(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-19
(45)【発行日】2022-12-27
(54)【発明の名称】光導波路素子、及び光導波路デバイス
(51)【国際特許分類】
G02B 6/122 20060101AFI20221220BHJP
G02F 1/01 20060101ALI20221220BHJP
G02F 1/035 20060101ALI20221220BHJP
G02B 6/12 20060101ALI20221220BHJP
【FI】
G02B6/122
G02F1/01 F
G02F1/035
G02B6/12 363
(21)【出願番号】P 2019067620
(22)【出願日】2019-03-29
【審査請求日】2021-08-23
(73)【特許権者】
【識別番号】000183266
【氏名又は名称】住友大阪セメント株式会社
(74)【代理人】
【識別番号】110001081
【氏名又は名称】弁理士法人クシブチ国際特許事務所
(72)【発明者】
【氏名】釘本 有紀
(72)【発明者】
【氏名】宮崎 徳一
(72)【発明者】
【氏名】片岡 優
【審査官】林 祥恵
(56)【参考文献】
【文献】特開2012-027499(JP,A)
【文献】米国特許第06956982(US,B1)
【文献】特開2000-056278(JP,A)
【文献】特開2004-341147(JP,A)
【文献】特開2009-258687(JP,A)
【文献】山根 裕治、他,広帯域LiNbO3光変調器開発へのサンドブラスト法の適用,精密工学会 学術講演会 講演論文集,新井 民夫 社団法人精密工学会,2002年,p.75
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/00-1/125
G02F 1/21-1/39
G02B 6/12-6/14
JSTPlus(JDreamIII)
JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
光導波路が形成された光学基板と、
前記光学基板に接合された支持基板と、
を備える光導波路素子であって、
前記支持基板のうち、前記光学基板との接合面には、前記光学基板上の前記光導波路に沿って、当該光導波路の直下に凹部が形成され、
前記支持基板の前記接合面を含む部分の屈折率は前記光学基板の基板屈折率よりも大きく、
前記凹部には、前記基板屈折率より小さな屈折率を持つ物質が充填されており、
前記
光学基板は、厚さが2μm以下であり、
前記光学基板と前記支持基板とは、接着層を介さず接するように直接接合されるか、又は、前記光導波路を伝搬する光の前記光学基板の厚さ方向に沿った縦方向モードフィールド径の、1/50以下の厚さの接着層を挟んで接合されている、
光導波路素子。
【請求項2】
前記光学基板は、前記光導波路を伝搬する光の、前記光学基板の厚さ方向の縦方向モードフィールド径の2倍以下の厚さを有する、
請求項1に記載の光導波路素子。
【請求項3】
前記光導波路は、2つの光分岐部と、互いに並行に延在する2本の並行導波路とを含むマッハツェンダ型光導波路であり、
前記凹部は、前記2つの光分岐部および前記2本の並行導波路を含む前記光導波路の全体に亘って連続して形成されている、
請求項1または2に記載の光導波路素子。
【請求項4】
前記2つの並行導波路のそれぞれに設けられた2つの前記凹部は、前記2つの光分岐部に接続される部分において、前記2つの並行導波路に沿って互いに合体して一つの凹部を形成する、
請求項1ないし3のいずれか一項に記載の光導波路素子。
【請求項5】
前記合体した一つの凹部の溝幅は、前記並行導波路に設けられた前記凹部の溝幅の2倍を最大幅とし、前記光分岐部に向かって前記2つの並行導波路の間隔が狭まるにつれて、前記並行導波路に設けられた前記凹部の溝幅と同じ幅に収束する、
請求項4に記載の光導波路素子。
【請求項6】
前記凹部は、前記光導波路の延在方向に対し直交する方向に測った溝幅が、前記光導波路を伝搬する光の、前記光学基板の面方向に測った横方向モードフィールド径以上となるように形成されている、
請求項1ないし5のいずれか一項に記載の光導波路素子。
【請求項7】
前記凹部は、前記光導波路を伝搬する光の、前記光学基板の厚さ方向の縦方向モードフィールド径の1/40以上の深さで形成されている、
請求項1ないし6のいずれか一項に記載の光導波路素子。
【請求項8】
前記光学基板には、前記光導波路に沿って配された当該光導波路を伝搬する光波を制御する信号線路が設けられており、
前記凹部は、前記光導波路の延在方向に対し直交する方向に測った溝幅が、前記信号線路を構成する電極間のギャップの少なくとも一部を含むよう構成され、
前記物質は、前記光学基板よりも低い誘電率を有する、
請求項1ないし6のいずれか一項に記載の光導波路素子。
【請求項9】
前記支持基板は、互いに異なる材料で構成された複数の層を含む多層基板である、
請求項1ないし8のいずれか一項に記載の光導波路素子。
【請求項10】
前記支持基板は、厚さ方向に屈折率が分布するよう構成されている、
請求項1ないし8のいずれか一項に記載の光導波路素子。
【請求項11】
前記物質は、空気、窒素、樹脂、SiO
X、Al
2O
3、MgF
2、CaF
2の少なくとも一つを含む、
請求項1ないし10のいずれか一項に記載の光導波路素子。
【請求項12】
請求項1ないし11のいずれか一項に記載の光導波路素子と、
当該光導波路素子を収容する筺体と、
を有する光導波路デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば光変調素子などの、光導波路を用いた機能素子である光導波路素子、及びそのような光導波路素子を用いた光導波路デバイスに関する。
【背景技術】
【0002】
高速/大容量光ファイバ通信システムにおいては、導波路型の光変調器を組み込んだ光送信装置が多く用いられている。中でも、電気光学効果を有するLiNbO3(以下、LNともいう)を基板に用いた光変調素子は、インジウムリン(InP)、シリコン(Si)、あるいはガリウム砒素(GaAs)などの半導体系材料を用いた光変調素子に比べて、光の損失が少なく且つ広帯域な光変調特性を実現し得ることから、高速/大容量光ファイバ通信システムに広く用いられている。
【0003】
一方、光ファイバ通信システムにおける変調方式は、近年の伝送容量の増大化の流れを受け、QPSK(Quadrature Phase Shift Keying)やDP-QPSK(Dual Polarization - Quadrature Phase Shift Keying)等、多値変調や、多値変調に偏波多重を取り入れた伝送フォーマットが主流となっている。
【0004】
近年のインターネットサービスの普及加速は通信トラフィックのより一層の増大を招き、光変調素子の更なる小型化、広帯域化、省電力化の検討が今も進められている。
【0005】
そのような光変調素子の小型化、広帯域化、省電力化の一つの策として、例えば、リブ型導波路を用いた光変調素子(以下、リブ型光変調素子)が検討されている(例えば、特許文献1参照)。リブ型導波路は、LNを用いた基板を薄く加工し、ドライエッチング等により所望のストライプ状部分(リブ)を残して他の部分を更に薄く(例えば、基板厚さ10μm以下まで)加工することで、当該リブ部分の実効屈折率を他の部分より高めて光導波路としたものである。
【0006】
しかしながら、基板厚さが数μm程度以下まで薄く加工される結果、新たな問題が発生し得る。すなわち、光変調素子などの、基板上に形成された光導波路を用いる光導波路素子においては、一般に、光入力用の光ファイバと光導波路との光結合部や、Y分岐導波路等の光分岐部、及び又は光の伝搬方向が変化する曲がり導波路部において、光導波路内を伝搬する光が基板内へと漏れ出て不要光となる場合があり得る。このような不要光は、基板内を反射した後、再び光導波路に結合して雑音光となり、例えば、光変調素子においては、光変調波形の消光比が低下し得る。
【0007】
そして、特に、上記のように薄く加工された基板を用いる場合には、当該基板の厚さ方向断面積の減少や基板体積の減少に伴って、基板内に一旦漏れ出た不要光が基板内を多重反射したのち再び光導波路に結合する確率が高くなり得る。また、上述のような更なる広帯域化が図られるにつれ、上記消光比にはより厳しい要求条件が課されることとなり得るため、上記不要光に起因する消光比低下等の光特性の制限は、今後大きな問題となっていくことが予想され得る。
【先行技術文献】
【特許文献】
【0008】
【発明の概要】
【発明が解決しようとする課題】
【0009】
上記背景より、例えばリブ型光変調素子のような、薄く加工された基板を用いる光導波路素子において、光導波路から漏れ出た不要光が当該光導波路に再結合することに起因する性能低下を防止することが望まれている。
【課題を解決するための手段】
【0010】
本発明の一の態様は、光導波路が形成された光学基板と、前記光学基板に接合された支持基板と、を備える光導波路素子であって、前記支持基板のうち、前記光学基板との接合面には、前記光学基板上の前記光導波路に沿って、当該光導波路の直下に凹部が形成され、前記支持基板の前記接合面を含む部分の屈折率は前記光学基板の基板屈折率よりも大きく、前記凹部には、前記基板屈折率より小さな屈折率を持つ物質が充填されており、前記光学基板は、厚さが2μm以下であり、前記光学基板と前記支持基板とは、接着層を介さず接するように直接接合されるか、又は、前記光導波路を伝搬する光の前記光学基板の厚さ方向に沿った縦方向モードフィールド径の、1/50以下の厚さの接着層を挟んで接合されている。
本発明の他の態様によると、前記光学基板は、前記光導波路を伝搬する光の、前記光学基板の厚さ方向の縦方向モードフィールド径の2倍以下の厚さを有する。
前記光導波路は、2つの光分岐部と、互いに並行に延在する2本の並行導波路とを含むマッハツェンダ型光導波路であり、前記凹部は、前記2つの光分岐部および前記2本の並行導波路を含む前記光導波路の全体に亘って連続して形成されている。
前記2つの並行導波路のそれぞれに設けられた2つの前記凹部は、前記2つの光分岐部に接続される部分において、前記2つの並行導波路に沿って互いに合体して一つの凹部を形成する。
前記合体した一つの凹部の溝幅は、前記並行導波路に設けられた前記凹部の溝幅の2倍を最大幅とし、前記光分岐部に向かって前記2つの並行導波路の間隔が狭まるにつれて、前記並行導波路に設けられた前記凹部の溝幅と同じ幅に収束する。
本発明の他の態様によると、前記凹部は、前記光導波路の延在方向に対し直交する方向に測った溝幅が、前記光導波路を伝搬する光の、前記光学基板の面方向に測った横方向モードフィールド径以上となるように形成されている。
本発明の他の態様によると、前記凹部は、前記光導波路を伝搬する光の、前記光学基板の厚さ方向の縦方向モードフィールド径の1/40以上の深さで形成されている。
本発明の他の態様によると、前記光学基板には、前記光導波路に沿って配された当該光導波路を伝搬する光波を制御する信号線路が設けられており、前記凹部は、前記光導波路の延在方向に対し直交する方向に測った溝幅が、前記信号線路を構成する電極間のギャップの少なくとも一部を含むよう構成され、前記物質は、前記光学基板よりも低い誘電率を有する。
本発明の他の態様によると、前記支持基板は、互いに異なる材料で構成された複数の層を含む多層基板である。
本発明の他の態様によると、前記支持基板は、厚さ方向に屈折率が分布するよう構成されている。
本発明の他の態様によると、前記物質は、空気、窒素、樹脂、SiOX、Al203、MgF2、CaF2の少なくとも一つを含む。
本発明の他の態様は、上記いずれかの光導波路素子と、当該光導波路素子を収容する筺体と、を有する光導波路デバイスである。
【発明の効果】
【0011】
本発明によれば、例えばリブ型光変調素子のような、薄く加工された基板を用いる光導波路素子において、光導波路を漏れ出た不要光が当該光導波路に再結合することを抑制して、当該再結合に起因する性能低下を防止することができる。
【図面の簡単な説明】
【0012】
【
図1】本発明の第1の実施形態に係る光変調デバイスの構成を示す図である。
【
図2】
図1に示す光変調デバイスに用いられる光変調素子の構成を示す図である。
【
図3】
図2に示す光変調素子のAA断面矢視図である。
【
図4】
図1に示す光変調
デバイスに用いることのできる光変調素子の第1の変形例を示す図である。
【
図5】
図1に示す光変調
デバイスに用いることのできる光変調素子の第2の変形例を示す図である。
【
図6】
図1に示す光変調
デバイスに用いることのできる光変調素子の第3の変形例を示す図である。
【
図7】
図1に示す光変調
デバイスに用いることのできる光変調素子の第4の変形例を示す図である。
【
図8】
図1に示す光変調
デバイスに用いることのできる光変調素子の第5の変形例を示す図である。
【
図9】本発明の第2の実施形態に係る光変調デバイスの構成を示す図である。
【
図10】
図9に示す光変調デバイスに用いられる光変調素子の構成を示す図である。
【
図12】本発明に係る光変調素子の他の例を示す図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態について、図面を参照して説明する。なお、以下に示す実施形態に係る光導波路素子は、LN基板を用いて構成される光変調素子であるが、本発明に係る光導波路素子は、これには限られない。本発明は、LN基板以外の基板を用いる光導波路素子や、光変調以外の機能を有する光導波路素子にも、同様に適応することができる。
【0014】
<第1実施形態>
図1は、本発明の第1の実施形態に係る光導波路素子および光導波路デバイスの構成を示す図である。本実施形態では、光導波路素子はマッハツェンダ光導波路を用いて光変調を行う光変調素子102であり、光導波路デバイスは、当該光変調素子102を用いた光変調デバイス100である。
【0015】
光変調デバイス100は、筺体104の内部に光変調素子102を収容する。なお、筺体104は、最終的にはその開口部に板体であるカバー(不図示)が固定されて、その内部が気密封止される。
【0016】
光変調デバイス100は、筺体104内に光を入力するための入力光ファイバ106と、光変調素子102により変調された光を筺体104の外部へ導く出力光ファイバ108と、を有する。
【0017】
光変調デバイス100は、また、光変調素子102に光変調動作を行わせるための高周波電気信号を外部から受信するためのコネクタ110と、当該コネクタ110が受信した高周波電気信号を光変調素子102の信号電極の一端へと中継するための中継基板112を備える。また、光変調デバイス100は、光変調素子102の信号電極の他端に接続される、所定のインピーダンスを有する終端器114を備える。ここで、光変調素子102の信号電極と、中継基板112及び終端器114と、の間は、例えば金属ワイヤ等のボンディングにより電気的に接続される。
【0018】
図2は、
図1に示す光変調デバイス100の筺体104に収容される光導波路素子である光変調素子102の構成を示す図である。また、
図3は、
図2に示す光変調素子102のAA断面矢視図である。
【0019】
光変調素子102は、例えばLNで構成される光学基板220と、光学基板220を支持する支持基板222と、を有する。光学基板220上には、光導波路224(
図1に示す光変調素子102に示された太い点線に相当)が形成されている。ここで、光学基板220は、例えば1~2μm以下の厚さまで薄く加工されており、光導波路224は、当該光導波路224の部分が光学基板220の他の部分より厚く(例えば厚さ数μmで)形成されて構成される、いわゆるリブ型光導波路である。これにより、光導波路224内の実効屈折率が他の部分よりも高くなり、当該光導波路224内に光が閉じ込められて導波される。
【0020】
光導波路224は、例えばマッハツェンダ光導波路であり、2つの分岐部と、互いに並行に延在する2本の並行導波路226a、226bを含む。光学基板220上には、また、並行導波路226a、226bの屈折率を変化させて当該並行導波路226a、226bを伝搬する光波を制御する信号電極230が設けられている。信号電極230は、光導波路224の一部である並行導波路226a、226bに沿って配された、当該並行導波路226a、226bを伝搬する光波を制御する信号線路を構成する。
【0021】
具体的には、信号電極230は、2つの接地電極である電極232、236と、光学基板220の面内において当該電極232、236に挟まれるように配置された中心電極である電極234と、で構成されている。ここで、光学基板220は、例えばXカットのLNで構成されており、信号電極230は、並行導波路226a、226bに対し光学基板220の面方向に沿った電界を発生させることにより、当該並行導波路226a、226bの屈折率を変化させて、マッハツェンダ光導波路である光導波路224に光変調動作を行わせる。なお、
図2の図示右側及び左側に示す太線矢印は、光の入射方向及び出射方向を示している。
【0022】
特に、本実施形態の光導波路素子である光変調素子102では、支持基板222は、光学基板220の屈折率である基板屈折率n1よりも大きな屈折率n3を有する材料で構成されている(すなわち、n3>n1)。また、支持基板222のうち、光学基板220との接合面には、光学基板220上の光導波路224に沿って、当該光導波路224の直下に凹部340が形成されている。具体的には、凹部340は、本実施形態では、光導波路224の延在方向に対し直交する方向に測った溝幅W2が、当該光導波路224の幅を包含する幅で形成されている(
図3)。
【0023】
凹部340の内部には、また、上記基板屈折率n1よりも小さな屈折率n2を持つ物質(充填物質)350が充填されている(すなわち、n2<n1<n3)。ここで、充填物質350は、例えば、樹脂であるものとすることができる。
【0024】
本実施形態では、支持基板222は、光学基板220を構成するLNの屈折率よりも大きな屈折率を持つ例えばSiで構成されている。また、充填物質350は、上記LNの屈折率よりも小さな屈折率を持ち、且つ、光学基板220と支持基板222との接着にも用いることのできる樹脂で構成されている。
【0025】
本実施形態では、光学基板220は、接着層370を介して支持基板222と接合(接着)されている。接着層370は、本実施形態では、充填物質350を構成する樹脂で構成されている。
【0026】
ここで、接着層370の厚さT4は、光導波路224を伝搬する光が光学基板220から支持基板222へ向けて十分浸み出し得る程度に薄く構成されるものとする必要がある。
【0027】
上記の構成を有する光変調素子102は、光学基板220の基板屈折率n1よりも高い屈折率n3をもつ支持基板222が光学基板220に接合されているので、光導波路224から光学基板220内へ漏れ出た不要光は、支持基板222へは容易に伝搬するが、支持基板222から光学基板220へは入射が困難となる。また、支持基板222には、光学基板220上に形成された光導波路224に沿って、基板屈折率n1よりも小さな屈折率n2をもつ充填物質350が充填された凹部340が形成されているので、光導波路224を伝搬する光は、屈折率の高い支持基板222の方向へ漏れ出ることが困難となり、光導波路224内に閉じ込められることとなる。
【0028】
すなわち、光変調素子102では、光導波路224における導波光の閉じ込めは十分に確保されつつも、入力光ファイバ106との光結合部や、分岐部、及び又は曲がり導波路部等で発生した不要光は、光学基板220の直下にある高屈折率の支持基板222に向かって拡散され排除される。このため、光変調素子102では、光導波路224から光学基板220へ漏れ出た不要光が当該光導波路224に再結合するのを効果的に抑制することができる。したがって、光変調素子102では、不要光が光導波路224に再結合することによる性能悪化、例えば光変調波形における消光比の悪化を、効果的に抑制することができる。
【0029】
なお、
図3は、光導波路224の周辺の構成を示すため一例として並行導波路226aの部分を取り出して示したものであり、並行導波路226bを含む光導波路224の他の部分も、同様に構成されているものと理解されたい。また、光結合部や分岐部の近傍のように、並行導波路226a、226bのそれぞれに対して設けられた2つの凹部340が光導波路224に沿って接近する部分では、当該凹部340は、互いに合体して最大W2の2倍の溝幅を持つ一つの凹部となり、2つの光導波路の間隔に応じてその溝幅がW2に収束していくよう構成され得る。
【0030】
ここで、支持基板222に設ける凹部340の深さT3は、光導波路224を伝搬する光の波長との関係において、充填物質350が充填された当該凹部340が光導波路224のクラッド層として有効に機能し得る深さである必要がある。このT3の望ましい値の範囲は、例えば、上記と同様に上記波長と密接な関係のある光導波路224内の導波光のモードフィールド360(
図3)の大きさとの関係において示すことができ、少なくとも当該モードフィールド360の縦方向モードフィールド径T1の1/40以上(すなわち、T3≧T1/40)であることが望ましい。この条件は、モードフィールド360がシングルモードであるかマルチモードであるかを問わない。なお、縦方向モードフィールド径T1とは、光学基板220の厚さ方向に測ったモードフィールド360の直径をいう。
【0031】
また、本実施形態では、支持基板222に形成される凹部340は、その溝幅W2が、光導波路224の幅を包含する幅で形成されるものとしたが(
図3)、原理的には、凹部340の溝幅W2は、上記モードフィールド360の横方向モードフィールド径W1以上(すなわち、W2≧W1)であればよい。これにより、凹部340は、モードフィールド360の横方向の広がりの全体をカバーして、凹部340内の充填物質350により光導波路224の光閉じ込め効果を十分に確保することができる。ここで、上記横方向とは、光学基板220の面方向をいい、横方向モードフィールド径とは、光学基板220の面方向に測ったモードフィールド360の直径をいう。
【0032】
さらに、接着層の厚さT4は、光導波路224を伝搬する光の波長との関係において、光学基板220から支持基板222へ十分な光の浸み出しを確保し得る程度の厚さである必要がある。このT4の望ましい値の範囲は、例えば、上記と同様に上記波長と密接な関係のある光導波路224内の導波光のモードフィールド360(
図3)の大きさとの関係において示すことができ、少なくとも当該モードフィールド360の縦方向モードフィールド径T1の1/50以下(すなわち、T4≦T1/50)であることが望ましい。
【0033】
また、接着層の素材は、ドライ成膜法あるいはゾルゲル法などで成膜される薄膜(例えば、SiOX、Al2O3等の酸化物、MgF2、CaF2等のフッ化物などの薄膜)でも、樹脂系材料のコーティング膜でも良い。
【0034】
また、高屈折率の支持基板222を接合することによる上記不要光の排除効果は、特に、光学基板220の厚さT2が、上記導波光のモードフィールド360の縦方向モードフィールド径T1の2倍以下(T2≦2×T1)である場合に顕著となる。この条件は、光導波路224が、本実施形態のようにリッジ型導波路として作製されているか、又はリッジを設けずTi等の金属拡散により光学基板220の表層に構成された導波路(以下、平面導波路)として作製されているかを問わない。
【0035】
図4は、光導波路224がそのような平面導波路で構成される場合の、光変調素子102の第1の変形例を示す図である。ここで、
図4は、
図3に示す断面図に相当する。
図4に示す例では、光導波路224が、導波光の縦方向モードフィールド径T1の約1.5倍程度の厚さT2を持つ光学基板420内に平面導波路として構成されている。光導波路224がこのような平面導波路で構成される場合でも、
図3に示すリッジ型光導波路を用いる場合と同様に、光導波路224内の光閉じ込め効果を高めつつ、光学基板220において発生した不要光を効果的に排除することができる。
【0036】
また、本実施形態では、支持基板222の凹部340に充填される充填物質350は樹脂であるものとしたが、これには限られない。充填物質350は、光学基板220の基板屈折率n1よりも小さな屈折率n2を有する限りにおいて、光変調素子102の通常の使用温度において固体、液体、気体のいずれの相を持つ材料であるかを問わない。例えば、充填物質350は、空気や窒素等の気体であってもよい。例えば、充填物質350は、空気、樹脂、SiOX、Al2O3等の酸化物、MgF2、CaF2等のフッ化物の、少なくとも一つを含むか、またはこれらの組み合わせとすることができる。
【0037】
図5は、光変調素子102の第2の変形例を示す図であり、充填物質350として気体を用いる例である。ここで、
図5は、
図3に示す断面図に相当する。
図5に示す例では、支持基板222の凹部340には充填物質350として空気等の気体が充填され、凹部340以外の支持基板222と光学基板220との間隙部分に接着用樹脂による接着層370が構成されて、支持基板222と光学基板220とが接合されている。このように構成しても、充填物質350が基板屈折率n1より小さい屈折率n2を有する限りにおいて、
図3の構成と同様に、光導波路224内の光閉じ込め効果を高めつつ、光学基板220において発生した不要光を効果的に排除することができる。
【0038】
また、凹部340に充填する充填物質350は、単一の材料ではなく、複数の材料が組み合わされて、それぞれの材料が凹部340内の異なる部分に充填されていてもよい。
【0039】
図6は、光変調素子102のそのような第3の変形例を示す図である。ここで、
図6は、
図3に示す断面図に相当する。
図6に示す例では、充填物質350として空気652と、接着層370を構成する樹脂654とが組み合わされて用いられており、樹脂654は凹部340の内側面に沿って配され、その内側に空気652が充填されている。このように構成しても、充填物質350を構成するそれぞれの材料が基板屈折率n1より小さい屈折率を有する限りにおいて、または、充填物質350を構成する材料のうち少なくとも光学基板220と接する部分に配された材料が基板屈折率n1より小さい屈折率を有する限りにおいて、
図3の構成と同様に、光導波路224内の光閉じ込め効果を高めつつ、光学基板220において発生した不要光を効果的に排除することができる。
【0040】
なお、
図6に示すような構成は、樹脂654を、充填物質350の一部および接着層370として用いる構成には限られない。
図7は、
図6と同様の構成を有する、光変調素子102のそのような第4の変形例を示す図である。
図7に示す構成においては、凹部340が形成された支持基板222上に、スパッタリングなどの膜形成技術を用いて中間層656が形成されている。この中間層656は、
図7に示すように凹部340の底面及び側面にのみ形成されるものとしてもよいし、凹部340の底面にのみ形成されるものとしてもよい。また、中間層656は、例えば、充填物質350の一部として、例えば上述した条件を有する屈折率n2をもつ材料(例えばSiO
2)の膜とすることができる。また、この中間層656は、光学基板220と支持基板222との接合材としても用いられるものとすることができる。例えば、中間層656と光学基板220との接合は、オプティカルコンタクト等による直接接合、または、光学基板220の裏面に設けられた他の金属等の層(不図示)との超音波加熱等による熱融着であってもよい。あるいは、凹部340のうち中間層656以外の部分に充填される充填物質350の深さT31が、例えばT3について上述した同様の条件を満たし、T31≧T1/40であるときは、中間層656は、必ずしも充填物質350の一部を構成していなくてもよい。
【0041】
さらに、光学基板220と支持基板222とは、直接接合されていてもよい。
図8は、光変調素子102のそのような第5の変形例を示す図である。ここで、
図8は、
図3に示す断面図に相当する。
図8に示す例では、光学基板220と支持基板222とが、接着層を介さず接するように直接接合されている。このような接合は、たとえ
ば、光学基板220と支持基板222とのオプティカルコンタクト等により実現することができる。
【0042】
なお、
図1ないし
図3に示す第1実施形態、及び
図4ないし
図8に示した第1実施形態の変形例では、光学基板220として例えばXカットのLN基板を用いて光変調素子102が構成されるものとしたが、これには限られない。光学基板220としてZカットのLN基板を用いて光変調素子が構成されるものとしてもよい。
【0043】
<第2実施形態>
次に、本発明の第2の実施形態について説明する。
図9、
図10、
図11は、本発明の第2の実施形態に係る光導波路素子である光変調素子802、およびこれを用いた光導波路デバイスである光変調デバイス800の構成を示す図である。
【0044】
【0045】
図9に示す光変調デバイス800は、光変調デバイス100と同様の構成を有するが、光変調素子102に代えて、光変調素子802を用いる点が異なる。また、光変調デバイス800は、光変調素子802がそれぞれ一つの中心電極を備える2つの信号電極930a、930b(後述)を有することから、2つの中心電極のそれぞれに対応して、2つのコネクタ110と、2つの中継基板112と、2つの終端器114と、を有する点が、光変調デバイス100と異なる。
【0046】
図10は、光変調素子802の構成を示す図である。また、
図11は、
図10に示す光変調素子802のBB断面矢視図である。光変調素子802は、光変調素子102と同様の構成を有するが、XカットのLN基板である光学基板220に代えて、ZカットのLN基板である光学基板820が用いられている点が異なる。また、光変調素子802は、光学基板820上に、例えばSiO
2で構成されるバッファ層962が形成されている点が、光変調素子102と異なる。
【0047】
また、光変調素子802は、XカットのLN基板である光変調素子102とは異なり、光学基板820がZカットのLN基板である。そのため、当該並行導波路226a、226b対し、それぞれ、光学基板820の厚さ方向に電界を印加するための、2つ信号電極930a、930bが設けられている。ここで、信号電極930a、930bは、それぞれ、並行導波路226a、226bに沿って配されて当該並行導波路226a、226bを伝搬する光を制御する信号線路を構成する。
【0048】
具体的には、信号電極930aは、並行導波路226aの直上部のバッファ層962上に当該並行導波路226aに沿って延在するように配された中心電極である電極934aと、当該電極934aを光学基板820の面方向において挟むように配された2つの接地電極である電極932a、936aと、で構成されている。
【0049】
また、信号電極930bは、並行導波路226bの直上部のバッファ層962上に当該並行導波路226bに沿って延在するように配された中心電極である電極934bと、当該電極934bを光学基板820の面方向において挟むように配された2つの接地電極である電極932b、936bと、で構成されている。さらに、電極932aと932bとは、光学基板820上で互いに接続されている。
【0050】
そして、特に、光変調素子802では、光変調素子102とは異なり、支持基板222に、凹部340に代えて、凹部1040が設けられている。凹部1040は、凹部340と同様に、光導波路224に沿って当該光導波路224の直下に設けられている。ただし、凹部1040は、並行導波路226a、226bに対応する部分の構成が、凹部340と異なっている。
【0051】
具体的には、凹部1040の幅W21が、少なくとも信号電極930a、930bにより屈折率が制御される並行導波路226a、226bの長さ方向の範囲(
図10に
「C部」で示す範囲)に亘り、一の信号線路を構成する信号電極930aの電極936a、934a、932aの相互間のギャップg1a、g2aと、他の信号線路を構成する信号電極930bの電極936b、934b、932bの相互間のギャップg1b、g2bと、を含む幅で形成されている。
【0052】
また、凹部1040の内部には、充填物質350に代えて、充填物質1050が充填されている。充填物質1050は、充填物質350と同様に光学基板820の基板屈折率n1より小さい屈折率n2を持つことに加えて、光学基板820より低い誘電率を持つ素材が用いられる。
【0053】
上記の構成を有する光変調素子802は、支持基板222に設けられた凹部1040が、並行導波路226a、226bの直下に設けられているので、光変調素子102と同様に、光導波路224への光の閉じ込めを十分に行いつつ、光導波路224から光学基板820へ漏れ出た不要光を支持基板222へ排除して、当該不要光が光導波路224に再結合して消光比等の光学特性を悪化させるのを抑制することができる。
【0054】
そして、特に、光変調素子802では、凹部1040が、信号線路を構成する電極932a等の相互間のギャップg1a、g2a、g1b、g2bを含む溝幅W21で設けられ、その内部に光学基板820の誘電率よりも低い誘電率を有する充填物質1050が充填されている。このため、信号電極930a及び930bにおける高周波電気信号の伝搬速度を、並行導波路226a、226bにおける光の伝搬速度に近づけて両者を整合させることができる。
【0055】
これにより、光変調素子802では、上記不要光の排除効果に加えて、上記速度整合の結果として光変調素子802広帯域化、及び駆動電圧の低減を図ることができる。なお、
図10、
図11に示す構成では、凹部1040は、ギャップg1a、g2a、g2b、g1bを全て包含する幅W21で構成されるものとしたが、これには限られない。凹部1040のような凹部は、支持基板222のうち、信号線路を構成する信号電極930aおよび930bのそれぞれにおいて電界が発生する部分の少なくとも一部を含むように構成されていれば、上記速度整合の効果を得ることができる。したがって、例えば、
図11において、凹部1040は図示左右に分割された2つの凹部で構成されるものとし、一方の凹部がギャップg1a及び又はg2aの少なくとも一部を含む幅で構成され、他方の凹部がギャップg2bおよびg1bの少なくとも一部を含む幅で構成されているものとしてもよい。
【0056】
なお、本実施形態では、光学基板820としてZカットのLN基板を用いるものとしたが、これには限られない。光学基板820として、光学基板220と同様のXカットのLN基板を用いるものとすることができる。この場合には、光学基板820上には、
図2示したものと同様の信号電極230が形成され得る。また、この場合には、
図3のように、支持基板222のうち、信号線路を構成する信号電極230の電極234、232a間におい電界が発生する部分(電極234と電極232aとの間のギャップ部分)の少なくとも一部に凹部340が形成されていれば、上記と同様の速度整合を行うものとすることができる。
【0057】
また、本実施形態では、凹部1040は、ギャップg1a、g2a、g1b、g2bを含む幅を持つ一つの溝として形成されているが、これには限られない。例えば、凹部1040を、並行導波路226aの直下の部分とギャップg1a、g2aとを含む幅で形成された第1の凹部と、並行導波路226bの直下の部分とギャップg1b、g2bとを含む幅で形成された第2の凹部と、に分けて構成してもよい。この場合には、第1の凹部および第2の凹部により、それぞれ、並行導波路226aの光の伝搬速度と信号電極930aの高周波電気信号の伝搬速度との速度整合、および、並行導波路226bの光の伝搬速度と信号電極930bの高周波電気信号の伝搬速度との速度整合を、個別に行うものとすることができる。
【0058】
ここで、光変調素子802においても、光変調素子102について上述したT1、T2、T3、T4、及びW1等の寸法についての望ましい条件等が適用され得る。また、光変調素子802における充填物質1050には、上述した充填物質350の材料、充填の態様等についての変形が適用され得る。
【0059】
さらに、光変調素子802においても、光変調素子102について上述したのと同様に、光導波路224として、リッジ型導波路に代えて、
図4に示すような平面導波路を用いるものとすることができる。
【0060】
なお、本発明は上記実施形態およびその変形例の構成に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能である。
【0061】
例えば、上述の実施形態では、支持基板222が一様な屈折率ものとしたが、これには限られない。支持基板222は、それぞれが互いに異なる材料で構成された複数の層から成る多層基板であってもよい。この場合には、支持基板222を構成する層のうち、光学基板220と接合される面を含む上部層に凹部340が形成されるか、又は当該上部層とその下部にある一つ又は複数の下部層とに亘って凹部340が形成されるものとすることができる。この場合、支持基板222のうち光学基板220と接合する面のみ及び又は当該接合する面を含む部分(例えば、上記上部層の部分)の屈折率n3が、上述したn3についての条件、すなわち、光学基板220の基板屈折率n1より高い屈折率を有しているものとすることができる。
【0062】
あるいは、支持基板222は、厚さ方向に屈折率が分布するよう構成されているものとすることができる。この場合には、支持基板222は、光学基板220と接合される上面から凹部340の底面の深さまでの部分が、上述したn3についての条件、すなわち、光学基板220の基板屈折率n1より高い屈折率を有しているものとすることができる。
【0063】
すなわち、支持基板222は、その上面から少なくとも凹部340の底面の深さまでの部分(すなわち、上記上面から深さT3までの部分)が、光学基板220の基板屈折率n1よりも大きな屈折率を有していればよい。
【0064】
また、例えば、本実施形態では、光変調素子102、802として、一対の並行導波路226a、226bを含む単一のマッハツェンダ光導波路を構成する光導波路224により光変調動作が行われる光変調素子を示したが、これには、限られない。例えば、
図12に示すような、いわゆるネスト型マッハツェンダ光導波路を2つ用いて構成される、DP-QPSK変調を行う光変調素子1102を用いるものとすることができる。
【0065】
光変調素子1102は、例えば、光学基板220と同様の基板屈折率n1を有するXカットのLN基板である光学基板1120と、当該光学基板1120に接合された支持基板222とで構成されるものとすることができる。そして、支持基板222には、第1の実施形態における凹部340と同様に、光学基板1120上に形成された光導波路1124(図示太線の点線)に沿って、当該光導波路1124の直下の部分を含む幅で形成された凹部1140(図示一点鎖線に挟まれた部分)を設けるものとすることができる。
【0066】
また、上述した第2の実施形態と同様に、それぞれが信号線路を構成する信号電極1130a、1130b、1130c、1130dにより屈折率が制御される並行導波路対1126a、1126b、1126c、1126dのそれぞれについて、凹部1140を、対応する並行導波路の直下の部分と対応する信号線路の電極間のギャップとを含む溝幅で形成して、導波光と高周波電気信号との間での速度整合を図るものとすることができる。
【0067】
なお、
図12に示す光変調素子1102では、図示左方から光導波路1124に入射された光は、それぞれQPSK変調された2つの出力光として図示右方から出力される。この2つの出力光は、従来技術に従い適切な空間光学系により偏波合成されて一つの光ビームにまとめられ、例えば光ファイバに結合されて伝送路光ファイバへと導かれる。
【0068】
以上、説明したように、本実施形態に示す光導波路素子である光変調素子102は、光導波路224が形成された光学基板220と、当該光学基板220に接合された支持基板222と、を備える。支持基板222のうち、光学基板220との接合面には、光学基板220上の光導波路224に沿って、当該光導波路224の直下に凹部340が形成されている。また、支持基板222のうち上記接合面を含む部分は、光学基板220の基板屈折率n1よりも大きな屈折率n3を有する。また、凹部340には、基板屈折率n1より小さな屈折率n2を持つ物質で構成された充填物質350が充填されている。
【0069】
この構成によれば、光導波路224内への光の閉じ込めを十分に確保しつつ、光導波路224から光学基板220内に漏れ出た不要光を支持基板222へ排除することができる。このため、上記構成では、不要光が光導波路224に再結合することによる、当該光導波路224を用いて行われる光学機能の性能悪化、例えば光導波路224が構成する光変調素子102における消光比の悪化を、効果的に抑制することができる。
【0070】
また、光変調素子102では、光学基板220は、光導波路224を伝搬する光の、光学基板220の厚さ方向の縦方向モードフィールド径T1の2倍以下の厚さT2を有する。この構成によれば、光導波路224への不要光の再結合が起こりやすい、薄く加工された光学基板220を用いる場合にも、当該再結合を効果的に抑制して、良好な光学特性を得ることができる。
【0071】
また、光変調素子102では、凹部340は、光導波路224の延在方向に対し直交する方向に測った溝幅W2が、光導波路224を伝搬する光(伝搬光)の、光学基板220の面方向に測った横方向モードフィールド径W1以上となるように形成されている。この構成によれば、凹部340により上記伝搬光のモードフィールド360の横方向の広がりの全体をカバーして、凹部340内の充填物質350により光学基板220の厚さ方向における光導波路224の光閉じ込めを十分に確保することができる。
【0072】
また、光変調素子102では、光学基板220と支持基板222とは、接着層370を挟んで接合されている。接着層370は、光導波路224の導波光の縦方向モードフィールド径T1の1/50以下の厚さT4で形成されている。この構成によれば、光学基板220内の不要光は、接着層370を容易に浸み出して透過し、支持基板222へ効果的に排除される。
【0073】
また、光変調素子102では、凹部340は、上記縦方向モードフィールド径T1の1/40以上の深さT3で形成されている。この構成によれば、充填物質350が充填された凹部340は、光導波路224のクラッド層として有効に機能し、光導波路224内への光閉じ込めを十分に行うことができる。
【0074】
また、光変調素子802では、光学基板820には、光導波路224の一部である並行導波路226aまたは226bに沿って配された、当該並行導波路226a、226bを伝搬する光波の制御を行う信号線路を構成する信号電極930a、930bが設けられている。そして、凹部340は、溝幅W2が、上記信号線路を構成する電極932a等の互いの間のギャップを包含するよう構成されている。また、凹部340内の充填物質350は、光学基板220よりも低い誘電率を有する。
【0075】
この構成によれば、信号線路により光波が制御される並行導波路226a、226bにおいて、当該並行導波路226a、226bの導波光の伝搬速度と、上記信号線路の高周波電気信号の伝搬速度との整合を図ることができるので、上記光波の制御の広帯域化が容易となる。なお、この効果は、凹部340の溝幅W2が、信号線路を構成する電極間のギャップの少なくとも一部を含むよう構成されていれば、同様に奏することができる。
【0076】
また、光変調素子102、802の支持基板222は、互いに異なる材料で構成された複数の層を含む多層基板であるものとすることができる。また、光変調素子102、802の支持基板222は、その厚さ方向に屈折率が分布するよう構成されているものとすることができる。これらの構成によれば、支持基板222のうち光学基板220と接合する面のみ及び又は当該接合する面を含む部分の屈折率n3が上記条件を満たす限りにおいて、例えば、堅牢な素材で構成された層に隣接して屈折率n3を持つ層を設けた多層基板を支持基板222としたり、例えば屈折率が上記n3の条件を満たさない堅牢な素材にイオン注入やイオン拡散等によりn3の条件を満たす部分を形成した基板を支持基板222として用いることができる。このため、支持基板222として多くの素材を用いることができることとなり、設計の自由度が向上する。なお、支持基板222に屈折率n3を持つ層や光学基板220と接合する面を含む部分を形成するのは、凹部340の形成前でも形成後のどちらの場合でも構わない。
【0077】
また、光変調素子102前記充填物質350は、空気や窒素などの気体、樹脂、SiOX、Al203、MgF2、CaF2の少なくとも一つを含む。この構成によれば、凹部340内の充填物質350として特別な材料を用いることなく、当該充填物質350を、光導波路224に対する有効なクラッド層として機能させることができる。
【0078】
また、上述した実施形態の光導波路デバイスである光変調デバイス100、800は、上記いずれかの構成を有する光導波路素子である光変調素子102、802と、光導波路素子を収容する筺体104と、で構成されている。この構成によれば、光導波路224から光学基板220、820へ漏れ出た不要光を支持基板222へ効果的に排除して、光変調波形の消光比等の、光学特性の悪化を効果的に抑制した光導波路デバイスを実現することができる。
【符号の説明】
【0079】
100、800…光変調デバイス、102、802、1102…光変調素子、104…筺体、106…入力光ファイバ、108…出力光ファイバ、110…コネクタ、112…中継基板、114…終端器、220、420、820、1120…光学基板、222…支持基板、224、1124…光導波路、226a、226b…並行導波路、230、930a、930b、1130a、1130b、1130c、1130d…信号電極、232、234、236、932a、932b、934a、934b、936a、936b…電極、340、1040、1140…凹部、350、1050…充填物質、360…モードフィールド、370、1070…接着層、652…空気、654…樹脂、656…中間層、962…バッファ層、1126a、1126b、1126c、1126d…並行導波路対。