号)、2011年9月1日に出願され発明の名称を「PLASMA ACTIVATED CONFORMAL DIELECTRIC FILM DEPOSITION(プラズマによって活性化される共形誘電体膜堆積)」とする米国特許出願13/244,240号(代理人整理番号NOVLP428号)、2012年9月7日に出願され発明の名称を「CONFORMAL DOPING VIA PLASMA ACTIVATED ATOMIC LAYER DEPOSITION AND CONFORMAL FILM DEPOSITION(プラズマによって活性化される原子層堆積及び共形膜堆積を通じた共形ドーピング)」とする米国特許出願第13/607,386号(代理人整理番号第NOVLP488号)、並びに2014年2月28日に出願され発明の名称を「CAPPED ALD FILMS FOR FORMING FIN-SHAPED CHANNEL REGIONS OF 3-D IC TRANSISTORS(三次元IDトランジスタのフィン状チャネルを形成するためのキャップALD膜)」とする米国特許出願第14/194,549号で詳細に説明されており、これらの各出願は、あらゆる目的のために、その全体を参照によって本明細書に組み込まれる。
【0044】
言及された上記の明細書で詳述されるように、ALDプロセスは、多くの場合、共形のシリコン酸化物膜(SiOx)を堆積させるために使用されるが、組み込まれた上記の明細書でも開示されているように、その他の化学物質の共形誘電体膜を堆積させるために使用されてもよい。ALDによって形成された誘電体膜は、一部の実施形態では、シリコン炭化物(SiC)材料、シリコン窒化物(SiN)材料、シリコン炭窒化物(SiCN)材料、又はそれらの組み合わせを含んでいてよい。一部の実施形態のALDによって形成される膜には、シリコン-炭素-酸化物、シリコン-炭素-酸窒化物、及びシリコン-炭素-窒化物が形成されてもよい。これらのタイプの膜を堆積させるための方法、技術、及び操作は、2012年6月12日に出願され発明の名称を「REMOTE PLASMA BASED DEPOSITION OF SiOC CLASS OF FILMS(SiOCクラスの膜の遠隔プラズマベース堆積)」とする米国特許出願第13/494,836号(代理人整理番号第NOVLP466号/第NVLS003722号、2013年5月31日に出願され発明の名称を「METHOD TO OBTAIN SiC CLASS OF FILMS OF DESIRED COMPOSITION AND FILM PROPERTIES(所望の組成及び膜特性を有するSiCクラスの膜を得るための方法)」とする米国特許出願第13/907,699号(代理人整理番号第LAMRP046/3149号、発明の名称を「GROUND STATE HYDROGEN RADICAL SOURCES FOR CHEMICAL VAPOR DEPOSITION OF SILICON-CARBON-CONTAINING FILMS(シリコン・炭素含有膜の化学気相成長のための基底状態水素ラジカル源)」とする米国特許出願第14/062,648号、並びに2014年2月28日に出願され発明の名称を「CAPPED ALD FILMS FOR FORMING FIN-SHAPED CHANNEL REGIONS OF 3-D IC TRANSISTORS(三次元ICトランジスタのフィン状チャネルを形成するためのキャップALD膜」とする米国特許出願第14/194,549号で詳しく説明されており、これらの各出願は、あらゆる目的のために、その全体を参照によって本明細書に組み込まれる。
【0045】
ALDを通じた膜堆積のその他の例は、上記され、参照によって組み込まれた特許出願(米国特許出願第13/084,399号、第13/242,084号、第13/224,240号、及び第14/194,549号)で説明されるような、ドーパント含有膜を堆積させるための化学物質を含む。これらの出願で説明されるように、ホウ素ドープケイ酸塩ガラス(BSG)の膜、リンドープケイ酸塩ガラス(PSG)の膜、ホウ素・リンドープケイ酸塩ガラス(BPSG)の膜、ヒ素(As)ドープケイ酸塩ガラス(ASG)の膜などの、ドーパント含有膜を形成するために、様々なドーパント含有膜前駆体が使用されてよい。ドーパント含有膜としては、B2O3、B2O、P2O5、P2O3、As2O3、As2O5などが挙げられる。したがって、ホウ素ではないドーパントを有するドーパント含有膜もあり得る。例として、ガリウム系ドーパント、リン系ドーパント、若しくはヒ素系ドーパント、又はその他の三価元素及び五価元素などの半導体基板のドーピングに適したその他の元素が挙げられる。
【0046】
ALDプロセス条件に関しては、ALDプロセスは、様々な温度で実施されてよい。一部の実施形態では、ALD反応チャンバ内における適切な温度は、約25℃から450℃、又は約50℃から300℃、又は約20℃から400℃、又は約200℃から400℃、又は約100℃から350℃の幅があってよい。
【0047】
同様に、ALDプロセスは、様々なALD反応チャンバ圧で実施されてよい。一部の実施形態では、反応チャンバ内における適切な圧力は、約10ミリトールから10トール、又は約20ミリトールから8トール、又は約50ミリトールから5トール、又は約100ミリトールから2トールの幅があってよい。
【0048】
操作(iii)においてプラズマが使用される場合、プラズマを発生させるために様々なRF電力レベルが用いられてよい。一部の実施形態では、適切なRF電力は、約100Wから10kW、又は約200Wから6kW、又は約500Wから3kW、又は約1kWから2kWの幅があってよい。
【0049】
操作(i)では、様々な膜前駆体流量が用いられてよい。一部の実施形態では、適切な流量は、約0.1mL/分以上で10mL/分以下、又は約0.5mL/分以上で5mL/分以下、又は約1mL/分以上で3mL/分以下の幅があってよい。
【0050】
各種の操作において、様々なガス流量が使用されてよい。一部の実施形態では、全体のガス流量は、約1mL/分以上で20mL/分以下、又は約2mL/分以上で10mL/分以下の幅があってよい。操作(ii)及び操作(iv)における随意の不活性パージ工程の場合、用いられるバースト流量は、約20mL/分以上で100mL/分以下、又は約40mL/分以上で60mL/分以下の幅があってよい。
【0051】
再度述べるが、一部の実施形態では、ポンプで基準圧力にする工程は、反応チャンバに1つ以上の真空ポンプを直接使用することによって反応チャンバをポンプで基準圧力まで下げることを言う。一部の実施形態では、基準圧力は、通常は、僅か数ミリトール(例えば約1ミリトールから20ミリトールの間)であってよい。更に、上記のように、ポンプで基準圧力にする工程は、不活性パージを伴っても又は伴わなくてもよく、したがって、真空ポンプに通じる経路が1つ以上の弁によって開かれるときに、キャリアガスが流れても流れなくてもよい。
【0052】
また、再度述べるが、共形層の積層体を構築するために、複数のALDサイクルが繰り返されてよい。一部の実施形態では、各層が、実質的に同じ組成を有してよく、その他の実施形態では、ALDによって順次堆積された層が、異なる組成を有してよい、又はそのような特定の実施形態では、上述のように、組成が層ごとに交互に異なってよい、若しくは異なる組成を有する一連の層が順繰りに繰り返されてよい。したがって、これらの膜中のホウ素、リン、又はヒ素の濃度を調整するために、実施形態に応じて、上で挙げられ参照によって組み込まれた特許出願(米国特許出願第13/084,399号、第13/242,084号、及び第13/224,240号)で開示されるような特定の積層工学概念が使用されてよい。
【0053】
基板処理装置の詳細な説明
本明細書で説明される方法は、任意の適切な半導体基板処理装置によって実施されてよい。適切な装置は、処理操作を実現するためのハードウェアと、本明細書で開示される様々なチャネルドーピング手法にしたがって処理操作を制御するための命令を有するシステムコントローラとを含む。一部の実施形態では、ハードウェアは、マルチステーション式基板処理ツールに含まれる1つ以上のプロセスステーションと、本明細書で開示される処理技術にしたがって処理操作を制御するための機械読み取り可能命令を有する(又は機械読み取り可能命令へのアクセスを有する)コントローラとを含んでいてよい。
【0054】
したがって、一部の実施形態では、複数の半導体基板上に材料の膜を堆積させるのに適した装置は、処理チャンバに収容され、それぞれが基板ホルダを有する1つ以上のプロセスステーションからなる第1群のプロセスステーションと、処理チャンバに収容され、それぞれが基板ホルダを有する1つ以上のプロセスステーションからなる第2群のプロセスステーションと、プロセスステーションへの膜前駆体の流れを制御するための1つ以上の弁と、処理チャンバに収容されたプロセスステーションを取り巻く空間から膜前駆体を除去するための1つ以上の弁作動式真空源と、を含んでいてよい。そして、このような装置は、基板上に膜の材料を堆積させるために基板搭載機器、基板移送機器、1つ以上の弁、及び真空源を操作するための機械読み取り可能な命令を有する(又は機械読み取り可能な命令へのアクセスを有する)コントローラも含んでいてよい。
【0055】
したがって、一部の実施形態では、コントローラによって実行される上記命令は、処理チャンバに収容された複数のプロセスステーションにある複数の基板上に膜を形成するための命令を含んでいてよく、各基板上には、一連のALDサイクルによって複数の膜層が形成される。したがって、このような特定の実施形態では、コントローラによって実行される上記命令は、基板処理装置の複数のプロセスステーションにおいて複数の基板上に複数の膜層を形成するために、上述のようなALD操作(i)~(iv)を実施するための命令と、ALD操作(i)~(iv)を複数回にわたって繰り返すための命令とを含んでいてよい。
【0056】
したがって、
図1は、基板処理装置100の一実施形態を図示している。簡単のために、処理装置100は、低圧環境を維持するための処理チャン
バ102を有する独立型のプロセスステーションとして描かれている。しかしながら、本明細書で説明されるように、複数のプロセスステーションが、例えば共通の反応チャンバなどの共通の処理ツール環境内に含まれてよいことがわかる。例えば、
図2は、マルチステーション式処理ツールの一実施形態を描いている。更に、一部の実施形態では、上で詳細に論じられたものを含む処理装置100の1つ以上のハードウェアパラメータが、1つ以上のシステムコントローラによってプログラムで調整されてよいことがわかる。
【0057】
処理装置100は、プロセスガスを分配シャワーヘッド106に供給するための反応物供給システム101と流体連通している。流体反応物供給システム101は、シャワーヘッド106への供給のためにプロセスガスを混ぜ合わせる及び/又は調節するための混合容器104を含む。1つ以上の混合容器入口弁120が、混合容器104へのプロセスガスの導入を制御してよい。
【0058】
一部の反応物は、気化及びそれに続く処理チャンバ102への供給に先立って、液体状態で貯蔵されてよい。
図1の実施形態は、混合容器104に供給される液体反応物を気化するための気化地点103を含む。一部の実施形態では、気化地点103は、加熱された液体注入モジュールであってよい。一部の実施形態では、気化地点103は、加熱された気化器であってよい。このようなモジュール/気化器から生成された飽和反応物蒸気は、適切な制御が成されないと(例えば、液体反応物を気化/霧化させるためにヘリウムが使用されないと)、下流の配送管内において凝結する恐れがある。凝結反応物に不適合性のガスが触れると、小粒子が形成されることがある。これらの小粒子は、管を詰まらせたり、弁の動作を妨げたり、基板を汚染したりする恐れがある。これらの問題に対処する一部のアプローチは、残留反応物を除去するために配送管を清掃する及び/又は排気することを伴う。しかしながら、配送管の清掃は、プロセスステーションのサイクル時間を長引かせ、プロセスステーションのスループットを低下させる恐れがある。したがって、一部の実施形態では、気化地点103の下流の配送管が熱処理されてよい。一部の例では、混合容器104も熱処理されてよい。非限定的な一例では、気化地点103の下流の管は、おおよそ100℃から混合容器104におけるおおよそ150℃に向けて上昇する温度分布を有する。
【0059】
上記のように、一部の実施形態では、気化地点103は、加熱された液体注入モジュール(略して「液体注入器」)であってよい。このような液体注入器は、混合容器の上流のキャリアガス流に液体反応物を一定間隔で注入することができる。或る状況では、液体注入器は、液体を高圧から低圧へ勢いよく流すことによって反応物を気化させてよい。別の状況では、液体注入器は、液体を霧化して分散微滴にしてよく、これらの微滴は、引き続き、加熱された配送管内において気化される。なお、液滴は、小さいほど早く気化されて、液体注入と完全気化との間の遅延を短縮し得るということがわかる。気化が速いほど、気化地点803よりも下流の管の長さを短くすることが可能になる。ある状況では、液体注入器は、混合容器104に直接取り付けられてよい。別の状況では、液体注入器は、シャワーヘッド106に直接取り付けられてよい。
【0060】
一部の実施形態では、液体の気化及び処理チャンバ102への供給のために液体の質量流量を制御するために、気化地点103の上流に、液体流量コントローラ(LFC)が提供されてよい。例えば、LFCは、その下流に熱質量流量計(MFM)を位置付けられていてよい。したがって、MFMと電気的に通信する比例・積分・微分(PID)コントローラによって提供されるフィードバック制御信号を受けて、LFCのプランジャ弁が調整されてよい。しかしながら、フィードバック制御を使用して液体の流れを安定化させるには、1秒以上の時間がかかるだろう。これは、液体反応物を投入するための時間を長引かせる恐れがある。したがって、一部の実施形態では、LFCは、フィードバック制御モードと直接制御モードとの間で動的に切り替えられてよい。一部の実施形態では、LFCは、LFCの感知管及びPIDコントローラを使用停止にすることによって、フィードバック制御モードから直接制御モードに動的に切り替えられてよい。
【0061】
シャワーヘッド106は、プロセスステーションにある基板112に向かってプロセスガス及び/又は反応物(例えば膜前駆体)を分配し、その流れは、シャワーヘッドよりも上流の1つ以上の弁(例えば弁120、120A、105)によって制御される。
図1に示された実施形態では、基板112は、シャワーヘッド106の下に位置付けられ、台座108上に座した状態で示されている。なお、シャワーヘッド106は、任意の適切な形状であってよいこと、並びにプロセスガスを基板112に分配するための任意の適切な数及び配置のポートを有していてよいことがわかる。
【0062】
一部の実施形態では、シャワーヘッド106の下に、小空間107が位置付けられる。処理チャンバの全体積内ではなく、プロセスステーション内の基板近くの小空間内でALDプロセスを実施することによって、反応物の暴露時間及び掃引時間の短縮、プロセス条件(例えば圧力や温度など)を変更するための時間の短縮、プロセスガスに対するプロセスステーションロボット機構の暴露の制限などがもたらされる。小空間の大きさの非限定的な例として、0.1リットルから2リットルの間の体積が挙げられる。
【0063】
一部の実施形態では、基板112を小空間107に暴露するために及び/又は小空間107の体積を変化させるために、台座108を上昇又は下降させてよい。例えば、基板移送の段階では、基板112が台座108に搭載されることを可能にするために、台座108を下降させてよい。基板への堆積のプロセス段階では、基板112を小空間107内において位置決めするために、台座108を上昇させてよい。一部の実施形態では、堆積プロセス中に高流量インピーダンスの領域を形成するために、小空間107によって基板112はもちろん台座108の一部も完全に囲われてよい。
【0064】
随意として、小空間107内における処理圧力や反応物濃度などを調節するために、堆積プロセスの途中で台座108を下降及び/又は上昇させてよい。処理中に処理チャンバ102が基準圧力にとどまる状況では、台座108の下降によって、小空間107の排気を可能にすることができる。小空間対処理チャンバの体積比の非限定的な例として、1:500~1:10の体積比が挙げられる。なお、一部の実施形態では、台座高さが、適切なシステムコントローラによってプログラムで調整されてよいことがわかる。
【0065】
別の状況では、台座108高さの調整によって、ALDプロセス又はCVDプロセスに含まれるプラズマ活性化サイクル及び/又はプラズマ処理サイクル中におけるプラズマ密度の変更が可能にされてよい。堆積プロセス段階の終わりには、台座108から基板112が取り除かれることを可能にするために、別の基板移送段階中に台座108を下降させてよい。
【0066】
本明細書で説明される小空間の変更例では、高さ調整可能な台座に言及しているが、実施形態によっては、小空間107の体積を変化させるために、シャワーヘッド106の位置が台座108に相対的に調整されてよいことがわかる。更に、台座108及び/又はシャワーヘッド106の垂直位置は、本開示の範囲内における任意の適切なメカニズムによって変更されてよいことがわかる。一部の実施形態では、台座108は、基板112の向きを回転させるための回転軸を含んでいてよい。一部の実施形態では、これらの調整例の1つ以上が、以上の操作の全部又は一部を実施するための機械読み取り可能命令を有する1つ以上の適切なシステムコントローラによってプログラムで実施されてよいことがわかる。
【0067】
図1に示された実施形態に戻り、シャワーヘッド106及び台座108は、プラズマに電力供給するために、RF電力供給源114及び整合回路網116と電気的に通信する。一部の実施形態では、プラズマエネルギは、プロセスステーション圧力、ガス濃度、RF源電力、RF源周波数、及びプラズマ電力パルスタイミングのうちの1つ以上を制御することによって、(例えば適切な機械読み取り可能命令を有するシステムコントローラによって)制御されてよい。例えば、RF電力供給部114及び整合回路網116は、所望の組成のラジカル種を有するプラズマを発生させるために、任意の適切な電力で操作されてよい。適切な電力の例は、上で挙げられている。同様に、RF電力供給部114は、任意の適切な周波数のRF電力を提供してよい。一部の実施形態では、RF電力供給部114は、高周波数RF電源及び低周波数RF電源を互いに独立に制御するように構成されてよい。低周波数RF周波数の非限定的な例として、50kHzから500kHzの間の周波数が挙げられる。高周波数RF周波数の非限定的な例として、1.8MHzから2.45GHzの間の周波数が挙げられる。表面反応のためのプラズマエネルギを提供するために、任意の適切なパラメータが離散的に又は連続的に調節されてよいことがわかる。非限定的な一例では、プラズマ電力は、継続的に電力供給されるプラズマと比べて基板表面に対するイオン衝撃を減らすために、間欠的にパルス状に提供されてよい。
【0068】
一部の実施形態では、プラズマは、1つ以上のプラズマモニタによってin-situ(その場)で監視されてよい。一状況では、1つ以上の電圧・電流センサ(例えばVIプローブ)によって、プラズマ電力が監視されてよい。別の状況では、1つ以上の発光分析(OES)センサによって、プラズマ密度及び/又はプロセスガス濃度が測定されてよい。一部の実施形態では、このようなin-situプラズマモニタからの測定結果に基づいて、1つ以上のプラズマパラメータがプログラムで調整されてよい。例えば、プラズマ電力のプログラム制御を提供するためのフィードバックループのなかで、OESセンサが使用されてよい。なお、一部の実施形態では、プラズマ及びその他の処理特性を監視するために、その他のモニタが使用されてよいことがわかる。このようなモニタの非限定的な例として、赤外線(IR)モニタ、音響モニタ、及び圧力変換器が挙げられる。
【0069】
一部の実施形態では、プラズマは、入出力制御(IOC)シークエンシング命令を通じて制御されてよい。一例では、プラズマ活性化段階のためのプラズマ条件を設定するための命令が、プロセスレシピにおける対応するプラズマ活性化レシピ段階に含められてよい。場合によっては、プロセスレシピにおける段階は、或るプロセス段階のための全ての命令がそのプロセス段階と同時に実行されるように、順番に並べられてよい。一部の実施形態では、1つ以上のプラズマパラメータを設定するための命令が、プラズマプロセス段階の前に来るレシピ段階に含められてよい。例えば、第1のレシピ段階は、不活性(例えばヘリウム)及び/又は反応物ガスの流量を設定するための命令と、プラズマ発生器を電力設定値に設定するための命令と、第1のレシピ段階のための時間遅延命令とを含んでいてよい。続く第2のレシピ段階は、プラズマ発生器を有効にするための命令と、第2のレシピ段階のための時間遅延命令とを含んでいてよい。第3のレシピ段階は、プラズマ発生器を無効にするための命令と、第3のレシピ段階のための時間遅延命令とを含んでいてよい。なお、これらのレシピ段階は、本開示の範囲内において任意の適切なやり方で更に細分及び/又は反復されてよいことがわかる。
【0070】
一部の堆積プロセスでは、プラズマの打ち出しが、おおよそ数秒以上の長さで持続する。本明細書で説明される特定の実装形態では、処理サイクル中に、更にずっと短い期間のプラズマ打ち出しが適用されてよい。これらは、おおよそ50ミリ秒から1秒であってよく、一具体例は、0.25秒である。このような短期間のRFプラズマ打ち出しでは、プラズマの迅速な安定化が必要とされる。これを実現するために、プラズマ発生器は、インピーダンス整合が特定の電圧に事前設定されるのに対して周波数は変動可能であるように構成されてよい。従来、高周波数プラズマは、約13.56MHzのRF周波数で発生する。本明細書で開示される様々な実施形態では、周波数は、この標準値とは異なる値に変動可能である。インピーダンス整合を所定の電圧に固定しつつ周波数を変動可能にすることによって、プラズマは、更にずっと迅速に安定化することが可能になり、このような結果は、ALDサイクルに関係付けられた非常に短期間のプラズマ打ち出しを使用する場合に重要になるだろう。
【0071】
一部の実施形態では、台座108は、ヒータ110を通じて温度を制御されてよい。更に、一部の実施形態では、バタフライ弁118などの1つ以上の弁作動式真空源によって、処理装置100のための圧力制御が提供されてよい。
図1の実施形態に示されるように、バタフライ弁118は、下流の真空ポンプ(不図示)によって提供される真空を絞り調整する。しかしながら、一部の実施形態では、処理装置100の圧力制御は、処理チャンバ102に導入される1種以上のガスの流量を変化させることによって調整されてもよい。一部の実施形態では、バタフライ弁118などの1つ以上の弁作動式真空源は、適切なALD操作段階中に、プロセスステーションを取り巻く空間から膜前駆体を除去するために使用されてよい。
【0072】
上述のように、マルチステーション式基板処理ツールには、1つ以上のプロセスステーションが含まれていてよい。
図2は、共通の低圧処理チャンバ214内に複数のプロセスステーション201、202、203、204を含むマルチステーション式処理ツール200を図解している。各ステーションを低圧環境内に維持することによって、膜堆積プロセス間における真空破壊によって引き起こされる欠陥を回避することができる。
【0073】
図2に示されるように、マルチステーション式処理ツール200は、基板搭載ポート220と、ポッド228を通じて搭載されたカセットから
基板搭載ポート220を通して基板を処理チャンバ214内へ移動させて最終的にプロセスステーションに載せるように構成された基板取扱ロボット226とを有する。具体的には、この場合、基板取扱ロボット226は、プロセスステーション201及び202に基板を搭載し、すると、この場合はカルーセル290である基板移送機器が、様々なプロセスステーション201、202、203、及び204の間で基板を移送する。
図2に示された実施形態では、基板搭載機器は、基板操作のためのアームを2本有する基板取扱ロボット226として描かれており、したがって、図に示されるように、ロボット226は、ステーション201及び202の両方に基板を搭載することができる(同時かもしれないし、又は順次かもしれない)。ステーション201及び202への搭載後、基板移送機器、すなわち
図2に示されたカルーセル290は、次いで、それら2枚の基板をプロセスステーション201及び202からプロセスステーション203及び204に移送するために、(基板の面に実質的に垂直な(ページから突き出している)その中心軸を中心として且つ基板間を実質的に等間隔として)180度の回転を行うことができる。この時点で、取扱ロボット226は、新しい2枚の基板をステーション201及び202に搭載し、搭載プロセスを完了させることができる。取り出しのためには、これらの工程を逆行させればよく、ただし、4枚のウエハからなるウエハ群が複数処理される場合には、取扱ロボット226によって2枚の基板を取り出すたびに、移送カルーセル290の180度回転前に新しい2枚の基板を搭載することができる。同様に、例えば201などの一ステーションのみに基板を載置するように構成された1本アームの取扱ロボットは、カルーセル290を90度ずつ4回回転させて4つ全てのステーションに基板を搭載する4工程の搭載プロセスで使用されると考えられる。
【0074】
図2に描かれた処理チャンバ214は、4つのプロセスステーション201、202、203、及び204を提供する。各ステーションは、加熱された台座(
例えば、図3中の台座108参照)と、ガスライン入口とを有する。一部の実施形態では、各プロセスステーションが、異なる又は複数の目的を有していてよいことがわかる。例えば、一部の実施形態では、プロセスステーションは、ALD処理モードとCVD処理モードとの間で切り替え可能であってよい。加えて又は或いは、一部の実施形態では、処理チャンバ214は、1つ以上のALD/CVDプロセスステーションペアを含んでいてよい。図に描かれた処理チャンバ214は、4つのプロセスステーションを備えているが、本開示にしたがった処理チャンバは、任意の適切な数のステーションを有していてよいことが理解される。例えば、一部の実施形態では、処理チャンバは、1、若しくは2、若しくは3、若しくは4、若しくは5、若しくは6、若しくは7、若しくは8、若しくは9、若しくは10、若しくは11、若しくは12、若しくは13、若しくは14、若しくは15、若しくは16、若しくは更に多い数のプロセスステーションを有していてよい(、又は2~6のプロセスステーションを反応チャンバごとに、若しくは4~8のプロセスステーションを反応チャンバごとに、若しくは8~16のプロセスステーションを反応チャンバごとに有するなどのように、上記の任意の2つの値によって定められる範囲内の数のプロセスステーションを反応チャンバごとに有するものとして、一連の実施形態が説明されてよい)。
【0075】
上記のように、
図2は、処理チャンバ214内においてプロセスステーション201、202、203、及び204間で基板を移送するための基板移送機器290の一実施形態を示している。任意の適切な基板移送機器が用いられてよいことがわかる。非限定的な例として、ウエハカルーセル及び基板取扱ロボットが挙げられる。
【0076】
シャワーヘッド及びシャワーヘッド環の詳細な説明
ALDプロセスにおいて、膜前駆体は、反応チャンバ内に存在する状態と、反応チャンバ内から排出された状態とを交互に繰り返す必要がある。寄生堆積を防ぐために、処理チャンバ内の余分な前駆体は、次の前駆体の導入前に処理チャンバ及び共通の前駆体通路(シャワーヘッドの柄部分など)から除去される。余分な前駆体の除去は、通例、供給通路及びチャンバを不活性ガスでパージすることによって成される。しかしながら、シャンデリア型のシャワーヘッドが使用される場合は、シャワーヘッドの後方に捕らわれた余分な前駆体を、シャワーヘッドからのパージガスで効果的に除去することができない。したがって、前駆体は、シャワーヘッドの裏側と、上板と、処理チャンバの壁とに、大量の寄生堆積を生じさせる恐れがある。このデッドスペースを固体の誘電体で満たすアプローチは、接地へのRF結合を引き起こす可能性が高いゆえに、不可能である。したがって、上述のように、このような寄生堆積を防ぐためには、シャワーヘッドの裏側から導入される二次パージガスが用いられてよい。このような二次パージを実現するためのハードウェアが、以下で詳しく説明される。
【0077】
図6を見ると、シャワーヘッド670を有する処理チャンバ660を含む基板処理システム650の一例が示されている。シャワーヘッド670は、柄部分672と、ヘッド部分674とを含む。ヘッド部分674は、内部空洞675を形成している。前駆体又はパージガスなどの流体が、柄部分672を通って流れ、分散板676に達し、内部空洞675に入る。流体は、次いで、ヘッド部分674の底面の開口部/離散穴678を通り抜けて処理チャンバに入る。
【0078】
シャワーヘッド670の柄部分672は、シャワーヘッド環680によって処理チャンバ660の上壁に接続される。シャワーヘッド環680は、全体として「T」字形の断面を有し、ヘッド部分681と、柄部分683とを含む。シャワーヘッド環680は、シャワーヘッド670の柄部分672を収容する円筒状の内部空洞684を形成している。柄部分683には、二次パージガスが内部空洞684から柄部分683の外表面へ流れることを可能にするための複数のスロット状の開口部686が形成されている。
図6におけるスロット状の開口部の向き、及び
図3に示された二次パージガスの流線320から明らかであるように、二次パージガスは、基板の面に実質的に平行な方向に流れて処理チャンバに入ることができる(ただし、
図3に示されるように、流れの方向は、チャンバ壁の付近で変化する)。
【0079】
シャワーヘッド環680のヘッド部分681の縁には、流体コネクタ690が接続されてよく、パージガスなどの流体を供給するために使用される。流体コネクタ690は、総じて692で示される1本以上の導管及び/又コネクタを含む。シャワーヘッド環680のヘッド部分681も、同様に、シャワーヘッド環680の内部空洞684へ流体の流れを向かわせるための、総じて693で示される導管及び/又はコネクタを含む。
【0080】
シャワーヘッド670のヘッド部分674と、シャワーヘッド環680との間には、板700が配される。板700は、上面704と、中心合わせ開口すなわち孔710と、底面714とを含む。一部の例では、板700は、セラミックで作成される。板700の厚さは、大地への材料又は容量の結合、すなわち寄生プラズマを最小限に抑えるように選択することができる。板700の上面704は、シャワーヘッド環680の底縁から、両者の間を流体が通ることを可能にするために間隔を空けられている。中心合わせ孔710も、柄部分672から、両者の間を流体が通ることを可能にするために間隔を空けられている。板の底面714は、シャワーヘッド670の上面から、両者の間を流体が流れることを可能にするために間隔を空けられている。一部の例では、板700は、省略されてよく、処理チャンバは、板700無しで操作されてよい。
【0081】
シャワーヘッド環を通って二次パージガスが流れることによって、空洞内の領域への堆積プロセス化学物質の進入が阻まれ、そこでの望ましくない膜堆積が阻止される。スロット及びその他の隙間の寸法は、そこでのプラズマ点火を阻止するように、及び所望のガス流量に対してペクレ条件が満たされて逆拡散が阻止されることを可能にするように選択することができる。
【0082】
次に、
図7を見ると、シャワーヘッド環680の一例が示されている。シャワーヘッド環680は、ヘッド部分681と、柄部分683とを含む。スロット686は、弧状であってよく、柄部分683の周囲に配されてよい。スロット686は、内部空洞684からスロット686を経て流体が流れることを可能にする。ヘッド部分681は、流体コネクタ690上の対応する嵌め合い部分と嵌り合う嵌め合い部分718を含んでいてよい。接続されたときに、シャワーヘッド環680の導管693は、流体コネクタ690の導管692と位置が揃う。
【0083】
次に、
図8を見ると、シャワーヘッド環680の流体コネクタ690の一例が示されている。流体コネクタ690は、第2の嵌め合い部分720と、導管730と、コネクタ732と、導管734と、コネクタ736とを含むものとして示されているが、その他の構成の流体コネクタも考えられる。
【0084】
次に、
図9A及び
図9Bを見ると、板700の例が示されている。
図9Aにおいて、板700の上面704は、全体として円形の断面と、板700の中心に配された中心合わせ孔710とを有するものとして示されている。中心合わせ孔710は、中心合わせ孔710から半径方向内向きに突き出した1つ以上の突出740を含む。突出740は、板700と柄部分672との間を均一な間隔にする。
図9Bには、板700の底面714が、処理チャンバの上部に対して下向きに突き出した突出744を含むものとして示されている。突出744は、板700の底面714と、シャワーヘッド670のヘッド部分674の上面との間を均一な間隔にする。また、RF分離/抑制機器が、シャワーヘッド後方の空洞内の電場を低減させてもよく、これは、シャワーヘッド後方の領域に寄生プラズマが発生する機会又は程度を更に抑えるのにも有用だろう。例えば、突出740及び744は、例えば用いられる間隔がおおよそ3mm以下である場合には、寄生プラズマの発生を抑えるのに十分に狭い間隔を提供することができる。このような間隔は、代表的なプロセス条件下では、プラズマシースとともにプラズマが形成するには不十分な間隔(プラズマシース2枚分の長さ未満)になる。プラズマの形成は、プラズマ密度、プラズマ電子温度、及びシースにかかる電圧によって影響されるだろう。もちろん、詳しく上述されたように、二次パージガスとしてのO
2の使用も、寄生プラズマの発生を阻止する/最小限に抑えるための有効な技術として機能する。
【0085】
システムコントローラ
図2は、処理ツール200及びそのプロセスステーションのプロセス条件とハードウェア状態とを制御するために用いられるシステムコントローラ250の一実施形態も示している。システムコントローラ250は、1つ以上のストレージデバイス256と、1つ以上のマスストレージデバイス254と、1つ以上のプロセッサ252とを含んでいてよい。プロセッサ252としては、1つ以上のCPU、ASIC、汎用コンピュータ及び/又は専用コンピュータ、アナログ及び/又はデジタル入力/出力接続、ステッピングモータ制御盤などが挙げられる。
【0086】
一部の実施形態では、システムコントローラ250は、処理ツール200のその個々のプロセスステーションの操作を含む操作の一部又は全部を制御する。システムコントローラ250は、プロセッサ252上で機械読み取り可能システム制御命令258を実行してよく、これらのシステム制御命令258は、一部の実施形態では、マスストレージデバイス254からストレージデバイス256に取り込まれる。システム制御命令258は、タイミング、ガス状反応物と液状反応物との混合、チャンバ及び/又はステーションの圧力、チャンバ及び/又はステーションの温度、ウエハの温度、目標電力レベル、RF電力レベル、RF暴露時間、基板台座、チャック、及び/又はサセプタの位置、並びに処理ツール200によって実施される特定のプロセスのその他のパラメータを制御するための命令を含んでいてよい。これらのプロセスは、基板への膜の堆積に関係するプロセスなどを非限定例として含む様々なタイプのプロセスを含んでいてよい。システム制御命令258は、任意の適切な形で構成されてよい。例えば、様々な処理ツールプロセスを実行に移すために必要とされる処理ツール構成要素の操作を制御するための、様々な処理ツール構成要素サブルーチン又は制御オブジェクトが記述されてよい。システム制御命令258は、任意の適切なコンピュータ読み取り可能プログラミング言語でコード化されてよい。システム制御命令258は、実施形態に応じて、ソフトウェアに実装されてり、又は例えばASIC(特殊用途向け集積回路)のロジックとしてハードコード化されるなどのようにハードウェアに実装されたり、又はソフトウェアとハードウェアとの組み合わせとして実装されたりしてよい。
【0087】
一部の実施形態では、システム制御命令258は、上述された様々なパラメータを制御するための入出力制御(IOC)シークエンシング命令を含んでいてよい。例えば、(1つ又は複数の)堆積プロセスの各段階は、システムコントローラ250によって実行されるための1つ以上の命令を含んでいてよい。膜堆積プロセス段階のためのプロセス条件を設定するための命令は、例えば、対応する堆積レシピ段階に含められてよく、キャップ膜堆積段階の場合も同様である。一部の実施形態では、レシピ段階は、或るプロセス段階のための全ての命令がそのプロセス段階と同時に実行されるように、順番に並べられてよい。
【0088】
一部の実施形態では、システムコントローラ250に関係付けられたマスストレージデバイス254及び/又はストレージデバイス256に記憶されたその他のコンピュータ読み取り可能命令及び/又はプログラムが用いられてよい。プログラム又はプログラムセクションの例として、基板位置決めプログラム、プロセスガス制御プログラム、圧力制御プログラム、ヒータ制御プログラム、及びプラズマ制御プログラムが挙げられる。
【0089】
基板位置決めプログラムは、基板を台座108に搭載するために及び基板と処理ツール200のその他のパーツとの間の間隔を制御するために使用される処理ツール構成要素のための命令を含んでいてよい。位置決めプログラムは、基板上に膜を堆積させる必要性に応じて反応チャンバに対して基板を適切に出し入れするための命令を含んでいてよい。
【0090】
プロセスガス制御プログラムは、ガスの組成及び流量を制御するための、並びに随意として、1つ以上のプロセスステーションを取り巻く空間内の圧力を安定化させるために堆積前にそれらの空間にガスを流し込むための、命令を含んでいてよい。一部の実施形態では、プロセスガス制御プログラムは、基板への膜の堆積中に、処理チャンバ内の1つ以上のプロセスステーションを取り巻く(1つ以上の)空間に特定のガスを導入するための命令を含んでいてよい。プロセスガス制御プログラムは、また、堆積されている膜の組成に応じて、同じ流量で、同じ持続期間で、又は異なる流量で、及び/又は異なる持続期間でこれらのガスを供給するための命令も含んでいてよい。プロセスガス制御プログラムは、また、加熱された注入モジュール内においてヘリウム又はその他の何らかのキャリアガスの存在下で液状反応物を霧化/気化させるための命令も含んでいてよい。
【0091】
圧力制御プログラムは、例えば、プロセスステーションの排気システム内の絞り弁やプロセスステーションに入るガスの流れなどを調整することによってプロセスステーション内の圧力を制御するための命令を含んでいてよい。圧力制御プログラムは、基板への様々な膜タイプの堆積中に同じ又は異なる圧力を維持するための命令を含んでいてよい。
【0092】
ヒータ制御プログラムは、基板を加熱するために使用される加熱ユニットへの電流を制御するためのコードを含んでいてよい。或いは又は加えて、ヒータ制御プログラムは、基板への熱伝達ガス(ヘリウムなど)の供給を制御してよい。ヒータ制御プログラムは、基板への様々な膜タイプの堆積中に反応チャンバ内及び/又はプロセスステーションを取り巻く空間内を同じ又は異なる温度に維持するための命令を含んでいてよい。
【0093】
プラズマ制御プログラムは、本明細書における実施形態にしたがって1つ以上のプロセスステーションにおけるRF電力レベル、周波数、及び暴露時間を設定するための命令を含んでいてよい。一部の実施形態では、プラズマ制御プログラムは、基板への膜堆積中に同じ又は異なるRF電力レベル及び/又は周波数及び/又は暴露時間を使用するための命令を含んでいてよい。
【0094】
一部の実施形態では、システムコントローラ250にユーザインターフェースが関係付けられていてよい。ユーザインターフェースとしては、ディスプレイ画面、装置及び/又はプロセス条件のグラフィックソフトウェア表示、並びに位置指示装置、キーボード、タッチ画面、マイクなどのユーザ入力装置が挙げられる。
【0095】
一部の実施形態では、システムコントローラ250によって調整されるパラメータが、プロセス条件に関するものであってよい。非限定的な例として、プロセスガス組成及び流量、温度、圧力、プラズマ条件(RFバイアス電力レベル及び暴露時間など)などが挙げられる。これらのパラメータは、ユーザインターフェースを用いて入力可能なレシピの形でユーザに提供されてよい。
【0096】
プロセスを監視するための信号が、システムコントローラ250のアナログ及び/又はデジタル入力接続によって様々なプロセスツールセンサから提供されてよい。プロセスを制御するための信号は、プロセスツール200のアナログ及び/又はデジタル出力接続に載せて出力されてよい。監視可能なプロセスツールセンサの非限定的な例として、質量流量コントローラ(MFC)、圧力センサ(圧力計など)、熱電対などが挙げられる。プロセス条件を維持するために、これらのセンサからのデータと併せて、適切にプログラムされたフィードバックアルゴリズム及び制御アルゴリズムが使用されてよい。
【0097】
システムコントローラ250は、上述された堆積プロセスを実行に移すための機械読み取り可能命令を提供してよい。命令は、DC電力レベル、RFバイアス電力レベル、圧力、温度などの多様なプロセスパラメータを制御してよい。これらの命令は、本明細書で説明される様々な実施形態にしたがって膜積層体のin-situ堆積を操作するために、これらのパラメータを制御してよい。
【0098】
システムコントローラは、通常は、1つ以上のストレージデバイスと、本明細書で開示されるプロセスにしたがって装置に操作を実施させるために機械読み取り可能命令を実行するように構成された1つ以上のプロセッサとを含む。システムコントローラには、本明細書で開示される基板ドーププロセスにしたがって操作を制御するための命令を含む非一過性の機械読み取り可能媒体が接続されてよい。
【0099】
上述された様々な装置及び方法は、例えば、半導体デバイス、ディスプレイ、LED、光起電性パネルなどの製造又は生産のために、リソグラフィパターニングのツール及び/又はプロセスと併せて使用されてよい。必ずしもそうとは限らないが、このようなツール又はプロセスは、共通の製造設備のなかで併せて使用される又は実施されるのが一般的である。
【0100】
膜のリソグラフィパターニングは、通常は、(1)スピンオンツール又は噴き付けツールを使用して、例えばその上にシリコン窒化物を形成されたような基板上にフォトレジストを塗布する操作、(2)加熱板又は加熱炉又はその他の適切な硬化ツールを使用して、フォトレジストを硬化させる操作、(3)ウエハステッパなどのツールによって、可視光又は紫外線又はX線にフォトレジストを暴露する操作、(4)レジストを選択的に除去してパターニングするために、ウェットベンチ又は噴き付け現像器などのツールを使用して、レジストを現像する操作、(5)ドライ式又はプラズマ強化式のエッチングツールを使用することによって、レジストパターンをその下の膜又は基板に転写する操作、並びに(6)RF又はマイクロ波プラズマレジスト剥ぎ取り器などのツールを使用して、レジストを除去する操作の、一部又は全部を含み、各操作は、考えられる幾つかのツールによって、それぞれ可能にされる。一部の実施形態では、フォトレジストを塗布する前に、アッシング可能なハードマスク層(非結晶質炭素層など)と、別の適切なハードマスク(反射防止層など)とが堆積されてよい。
【0101】
その他の実施形態
開示された以上の技術、操作、プロセス、方法、システム、装置、ツール、膜、化学物質、及び組成は、明瞭及び理解を促す目的で具体的な実施形態との関連のもとで説明されてきたが、当業者ならば、本開示の趣旨及び範囲内に、以上の実施形態を実現するための多くの代替のやり方があることが明らかである。したがって、本明細書で説明された実施形態は、開示された発明の概念を、限定するのではなく例示するものだと見なされ、最終的に本開示の内容を定めたものであるいかなる特許請求の範囲も過度に限定するための揺るがない基準として使用されるべきではない。
適用例1:処理チャンバ内において半導体基板上に材料の膜を堆積させる方法であって、
(a)前記処理チャンバに膜前駆体を流し込むこと、
(b)前記膜前駆体が基板上に吸着制限層を形成するように、前記処理チャンバ内において前記膜前駆体を前記基板上に吸着させること、
(c)一次パージガスによって前記処理チャンバをパージすることによって、前記吸着前駆体を取り巻く空間から少なくとも一部の未吸着膜前駆体を除去すること、
(d)(c)において前記一次パージガスによって未吸着前駆体を除去した後、前記処理チャンバに二次パージガスが流し込まれている間に前記吸着膜前駆体を反応させて、前記基板上に膜層を形成させること、
を備え、前記二次パージガスは、O
2
のイオン化エネルギ及び/又は解離エネルギ以上のイオン化エネルギ及び/又は解離エネルギを有する化学種を含む、方法。
適用例2:適用例1に記載の方法であって、
前記二次パージガスは、O
2
である、方法。
適用例3:適用例1に記載の方法であって、
前記一次パージガスは、不活性ガスである、方法。
適用例4:適用例3に記載の方法であって、
前記一次パージガスは、Ar及び/又はN
2
である、方法。
適用例5:適用例1に記載の方法であって、
前記一次パージガスは、(a)~(b)又は(d)の最中は前記処理チャンバへ流されない、方法。
適用例6:適用例5に記載の方法であって、
(d)に先立って、前記処理チャンバから実質的に全ての一次パージガスが除去される、方法。
適用例7:適用例1に記載の方法であって、
前記二次パージガスは、(a)~(d)の最中に前記処理チャンバへ継続的に流される、方法。
適用例8:適用例1に記載の方法であって、
(a)において前記処理チャンバに前記膜前駆体を流し込むために、キャリアガス流が使用される、方法。
適用例9:適用例8に記載の方法であって、
前記キャリアガスは、不活性ガスである、方法。
適用例10:適用例9に記載の方法であって、
前記キャリアガスは、N
2
及び/又はArである、方法。
適用例11:適用例1ないし10のいずれか一項に記載の方法であって、更に、
(e)前記一次パージガスによって前記処理チャンバをパージすることによって前記吸着前駆体を反応させた後に脱離膜前駆体及び/又は反応副生成物が存在するときに、前記膜層を取り巻く空間からそれらの脱離膜前駆体及び/又は反応副生成物を除去することを備える方法。
適用例12:適用例1ないし10のいずれか一項に記載の方法であって、更に、
前記基板上に(1枚以上の)更なる層を堆積させるために(a)~(d)を1回以上繰り返すことを備える方法。
適用例13:適用例1ないし10のいずれか一項に記載の方法であって、
前記膜前駆体は、(a)においてシャワーヘッドを通じて前記処理チャンバに流し込まれ、前記一次パージガスは、(c)において前記と同じシャワーヘッドを通じて前記処理チャンバに流し込まれる、方法。
適用例14:適用例13に記載の方法であって、
前記シャワーヘッドは、ヘッド部分と柄部分とを含み、前記一次パージガスは、前記シャワーヘッドの前記ヘッド部分の底面の開口部を通って前記処理チャンバに流し込まれる、方法。
適用例15:適用例1ないし10のいずれか一項に記載の方法であって、
前記一次パージガスは、前記基板の面に実質的に垂直な方向に前記処理チャンバに流し込まれる、方法。
適用例16:適用例15に記載の方法であって、
前記一次パージガスは、約5,000~45,000sccmの流量で前記処理チャンバに流し込まれる、方法。
適用例17:適用例13に記載の方法であって、
前記二次パージガスは、シャワーヘッド環を通じて前記処理チャンバに流し込まれる、方法。
適用例18:適用例17に記載の方法であって、
前記シャワーヘッド環は、ヘッド部分と柄部分とを含み、前記二次パージガスは、前記柄部分の開口部を通って前記処理チャンバに流し込まれる、方法。
適用例19:適用例18に記載の方法であって、
前記シャワーヘッド環の前記柄部分の前記開口部は、スロット状である、方法。
適用例20:適用例1ないし10のいずれか一項に記載の方法であって、
前記二次パージガスは、前記基板の面に対して実質的に平行な方向に前記処理チャンバに流し込まれる、方法。
適用例21:適用例20に記載の方法であって、
前記二次パージガスは、約1~30,000sccmの流量で前記処理チャンバに流し込まれる、方法。
適用例22:半導体基板上に材料の膜を堆積させるための装置であって、
処理チャンバと、
前記処理チャンバ内の基板ホルダと、
前記処理チャンバに膜前駆体及び一次パージガスを流し込むためのシャワーヘッドと、
前記処理チャンバに二次パージガスを流し込むためのシャワーヘッド環と、
前記シャワーヘッドを通る膜前駆体流及び一次パージガス流を制御するための1つ以上の一次流量弁と、
前記シャワーヘッド環を通る二次パージガス流を制御するための1つ以上の二次流量弁と、
前記処理チャンバから一次パージガス及び二次パージガスを除去するための並びに前記処理チャンバ内において前記基板を取り巻く空間から膜前駆体を除去するための弁操作式真空源と、
前記処理チャンバ内においてプラズマを発生させるためのプラズマ発生器と、
半導体基板上に材料の膜を堆積させるために前記1つ以上の弁、前記真空源、及び前記プラズマ発生器を操作するための機械読み取り可能命令を含む1つ以上のコントローラであって、
(a)前記処理チャンバに膜前駆体を流し込むように前記1つ以上の一次流量弁を操作するための命令と、
(b)処理チャンバ内において膜前駆体が前記基板上に吸着して吸着制限層を形成するように前記処理チャンバ内の条件を制御するための命令と、
(c)前記処理チャンバに一次パージガスを流し込むように前記1つ以上の一次流量弁を操作するための及び前記処理チャンバを真空に排気しそれによって前記吸着前駆体を取り巻く空間から少なくとも一部の未吸着膜前駆体を除去するように前記弁操作式真空源を操作するための命令と、
(d)前記吸着膜前駆体の反応を活性化させて前記基板上に膜層を形成させるプラズマを前記処理チャンバ内において発生させるように前記プラズマ発生器を操作するための命令と、
(e)(d)において前記反応が活性化されている間にO
2
を含む二次パージガスを前記処理チャンバに流し込むように前記1つ以上の二次流量弁を操作するための命令と、
を含む、1つ以上のコントローラと、
を備える装置。
適用例23:適用例22に記載の装置であって、
前記シャワーヘッドは、
柄部分と、
ヘッド部分と、
膜前駆体及び一次パージガスを前記処理チャンバに流し込むための、前記ヘッド部分の底面の開口部と、
を含み、
前記シャワーヘッド環は、
柄部分と、
ヘッド部分と、
二次パージガスを前記処理チャンバに流し込むための、前記柄部分の開口部と、
を含む、装置。
適用例24:適用例23に記載の装置であって、
前記シャワーヘッドの前記開口部は、穴であり、前記シャワーヘッド環の前記開口部は、スロットである、装置。