IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立化成株式会社の特許一覧

特許7196839半導体用フィルム状接着剤、基材付きフィルム状接着剤、半導体用フィルム状接着剤の製造方法、半導体装置の製造方法及び半導体装置
<>
  • 特許-半導体用フィルム状接着剤、基材付きフィルム状接着剤、半導体用フィルム状接着剤の製造方法、半導体装置の製造方法及び半導体装置 図1
  • 特許-半導体用フィルム状接着剤、基材付きフィルム状接着剤、半導体用フィルム状接着剤の製造方法、半導体装置の製造方法及び半導体装置 図2
  • 特許-半導体用フィルム状接着剤、基材付きフィルム状接着剤、半導体用フィルム状接着剤の製造方法、半導体装置の製造方法及び半導体装置 図3
  • 特許-半導体用フィルム状接着剤、基材付きフィルム状接着剤、半導体用フィルム状接着剤の製造方法、半導体装置の製造方法及び半導体装置 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-19
(45)【発行日】2022-12-27
(54)【発明の名称】半導体用フィルム状接着剤、基材付きフィルム状接着剤、半導体用フィルム状接着剤の製造方法、半導体装置の製造方法及び半導体装置
(51)【国際特許分類】
   C09J 7/35 20180101AFI20221220BHJP
   C09J 11/06 20060101ALI20221220BHJP
   C09J 201/00 20060101ALI20221220BHJP
   H01L 21/60 20060101ALI20221220BHJP
【FI】
C09J7/35
C09J11/06
C09J201/00
H01L21/60 311Q
【請求項の数】 15
(21)【出願番号】P 2019523953
(86)(22)【出願日】2018-06-06
(86)【国際出願番号】 JP2018021767
(87)【国際公開番号】W WO2018225800
(87)【国際公開日】2018-12-13
【審査請求日】2021-05-07
(31)【優先権主張番号】PCT/JP2017/021143
(32)【優先日】2017-06-07
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004455
【氏名又は名称】昭和電工マテリアルズ株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100128381
【弁理士】
【氏名又は名称】清水 義憲
(74)【代理人】
【識別番号】100169454
【弁理士】
【氏名又は名称】平野 裕之
(74)【代理人】
【識別番号】100211018
【弁理士】
【氏名又は名称】財部 俊正
(72)【発明者】
【氏名】秋吉 利泰
【審査官】高崎 久子
(56)【参考文献】
【文献】特開2012-238703(JP,A)
【文献】国際公開第2012/067158(WO,A1)
【文献】特開2017-045890(JP,A)
【文献】国際公開第2017/073630(WO,A1)
【文献】国際公開第2008/015852(WO,A1)
【文献】国際公開第2016/088859(WO,A1)
【文献】国際公開第2016/117350(WO,A1)
【文献】特開2016-174182(JP,A)
【文献】特開2012-184288(JP,A)
【文献】特開2012-195414(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C09J
H01L21/60
(57)【特許請求の範囲】
【請求項1】
半導体用フィルム状接着剤を被着体に貼付する工程を含む方法に用いられる、前記半導体用フィルム状接着剤であって、
フラックス化合物を含有する第1の熱硬化性接着剤からなる第1の層と、
前記第1の層上に設けられ、フラックス化合物を実質的に含有しない第2の熱硬化性接着剤からなる第2の層と、を備え、
前記第1の熱硬化性接着剤が、熱硬化性樹脂として、エポキシ樹脂、フェノール樹脂又はポリイミド樹脂を含有し、
前記第2の熱硬化性接着剤が、ラジカル重合性化合物と熱ラジカル発生剤とを含有する、半導体用フィルム状接着剤。
【請求項2】
前記第2の熱硬化性接着剤は、200℃で5秒間保持したときの硬化反応率が80%以上である、請求項1に記載の半導体用フィルム状接着剤。
【請求項3】
前記熱ラジカル発生剤は過酸化物である、請求項1又は2に記載の半導体用フィルム状接着剤。
【請求項4】
前記ラジカル重合性化合物は(メタ)アクリル化合物である、請求項1~3のいずれか一項に記載の半導体用フィルム状接着剤。
【請求項5】
前記(メタ)アクリル化合物はフルオレン型骨格を有する、請求項に記載の半導体用フィルム状接着剤。
【請求項6】
前記フラックス化合物はカルボキシル基を有する、請求項1~のいずれか一項に記載の半導体用フィルム状接着剤。
【請求項7】
前記フラックス化合物は2つ以上のカルボキシル基を有する、請求項1~のいずれか一項に記載の半導体用フィルム状接着剤。
【請求項8】
前記フラックス化合物は下記式(2)で表される化合物である、請求項1~のいずれか一項に記載の半導体用フィルム状接着剤。
【化1】

[式(2)中、R及びRは、それぞれ独立して、水素原子又は電子供与性基を示し、nは0又は1以上の整数を示す。]
【請求項9】
前記フラックス化合物の融点は150℃以下である、請求項1~のいずれか一項に記載の半導体用フィルム状接着剤。
【請求項10】
前記第1の熱硬化性接着剤は硬化剤を含有する、請求項1~のいずれか一項に記載の半導体用フィルム状接着剤。
【請求項11】
前記硬化剤はイミダゾール系硬化剤である、請求項10に記載の半導体用フィルム状接着剤。
【請求項12】
半導体用フィルム状接着剤と、該半導体用フィルム状接着剤の一方面上に設けられた基材フィルムと、を備え、
前記半導体用フィルム状接着剤が、
フラックス化合物を含有する第1の熱硬化性接着剤からなる第1の層と、
前記第1の層上に設けられ、フラックス化合物を実質的に含有しない第2の熱硬化性接着剤からなる第2の層と、を備え、
前記第1の熱硬化性接着剤が、熱硬化性樹脂として、エポキシ樹脂、フェノール樹脂又はポリイミド樹脂を含有し、
前記第2の熱硬化性接着剤が、ラジカル重合性化合物と熱ラジカル発生剤とを含有する、基材付きフィルム状接着剤
【請求項13】
前記半導体用フィルム状接着剤の他方面上に設けられた保護フィルムを更に備える、請求項12に記載の基材付きフィルム状接着剤。
【請求項14】
半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置の製造方法であって、
前記接続部の少なくとも一部を、請求項1~11のいずれか一項に記載の半導体用フィルム状接着剤、又は、請求項12若しくは13に記載の基材付きフィルム状接着剤における前記半導体用フィルム状接着剤を用いて封止する工程を備え、
前記工程が、
前記半導体用フィルム状接着剤を、半導体チップ、半導体ウェハ又は配線回路基板に貼り付けることと、
前記フィルム状接着剤が貼り付けられた半導体チップと他の半導体チップ若しくは配線回路基板、前記フィルム状接着剤が貼り付けられた半導体ウェハと半導体チップ、又は、前記フィルム状接着剤が貼り付けられた配線回路基板と半導体チップと配線回路基板を、前記半導体用フィルム状接着剤を介して加熱しながら圧着することと、を含む、半導体装置の製造方法。
【請求項15】
半導体用フィルム状接着剤の製造方法であって、
第1の層を備える第1のフィルム状接着剤と、第2の層を備える第2のフィルム状接着剤とを貼り合わせる工程を備え、
前記第1の層が、フラックス化合物を含有する第1の熱硬化性接着剤からなり、
前記第2の層が、フラックス化合物を実質的に含有しない第2の熱硬化性接着剤からなり、
前記第1の熱硬化性接着剤が、熱硬化性樹脂として、エポキシ樹脂、フェノール樹脂又はポリイミド樹脂を含有し、
前記第2の熱硬化性接着剤が、ラジカル重合性化合物と熱ラジカル発生剤とを含有する、半導体用フィルム状接着剤の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体用フィルム状接着剤、半導体装置の製造方法及び半導体装置に関する。
【背景技術】
【0002】
従来、半導体チップと基板とを接続するには、金ワイヤ等の金属細線を用いるワイヤーボンディング方式が広く適用されている。一方、半導体装置に対する高機能化、高集積化、高速化等の要求に対応するため、半導体チップ又は基板にバンプと呼ばれる導電性突起を形成して、半導体チップと基板とを直接接続するフリップチップ接続方式(FC接続方式)が広まりつつある。
【0003】
例えば、半導体チップ及び基板間の接続に関して、BGA(Ball Grid Array)、CSP(Chip Size Package)等に盛んに用いられているCOB(Chip On Board)型の接続方式もFC接続方式に該当する。また、FC接続方式は、半導体チップ上に接続部(例えば、バンプ及び配線)を形成して、半導体チップ間を接続するCOC(Chip On Chip)型の接続方式にも広く用いられている。
【0004】
また、さらなる小型化、薄型化及び高機能化が強く要求されるパッケージでは、上述した接続方式を用いてチップを積層し多段化した、チップスタック型パッケージ、POP(Package On Package)、TSV(Through-Silicon Via)等も広く普及し始めている。このような積層・多段化技術は、半導体チップ等を三次元的に配置することから、二次元的に配置する手法と比較してパッケージを小さくできる。また、半導体の性能向上、ノイズ低減、実装面積の削減、省電力化等にも有効であることから、次世代の半導体配線技術として注目されている。
【0005】
ところで、一般に接続部同士の接続には、接続信頼性(例えば絶縁信頼性)を十分に確保する観点から、金属接合が用いられている。上記接続部(例えば、バンプ及び配線)に用いられる主な金属としては、はんだ、スズ、金、銀、銅、ニッケル等があり、これらの複数種を含んだ導電材料も用いられている。接続部に用いられる金属は、表面が酸化して酸化膜が生成してしまうこと、及び、表面に酸化物等の不純物が付着してしまうことにより、接続部の接続面に不純物が生じる場合がある。このような不純物が残存すると、半導体チップと基板との間、又は2つの半導体チップの間における接続信頼性(例えば絶縁信頼性)が低下し、上述した接続方式を採用するメリットが損なわれてしまうことが懸念される。
【0006】
また、これらの不純物の発生を抑制する方法として、OSP(Organic Solderbility Preservatives)処理等で知られる接続部を酸化防止膜でコーティングする方法があるが、この酸化防止膜は接続プロセス時のはんだ濡れ性の低下、接続性の低下等の原因となる場合がある。
【0007】
そこで、上述の酸化膜及び不純物を除去する方法として、半導体材料にフラックス剤を含有する単層フィルムを用いた方法(例えば、特許文献1参照)、熱硬化性樹脂層と酸成分を含有する熱可塑性樹脂層とからなる二層フィルムを用いた方法等が提案されている(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0008】
【文献】国際公開2013/125086号
【文献】国際公開2016/117350号
【発明の概要】
【発明が解決しようとする課題】
【0009】
ところで、フリップチップパッケージでは、近年、高機能化及び高集積化が更に進んでいる。高機能化及び高集積化するにつれて配線間のピッチが狭くなることから接続信頼性が低下しやすくなっている。
【0010】
また、近年、生産性を向上させる観点から、フリップチップパッケージの組立時の圧着時間を短時間化することが求められている。圧着時間を短縮した場合、圧着中に半導体用フィルム状接着剤が十分に硬化しなければ、接続部を十分に保護できず、圧着時の圧力が開放されたときに接続不良が生じる。さらに、接続部にはんだが用いられている場合には、圧着中に、はんだ溶融温度より低温の温度領域で十分に半導体用フィルム状接着剤が硬化していなければ、圧着時の温度がはんだ溶融温度に到達した際に、はんだの飛散及び流動が発生し、接続不良が生じる。一方、圧着により接続部同士が接触する前に半導体用フィルム状接着剤が硬化した場合、接続部間に接着剤が介入した状態となり、接続不良が生じる。
【0011】
そこで、本発明は、圧着時間を短時間化した場合であっても、優れた接続信頼性を得ることができる半導体用フィルム状接着剤を提供することを目的とする。また、本発明は、このような半導体用フィルム状接着剤を用いた半導体装置及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0012】
本発明の半導体用フィルム状接着剤は、フラックス化合物を含有する第1の熱硬化性接着剤からなる第1の層と、第1の層上に設けられ、フラックス化合物を実質的に含有しない第2の熱硬化性接着剤からなる第2の層と、を備える。
【0013】
本発明の半導体用フィルム状接着剤によれば、上記第2の層がフラックス化合物による影響を受けにくいことから、第2の層によって接続部同士が接触してから速やかに且つ十分に硬化する特性を発現させることができる。また、特許文献2に記載されているようなフィルム状接着剤は、圧着時等の高温下において熱可塑性樹脂が軟化し、剥離等の不具合が発生する可能性が高く、信頼性の観点から問題が生じる一方で、本発明の半導体用フィルム状接着剤では、このような問題が発生し難い。これらの理由から、本発明の半導体用フィルム状接着剤によれば、圧着を高温且つ短時間で行う場合であっても優れた接続信頼性(例えば絶縁信頼性)を得ることができる。また、本発明の半導体用フィルム状接着剤によれば、圧着時間の短時間化が可能であることから、生産性を向上させることができる。また、本発明の半導体用フィルム状接着剤によれば、フリップチップパッケージを容易に高機能化及び高集積化することができる。
【0014】
ところで、従来の半導体用接着剤(例えば特許文献1記載のフィルム状接着剤)では、圧着時間を短時間化する場合において、半導体用接着剤が十分に硬化していない状態で高温圧着され、ボイドが発生することがあり、ボイドを起点とし、パッケージ内部に剥離が生じることがある。このパッケージ内部の剥離が大きくなると、接続部に応力がかかりクラックが発生するため、パッケージ内部の剥離はパッケージの接続不良につながる。これに対し、本発明の半導体用フィルム状接着剤によれば、短時間で十分に硬化が可能であることから、ボイドの発生を容易に抑制することができる。また、本発明の半導体用フィルム状接着剤では、フラックス化合物を実質的に含有しない第2の層が速やかに硬化することから、仮にマイクロボイドが発生したとしても当該ボイドの膨張が抑制され、視認できる程度の大きなボイドが発生し難い。これらのことは、本発明のフィルム状接着剤により優れた接続信頼性が得られる原因の一つであるといえる。
【0015】
また、従来のフィルム状接着剤を用いてフリップチップパッケージを作製する場合には、接着剤が短時間で硬化しないことによりチップ周辺からの接着剤のはみ出しが起こることがある。このような接着剤のはみ出しは隣接チップの搭載を阻害することとなり、ウエハ1枚当たりに搭載できるパッケージの数の減少につながる。すなわち、チップ周辺からの接着剤のはみ出しが起こると、生産性が低下する。また、接着剤のはみ出し量が過剰になると、はみ出した接着剤が搭載したチップ上に這い上がることがあり、チップ上に他のチップを更に搭載する際に搭載されるチップの破損の原因になり得る。一方、本発明の半導体用フィルム状接着剤によれば、短時間で十分に硬化が可能であることから、上記接着剤のはみ出しの発生を抑制することができる。
【0016】
また、近年、接続部の金属としては、低コスト化を目的に、腐食しにくい金等に代えて、はんだ、銅等が用いられる傾向がある。さらに、配線及びバンプの表面処理に関しても、低コスト化を目的に、腐食しにくい金等に代えて、はんだ、銅等を使用する傾向、及び、OSP(Organic SolderabilityPreservative)処理等の処理を行う傾向がある。フリップチップパッケージでは、狭ピッチ化及び多ピン化に加えてこのような低コスト化が進んでいるため、腐食し絶縁性が低下しやすい金属が用いられる傾向にあり、絶縁信頼性が低下しやすい。これに対し、本発明の半導体用フィルム状接着剤によれば、上記金属に対する絶縁信頼性が低下することを抑制することができる。
【0017】
第2の熱硬化性接着剤は、200℃で5秒間保持したときの硬化反応率が80%以上であることが好ましい。この場合、圧着を高温且つ短時間で行う場合であってもより優れた接続信頼性を得ることができる。
【0018】
第2の熱硬化性接着剤は、ラジカル重合性化合物と熱ラジカル発生剤とを含有することが好ましい。この場合、硬化速度に非常に優れるため、圧着を高温且つ短時間で行った場合であってもボイドが発生し難く、より優れた接続信頼性を得ることができる。
【0019】
熱ラジカル発生剤は過酸化物であることが好ましい。この場合、一層優れた取り扱い性及び保存安定性が得られるため、一層優れた接続信頼性が得られやすい。
【0020】
ラジカル重合性化合物は(メタ)アクリル化合物であることが好ましい。この場合、一層優れた接続信頼性が得られやすい。
【0021】
(メタ)アクリル化合物はフルオレン型骨格を有することが好ましい。この場合、一層優れた接続信頼性が得られやすい。
【0022】
フラックス化合物はカルボキシル基を有することが好ましく、2つ以上のカルボキシル基を有することがより好ましい。この場合、一層優れた接続信頼性が得られやすい。
【0023】
フラックス化合物は、下記式(2)で表される化合物であることが好ましい。この場合、一層優れた接続信頼性が得られやすい。
【化1】
[式(2)中、R及びRは、それぞれ独立して、水素原子又は電子供与性基を示し、nは0又は1以上の整数を示す。]
【0024】
フラックス化合物の融点は150℃以下であることが好ましい。この場合、熱圧着時に接着剤が硬化する前にフラックスが溶融し、はんだ等の酸化膜が還元除去されるため、一層優れた接続信頼性が得られやすい。
【0025】
第1の熱硬化性接着剤は硬化剤を含有することが好ましく、硬化剤はイミダゾール系硬化剤であることがより好ましい。この場合、より優れた接続信頼性が得られやすい。
【0026】
本発明の半導体装置の製造方法は、半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置の製造方法であって、接続部の少なくとも一部を、上述した半導体用フィルム状接着剤を用いて封止する工程を備える。本発明の半導体装置の製造方法によれば、圧着を高温且つ短時間で行う場合であっても接続信頼性(例えば絶縁信頼性)に優れる半導体装置を得ることができる。つまり、本発明の製造方法によれば、接続信頼性(例えば絶縁信頼性)に優れる半導体装置を短時間で製造することができる。
【0027】
本発明の半導体装置は、半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置であって、接続部の少なくとも一部が、上述した半導体用フィルム状接着剤の硬化物によって封止されている。この半導体装置は続信頼性(例えば絶縁信頼性)に優れる。
【発明の効果】
【0028】
本発明によれば、圧着時間を短時間化した場合であっても、優れた接続信頼性を得ることができる半導体用フィルム状接着剤を提供することができる。また、本発明によれば、このような半導体用フィルム状接着剤を用いた半導体装置及びその製造方法を提供することができる。
【図面の簡単な説明】
【0029】
図1図1は、本発明の半導体装置の一実施形態を示す模式断面図である。
図2図2は、本発明の半導体装置の他の一実施形態を示す模式断面図である。
図3図3は、本発明の半導体装置の他の一実施形態を示す模式断面図である。
図4図4は、本発明の半導体装置の製造方法の一実施形態を模式的に示す工程断面図である。
【発明を実施するための形態】
【0030】
本明細書において、「(メタ)アクリレート」とは、アクリレート、及び、それに対応するメタクリレートの少なくとも一方を意味する。「(メタ)アクリロイル」、「(メタ)アクリル酸」等の他の類似の表現においても同様である。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
【0031】
以下、場合により図面を参照しつつ本発明の好適な実施形態について詳細に説明する。
なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。
さらに、図面の寸法比率は図示の比率に限られるものではない。
【0032】
<半導体用フィルム状接着剤>
本実施形態の半導体用フィルム状接着剤は、フラックス化合物を含有する第1の熱硬化性接着剤(以下、単に「第1の接着剤」ともいう。)からなる第1の層(フラックス含有層)と、第1の層上に設けられ、フラックス化合物を実質的に含有しない第2の熱硬化性接着剤(以下、単に「第2の接着剤」ともいう。)からなる第2の層(フラックス非含有層)と、を備える。
【0033】
本実施形態の半導体用フィルム状接着剤は、例えば、非導電性の接着剤(半導体用フィルム状非導電性接着剤)であり、半導体チップ及び配線回路基板のそれぞれの接続部が互いに電気的に接続された半導体装置、又は、複数の半導体チップのそれぞれの接続部が互いに電気的に接続された半導体装置において、上記接続部の少なくとも一部を封止するために用いられる。
【0034】
本実施形態の半導体用フィルム状接着剤によれば、上記半導体装置の製造において、圧着時間(例えば、半導体チップと配線回路基板とを接合するために圧着する工程における圧着時間)を短時間化した場合(例えば、圧着時間を5秒以下とした場合)であっても、優れた接続信頼性を得ることができる。
【0035】
(第1の接着剤)
第1の接着剤は、例えば、熱硬化性成分と、フラックス化合物と、を含有する。熱硬化性成分としては、熱硬化性樹脂、硬化剤等が挙げられる。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂(硬化剤として含有される場合を除く)、ポリイミド樹脂等が挙げられる。これらの中でも、熱硬化性樹脂がエポキシ樹脂であることが好ましい。また、本実施形態の半導体用フィルム状接着剤は、必要に応じて、重量平均分子量が10000以上の高分子成分及びフィラーを含有していてもよい。
【0036】
以下、第1の接着剤が、エポキシ樹脂(以下、場合により「(a)成分」という。)と、硬化剤(以下、場合により「(b)成分」という。)と、フラックス化合物(以下、場合により「(c)成分」という。)と、必要に応じて、重量平均分子量が10000以上の高分子成分(以下、場合により「(d)成分」という。)及びフィラー(以下、場合により「(e)成分」という。)と、を含有する一実施形態について説明する。
【0037】
[(a)成分:エポキシ樹脂]
エポキシ樹脂としては、分子内に2個以上のエポキシ基を有するものであれば特に制限なく用いることができる。(a)成分として、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂及び各種多官能エポキシ樹脂を使用することができる。これらは単独で又は2種以上の混合物として使用することができる。
【0038】
(a)成分は、高温での接続時に分解して揮発成分が発生することを抑制する観点から、接続時の温度が250℃の場合は、250℃における熱重量減少量率が5%以下のエポキシ樹脂を用いることが好ましく、接続時の温度が300℃の場合は、300℃における熱重量減少量率が5%以下のエポキシ樹脂を用いることが好ましい。
【0039】
(a)成分の含有量は、第1の接着剤の全質量基準で、例えば5~75質量%であり、好ましくは10~50質量%であり、より好ましくは15~35質量%である。
【0040】
[(b)成分:硬化剤]
(b)成分としては、例えば、フェノール樹脂系硬化剤、酸無水物系硬化剤、アミン系硬化剤、イミダゾール系硬化剤及びホスフィン系硬化剤が挙げられる。(b)成分がフェノール性水酸基、酸無水物、アミン類又はイミダゾール類を含むと、接続部に酸化膜が生じることを抑制するフラックス活性を示し、接続信頼性・絶縁信頼性を向上させることができる。以下、各硬化剤について説明する。
【0041】
(i)フェノール樹脂系硬化剤
フェノール樹脂系硬化剤としては、分子内に2個以上のフェノール性水酸基を有するものであれば特に制限はなく、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、クレゾールナフトールホルムアルデヒド重縮合物、トリフェニルメタン型多官能フェノール樹脂及び各種多官能フェノール樹脂を使用することができる。これらは単独で又は2種以上の混合物として使用することができる。
【0042】
上記(a)成分に対するフェノール樹脂系硬化剤の当量比(フェノール樹脂系硬化剤が有するフェノール性水酸基のモル数/(a)成分が有するエポキシ基のモル数)は、良好な硬化性、接着性及び保存安定性の観点から、0.3~1.5が好ましく、0.4~1.0がより好ましく、0.5~1.0が更に好ましい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応のフェノール性水酸基が過剰に残存することがなく、吸水率が低く抑えられ、絶縁信頼性が向上する傾向がある。
【0043】
(ii)酸無水物系硬化剤
酸無水物系硬化剤としては、例えば、メチルシクロヘキサンテトラカルボン酸二無水物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物及びエチレングリコールビスアンヒドロトリメリテートを使用することができる。これらは単独で又は2種以上の混合物として使用することができる。
【0044】
上記(a)成分に対する酸無水物系硬化剤の当量比(酸無水物系硬化剤が有する酸無水物基のモル数/(a)成分が有するエポキシ基のモル数)は、良好な硬化性、接着性及び保存安定性の観点から、0.3~1.5が好ましく、0.4~1.0がより好ましく、0.5~1.0が更に好ましい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応の酸無水物が過剰に残存することがなく、吸水率が低く抑えられ、絶縁信頼性が向上する傾向がある。
【0045】
(iii)アミン系硬化剤
アミン系硬化剤としては、例えばジシアンジアミドを使用することができる。
【0046】
上記(a)成分に対するアミン系硬化剤の当量比(アミン系硬化剤が有する活性水素基のモル数/(a)成分が有するエポキシ基のモル数)は、良好な硬化性、接着性及び保存安定性の観点から0.3~1.5が好ましく、0.4~1.0がより好ましく、0.5~1.0が更に好ましい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応のアミンが過剰に残存することがなく、絶縁信頼性が向上する傾向がある。
【0047】
(iv)イミダゾール系硬化剤
イミダゾール系硬化剤としては、例えば、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及び、エポキシ樹脂とイミダゾール類の付加体が挙げられる。これらの中でも、優れた硬化性、保存安定性及び接続信頼性の観点から、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールが好ましい。これらは単独で又は2種以上を併用して用いることができる。また、これらをマイクロカプセル化した潜在性硬化剤としてもよい。
【0048】
イミダゾール系硬化剤の含有量は、(a)成分100質量部に対して、0.1~20質量部が好ましく、0.1~10質量部がより好ましい。イミダゾール系硬化剤の含有量が0.1質量部以上であると硬化性が向上する傾向がある。また、イミダゾール系硬化剤の含有量が20質量部以下であると、圧着時における第1の接着剤の流動性を確保することができ、接続部間の第1の接着剤を十分に排除することができる。その結果、第1の接着剤がはんだと接続部との間に介入した状態で硬化することが抑制されるため、接続不良が発生しにくい。
【0049】
(v)ホスフィン系硬化剤
ホスフィン系硬化剤としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ(4-メチルフェニル)ボレート及びテトラフェニルホスホニウム(4-フルオロフェニル)ボレートが挙られる。
【0050】
ホスフィン系硬化剤の含有量は、(a)成分100質量部に対して、0.1~10質量部が好ましく、0.1~5質量部がより好ましい。ホスフィン系硬化剤の含有量が0.1質量部以上であると硬化性が向上する傾向があり、10質量部以下であると金属接合が形成される前に第1の接着剤が硬化することがなく、接続不良が発生しにくい。
【0051】
フェノール樹脂系硬化剤、酸無水物系硬化剤及びアミン系硬化剤は、それぞれ1種を単独で又は2種以上の混合物として使用することができる。イミダゾール系硬化剤及びホスフィン系硬化剤はそれぞれ単独で用いてもよいが、フェノール樹脂系硬化剤、酸無水物系硬化剤又はアミン系硬化剤と共に用いてもよい。
【0052】
第1の接着剤が(b)成分として、フェノール樹脂系硬化剤、酸無水物系硬化剤又はアミン系硬化剤を含む場合、酸化膜を除去するフラックス活性を示し、接続信頼性をより向上することができる。
【0053】
[(c)成分:フラックス化合物]
(c)成分は、フラックス活性を有する化合物であり、第1の接着剤において、フラックス剤として機能する。(c)成分としては、はんだ等の表面の酸化膜を還元除去して、金属接合を容易にするものであれば、特に制限なく公知のものを用いることができる。(c)成分としては、フラックス化合物の1種を単独で用いてもよく、フラックス化合物の2種以上を併用してもよい。ただし、(c)成分には、(b)成分である硬化剤は含まれない。
【0054】
フラックス化合物は、十分なフラックス活性が得られ、より優れた接続信頼性が得られる観点から、カルボキシル基を有することが好ましく、2以上のカルボキシル基を有することがより好ましい。この中でも、カルボキシル基を2つ有する化合物が好ましい。カルボキシル基を2つ有する化合物は、カルボキシル基を1つ有する化合物(モノカルボン酸)と比較して、接続時の高温によっても揮発し難く、ボイドの発生を一層抑制できる。また、カルボキシル基を2つ有する化合物を用いると、カルボキシル基を3つ以上有する化合物を用いた場合と比較して、保管時・接続作業時等における半導体用フィルム状接着剤の粘度上昇を一層抑制することができ、半導体装置の接続信頼性を一層向上させることができる。
【0055】
カルボキシル基を有するフラックス化合物としては、下記式(1)で表される基を有する化合物が好ましく用いられる。
【化2】
【0056】
式(1)中、Rは、水素原子又は電子供与性基を示す。
【0057】
耐リフロー性に優れる観点及び接続信頼性に更に優れる観点では、Rが電子供与性であることが好ましい。本実施形態では、第1の接着剤が、エポキシ樹脂及び硬化剤を含有した上で、式(1)で表される基を有する化合物のうち、Rが電子供与性基である化合物を更に含有することにより、金属接合するフリップチップ接続方式において半導体用フィルム状接着剤として適用した場合であっても、耐リフロー性及び接続信頼性により優れる半導体装置の作製が可能となる。
【0058】
耐リフロー性の向上には、高温における吸湿後の接着力の低下を抑制することが必要である。従来、フラックス化合物としてカルボン酸が用いられているが、従来のフラックス化合物では、以下の理由により接着力の低下が生じていると、本発明者らは考えている。
【0059】
通常、エポキシ樹脂と硬化剤とが反応して硬化反応が進むが、この際にフラックス化合物であるカルボン酸が当該硬化反応に取り込まれる。すなわち、エポキシ樹脂のエポキシ基とフラックス化合物のカルボキシル基とが反応することにより、エステル結合が形成される場合がある。このエステル結合は、吸湿等による加水分解等を生じやすく、このエステル結合の分解が、吸湿後の接着力の低下の一因であると考えられる。
【0060】
これに対して、第1の接着剤が、式(1)で表される基を有する化合物のうち、Rが電子供与性基である基を有する化合物、すなわち、近傍に電子供与性基を備えたカルボキシル基を有する化合物を含有する場合、カルボキシル基によりフラックス活性が十分に得られると共に、上述のエステル結合が形成された場合であっても、電子供与性基によりエステル結合部の電子密度があがりエステル結合の分解が抑制される。また、カルボキシル基の近傍に置換基(電子供与性基)が存在するため、立体障害により、カルボキシル基とエポキシ樹脂との反応が抑制され、エステル結合が生成し難くなっていると考えられる。
【0061】
これらの理由により、式(1)で表される基を有する化合物のうち、Rが電子供与性基である化合物を更に含有する第1の接着剤を用いる場合、吸湿等による組成変化が生じにくく、優れた接着力が維持される。また、上述の作用は、エポキシ樹脂と硬化剤との硬化反応がフラックス化合物により阻害されにくい、ということもでき、当該作用により、エポキシ樹脂と硬化剤との硬化反応の十分な進行による接続信頼性の向上という効果も期待できる。
【0062】
電子供与性基の電子供与性が強くなると、上述のエステル結合の分解を抑制する効果が得られ易くなる傾向にある。また、電子供与性基の立体障害が大きいと、上述のカルボキシル基とエポキシ樹脂との反応を抑制する効果が得られ易くなる。電子供与性基は、電子供与性及び立体障害をバランス良く有していることが好ましい。
【0063】
電子供与性基としては、例えば、アルキル基、水酸基、アミノ基、アルコキシ基及びアルキルアミノ基が挙げられる。電子供与性基としては、他の成分(例えば、(a)成分のエポキシ樹脂)と反応しにくい基が好ましく、具体的には、アルキル基、水酸基又はアルコキシ基が好ましく、アルキル基がより好ましい。
【0064】
アルキル基としては、炭素数1~10のアルキル基が好ましく、炭素数1~5のアルキル基がより好ましい。アルキル基の炭素数は、多いほど電子供与性及び立体障害が大きくなる傾向にある。炭素数が上記範囲であるアルキル基は、電子供与性及び立体障害のバランスに優れるため、当該アルキル基によれば、本発明の効果が一層顕著に奏される。
【0065】
また、アルキル基は、直鎖状であっても分岐状であってもよく、直鎖状であることが好ましい。アルキル基が直鎖状であるとき、電子供与性及び立体障害のバランスの観点から、アルキル基の炭素数は、フラックス化合物の主鎖の炭素数以下であることが好ましい。例えば、フラックス化合物が下記式(2)で表される化合物であり、電子供与性基が直鎖状のアルキル基であるとき、当該アルキル基の炭素数は、フラックス化合物の主鎖の炭素数(n+1)以下であることが好ましい。
【0066】
アルコキシ基としては、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシ基がより好ましい。アルコキシ基の炭素数は、多いほど電子供与性及び立体障害が大きくなる傾向がある。炭素数が上記範囲であるアルコキシ基は、電子供与性及び立体障害のバランスに優れるため、当該アルコキシ基によれば、本発明の効果が一層顕著に奏される。
【0067】
また、アルコキシ基のアルキル基部分は、直鎖状であっても分岐状であってもよく、直鎖状であることが好ましい。アルコキシ基が直鎖状であるとき、電子供与性及び立体障害のバランスの観点から、アルコキシ基の炭素数は、フラックス化合物の主鎖の炭素数以下であることが好ましい。例えば、フラックス化合物が下記式(2)で表される化合物であり、電子供与性基が直鎖状のアルコキシ基であるとき、当該アルコキシ基の炭素数は、フラックス化合物の主鎖の炭素数(n+1)以下であることが好ましい。
【0068】
アルキルアミノ基としては、モノアルキルアミノ基、ジアルキルアミノ基が挙げられる。モノアルキルアミノ基としては、炭素数1~10のモノアルキルアミノ基が好ましく、炭素数1~5のモノアルキルアミノ基がより好ましい。モノアルキルアミノ基のアルキル基部分は、直鎖状であっても分岐状であってもよく、直鎖状であることが好ましい。
【0069】
ジアルキルアミノ基としては、炭素数2~20のジアルキルアミノ基が好ましく、炭素数2~10のジアルキルアミノ基がより好ましい。ジアルキルアミノ基のアルキル基部分は、直鎖状であっても分岐状であってもよく、直鎖状であることが好ましい。
【0070】
カルボキシル基を2つ有するフラックス化合物としては、下記式(2)で表される化合物を好適に用いることができる。下記式(2)で表される化合物によれば、半導体装置の耐リフロー性及び接続信頼性を一層向上させることができる。
【0071】
【化3】
【0072】
式(2)中、R及びRは、それぞれ独立して水素原子又は電子供与性基を示し、nは0又は1以上の整数を示す。複数存在するRは互いに同一でも異なっていてもよい。
【0073】
は式(1)におけるRと同義である。また、Rによって示される電子供与性は、Rとして説明した上述の電子供与性基の例と同じである。式(1)で説明した理由と同様の理由から、式(2)中のRは電子供与性基であることが好ましい。
【0074】
式(2)におけるnは、1以上であることが好ましい。nが1以上であると、nが0である場合と比較して、接続時の高温によってもフラックス化合物が揮発し難く、ボイドの発生を一層抑制することができる。また、式(2)におけるnは、15以下であることが好ましく、11以下であることがより好ましく、6以下又は4以下であってもよい。nが15以下であると、一層優れた接続信頼性が得られる。
【0075】
また、フラックス化合物としては、下記式(3)で表される化合物がより好適である。下記式(3)で表される化合物によれば、半導体装置の耐リフロー性及び接続信頼性をより一層向上させることができる。
【0076】
【化4】
【0077】
式(3)中、R及びRは、それぞれ独立して、水素原子又は電子供与性基を示し、mは0又は1以上の整数を示す。R及びRは式(2)におけるR及びRと同義である。
【0078】
式(3)におけるmは、10以下であることが好ましく、5以下であることがより好ましく、3以下であることが更に好ましい。mが10以下であると、一層優れた接続信頼性が得られる。
【0079】
式(3)において、R及びRは、水素原子であっても電子供与性基であってもよい。一層優れた接続信頼性が得られる観点から、R及びRの少なくとも一方は電子供与性基であることが好ましい。Rが電子供与性基であり、Rが水素原子であると、融点が低くなる傾向があり、半導体装置の接続信頼性をより向上させることができる場合がある。また、RとRとが異なる電子供与性基であると、RとRとが同じ電子供与性基である場合と比較して、融点が低くなる傾向があり、半導体装置の接続信頼性をより向上させることができる場合がある。
【0080】
なお、式(3)において、RとRとが同じ電子供与性基であると、対称構造となり融点が高くなる傾向があるが、この場合でも本発明の効果は十分に得られる。特に融点が150℃以下と十分に低い場合には、RとRとが同じ基であっても、RとRとが異なる基である場合と同程度の接続信頼性が得られる。
【0081】
フラックス化合物としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸及びドデカン二酸から選択されるジカルボン酸、並びに、これらのジカルボン酸の2位に電子供与性基が置換した化合物を用いることができる。
【0082】
フラックス化合物の融点は、150℃以下が好ましく、140℃以下がより好ましく、130℃以下が更に好ましい。このようなフラックス化合物は、エポキシ樹脂と硬化剤との硬化反応が生じる前にフラックス活性が十分に発現しやすい。そのため、このようなフラックス化合物を含有する第1の接着剤を用いた半導体用フィルム状接着剤によれば、接続信頼性に一層優れる半導体装置を実現できる。また、フラックス化合物の融点は、25℃以上が好ましく、50℃以上がより好ましい。また、フラックス化合物は、室温(25℃)で固形であるものが好ましい。
【0083】
フラックス化合物の融点は、一般的な融点測定装置を用いて測定できる。融点を測定する試料は、微粉末に粉砕され且つ微量を用いることで試料内の温度の偏差を少なくすることが求められる。試料の容器としては一方の端を閉じた毛細管が用いられることが多いが、測定装置によっては2枚の顕微鏡用カバーグラスに挟み込んで容器とするものもある。また急激に温度を上昇させると試料と温度計との間に温度勾配が発生して測定誤差を生じるため融点を計測する時点での加温は毎分1℃以下の上昇率で測定することが望ましい。
【0084】
前述のように融点を測定する試料は微粉末として調製されるので、融解前の試料は表面での乱反射により不透明である。試料の外見が透明化し始めた温度を融点の下限点とし、融解しきった温度を上限点とすることが通常である。測定装置は種々の形態のものが存在するが、最も古典的な装置は二重管式温度計に試料を詰めた毛細管を取り付けて温浴で加温する装置が使用される。二重管式温度計に毛細管を貼り付ける目的で温浴の液体として粘性の高い液体が用いられ、濃硫酸ないしはシリコンオイルが用いられることが多く、温度計先端の溜めの近傍に試料が来るように取り付ける。また、融点測定装置としては金属のヒートブロックを使って加温し、光の透過率を測定しながら加温を調製しつつ自動的に融点を決定するものを使用することもできる。
【0085】
なお、本明細書中、融点が150℃以下とは、融点の上限点が150℃以下であることを意味し、融点が25℃以上とは、融点の下限点が25℃以上であることを意味する。
【0086】
(c)成分の含有量は、第1の接着剤の全質量基準で、0.5~10質量%であることが好ましく、0.5~5質量%であることがより好ましい。
【0087】
[(d)成分:重量平均分子量が10000以上の高分子成分]
第1の接着剤は、必要に応じて、重量平均分子量が10000以上の高分子成分((d)成分)を含有していてもよい。(d)成分を含有する第1の接着剤は、耐熱性及びフィルム形成性に一層優れる。
【0088】
(d)成分としては、例えば、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、シアネートエステル樹脂、アクリル樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂及びアクリルゴムが挙げられる。これらの中でも耐熱性及びフィルム形成性に優れる観点から、フェノキシ樹脂、ポリイミド樹脂、ウレタン樹脂、アクリルゴム、シアネートエステル樹脂及びポリカルボジイミド樹脂が好ましく、フェノキシ樹脂、ポリイミド樹脂、ウレタン樹脂及びアクリルゴムがより好ましく、フェノキシ樹脂、ウレタン樹脂及びアクリルゴムが特に好ましい。これらの(d)成分は単独で又は2種以上の混合物又は共重合体として使用することもできる。ただし、(d)成分には、(a)成分に該当する化合物及び(e)成分に該当する化合物は含まれない。
【0089】
(d)成分の重量平均分子量は、例えば10000以上であり、20000以上であることが好ましく、30000以上であることがより好ましい。このような(d)成分によれば、第1の接着剤の耐熱性及びフィルム形成性を一層向上させることができる。(d)成分の重量平均分子量は、200000以下であることが好ましく、100000以下であることがより好ましい。このような(d)成分によれば、第1の接着剤の耐熱性を一層向上させることができる。これらの観点から、(d)成分の重量平均分子量は、10000~200000、20000~100000又は30000~100000であってよい。
【0090】
なお、本明細書において、重量平均分子量とは、高速液体クロマトグラフィー(株式会社島津製作所製、商品名:C-R4A)を用いて、ポリスチレン換算で測定したときの重量平均分子量を意味する。測定には、例えば、下記の条件を用いることができる。
検出器:LV4000 UV Detector(株式会社日立製作所製、商品名)
ポンプ:L6000 Pump(株式会社日立製作所製、商品名)
カラム:Gelpack GL-S300MDT-5(計2本)(日立化成株式会社製、商品名)
溶離液:THF/DMF=1/1(容積比)+LiBr(0.03mol/L)+H3PO4(0.06mol/L)
流量:1mL/分
【0091】
第1の接着剤が(d)成分を含有するとき、(d)成分の含有量Cに対する(a)成分の含有量Cの比C/C(質量比)は、0.01~5であることが好ましく、0.05~3であることがより好ましく、0.1~2であることが更に好ましい。比C/Cを0.01以上とすることで、より良好な硬化性及び接着力が得られ、比C/Cを5以下とすることでより良好なフィルム形成性が得られる。
【0092】
[(e)成分:フィラー]
第1の接着剤は、必要に応じて、フィラー((e)成分)を含有していてもよい。(e)成分によって、第1の接着剤の粘度、第1の接着剤の硬化物の物性等を制御することができる。具体的には、(e)成分によれば、例えば、接続時のボイド発生の抑制、第1の接着剤の硬化物の吸湿率の低減等を図ることができる。
【0093】
(e)成分としては、無機フィラー(無機粒子)、有機フィラー(有機粒子)等が挙げられる。無機フィラーとしては、ガラス、シリカ、アルミナ、酸化チタン、マイカ、窒化ホウ素等の絶縁性無機フィラーが挙げられ、その中でも、シリカ、アルミナ、酸化チタン及び窒化ホウ素からなる群より選ばれる少なくとも1種が好ましく、シリカ、アルミナ及び窒化ホウ素からなる群より選ばれる少なくとも1種がより好ましい。絶縁性無機フィラーはウィスカーであってもよい。ウィスカーとしては、ホウ酸アルミニウム、チタン酸アルミニウム、酸化亜鉛、珪酸カルシウム、窒化ホウ素等が挙げられる。有機フィラーとしては、例えば、樹脂フィラー(樹脂粒子)が挙げられる。樹脂フィラーとしては、ポリウレタン、ポリイミド等が挙げられる。樹脂フィラーは、無機フィラーに比べて、260℃等の高温で柔軟性を付与することができるため、耐リフロー性向上に適していると共に、柔軟性付与が可能であるためフィルム形成性向上にも効果がある。
【0094】
無機フィラーの含有量は、弾性率を所望の範囲に調整しやすい観点、並びに、反りを抑制しつつ、ボイドの発生をより十分に低減することができ、更には優れた接続信頼性が得られる観点から、(e)成分の全質量を基準として、50質量%以上、70質量%以上又は80質量%以上であってよい。無機フィラーの含有量は、100質量%以下又は90質量%以下であってよい。
【0095】
絶縁信頼性に更に優れる観点から、(e)成分は絶縁性である(絶縁性フィラーである)ことが好ましい。第1の接着剤は、銀フィラー、はんだフィラー等の導電性の金属フィラー(金属粒子)、及び、カーボンブラック等の導電性の無機フィラーを含有していないことが好ましい。
【0096】
絶縁性フィラーの含有量は、弾性率を所望の範囲に調整しやすい観点、並びに、反りを抑制しつつ、ボイドの発生をより十分に低減することができ、更には優れた接続信頼性が得られる観点から、(e)成分の全質量を基準として、50質量%以上、70質量%以上又は90質量%以上であってよい。(e)成分は、実質的に絶縁性フィラーのみからなっていてよい。すなわち、(e)成分は、導電性フィラーを実質的に含有しなくてよい。「実質的に含有しない」とは、(e)成分における導電性フィラーの含有量が、(e)成分の全質量基準で、0.5質量%未満であることを意味する。
【0097】
(e)成分の物性は、表面処理によって適宜調整されてもよい。(e)成分は、分散性又は接着力が向上する観点から、表面処理を施したフィラーであることが好ましい。表面処理剤としては、グリシジル系(エポキシ系)、アミン系、フェニル系、フェニルアミノ系、(メタ)アクリル系、ビニル系の化合物等が挙げられる。
【0098】
表面処理としては、表面処理のしやすさから、エポキシシラン系、アミノシラン系、アクリルシラン系等のシラン化合物によるシラン処理が好ましい。表面処理剤としては、分散性、流動性及び接着力に優れる観点から、グリシジル系の化合物、フェニルアミノ系の化合物、及び、(メタ)アクリル系の化合物からなる群より選ばれる少なくとも1種が好ましい。表面処理剤としては、保存安定性に優れる観点から、フェニル系の化合物、及び、(メタ)アクリル系の化合物からなる群より選ばれる少なくとも1種が好ましい。
【0099】
(e)成分の平均粒径は、フリップチップ接続時のかみ込み防止の観点から、1.5μm以下が好ましく、視認性(透明性)に優れる観点から、1.0μm以下がより好ましい。
【0100】
(e)成分の含有量は、放熱性が低くなることが抑制される観点、及び、ボイドの発生、吸湿率が大きくなること等を抑制しやすい観点から、第1の接着剤の全質量を基準として、15質量%以上が好ましく、20質量%以上がより好ましく、40質量%以上が更に好ましい。(e)成分の含有量は、粘度が高くなって第1の接着剤の流動性が低下すること、及び、接続部へのフィラーの噛み込み(トラッピング)が生じることが抑制されやすく、接続信頼性が低下することを抑制しやすい観点から、第1の接着剤の全質量を基準として、90質量%以下が好ましく、80質量%以下がより好ましい。これらの観点から、(e)成分の含有量は、第1の接着剤の全質量を基準として、15~90質量%が好ましく、20~80質量%がより好ましく、40~80質量%が更に好ましい。
【0101】
[その他の成分]
第1の接着剤には、酸化防止剤、シランカップリング剤、チタンカップリング剤、レベリング剤、イオントラップ剤等の添加剤を配合してもよい。これらは1種を単独で又は2種以上を組み合わせて用いることができる。これらの配合量については、各添加剤の効果が発現するように適宜調整すればよい。
【0102】
第1の接着剤の最低溶融粘度は、信頼性の観点から、1000Pa・s以上が好ましく、1500Pa・s以上がより好ましく、2000Pa・s以上が更に好ましい。最低溶融粘度が1000Pa・s以上であると、実装時に巻き込まれたボイドが熱膨張することが抑制され、長期使用時(例えば信頼性試験)での剥離の発生可能性が低くなる。一方、はんだ接続時に第1の層が十分に排除され、樹脂の噛み込みが減ることで電気接続信頼性に優れることから、第1の接着剤の最低溶融粘度は、10000Pa・s以下が好ましく、5000Pa・s以下がより好ましく、4000Pa・s以下が更に好ましい。これらの観点から、第1の接着剤の最低溶融粘度は、1000~10000Pa・sが好ましく、1500~5000Pa・sがより好ましく、2000~4000Pa・sが更に好ましい。なお、溶融粘度は回転式レオメーター(例えばTA Instruments社製のARES-G2)を用いて測定することができる。また、上記溶融粘度は、以下の条件で測定される溶融粘度である。
測定条件
昇温速度:10℃/分
周波数:10Hz
温度範囲:30~150℃
【0103】
(第2の接着剤)
第2の接着剤は、フラックス化合物を実質的に含有しない。「実質的に含有しない」とは、第2の接着剤におけるフラックス化合物の含有量が、第2の接着剤の全質量基準で、0.5質量%未満であることを意味する。
【0104】
第2の接着剤は、本発明の効果が顕著に得られる観点から、200℃で5秒間保持したときの硬化反応率が80%以上であることが好ましい。このような第2の接着剤としては、例えば、ラジカル硬化系の接着剤が挙げられる。このような接着剤により本発明の効果が顕著に得られる理由は、明らかではないが、本発明者らは次のように推察している。
【0105】
すなわち、従来のフラックス化合物を含有するフィルム状接着剤では、フラックス成分がラジカルを失活させてしまうため、ラジカル硬化系を適用することができず、エポキシ等を用いたカチオン硬化系が適用されることが多かった。この硬化系(反応系)では、求核付加反応で硬化が進行するため、硬化速度が遅く、圧着後にボイドが発生してしまう場合があった。従来のフィルム状接着剤では、この実装時のボイドによって、不具合(例えば260℃前後のリフロー温度における半導体材料の剥離、接続部の接続不良等)が発生していたと推察される。一方、上述の第2の接着剤は、フラックス化合物を実質的に含有していないために、硬化系をラジカル硬化系とすることができ、十分な硬化速度を得ることができる。そのため、上述の第2の接着剤を第2の層に用いることで、圧着を高温且つ短時間で行った場合であってもボイドが発生し難くなり、本発明の効果が顕著となると推察される。また、本実施形態では、十分な硬化速度を得ることができることから、例えば、接続部にはんだが用いられている場合であっても、はんだ溶融温度より低温の温度領域でフィルム状接着剤を硬化させることができる。そのため、はんだの飛散及び流動が発生して接続不良が生じることを十分に抑制できる。
【0106】
以下、第2の接着剤が、ラジカル重合性化合物(以下、場合により「(A)成分」という。)と、熱ラジカル発生剤(以下、場合により「(B)成分」という。)と、必要に応じて、高分子成分(以下、場合により「(C)成分」という。)及びフィラー(以下、場合により「(D)成分」という。)と、を含有する一実施形態について説明する。
【0107】
[(A)成分:ラジカル重合性化合物]
(A)成分は、熱、光、放射線、電気化学的作用等によるラジカルの発生に伴い、ラジカル重合反応が可能である化合物である。(A)成分としては、(メタ)アクリル化合物、ビニル化合物等が挙げられる。(A)成分としては、耐久性、電気絶縁性及び耐熱性に優れる観点から、(メタ)アクリル化合物が好ましい。(メタ)アクリル化合物は、分子内に1個以上の(メタ)アクリル基((メタ)アクリロイル基)を有する化合物であれば特に制限はなく、例えば、ビスフェノールA型、ビスフェノールF型、ナフタレン型、フェノールノボラック型、クレゾールノボラック型、フェノールアラルキル型、ビフェニル型、トリフェニルメタン型、ジシクロペンタジエン型、フルオレン型、アダマンタン型又はイソシアヌル酸型の骨格を含有する(メタ)アクリル化合物;各種多官能(メタ)アクリル化合物(前記骨格を含有する(メタ)アクリル化合物を除く)等を使用することができる。多官能(メタ)アクリル化合物としては、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート等が挙げられる。(A)成分は、1種単独で又は2種以上を併用して用いることができる。
【0108】
(A)成分は、耐熱性に優れる観点及びボイドの発生を抑制できる観点から、ビスフェノールA型骨格、ビスフェノールF型骨格、ナフタレン型骨格、フルオレン型骨格、アダマンタン型骨格又はイソシアヌル酸型骨格を有することが好ましく、フルオレン型骨格を有することがより好ましい。ボイドの発生を更に抑制できる観点から、(A)成分は、上述したいずれかの骨格を有する(メタ)アクリレートであることが更に好ましい。
【0109】
(A)成分は、室温(25℃)で固形であることが好ましい。液状に比べて固形の方が、ボイドが発生しにくく、また、硬化前(Bステージ)の第2の接着剤の粘性(タック)が小さく取り扱い性に優れる。室温(25℃)で固形である(A)成分としては、ビスフェノールA型骨格、フルオレン型骨格、アダマンタン型骨格、又はイソシアヌル酸型骨格を有する(メタ)アクリレート等が挙げられる。
【0110】
(A)成分における(メタ)アクリル基の官能基数は、3以下が好ましい。官能基数が多い場合、硬化のネットワークが急速に進み、未反応基が残存する場合がある。一方、官能基数が3以下であると、官能基数が多くなりすぎず、短時間での硬化が十分に進行しやすいため、硬化反応率が低下することを抑制しやすい。
【0111】
(A)成分の分子量は、2000より小さいことが好ましく、1000以下であることがより好ましい。(A)成分の分子量が小さいほど反応が進行しやすく、硬化反応率が高くなる。
【0112】
(A)成分の含有量は、硬化成分が少なくなることが抑制され、硬化後の樹脂の流動を十分に制御しやすい観点から、第2の接着剤の全質量を基準として、10質量%以上が好ましく、15質量%以上がより好ましい。(A)成分の含有量は、硬化物が硬くなりすぎることが抑制され、パッケージの反りが大きくなることが抑制されやすい観点から、第2の接着剤の全質量を基準として、50質量%以下が好ましく、40質量%以下がより好ましい。これらの観点から、(A)成分の含有量は、第2の接着剤の全質量を基準として、10~50質量%が好ましく、15~40質量%がより好ましい。
【0113】
(A)成分の含有量は、硬化性が低下することが抑制され、接着力が低下することが抑制されやすい観点から、(C)成分1質量部に対して、0.01質量部以上が好ましく、0.05質量部以上がより好ましく、0.1質量部以上が更に好ましい。(A)成分の含有量は、フィルム形成性が低下することが抑制されやすい観点から、(C)成分1質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましい。これらの観点から、(A)成分の含有量は、(C)成分1質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましく、0.1~5質量部が更に好ましい。
【0114】
[(B)成分:熱ラジカル発生剤]
(B)成分としては、(A)成分の硬化剤として機能すれば特に制限はないが、取り扱い性に優れる観点から、熱ラジカル発生剤が好ましい。
【0115】
熱ラジカル発生剤としては、アゾ化合物、過酸化物(有機過酸化物等)などが挙げられる。熱ラジカル発生剤としては、過酸化物が好ましく、有機過酸化物がより好ましい。この場合、フィルム形態にする際の溶剤を乾燥させる工程でラジカル反応が進行せず、取り扱い性及び保存安定性に優れる。そのため、熱ラジカル発生剤として過酸化物を用いる場合、一層優れた接続信頼性が得られやすい。有機過酸化物としては、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネイト、パーオキシエステル等が挙げられる。有機過酸化物としては、保存安定性に優れる観点から、ハイドロパーオキサイド、ジアルキルパーオキサイド及びパーオキシエステルからなる群より選ばれる少なくとも1種が好ましい。さらに、有機過酸化物としては、耐熱性に優れる観点から、ハイドロパーオキサイド及びジアルキルパーオキサイドからなる群より選ばれる少なくとも1種が好ましい。ジアルキルパーオキサイドとしては、ジクミル過酸化物、ジ-tert-ブチル過酸化物等が挙げられる。
【0116】
(B)成分の含有量は、十分に硬化が進行しやすい観点から、(A)成分100質量部に対して、0.5質量部以上が好ましく、1質量部以上がより好ましい。(B)成分の含有量は、(A)成分100質量部に対して、10質量部以下が好ましく、5質量部以下がより好ましい。(B)成分の含有量の上限値が上記範囲であると、硬化が急激に進行して反応点が多くなることが抑制されることにより、分子鎖が短くなること、及び、未反応基が残存することが抑制される。そのため、(B)成分の含有量の上限値が上記範囲であると、信頼性の低下を抑制しやすい。これらの観点から、(B)成分の含有量は、(A)成分100質量部に対して、0.5~10質量部が好ましく、1~5質量部がより好ましい。
【0117】
[(C)成分:高分子成分]
第2の接着剤は、高分子成分を更に含有することができる。(C)成分は、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、シアネートエステル樹脂、(メタ)アクリル樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂、アクリルゴム等が挙げられ、その中でも、耐熱性及びフィルム形成性に優れる観点から、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、(メタ)アクリル樹脂、ウレタン樹脂、アクリルゴム、シアネートエステル樹脂及びポリカルボジイミド樹脂からなる群より選ばれる少なくとも1種が好ましく、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、(メタ)アクリル樹脂、ウレタン樹脂及びアクリルゴムからなる群より選ばれる少なくとも1種がより好ましい。(C)成分は、1種単独又は2種以上の混合体又は共重合体として使用することもできる。ただし、(C)成分には、(A)成分に該当する化合物、及び、(D)成分に該当する化合物は含まれない。
【0118】
(C)成分のガラス転移温度(Tg)は、半導体用フィルム状接着剤の基板又はチップへの貼付性に優れる観点から、120℃以下が好ましく、100℃以下がより好ましく、85℃以下が更に好ましい。これらの範囲である場合には、半導体チップに形成されたバンプ、基板に形成された電極又は配線パターン等の凹凸を半導体用フィルム状接着剤により容易に埋め込むことが可能であり(硬化反応が始まることを抑制しやすい)、気泡が残存してボイドが発生することを抑制しやすい。なお、上記Tgとは、DSC(株式会社パーキンエルマージャパン製、商品名:DSC-7型)を用いて、サンプル量10mg、昇温速度10℃/分、測定雰囲気:空気の条件で測定したときのTgである。
【0119】
(C)成分の重量平均分子量は、ポリスチレン換算で10000以上が好ましく、単独で良好なフィルム形成性を示すために、30000以上がより好ましく、40000以上が更に好ましく、50000以上が特に好ましい。重量平均分子量が10000以上である場合には、フィルム形成性が低下することを抑制しやすい。
【0120】
[(D)成分:フィラー]
第2の接着剤は、粘度又は硬化物の物性を制御するため、及び、半導体チップと基板、若しくは半導体チップ同士を接続した際のボイドの発生又は吸湿率の更なる抑制のために、フィラーを更に含有してもよい。(D)成分としては、第1の接着剤における(e)成分として挙げたフィラーと同様のフィラーを用いることができる。好ましいフィラーの例も同じである。
【0121】
(D)成分の含有量は、放熱性が低くなることが抑制される観点、及び、ボイドの発生、吸湿率が大きくなること等を抑制しやすい観点から、第2の接着剤の全質量を基準として、15質量%以上が好ましく、20質量%以上がより好ましく、40質量%以上が更に好ましい。(D)成分の含有量は、粘度が高くなって第2の接着剤の流動性が低下すること、及び、接続部へのフィラーの噛み込み(トラッピング)が生じることが抑制されやすく、接続信頼性が低下することを抑制しやすい観点から、第2の接着剤の全質量を基準として、90質量%以下が好ましく、80質量%以下がより好ましい。これらの観点から、(D)成分の含有量は、第2の接着剤の全質量を基準として、15~90質量%が好ましく、20~80質量%がより好ましく、40~80質量%が更に好ましい。
【0122】
第2の接着剤の最低溶融粘度に特に制限はなく、第1の接着剤の最低溶融粘度よりも高い値であってよく、第1の接着剤の最低溶融粘度よりも低い値であってもよい。第2の接着剤の最低溶融粘度は、上述した第1の接着剤の最低溶融粘度の好ましい範囲内(例えば1000~10000Pa・s)であってもよい。第2の接着剤の最低溶融粘度は、第1の接着剤の最低溶融粘度と同様の方法で測定することができる。
【0123】
[その他の成分]
第2の接着剤には、ラジカル重合性化合物以外の重合性化合物(例えば、カチオン重合性化合物及びアニオン重合性化合物)を配合してもよい。また、第2の接着剤には、第1の接着剤と同様のその他の成分を配合してもよい。これらは1種を単独で又は2種以上を組み合わせて用いることができる。これらの配合量については、各添加剤の効果が発現するように適宜調整すればよい。
【0124】
第2の接着剤を200℃で5秒保持したときの硬化反応率は、80%以上であることが好ましく、90%以上であることがより好ましい。200℃(はんだ溶融温度以下)/5秒の硬化反応率が80%以上であれば、接続時(はんだ溶融温度以上)ではんだが飛散・流動し接続信頼性が低下することを抑制しやすい。硬化反応率は、第2の接着剤(未硬化のフラックス非含有層)10mgをアルミニウムパンに入れた後、DSC(株式会社パーキンエルマージャパン製、商品名:DSC-7型)を用いて発熱量を測定することにより得ることができる。具体的には、第2の接着剤(未硬化のフラックス非含有層)10mgをアルミニウムパンに入れた測定サンプルを200℃に加温したホットプレート上に置き、5秒後にホットプレート上から測定サンプルを外す。熱処理後の測定サンプルと、未処理の測定サンプルをそれぞれDSCで測定する。得られた発熱量から、下記式により硬化反応率を算出する。
硬化反応率(%)=(1-[熱処理後の測定サンプルの発熱量]/[未処理の測定サンプルの発熱量])×100
【0125】
第2の接着剤がアニオン重合性のエポキシ樹脂(特に、重量平均分子量10000以上のエポキシ樹脂)を含有すると、硬化反応率を80%以上に調整することが難しい場合がある。エポキシ樹脂の含有量は、(A)成分80質量部に対して20質量部以下であることが好ましく、エポキシ樹脂を含有していないことがより好ましい。
【0126】
第2の接着剤からなる第2の層(フラックス非含有層)は、200℃以上の高温での圧着が可能である。また、はんだ等の金属を溶融させて接続を形成するフリップチップパッケージでは、更に優れた硬化性を発現する。
【0127】
本実施形態の半導体用フィルム状接着剤の厚さに関しては、上記接続部の高さの和をxとし、半導体用フィルム状接着剤の総厚をyとした場合、xとyとの関係は、圧着時の接続性及び接着剤の充填性の観点から、0.70x≦y≦1.3xを満たすことが好ましく、0.80x≦y≦1.2xを満たすことがより好ましい。半導体用フィルム状接着剤の総厚は、例えば、10~100μmであってよく、10~80μmであってよく、10~50μmであってよい。
【0128】
第1の層の厚さは、例えば、1~50μmであってよく、3~50μmであってよく、4~30μmであってよく、5~20μmであってよい。
【0129】
第2の層の厚さは、例えば、7~50μmであってよく、8~45μmであってよく、10~40μmであってよい。
【0130】
第1の層の厚さに対する第2の層の厚さの比(第2の層の厚さ/第1の層の厚さ)は、例えば、0.1~10.0であってよく、0.5~6.0であってよく、1.0~4.0であってよい。
【0131】
本実施形態の半導体用フィルム状接着剤は、第1の層及び第2の層以外の他の層を更に備えていてもよい。例えば、本実施形態の半導体フィルム状接着剤は、第1の層及び第2の層からなる混合層を備えていてよい。また、本実施形態の半導体用フィルム状接着剤は、第1の層における第2の層とは反対側の面上、及び/又は、第2の層における第1の層とは反対側の面上に、基材フィルム及び/又は保護フィルムを備えていてもよい。この場合、基材フィルム又は保護フィルムと第1の層との間、及び/又は、基材フィルム又は保護フィルムと第2の層との間には、粘着層が設けられてもよい。
【0132】
半導体用フィルム状接着剤において、第1の層と第2の層とは隣接していてよい。この場合、第1の層と第2の層とは互いに剥離しないように形成されていることが好ましい。例えば、第1の層と第2の層と間の剥離強度は、10N/m以上であってよい。
【0133】
フィルム状接着剤の最低溶融粘度は、信頼性の観点から、1000Pa・s以上が好ましく、1500Pa・s以上がより好ましく、2000Pa・s以上が更に好ましい。最低溶融粘度が1000Pa・s以上であると、実装時に巻き込まれたボイドが熱膨張することが抑制され、長期使用時(例えば信頼性試験)での剥離の発生可能性が低くなる。一方、はんだ接続時に第1の層が十分に排除され、樹脂の噛み込みが減ることで電気接続信頼性に優れることから、フィルム状接着剤の最低溶融粘度は、10000Pa・s以下が好ましく、5000Pa・s以下がより好ましく、4000Pa・s以下が更に好ましい。これらの観点から、フィルム状接着剤の最低溶融粘度は、1000~10000Pa・sが好ましく、1500~5000Pa・sがより好ましく、2000~4000Pa・sが更に好ましい。フィルム状接着剤の最低溶融粘度は、第1の接着剤の最低溶融粘度と同様の方法で測定することができる。
【0134】
<半導体用フィルム状接着剤の製造方法>
本実施形態の半導体用フィルム状接着剤は、例えば、第1の層を備える第1のフィルム状接着剤と、第2の層を備える第2のフィルム状接着剤とを用意し、第1の層を備える第1のフィルム状接着剤と、第2の層を備える第2のフィルム状接着剤とを貼り合わせることにより得ることができる。
【0135】
第1のフィルム状接着剤を用意する工程では、例えば、まず、(a)成分、(b)成分及び(c)成分、並びに必要に応じて添加される(d)成分及び(e)成分等の他の成分を、有機溶媒中に加え、攪拌混合、混錬等により、溶解又は分散させて、樹脂ワニス(塗工ワニス)を調製する。その後、離型処理を施した基材フィルム又は保護フィルム上に、樹脂ワニスをナイフコーター、ロールコーター、アプリケーター等を用いて塗布した後、加熱により有機溶媒を減少させて、基材フィルム又は保護フィルム上に第1の接着剤からなる第1の層を形成することができる。
【0136】
樹脂ワニスの調製に用いる有機溶媒としては、各成分を均一に溶解又は分散し得る特性を有するものが好ましく、例えば、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、ジエチレングリコールジメチルエーテル、トルエン、ベンゼン、キシレン、メチルエチルケトン、テトラヒドロフラン、エチルセロソルブ、エチルセロソルブアセテート、ブチルセロソルブ、ジオキサン、シクロヘキサノン、及び酢酸エチルが挙げられる。これらの有機溶媒は、単独で又は2種類以上を組み合わせて使用することができる。樹脂ワニス調製の際の攪拌混合及び混錬は、例えば、攪拌機、らいかい機、3本ロール、ボールミル、ビーズミル又はホモディスパーを用いて行うことができる。
【0137】
基材フィルム及び保護フィルムとしては、有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限はなく、ポリプロピレンフィルム、ポリメチルペンテンフィルム等のポリオレフィンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム等のポリエステルフィルム、ポリイミドフィルム及びポリエーテルイミドフィルムを例示できる。基材フィルム及び保護フィルムは、これらのフィルムからなる単層のものに限られず、2種以上の材料からなる多層フィルムであってもよい。また、上記の基材フィルム及び保護フィルムは、その一方面上に粘着層を備えていてもよい。
【0138】
基材フィルムへ塗布した樹脂ワニスから有機溶媒を揮発させる際の乾燥条件は、有機溶媒が十分に揮発する条件とすることが好ましく、具体的には、50~200℃、0.1~90分間の加熱を行うことが好ましい。実装後のボイド又は粘度調整に影響がなければ、有機溶媒は、第1のフィルム状接着剤全質量に対して1.5質量%以下まで除去されることが好ましい。
【0139】
第2のフィルム状接着剤を用意する工程では、(A)成分及び(B)成分、並びに必要に応じて添加される(C)成分等の他の成分を用いること以外は、第1の層と同様の方法により基材フィルム又は保護フィルム上に第2の接着剤からなる第2の層を形成することができる。
【0140】
第1のフィルム状接着剤と、第2のフィルム状接着剤とを貼り合わせる方法としては、例えば、加熱プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。ラミネートは、例えば、30~120℃の加熱条件下で行ってよい。
【0141】
本実施形態の半導体用フィルム状接着剤は、例えば、基材フィルム上に第1の層又は第2の層の一方を形成した後、得られた第1の層又は第2の層上に、第1の層又は第2の層の他方を形成することにより得てもよい。第1の層及び第2の層は、上述した、基材付きフィルム状接着剤の製造における第1の層及び第2の層の形成方法と同様の方法により形成してよい。
【0142】
本実施形態の半導体用フィルム状接着剤は、例えば、基材フィルム上に第1の層及び第2の層を実質的に同時に形成することにより得てもよい。この方法は、第1の接着剤と第2の接着剤とを実質的に同時に塗工し、一度に乾燥することで第1の層及び第2の層を形成する方法(同時多層塗工方式)であってよく、第1の接着剤を塗工した後に第2の接着剤を塗工し、一度に乾燥することで第1の層及び第2の層を形成する方法(逐次多層塗工方式)であってよい。
【0143】
<半導体装置>
本実施形態の半導体装置について、図1及び2を用いて以下説明する。図1は、本発明の半導体装置の一実施形態を示す模式断面図である。図1(a)に示すように、半導体装置100は、互いに対向する半導体チップ10及び基板(回路配線基板)20と、半導体チップ10及び基板20の互いに対向する面にそれぞれ配置された配線15と、半導体チップ10及び基板20の配線15を互いに接続する接続バンプ30と、半導体チップ10及び基板20間の空隙に隙間なく充填された接着剤(第1の接着剤及び第2の接着剤)の硬化物からなる封止部40とを有している。半導体チップ10及び基板20は、配線15及び接続バンプ30によりフリップチップ接続されている。配線15及び接続バンプ30は、接着剤の硬化物により封止されており外部環境から遮断されている。封止部40は、第1の接着剤の硬化物を含む上部部分40aと、第2の接着剤の硬化物を含む下部部分40bとを有している。
【0144】
図1(b)に示すように、半導体装置200は、互いに対向する半導体チップ10及び基板20と、半導体チップ10及び基板20の互いに対向する面にそれぞれ配置されたバンプ32と、半導体チップ10及び基板20間の空隙に隙間なく充填された接着剤(第1の接着剤及び第2の接着剤)の硬化物からなる封止部40とを有している。半導体チップ10及び基板20は、対向するバンプ32が互いに接続されることによりフリップチップ接続されている。バンプ32は、接着剤の硬化物により封止されており外部環境から遮断されている。封止部40は、第1の接着剤の硬化物を含む上部部分40aと、第2の接着剤の硬化物を含む下部部分40bとを有している。
【0145】
図2は、本発明の半導体装置の他の一実施形態を示す模式断面図である。図2(a)に示すように、半導体装置300は、2つの半導体チップ10が配線15及び接続バンプ30によりフリップチップ接続されている点を除き、半導体装置100と同様である。図2(b)に示すように、半導体装置400は、2つの半導体チップ10がバンプ32によりフリップチップ接続されている点を除き、半導体装置200と同様である。
【0146】
半導体チップ10としては、特に限定はなく、シリコン、ゲルマニウム等の同一種類の元素から構成される元素半導体、ガリウムヒ素、インジウムリン等の化合物半導体を用いることができる。
【0147】
基板20としては、回路基板であれば特に制限はなく、ガラスエポキシ、ポリイミド、ポリエステル、セラミック、エポキシ、ビスマレイミドトリアジン等を主な成分とする絶縁基板の表面に、金属膜の不要な個所をエッチング除去して形成された配線(配線パターン)15を有する回路基板、上記絶縁基板の表面に金属めっき等によって配線15が形成された回路基板、上記絶縁基板の表面に導電性物質を印刷して配線15が形成された回路基板などを用いることができる。
【0148】
配線15、バンプ32等の接続部は、主成分として、金、銀、銅、はんだ(主成分は、例えばスズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅、スズ-銀-銅等)、ニッケル、スズ、鉛などを含有しており、複数の金属を含有していてもよい。
【0149】
上記金属の中でも、接続部の電気伝導性・熱伝導性に優れたパッケージとする観点から、金、銀及び銅が好ましく、銀及び銅がより好ましい。コストが低減されたパッケージとする観点から、安価な材料である、銀、銅及びはんだが好ましく、銅及びはんだがより好ましく、はんだが更に好ましい。室温において金属の表面に酸化膜が形成すると生産性が低下すること及びコストが増加することがあるため、酸化膜の形成を抑制する観点から、金、銀、銅及びはんだが好ましく、金、銀、はんだがより好ましく、金、銀が更に好ましい。
【0150】
上記配線15及びバンプ32の表面には、金、銀、銅、はんだ(主成分は、例えば、スズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅等)、スズ、ニッケルなどを主な成分とする金属層が、例えばメッキにより形成されていてもよい。この金属層は単一の成分のみで構成されていても、複数の成分から構成されていてもよい。また、上記金属層は、単層又は複数の金属層が積層された構造をしていてもよい。
【0151】
また、本実施形態の半導体装置は、半導体装置100~400に示すような構造(パッケージ)が複数積層されていてもよい。この場合、半導体装置100~400は、金、銀、銅、はんだ(主成分は、例えばスズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅、スズ-銀-銅等)、スズ、ニッケルなどを含むバンプ、配線等で互いに電気的に接続されていてもよい。
【0152】
半導体装置を複数積層する手法としては、図3に示すように、例えばTSV(Through-Silicon Via)技術が挙げられる。図3は、本発明の半導体装置の他の一実施形態を示す模式断面図であり、TSV技術を用いた半導体装置である。図3に示す半導体装置500では、インターポーザ50上に形成された配線15が半導体チップ10の配線15と接続バンプ30を介して接続されることにより、半導体チップ10とインターポーザ50とはフリップチップ接続されている。半導体チップ10とインターポーザ50との間の空隙には接着剤(第1の接着剤及び第2の接着剤)の硬化物が隙間なく充填されており、封止部40を構成している。上記半導体チップ10におけるインターポーザ50と反対側の表面上には、配線15、接続バンプ30及び封止部40を介して半導体チップ10が繰り返し積層されている。半導体チップ10の表裏におけるパターン面の配線15は、半導体チップ10の内部を貫通する孔内に充填された貫通電極34により互いに接続されている。なお、貫通電極34の材質としては、銅、アルミニウム等を用いることができる。
【0153】
このようなTSV技術により、通常は使用されない半導体チップの裏面からも信号を取得することが可能となる。さらには、半導体チップ10内に貫通電極34を垂直に通すため、対向する半導体チップ10間、並びに、半導体チップ10及びインターポーザ50間の距離を短くし、柔軟な接続が可能である。本実施形態の半導体用フィルム状接着剤は、このようなTSV技術において、対向する半導体チップ10間、並びに、半導体チップ10及びインターポーザ50間の半導体用フィルム状接着剤として適用することができる。
【0154】
また、エリヤバンプチップ技術等の自由度の高いバンプ形成方法では、インターポーザを介さないでそのまま半導体チップをマザーボードに直接実装できる。本実施形態の半導体用フィルム状接着剤は、このような半導体チップをマザーボードに直接実装する場合にも適用することができる。なお、本実施形態の半導体用フィルム状接着剤は、2つの配線回路基板を積層する場合に、基板間の空隙を封止する際にも適用することができる。
【0155】
<半導体装置の製造方法>
本実施形態の半導体装置の製造方法について、図4を用いて以下説明する。図4は、本発明の半導体装置の製造方法の一実施形態を模式的に示す図であり、各工程を示す図4(a)、図4(b)及び図4(c)は、半導体装置の断面を示す。
【0156】
まず、図4(a)に示すように、配線15を有する基板20上に、接続バンプ30を形成する位置に開口を有するソルダーレジスト60を形成する。このソルダーレジスト60は必ずしも設ける必要はない。しかしながら、基板20上にソルダーレジストを設けることにより、配線15間のブリッジの発生を抑制し、接続信頼性・絶縁信頼性を向上させることができる。ソルダーレジスト60は、例えば、市販のパッケージ用ソルダーレジスト用インキを用いて形成することができる。市販のパッケージ用ソルダーレジスト用インキとしては、具体的には、SRシリーズ(日立化成株式会社製、商品名)及びPSR4000-AUSシリーズ(太陽インキ製造株式会社製、商品名)が挙げられる。
【0157】
次に、図4(a)に示すように、ソルダーレジスト60の開口に接続バンプ30を形成する。そして、図4(b)に示すように、接続バンプ30及びソルダーレジスト60が形成された基板20上に、第2の接着剤を含む第2の層41b側の面が基板20側となるように、本実施形態の半導体用フィルム状接着剤(以下、場合により「フィルム状接着剤」という。)41を貼付する。フィルム状接着剤41の貼付は、加熱プレス、ロールラミネート、真空ラミネート等によって行うことができる。フィルム状接着剤41の供給面積及び厚みは、半導体チップ10及び基板20のサイズ、接続バンプ30の高さ等によって適宜設定される。なお、フィルム状接着剤41の貼付は、第1の接着剤を含む第1の層41a側の面が基板20側となるように行ってもよい。
【0158】
上記のとおりフィルム状接着剤41を基板20に貼り付けた後、半導体チップ10の配線15と接続バンプ30とをフリップチップボンダー等の接続装置を用いて、位置合わせする。続いて、半導体チップ10と基板20とを接続バンプ30の融点以上の温度で加熱しながら圧着し、図4(c)に示すように、半導体チップ10と基板20とを接続すると共に、フィルム状接着剤41の硬化物からなる封止部40によって、半導体チップ10及び基板20間の空隙を封止充填する。以上により、半導体装置600が得られる。
【0159】
圧着時間は、例えば、5秒以下であってよい。本実施形態では、上述した本実施形態のフィルム状接着剤41を用いるため、圧着時間が5秒以下であっても、優れた接続信頼性を有する半導体装置を得ることができる。
【0160】
本実施形態の半導体装置の製造方法では、位置合わせをした後に仮固定し(半導体用フィルム状接着剤を介している状態)、リフロー炉で加熱処理することによって、接続バンプ30を溶融させて半導体チップ10と基板20とを接続してもよい。仮固定の段階では、金属接合を形成することが必ずしも必要ではないため、上記の加熱しながら圧着する方法に比べて低荷重、短時間、低温度による圧着でよく、生産性が向上すると共に接続部の劣化を抑制することができる。
【0161】
また、半導体チップ10と基板20とを接続した後、オーブン等で加熱処理を行って、更に接続信頼性・絶縁信頼性を高めてもよい。加熱温度は、フィルム状接着剤の硬化が進行する温度が好ましく、完全に硬化する温度がより好ましい。加熱温度、加熱時間は適宜設定される。
【0162】
本実施形態の半導体装置の製造方法では、フィルム状接着剤41を半導体チップ10に貼付した後に基板20を接続してもよい。
【0163】
生産性が向上する観点から、複数の半導体チップ10が連結した半導体ウェハに半導体用フィルム状接着剤を供給した後、ダイシングして個片化することによって、半導体チップ10上に半導体用フィルム状接着剤が供給された構造体を得てもよい。半導体用フィルム状接着剤は、例えば、加熱プレス、ロールラミネート及び真空ラミネート等の貼付方式により半導体チップ10上の配線、バンプ等を埋め込むように供給すればよい。この場合、樹脂の供給量が一定となるため生産性が向上し、埋め込み不足によるボイドの発生及びダイシング性の低下を抑制することができる。
【0164】
接続荷重は、接続バンプ30の数及び高さのばらつき、加圧による接続バンプ30、又は接続部のバンプを受ける配線の変形量を考慮して設定される。接続温度は、接続部の温度が接続バンプ30の融点以上であることが好ましいが、それぞれの接続部(バンプ及び配線)の金属接合が形成される温度であればよい。接続バンプ30がはんだバンプである場合は、約240℃以上が好ましい。
【0165】
接続時の接続時間は、接続部の構成金属により異なるが、生産性が向上する観点から短時間であるほど好ましい。接続バンプ30がはんだバンプである場合、接続時間は20秒以下が好ましく、10秒以下がより好ましく、5秒以下が更に好ましい。銅-銅又は銅-金の金属接続の場合は、接続時間は60秒以下が好ましい。
【0166】
上述した様々なパッケージ構造のフリップチップ接続部においても、本実施形態の半導体用フィルム状接着剤は、優れた耐リフロー性及び接続信頼性を示す。
【0167】
以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
【実施例
【0168】
以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。
【0169】
<フラックス含有層を備える単層フィルムの作製>
フラックス含有層を備える単層フィルムの作製に使用した化合物を以下に示す。
(a)エポキシ樹脂
・トリフェノールメタン骨格含有多官能固形エポキシ(三菱ケミカル株式会社製、商品名「jER1032H60」)
・ビスフェノールF型液状エポキシ(三菱ケミカル株式会社製、商品名「jERYL983U」)
(b)硬化剤
・2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体(四国化成工業株式会社製、商品名「2MAOK-PW」)
(c)フラックス剤
・グルタル酸(東京化成株式会社製、融点約98℃)
・2-メチルグルタル酸(シグマアルドリッチ社製、融点約78℃)
・3-メチルグルタル酸(東京化成株式会酸、融点約87℃)
(d)高分子成分
・フェノキシ樹脂(新日鉄住金化学株式会社製、商品名「ZX1356-2」、Tg:約71℃、重量平均分子量Mw:約63000)
・フェノキシ樹脂(新日鉄住金化学株式会社製、商品名「FX-293」、Tg:約160℃、重量平均分子量Mw:約40000)
(e)フィラー
・シリカフィラー(株式会社アドマテックス製、商品名「SE2050」、平均粒径:0.5μm)
・エポキシシラン表面処理フィラー(株式会社アドマテックス製、SE2050-SEJ、平均粒径:0.5μm)
・メタクリル表面処理ナノシリカフィラー(株式会社アドマテックス製、商品名「YA100C-MLE」、平均粒径:約100nm)
・メタクリル表面処理ナノシリカフィラー(株式会社アドマテックス、商品名「YA050C-MJE」、平均粒径:約50nm)
・有機フィラー(樹脂フィラー、ロームアンドハースジャパン株式会社製、商品名「EXL-2655」、コアシェルタイプ有機微粒子)
【0170】
表1に示す配合量(単位:質量部)のエポキシ樹脂、硬化剤、高分子成分、フラックス剤、無機フィラー及び有機フィラーを、NV値([乾燥後の塗料分質量]/[乾燥前の塗料分質量]×100)が60%になるように有機溶媒(メチルエチルケトン)に添加した。その後、Φ1.0mmのビーズ及びΦ2.0mmのビーズを、固形分(エポキシ樹脂、硬化剤、フラックス剤、高分子成分、無機フィラー及び有機フィラー)と同質量加え、ビーズミル(フリッチュ・ジャパン株式会社製、遊星型微粉砕機P-7)で30分攪拌した。攪拌後、ビーズをろ過によって除去し、第1の接着剤を含む塗工ワニスを作製した。
【0171】
得られた塗工ワニスを、基材フィルム(帝人デュポンフィルム株式会社製、商品名「ピューレックスA54」)上に、小型精密塗工装置(株式会社廉井精機製)で塗工し、クリーンオーブン(ESPEC株式会社製)で乾燥(80℃/10min)して、第1のフィルムとして、表1に示す単層フィルム(A-1)、(A-2)、(A-3)、(A-4)及び(A-5)を得た。単層フィルム(A-1)~(A-5)におけるフラックス含有層の厚さは20μmとした。
【0172】
【表1】
【0173】
<フラックス非含有層を備える単層フィルムの作製>
フラックス非含有層を備える単層フィルムの作製に使用した化合物を以下に示す。
【0174】
(A)(メタ)アクリル化合物
・フルオレン型骨格を有するアクリレート(大阪ガスケミカル株式会社、EA-0200、2官能基)
・ビスフェノールA型骨格を有するアクリレート(新中村化学工業株式会社、EA-1020)
・エトキシ化イソシアヌル酸トリアクリレート(新中村化学工業株式会社、A-9300)
【0175】
(B)熱ラジカル発生剤
・ジクミル過酸化物(日油株式会社、パークミル(登録商標)D)
・ジ-tert-ブチル過酸化物(日油株式会社、パーブチル(登録商標)D)
・1,4-ビス-((tert-ブチルパーオキシ)ジイソプロピル)ベンゼン(日油株式会社、パーブチル(登録商標)P)
【0176】
(C)高分子成分
・アクリル樹脂(日立化成株式会社、KH-CT-865、重量平均分子量Mw:100000、Tg:10℃)
・ウレタン樹脂(DICコベストロポリマー株式会社、パンデックスT-8175N、Tg:約―23℃)
【0177】
(D)フィラー
フラックス含有層を備える単層フィルムの作製に用いたフィラー((e)成分)と同様のフィラーを用いた。
【0178】
表2に示す配合量(単位:質量部)の(メタ)アクリル化合物、高分子成分、無機フィラー及び有機フィラーをNV値が60%になるように有機溶媒(メチルエチルケトン)に添加した。その後、Φ1.0mmのビーズ及びΦ2.0mmのビーズを、固形分((メタ)アクリル化合物、高分子成分、無機フィラー及び有機フィラー)と同質量加え、ビーズミル(フリッチュ・ジャパン株式会社、遊星型微粉砕機P-7)で30分攪拌した。攪拌後、ビーズをろ過によって除去した。次いで、得られた混合物に熱ラジカル発生剤を添加し、攪拌混合し、第2の接着剤を含む塗工ワニスを作製した。
【0179】
得られた塗工ワニスを、基材フィルム(帝人デュポンフィルム株式会社製、商品名「ピューレックスA54」)上に、小型精密塗工装置(廉井精機)で塗工し、クリーンオーブン(ESPEC株式会社製)で乾燥(80℃/10min)して、第2のフィルムとして、表2に示す単層フィルム(B-1)、(B-2)、(B-3)、(B-4)、(B-5)、(B-6)及び(B-7)を得た。単層フィルム(B-1)~(B-7)におけるフラックス非含有層の厚さは、20μmとした。
【0180】
【表2】
【0181】
<2層フィルムの作製>
(実施例1~10、並びに比較例1~12)
上記で作製した単層フィルムのうちの2つ(第1のフィルム及び第2のフィルム)を50℃でラミネートし、総厚40μmのフィルム状接着剤を作製した。単層フィルムの組み合わせは、表3及び表4に示すとおりとした。フラックス含有層を備える単層フィルム側の基材フィルムは剥離し、基材フィルムを剥離した面に、フラックス含有層側に粘着層を設けた基材フィルム(6331-00、日立マクセル株式会社製)をラミネートした。比較例1~5では、一方の基材フィルムのみ剥離し、基材フィルムを剥離した面に、上記粘着層を設けた基材フィルム(6331-00、日立マクセル株式会社製)をラミネートした。
【0182】
<評価1>
(最低溶融粘度の測定)
第1の接着剤、第2の接着剤及びフィルム状接着剤(フラックス含有層とフラックス非含有層との積層体)の溶融粘度を回転式レオメーター(TA Instruments社製、商品名:ARES-G2)を用いて測定した。フィルム状接着剤の溶融粘度の評価サンプルは、以下の手順で作製した。まず、上記で作製した単層フィルムのうちの2つ(第1のフィルム及び第2のフィルム)を50℃でラミネートし、総厚40μmの2層フィルムを作製した。単層フィルムの組み合わせは、表3及び表4に示すとおりとした。その2層フィルムを切断し、切断した2層フィルムを互いに積層することで総厚80μmの4層フィルム(積層フィルム)を作製した。同様の手順で積層フィルムの切断及び切断した積層フィルムのラミネートを繰り返し行い、総厚400μmの評価サンプルを作製した。評価サンプルを用いて下記の測定条件で溶融粘度を測定した。
[測定条件]
昇温速度:10℃/分
周波数:10Hz
温度範囲:30~150℃
【0183】
第1の接着剤の最低溶融粘度は2000~4000Pa・s(130℃での測定値)であり、第2の接着剤の最低溶融粘度は1000~3000Pa・s(120℃での測定値)であり、フィルム状接着剤の最低溶融粘度は1500~3500Pa・s(130℃での測定値)であった。
【0184】
<評価2>
以下に示す方法で、実施例及び比較例で得られたフィルム状接着剤及び該フィルム状接着剤を用いて作製した半導体装置について、初期接続性評価、ボイド評価、はんだ濡れ性評価、はみ出し量測定、及び絶縁信頼性評価を行った。結果を表3及び表4に示す。
【0185】
(初期接続性評価)
実施例又は比較例で作製したフィルム状接着剤を所定のサイズ(縦8mm×横8mm×厚さ40μm)に切り抜き、粘着層を備えない基材フィルムを剥離した。はんだバンプ付き半導体チップ(チップサイズ:縦7.3mm×横7.3mm×厚さ0.15mm、バンプ高さ:銅ピラーの高さとはんだの高さの合計で約40μm、バンプ数:328)にラミネートした。粘着層を設けた基材フィルムを剥離し、ラミネートしたチップを、フラックス含有層を下にした状態で、銅配線付きガラスエポキシ基板(ガラスエポキシ基材の厚さ:420μm、銅配線の厚さ:9μm)にフリップ実装装置「FCB3」(パナソニック株式会社製、商品名)で実装した(実装条件:圧着ヘッド温度350℃、圧着時間3秒、圧着圧力0.5MPa)。これにより、図4と同様に上記ガラスエポキシ基板と、はんだバンプ付き半導体チップとがデイジーチェーン接続された半導体装置Aを作製した。
【0186】
得られた半導体装置Aの接続抵抗値を、マルチメータ(株式会社アドバンテスト製、商品名「R6871E」)を用いて測定することにより、実装後の初期導通を評価した。接続抵抗値が10.0Ω以上12.5Ω以下の場合を接続性「A」(良好)とし、接続抵抗値が12.5Ωより大きく13.5Ω以下の場合を接続性「B」(不良)とし、接続抵抗値が13.5Ωより大きく20Ω以下の場合を接続性「C」(不良)とし、接続抵抗値が20Ωより大きい場合、接続抵抗値が10Ω未満の場合及び接続不良に因り抵抗値が表示されない場合を全て接続性「D」(不良)として、評価した。
【0187】
(ボイド評価)
上記の方法で作製した半導体装置Aについて、超音波映像診断装置(商品名「Insight-300」、インサイト株式会社製)により外観画像を撮り、スキャナGT-9300UF(セイコーエプソン株式会社製、商品名)でチップ上の接着剤層(半導体用フィルム状接着剤の硬化物からなる層)の画像を取り込み、画像処理ソフトAdobe Photoshop(登録商標)を用いて、色調補正、二階調化によりボイド部分を識別し、ヒストグラムによりボイド部分の占める割合を算出した。チップ上の接着剤部分の面積を100%として、ボイド発生率が3%以下の場合を「AA」(良好)とし、3%より多く5%以下の場合を「A」(良好)とし、5%より多く10%以下の場合を「B」(不良)とし、10%より多い場合を「C」(不良)として評価した。
【0188】
(はんだ濡れ性評価)
上記の方法で作製した半導体装置Aについて、接続部の断面を観察し、Cu配線の上面におけるはんだの濡れが100%~50%の場合を「A」(良好)、はんだの濡れが50%~0%の場合を「B」(不良)、はんだ飛散が発生している場合を「C」(不良)として評価した。
【0189】
(はみ出し量測定)
上記の方法で作製した半導体装置Aを該装置の上面から金属顕微鏡(株式会社キーエンス製)で観察し、半導体チップ周辺部(4辺)からはみ出したフィルム状接着剤由来の硬化物の量(はみ出し部分の幅)を測定した。測定は、半導体装置の各辺について行い、4辺の平均値をはみ出し量として算出した。
【0190】
(絶縁信頼性試験A[HAST試験:Highly Accelerated Storage Test])
実施例又は比較例で作製したフィルム状接着剤(厚さ:40μm)を、くし型電極評価TEG(日立化成株式会社製、配線ピッチ:50μm)に貼付し、上部からはんだバンプ付き半導体チップ(チップサイズ:縦7.3mm×横7.3mm×厚さ0.15mm、バンプ高さ:銅ピラーの高さとはんだの高さの合計で約40μm、バンプ数:328)をはんだが付いている面を下向きにした状態でフリップ実装装置「FCB3」(パナソニック株式会社製、商品名)で実装した(実装条件:圧着ヘッド温度350℃、圧着時間3秒、圧着圧力0.5MPaで熱圧着)。これにより半導体装置Bを得た。圧着後の半導体装置Bをクリーンオーブン(ESPEC株式会社製)中、175℃で2時間キュアし、キュア後のサンプルを、加速寿命試験装置(株式会社平山製作所製、商品名「PL-422R8」、条件:130℃/85%RH/100時間、5V印加)に設置し、絶縁抵抗を測定した。100時間後の絶縁抵抗が10Ω以上であった場合を「A」とし、10Ω以上10Ω未満であった場合を「B」とし、10Ω未満であった場合を「C」として評価した。
【0191】
(絶縁信頼性試験B[HAST試験:Highly Accelerated Storage Test])
実施例又は比較例で作製したフィルム状接着剤(厚さ:40μm)を、くし型電極評価TEG(日立化成株式会社製、配線ピッチ:50μm)に貼付し、上部からはんだバンプ付き半導体チップ(チップサイズ:縦7.3mm×横7.3mm×厚さ0.15mm、バンプ高さ:銅ピラーの高さとはんだの高さの合計で約40μm、バンプ数:328)をはんだが付いている面を下向きにした状態でフリップ実装装置「FCB3」(パナソニック株式会社製、商品名)で実装した(実装条件:圧着ヘッド温度180℃、圧着時間3秒、圧着圧力0.5MPaで熱圧着した後(接着剤のゲル化工程)、圧着ヘッド温度を260℃に昇温し、連続的に、圧着ヘッド温度260℃、圧着時間3秒、圧着圧力0.5MPaで熱圧着)。これにより、半導体装置Cを得た。圧着後の半導体装置Cをクリーンオーブン(ESPEC株式会社製)中、175℃で2時間キュアし、キュア後のサンプルを、加速寿命試験装置(株式会社平山製作所製、商品名「PL-422R8」、条件:130℃/85%RH/100時間、5V印加)に設置し、絶縁抵抗を測定した。100時間後の絶縁抵抗が10Ω以上であった場合を「A」とし、10Ω以上10Ω未満であった場合を「B」とし、10Ω未満であった場合を「C」として評価した。
【0192】
【表3】
【0193】
【表4】
【0194】
実施例1~10の半導体用フィルム状接着剤は、ボイド発生が十分に抑制され、はんだ濡れ性が良好であった。また、これらの半導体用フィルム状接着剤は実装後のはみ出し量も小さく、また、絶縁信頼性(耐HAST性)にも優れることが確認された。
【符号の説明】
【0195】
10…半導体チップ、15…配線(接続部)、20…基板(配線回路基板)、30…接続バンプ、32…バンプ(接続部)、34…貫通電極、40…封止部、41…半導体用フィルム状接着剤、50…インターポーザ、60…ソルダーレジスト、100,200,300,400,500,600…半導体装置。

図1
図2
図3
図4