IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルム株式会社の特許一覧

<>
  • 特許-劣化診断装置及び方法 図1
  • 特許-劣化診断装置及び方法 図2
  • 特許-劣化診断装置及び方法 図3
  • 特許-劣化診断装置及び方法 図4
  • 特許-劣化診断装置及び方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-16
(45)【発行日】2022-12-26
(54)【発明の名称】劣化診断装置及び方法
(51)【国際特許分類】
   G01R 31/26 20200101AFI20221219BHJP
   H01L 31/12 20060101ALI20221219BHJP
【FI】
G01R31/26 F
H01L31/12 F
【請求項の数】 8
(21)【出願番号】P 2019074368
(22)【出願日】2019-04-09
(65)【公開番号】P2020173139
(43)【公開日】2020-10-22
【審査請求日】2021-07-28
(73)【特許権者】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】110001988
【氏名又は名称】弁理士法人小林国際特許事務所
(72)【発明者】
【氏名】本村 真一
(72)【発明者】
【氏名】竹下 裕之
【審査官】永井 皓喜
(56)【参考文献】
【文献】特開昭63-301572(JP,A)
【文献】特開2005-245092(JP,A)
【文献】特開昭61-154373(JP,A)
【文献】実開昭58-104974(JP,U)
【文献】特開平11-225055(JP,A)
【文献】特開平10-54860(JP,A)
【文献】特開2010-171078(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 31/26
G01R 31/28
H01L 31/12
(57)【特許請求の範囲】
【請求項1】
発光部と前記発光部からの光を受光する受光部とを備える信号伝達装置の前記発光部の入力端子対に接続される第1端子対と、
前記第1端子対を介して前記入力端子対に接続される第1電源と、
前記第1電源から前記発光部に流れる第1電流を増減する調節回路と、
前記第1電流を測定する入力側測定部と
を有する入力側回路ユニットと、
前記受光部の出力端子対に接続される第2端子対と、
前記受光部の出力電圧または前記受光部に流れる第2電流を、前記第2端子対を介して測定する出力側測定部と
を有する出力側回路ユニットと
を備える劣化診断装置を用いて、前記信号伝達装置の劣化を診断する劣化診断方法であり、
前記第1端子対を前記入力端子対に接続し、かつ、前記第2端子対を前記出力端子対に接続する接続工程と、
前記接続工程後に、前記調節回路により前記第1電流を増減し、前記出力側測定部により前記出力電圧または前記第2電流が変化するときの前記第1電流の値を特定する特定工程と、
前記特定工程で特定された前記第1電流の値である発光最低値に基づき、次回の点検整備までに見込まれる劣化の進行分を見込み、見込み量を余裕分とした劣化判定基準値求め、前記発光最低値前記劣化判定基準値とを比較し、前記発光部が劣化しており前記信号伝達装置の交換時期であるか否かを診断する診断工程と、
を有する劣化診断方法。
【請求項2】
前記劣化診断装置は、前記信号伝達装置に対して着脱自在に設けられている請求項1記載の劣化診断方法。
【請求項3】
前記信号伝達装置はフォトカプラである請求項1または2に記載の劣化診断方法。
【請求項4】
前記調節回路は、前記第1電源と直列に接続された可変抵抗を有する請求項1ないし3のいずれか1項に記載の劣化診断方法。
【請求項5】
前記出力側測定部は、
前記受光部と直列回路を形成する抵抗と、
前記直列回路の両端に接続される第2電源と、
前記受光部の出力端子間の電圧を測定する電圧計と
を有する請求項1ないし4のいずれか1項に記載の劣化診断方法。
【請求項6】
前記発光部及び前記受光部は1つの回路チップに、前記入力端子対と前記出力端子対とが突出した状態で設けられており、
前記回路チップは基板に設けられており、
前記第1端子対と前記第2端子対とは前記基板上の前記信号伝達装置の前記入力端子対及び前記出力端子対に接続される請求項1ないし5のいずれか1項に記載の劣化診断方法。
【請求項7】
前記第1端子対と前記第2端子対とは、前記回路チップを把持または前記回路チップに嵌合することにより前記回路チップと連結する連結部材に設けられている請求項6に記載の劣化診断方法。
【請求項8】
発光部と前記発光部からの光を受光する受光部とを備える信号伝達装置の前記発光部の入力端子対に接続される第1端子対と、
前記第1端子対を介して前記入力端子対に接続される第1電源と、
前記第1電源から前記発光部に流れる第1電流を増減する調節回路と、
前記第1電流を測定する入力側測定部と
を有する入力側回路ユニットと、
前記受光部の出力端子対に接続される第2端子対と、
前記受光部の出力電圧または前記受光部に流れる第2電流を、前記第2端子対を介して測定する出力側測定部と
を有する出力側回路ユニットと
を備え、
前記調節回路により前記第1電流を増減し、前記出力側測定部により前記出力電圧または前記第2電流が変化するときの前記第1電流の値を特定し、特定した前記第1電流の値である発光最低値に基づき、次回の点検整備までに見込まれる劣化の進行分を見込み、見込み量を余裕分とした劣化判定基準値求め、前記発光最低値前記劣化判定基準値とを比較して前記発光部が劣化しており前記信号伝達装置の交換時期であるか否かを診断する劣化診断装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、信号伝達装置の劣化を診断する劣化診断装置及び方法に関する。
【背景技術】
【0002】
溶液製膜方法により長尺のフィルムを製造するフィルム製造設備(溶液製膜設備)など、各種の製品の製造設備には、設備を構成する各部を制御するために、多重伝送装置あるいは信号入出力装置など、基板アセンブリが用いられている。例えば上記のフィルム製造設備の場合には、ドープ(ポリマー溶液)から流延膜を形成する流延部、支持体から流延膜を剥がすことにより形成したフィルムを乾燥する乾燥部、長尺のフィルムを延伸する延伸部、及び、フィルムをロール状に巻き取る巻取部などがあり、基板アセンブリは、これら各部を制御するための制御部などに多数用いられている。
【0003】
基板アセンブリには複数の信号伝達装置が実装されていることが一般的である。例えば上記のフィルム製造設備に用いられる複数の基板アセンブリの個々には、10個以上という多数の信号伝達装置が実装されている。このように、ひとつの製造設備に、非常に多くの信号伝達装置が使用されている例は多い。
【0004】
信号伝達装置としては例えばフォトカプラがある。フォトカプラは、周知の通り、発光部と、この発光部からの光を受光する受光部とを備える。フォトカプラのような信号伝達装置は、他の電子機器と同様に劣化する。劣化により信号を伝達する機能が働かなくなった場合には、製造に支障をきたすことがあり、場合によっては製造設備の稼働が停止してしまうこともあり得る。そのため、このような事態になる前に、新品の信号伝達装置に交換することが通常である。したがって、使用されている個数が多いほど、交換には多くの手間がかかる。
【0005】
フォトカプラの劣化を検出する技術として、特許文献1には、検出回路と、通電回路と、制御判定回路とを備える自己診断回路が記載されている。検出回路は、フォトカプラの受光部の出力電圧によって、外部接点のオンとオフとを検出して出力する。通電回路は、フォトカプラが劣化しているとき、フォトカプラの受光部の出力が、検出回路の外部接点ONの検出レベルに達しないように電流を制限する抵抗を通してフォトカプラの発光部に診断電流を流す。制御回路は、診断電流を流させると同時に、検出回路の検出結果を読取り、この検出結果が外部接点ONの検出状態にないとき、フォトカプラの劣化と判定して出力している。
【0006】
また、特許文献2には、劣化検出対象の第1フォトカプラと、第1フォトカプラの駆動を制御する制御する制御器と、出力検出回路と、出力検出回路での検出値を制御器へ伝達する第2フォトカプラとを備えるフォトカプラ装置が記載されている。出力検出回路は、第1フォトカプラの出力信号の電位に応じた値である検出値を生成し出力する。制御器は、第1フォトカプラを駆動したときの上記検出値に基づいて第1のフォトカプラが出力劣化状態であるか否かを判定する判定処理を行い、この判定結果がk回(k≧2)まで出力劣化状態になるたびに、第1フォトカプラの駆動電流を増加させる調整処理を行う。
【0007】
特許文献3には、発光ダイオード及びフォトトランジスタと、供給電源と、供給電源の電圧を変化させる供給電源可変部と、供給電源と供給電源可変部を切り替えるスイッチとを備えるフォトセンサが記載されている。このフォトセンサは、供給電源可変部により発光側の供給電源を降下させ、初期との動作限界電圧を比較することにより、劣化が検出される。
【先行技術文献】
【特許文献】
【0008】
【文献】特開2002-237228号公報
【文献】特開2011-199201号公報
【文献】実開昭63-159856号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、特許文献1~特許文献3では、信号伝達装置の個々に劣化を診断する診断回路を設けている。そのため、基板への実装の際に組み込んで基板アセンブリをつくる必要があり、ひとつの基板に実装される信号伝達装置の個数が制限されてしまう。そして、多数の信号伝達装置が密な状態で、既に基板に実装されている基板アセンブリにおいて、個々の信号伝達装置を劣化診断することができない。
【0010】
そこで本発明は、基板アセンブリとして基板に実装されている状態で、信号伝達装置の劣化を容易に診断できる劣化診断装置及び劣化診断方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記目的を達成するために、本発明の劣化診断装置は、入力側回路ユニットと、出力側回路ユニットとを備える。入力側回路ユニットは、第1端子対と、第1電源と、調節回路と、入力側測定部とを有する。第1端子対は、発光部と発光部からの光を受光する受光部とを備える信号伝達装置の上記発光部の入力端子対に接続される。第1電源は、第1端子対を介して、入力端子対に接続される。調節回路は、第1電源から発光部に流れる第1電流を増減する。入力側測定部は、第1電流を測定する。出力側回路ユニットは、第2端子対と、出力側測定部とを有する。第2端子対は、受光部の出力端子対に接続される。出力側測定部は、受光部の出力電圧または受光部に流れる第2電流を、第2端子対を介して測定する。
【0012】
信号伝達装置はフォトカプラであることが好ましい。
【0013】
調節回路は、第1電源と直列に接続された可変抵抗を有することが好ましい。
【0014】
出力側測定部は、抵抗と、第2電源と、電圧計とを有することが好ましい。抵抗は、受光部と直列回路を形成する。第2電源は、上記直列回路の両端に接続される。電圧計は、受光部の出力端子間の電圧を測定する。
【0015】
発光部及び受光部は1つの回路チップに、入力端子対と出力端子対とが突出した状態で設けられており、回路チップは基板に設けられており、第1端子対と第2端子対とは基板上の信号伝達装置の入力端子対及び出力端子対に接続されることが好ましい。
【0016】
第1端子対と第2端子対とは、回路チップを把持または回路チップに嵌合することにより回路チップと連結する連結部材に設けられていることが好ましい。
【0017】
出力側回路ユニットは、受光部に駆動電圧を供給する電圧供給端子をさらに有することが好ましい。
【0018】
電圧供給端子は、基板上の前記信号伝達装置の受光部に接続されることが好ましい。
【0019】
本発明の信号伝達装置の劣化診断方法は、診断伝達装置が発光部と発光部からの光を受光する受光部とを備える信号伝達装置の劣化診断方法であり、接続工程と、特定工程と、診断工程とを有する。接続工程は、上記劣化診断装置の第1端子対を入力端子対に接続し、かつ、第2端子対を出力端子対に接続する。特定工程は、接続工程後に、調節回路により第1電流を増減し、出力側測定部により出力電圧または第2電流が変化するときの第1電流の値を特定する。診断工程は、特定工程で特定された第1電流を、予め設定した劣化の基準値と比較し、基準値以上である場合には劣化信号伝達装置が劣化していると判断し、基準値未満である場合には劣化していないと判断する。
【発明の効果】
【0020】
本発明によると、基板アセンブリとして基板に実装されている状態で、信号伝達装置の劣化を容易に診断できる。
【図面の簡単な説明】
【0021】
図1】信号伝達装置の説明図であり、(A)は概略平面図、(B)は概略側面図である。
図2】信号伝達装置の構成図である。
図3】劣化診断装置の構成図である。
図4】クリップの説明図である。
図5】劣化診断の方法を説明するための、第1電流と出力電圧との関係を示すグラフである
【発明を実施するための形態】
【0022】
図1に示す基板アセンブリ10は、劣化の診断対象物であるフォトカプラ11を複数備える基板アセンブリの一例である。この例の基板アセンブリ10は、溶液製膜方法によりフィルムを製造するフィルム製造設備(溶液製膜設備)の各部を制御する制御部に設けられている。基板アセンブリ10は、基板12と、複数のフォトカプラ11とを備える。
【0023】
基板アセンブリ10には、基準クロック(図示無し)、データクロック(図示無し)、及びエンドクロック(図示無し)などが配されており、これらの各々に複数のフォトカプラ11が設けられている。したがってひとつの基板12に実装されているフォトカプラ11は多数あるが、図1の(A)にはそのうち3つのみを描いてある。フォトカプラ11は、基板12に形成されている導通部材と電気的に接続している。なお、図1においては、図の煩雑化を避けるために上記の導通部材の図示を略してある。
【0024】
フォトカプラ11は、発光部と、発光部からの光を受光する受光部とを備える信号伝達装置の一例であり、後述の劣化診断装置15(図3参照)を用いて劣化が診断される。劣化診断装置15により劣化を診断する対象物は、上記のように発光部と受光部とを備える信号伝達装置であればフォトカプラ11に限定されない。他の信号伝達装置としては、例えばフォトインタラプタ、光電スイッチ、光学式パルスジェネレータなどがある。
【0025】
フォトカプラ11は、入力された電気信号を発光部により光に変換し、この光を受光部により再び電気信号へ戻すことによって、電気的に絶縁した状態で信号を伝達する。フォトカプラ11はそれぞれパッケージ部材としての回路チップ20に設けられており、この回路チップ20から、発光部の入力端子21a,21bと、受光部の出力端子22a,22b及び電源電圧(Vcc)に接続するための電源接続用端子22cが突出している。これらの入力端子21a,21bと、出力端子22a,22b及び電源接続用端子22cとが、基板12の前述の導通部材と電気的に接続している。
【0026】
この例のフォトカプラ11は、図2に示すように、入力側の発光部25と、出力側の受光部26とを備える。発光部25は、発光素子で構成されており、具体的には、発光ダイオード31と、基板アセンブリ10の内部回路(基板回路)39Aに接続される入力端子対である入力端子21a,21bとを有する。フォトカプラ11は、発光ダイオード31が、アノードである入力端子21aを電源のプラス(+)側に接続し、カソードである入力端子21bを電源のマイナス(-)側に接続した状態で、使用される。発光部はこの例に限られず、例えば、前述の光電スイッチにおける発光部は、レーザであってもよい。
【0027】
受光部26は、この例では、フォトダイオード35と、アンプ36と、トランジスタ37と、基板アセンブリ10の内部回路(基板回路)39Bに接続される出力端子対(出力端子22a,22b)及び電源接続用端子22cとを備える。ただし、受光部26はこの例に限られず、例えばフォトトランジスタなどの受光素子で構成されている場合もある。フォトダイオード35がアンプ36の入力端子間に接続され、アンプ36の出力がトランジスタ37のベースに接続されている。アンプ36の電源端子は電源接続用端子22cを介して電源(図示無し)に接続されており、アンプ36に電圧が供給される。トランジスタ37では、アンプ36からの電流(ベース電流)に応じて、電流(エミッタ電流)が増減する。
【0028】
フォトカプラ11は市販品であってもよい。本例のフォトカプラ11も市販品であり、前述の基準クロックとデータクロックには、シャープ(株)製のフォトカプラ PC410L0NIP、ルネサスエレクトロニクス(株)製のフォトカプラ PS9117Aを、エンド信号には、アバゴテクノロジー製のフォトカプラ HCPL-M456を、用いている。
【0029】
図3に示す劣化診断装置50は、本発明の一例であり、フォトカプラ11の劣化を診断するためのものである。劣化診断装置50は、フォトカプラ11の発光部25に接続される入力側回路ユニット51と、受光部26に接続される出力側回路ユニット52とを備える。入力側回路ユニット51は、第1端子対55a,55bと、第1電源56と、調節回路57と、入力側測定部としての電流計58とを有する。なお、以降の説明において、第1端子対の一方55aと他方55bとを区別しない場合には、第1端子対55と記載する。
【0030】
第1端子対55は前述の入力端子対に接続される。入力端子21aに接続される第1端子に符号55aを付し、入力端子21bに接続される第1端子に符号55bを付す。第1電源56は、第1端子対55を介して、入力端子対に接続される。第1電源56の陽(プラス,+)極は第1端子55aを介して入力端子21aに、陰(マイナス,-)極は第1端子55bを介して入力端子21bに、それぞれ接続される。
【0031】
調節回路57は、発光ダイオード31の発光量を調節するためのものである。調節回路57は、第1電源56と第1端子55aとの間に設けられ、固定抵抗57aと、可変抵抗57bとを有する。固定抵抗57aは、発光部25へ流れる第1電流を一定の電流値以下に抑え、かつ、可変抵抗57bにより第1電流を変化させた場合における第1電流の急激な変化を抑える。可変抵抗57bは、固定抵抗75aよりも第1端子55a側に設けられており、発光部25へ流す第1電流を変化させる。この調節回路57は、第1電源56から発光部25へ流れる第1電流を増減し、この増減により、発光ダイオード31の発光量が調節される。なお、調節回路57は、可変抵抗57bを有するこの例に限られないが、可変抵抗57bは、小型、かつ第1電流を容易に調節できる点で好ましい。
【0032】
第1電源56から供給する電圧と、固定抵抗57aと、可変抵抗57bとは、劣化診断の対象物であるフォトカプラ11の仕様に応じて決定するとよい。フォトカプラ11が市販品である場合の仕様は、データシートに記載されており、本例でもデータシートの仕様を用いている。本例では、データシートに記載される仕様に基づき、第1電源56の電圧は5Vに設定し、固定抵抗57aは470Ωとした。また、可変抵抗57bは、抵抗の可変領域が0Ω以上2kΩ以下の範囲である。なお固定抵抗57aは、データシートの供給電圧と一次側電流値との関係を示すグラフ(25℃におけるグラフである)に基づき、求めている。
【0033】
電流計58は、第1電源56と第1端子55bとの間に設けられ、発光部25へ流れる第1電流を測定する。
【0034】
出力側回路ユニット52は、第2端子対61a,61bと、抵抗(プルアップ抵抗)64と、第2電源65と、電圧計66とを備える。なお、以降の説明において、第2端子対の一方61aと他方61bとを区別しない場合には、第2端子対61と記載する。
【0035】
第2端子対61は前述の出力端子対に接続される。出力端子22aに接続される第2端子に符号51aを付し、出力端子22bに接続される第2端子に符号61bを付す。
【0036】
抵抗64と第2電源65と電圧計66とは、受光部26の出力電圧を、第2端子対61を介して測定する出力側測定部を構成している。なお、出力側測定部はこの例に限られず、受光部26に流れる第2電流を、第2端子対61を介して測定する構成に置き換えてもよい。抵抗64は受光部26と直列回路を形成し、この直列回路の両端に第2電源65が接続される。第2電源65は、陽極を抵抗64側すなわち第2端子61a側に、陰極を第2端子側61b側に接続させる。なお、第1電源56から入力側回路ユニット51と並列接続に出力部側回路ユニットを接続することにより、第2電源65を使用することなく、第1電源56を第2電源として用いることができる。
【0037】
電圧計66は、第2端子61aと抵抗64との間、及び、第2端子61bと第2電源65の陰極との間に接続される。これにより、電圧計66は、受光部26の出力端子(22a,22b)間の電圧、すなわち、出力端子22aと出力端子22bとの間の電圧を測定する。
【0038】
出力側回路ユニット52は、さらに、電圧供給端子61cをさらに有することが好ましく、本例でもそのようにしている。電圧供給端子61cは、受光部26のアンプ36に駆動電圧を供給するためのものである。本例では駆動電圧を、第2電源65から供給している。なお、受光部として例えばフォトトランジスタなどの受光素子を用いた場合など、受光部の構成によっては、第2電源65からの電圧の供給が不要になったり、あるいは、前述のように第1電源56を第2電源として供用してもよい。
【0039】
第2電源65の電圧と抵抗64とはフォトカプラ11のデータシートに基づき設定している。本例では、第2電源65の電圧を5Vとし、抵抗64は10kΩとしている。
【0040】
第1端子対(第1端子55a,55b)と、第2端子対(第2端子61a,61b)とは、図4に示すように、クリップ67に設けられていることが好ましい。この例のように電圧供給端子61cがある場合には、電圧供給端子61cもクリップ67に設けていることが好ましく、本例でもそのようにしている。クリップ67は、フォトカプラ11が回路チップ20に設けてある場合において、回路チップ20と連結する連結部材の一例であり、回路チップ20を把持する。
【0041】
クリップ67は、第1アーム68と、この第1アーム68に軸棒69を介して揺動自在に取り付けられる第2アーム70とを備える。クリップ67は、第1アーム68と第2アーム70とによって回路チップ20を挟持固定することにより、フォトカプラ11との導通を得る。
【0042】
第1アーム68には、第2アーム70側に向けて突出した突出部68aが周縁部に形成されている。第2アーム70には、第1アーム68側に向けて突出した突出部70aが形成されている。第1アーム68と第2アーム70とは、突出部68aの内側に突出部70aが配され、第1アーム68の先端部68tと第2アーム70の先端部70tとが互いに向き合う状態とされる。突出部68aと突出部70aとのそれぞれには、軸棒69が挿通される貫通孔が形成されており、これら貫通孔に軸棒69が挿通されることにより第1アーム68と第2アーム70とは位置決めされた状態となっている。
【0043】
第1アーム68と第2アーム70とは、図4(A)に示すように先端部68tと先端部70tが閉状態となっている閉じ位置と、図4(B)に示すように開状態となっている開き位置との間で互いの姿勢を変える。第1アーム68と第2アーム70との間には、第1アーム68と第2アーム70との姿勢を閉じ位置に付勢するバネ(図示無し)が設けられている。
【0044】
第1端子55a(図3参照)及び第1端子55bは、第1アーム68に設けられている。第1端子55aと第1端子55bとの距離は、入力端子21aと入力端子21bとの距離に基づいて設定される。第2端子61a(図3参照)、第2端子61b、及び出力供給端子61cは、第2アーム70に設けられている。出力供給端子61cと第2端子61a(図3参照)と第2端子61bとの各距離は、電源接続用端子22cと出力端子22aと出力端子22bとの各距離に基づいて設定される。これにより、図4(B)に示すように先端部68tと先端部70tとにフォトカプラ11が挟持された場合に、第1端子55aと入力端子21a、第1端子55bと入力端子21b、出力供給端子61cと電源接続用端子22c、第2端子61a(図3参照)と出力端子22a、及び、第2端子61bと出力端子22bは、それぞれ接続する。このようにして、入力側回路ユニット51は発光部25に、出力側回路ユニット52は受光部26に、それぞれ導通する。
【0045】
連結部材は、入力側回路ユニット51を発光部25に、出力側回路ユニット52を受光部26に、それぞれ導通させる部材であれば、クリップ67に限定されない。例えば、回路チップ20に嵌合することにより回路チップ20と連結する部材であってもよい。
【0046】
上記構成の作用を説明する。まず、フォトカプラ11が劣化しているか否かの判断基準を設定する。発光部と受光部とを備えるフォトカプラ11等の信号伝達装置の劣化の多くは、発光部の劣化である。特に、基準クロック、データクロック、及びエンド信号の中でも基準クロックに備えられるフォトカプラ11は、データクロック及びエンド信号に備えられるフォトカプラ11よりも、発光部25が劣化しやすい。これは、発光ダイオード31の発光のオンとオフとの繰り返しがより多く、及び/または、発光時間の合計時間がより長いからである。そこで、発光ダイオード31の劣化を、フォトカプラ11の劣化として診断する。
【0047】
診断対象としているフォトカプラ11と同型(メーカ及び型式が同じ)、かつ、既に劣化して故障と認められているフォトカプラを、基準値設定用フォトカプラとして特定する。基準値設定用フォトカプラは、診断対象としているフォトカプラと同じ基板12に実装されているものでもよいし、他の基板に実装されているものでもよいし、あるいは、既に交換対象として取り外されたものでもよい。基準値設定用フォトカプラの回路チップを、劣化診断装置15のクリップ67で挟持し、発光部へ第1電源56から第1電流を供給し、受光部へ第2電源65から駆動電圧を供給する。第1電源56から供給する第1電流を、調節回路57の可変抵抗57bにより増減させる。この場合、第1電流は漸減するよりも、漸増する方がヒステリシス特性の観点で好ましい。そこで、本例でも第1電流を漸増させている。
【0048】
第1電流を発光部へ供給することにより発光ダイオードは発光し、第1電流を漸増させることにより、発光ダイオードの発光量が増える。発光ダイオードからの光は、出力側回路ユニット52のフォトダイオード35により受光され、電気信号に変換される。フォトダイオード35からの電流は、アンプ36により増幅され、トランジスタ37に送られる。
【0049】
前述の出力側測定部により、受光部の出力電圧が測定される。出力電圧は、受光部のオフ状態とオン状態とで明らかに異なる。オフ状態では相対的に高い値、オン状態では相対的に低い値であり、これらの出力電圧の差は容易に判別できるほど大きい。具体的には、オン状態での出力電圧は、オフ状態の出力電圧の20%以下になる。例えば、この例では、受光部がオフ状態の場合には、出力電圧が例えば2.5V以上と高い値として電圧計66により検出される。発光ダイオードの発光量が増加し、受光部がオフ状態からオン状態に切り替わった場合に、出力電圧は急激に低下し、高くても0.5V、すなわち0.5以下の検出値で電圧計66により検出される。このように出力電圧が急激に低下したときの第1電流の値が、受光部のオンに要する発光量のための電流値(以下、発光最低値と称する)として、電流計58により検出される。発光最低値は、発光ダイオードの劣化が進むほど大きくなる。
【0050】
劣化の基準値(以下、劣化判定基準値と称する)は、基準値設定用フォトカプラのデータシートなどに記載されている最小の電流値よりも高い値、かつ、上記の発光最低値よりも低い値に、設定する。例えば、基準値設定用フォトカプラの発光最低値の5%以上15%以下(例えば10%)の値を余裕分として基準値設定用フォトカプラの発光最低値から減算し、この減算により求めた値を劣化判定基準値とする。
【0051】
上記余裕分は、フォトカプラ11の個体ごとのばらつき(個体差)、及び劣化の進行速度などを考慮した電流値であり、例えば以下の方法で求めてもよい。連続稼働する生産設備では定期的に設備を点検整備する場合が多いため、点検整備毎に、診断対象であるフォトカプラ11の発光最低値を、上記と同様の方法で求めておく。このようにして求めた発光最低値の推移から、劣化の進行度合いを把握する。そして、次回の点検整備までに見込まれる劣化の進行分を見込み、見込み量に基づいて余裕分を決定する。このようにして余裕分を求め、基準値設定用フォトカプラの発光最低値から減算することで劣化判定基準値とすることができる。例えば、1年間で発光最低値が最大10%増加することが把握できた場合、かつ、次回の点検整備が1年後である場合には、見込み量である10%分の電流値を余裕分として、基準値設定用フォトカプラの発光最低値から減算し、減算して求めた値を劣化判定基準値とするとよい。なお、劣化判定基準値は、厳格に上記の値にする必要はなく、数値として区切りがよい値にしてよい。
【0052】
なお、市販のフォトカプラの多くは、データシートの仕様において最大の電流値は10mA、基準電圧が5Vとなっている。このようなフォトカプラの場合に、「出力電圧が急激に低下」とは、第1電流の変化量1mA当たり、出力電圧が2V以上低下した場合を意味する。
【0053】
本例では、基準値設定用フォトカプラのデータシートに記載されている最小の電流値が1mAであり、発光最低値が4.50mAである。また、発光最低値の10%を上記余裕分としている。そこで、4.50mA-0.45mAにより4.05mAと算出した値よりも小さく、かつ数値として区切りがよい4.0mAを、劣化判定基準値として設定している。このようにして、劣化判定基準値を、フォトカプラ11が劣化しているか否かの判断基準として設定する(図5参照)。
【0054】
劣化の診断の対象であるフォトカプラ11を、使用(駆動)を停止した状態、すなわち基板12からフォトカプラ11への電気信号の供給を停止した状態にする。この状態で、クリップ67により、基板12に実装されている状態のフォトカプラ11の回路チップ20を挟持する。これにより、入力端子21a,21b、出力端子22a,22b、及び電源接続用端子22cに、第1端子55a,55b、第2端子61a,61b、及び電圧供給端子61cが接続し(接続工程)、劣化診断装置15はフォトカプラ11に電気的に接続される。
【0055】
フォトカプラ11に電流を供給した場合には、フォトカプラ11から基板12へ流れる電流(以下、戻り電流と称する)が多少なりともある。そこで、内部回路39Aと入力端子21aとの間に電流計(図示無し)を接続し、戻り電流を測定しておくことが好ましく、本例でも測定している。戻り電流は、第1電源56から発光部25へ第1電流を供給し、上記のように内部回路39Aと入力端子21aとの間に備えた電流計により測定する。戻り電流を測定する場合の第1電流は、本例では4mAとしているが、この例に限られない。戻り電流を測定する場合の第1電流はフォトカプラ11のデータシートに記載される定格電流値以内で設定すればよい。そして、(フォトカプラ11への電流):(戻り電流)で求める分流比がわかればフォトカプラ11へ流れる第1電流が求められる。例えば、上記分流比が99:1である場合には、第1電流のうち99/100分が、フォトカプラ11へ流れていることになる。
【0056】
戻り電流が極めて少ない場合、具体的には、0.1mA以下である場合には、この戻り電流は無視し、戻り電流を0(ゼロ)mAと見なしてよい。本例では0.1mA未満であるので、0mAと見なしている。戻り電流が多い場合、すなわち0.1mAよりも大きい場合についての詳細は後述する。
【0057】
基準値設定用フォトカプラにおける発光最低値を求めた場合と同様にして、フォトカプラ11における発光最低値を求める。すなわち以下である。発光部25へ第1電源56から第1電流を供給し、受光部26へ第2電源65から駆動電圧を供給する。第1電源56から供給する第1電流を、調節回路57の可変抵抗57bにより増減させる。この場合、第1電流は漸減するよりも、漸増する方が前述の通り好ましく、本例でも漸増させている。
【0058】
第1電流を発光部25へ供給することにより発光ダイオード31は発光し、第1電流を漸増させることにより発光ダイオード31の発光量が増える。受光部26の出力電圧は、前述の出力側測定部により測定される。受光部26がオフ状態では、受光部26の出力電圧が本例では2.5V以上という高い値として電圧計66により検出される。発光ダイオード31の発光量が増加し、受光部26がオフ状態からオン状態に切り替わった場合に出力電圧は急激に低下し、高くても0.5、すなわち0.5以下(オフ状態の20%以下)の検出値で電圧計66により検出される。このように出力電圧が急激に変化したときの第1電流の値が、発光に要する発光最低値として、電流計58により検出され、特定される(特定工程)。
【0059】
なお、前述の戻り電流が多い場合、すなわち0.1mAよりも大きい場合には、上記の特定工程で求めた第1電流から戻り電流を減算し、減算により求めた値を、フォトカプラ11の発光最低値とする。
【0060】
フォトカプラ11の発光最低値と、基準値設定用フォトカプラを用いて求めた劣化判定基準値とを比較し、フォトカプラ11が劣化しているか否かを診断する(診断工程)。具体的には、フォトカプラ11の発光最低値が、劣化判定基準値以上である場合(図5(A)参照)には、フォトカプラ11は「劣化している」と診断され、新品に交換される。フォトカプラ11の発光最低値が、劣化判定基準値未満である場合(図5(B)参照)には、フォトカプラ11は、「劣化していない」と診断され、再び使用に供される。なお、「劣化していない」と診断された場合でも、次回の劣化診断までの期間が長く予定されている場合には、新品と交換しても構わない。
【0061】
上記によると、フォトカプラ11は、基板アセンブリ10として基板12に実装されている状態で、劣化が容易に診断される。
【符号の説明】
【0062】
10 基板アセンブリ
11 フォトカプラ
12 基板
50 劣化診断装置
20 回路チップ
21a,21b 入力端子
22a,22b 出力端子
22c 電源接続用端子
25 発光部
26 受光部
31 発光ダイオード
35 フォトダイオード
36 アンプ
37 トランジスタ
39A,39B 内部回路
51 入力側回路ユニット
52 出力側回路ユニット
55a,55b 第1端子
56 第1電源
57 調節回路
57a 固定抵抗
57b 可変抵抗
58 電流計
61a,61b 第2端子
61c 電圧供給端子
64 抵抗
65 第2電源
66 電圧計
67 クリップ
68 第1アーム
68a 突出部
68t 先端部
69 軸棒
70 第2アーム
70a 突出部
70t 先端部
図1
図2
図3
図4
図5