(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-12
(45)【発行日】2023-01-20
(54)【発明の名称】改善された機械的強度を有する高抵抗率単結晶シリコンインゴット及びウェハ
(51)【国際特許分類】
C30B 29/06 20060101AFI20230113BHJP
【FI】
C30B29/06 502H
【外国語出願】
(21)【出願番号】P 2021115573
(22)【出願日】2021-07-13
(62)【分割の表示】P 2018563827の分割
【原出願日】2017-06-06
【審査請求日】2021-07-20
(32)【優先日】2016-06-08
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2016-06-08
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】518112516
【氏名又は名称】グローバルウェーハズ カンパニー リミテッド
【氏名又は名称原語表記】GlobalWafers Co.,Ltd.
(74)【代理人】
【識別番号】100145403
【氏名又は名称】山尾 憲人
(74)【代理人】
【識別番号】100131808
【氏名又は名称】柳橋 泰雄
(74)【代理人】
【識別番号】100145104
【氏名又は名称】膝舘 祥治
(72)【発明者】
【氏名】スービア・バサク
(72)【発明者】
【氏名】イゴール・ペイドウス
(72)【発明者】
【氏名】カリシマ・マリー・ハドソン
(72)【発明者】
【氏名】イ・ヒョンミン
(72)【発明者】
【氏名】キム・ビョンチュン
(72)【発明者】
【氏名】ロバート・ジェイ・フォルスター
【審査官】山本 一郎
(56)【参考文献】
【文献】特許第3750526(JP,B2)
【文献】特開2016-088822(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C30B 29/06
(57)【特許請求の範囲】
【請求項1】
一方が、単結晶シリコンウェハの前面であり、他方が、前記単結晶シリコンウェハの裏面である、2つの主要で、平行な表面と、前記単結晶シリコンウェハの前記前面と前記裏面を接合する周縁エッジと、前記前面と前記裏面の間のバルク領域と、前記単結晶シリコンウェハの前記前面と前記裏面の間の前記単結晶シリコンウェハの中央平面と、を備える単結晶シリコンウェハであって、
前記バルク領域は、少なくとも5×10
14atoms/cm
3の濃度の窒素、または少なくとも5×10
19atoms/cm
3の濃度のゲルマニウム、または少なくとも5×10
14atoms/cm
3の濃度の窒素と少なくとも5×10
19atoms/cm
3の濃度のゲルマニウムの組み合わせ、及び
4ppma未満(New ASTM:ASTM F 121,1980-1983;DIN 50438/1,1978)の濃度の格子間酸素とを含む不純物を備え、
さらに単結晶シリコンウェハのバルク領域は、少なくとも10000Ωcmの抵抗率を有する、単結晶シリコンウェハ。
【請求項2】
前記抵抗率は、少なくとも15000Ωcmである、請求項1に記載の単結晶シリコンウェハ。
【請求項3】
前記抵抗率は、少なくとも20000Ωcmである、請求項1に記載の単結晶シリコンウェハ。
【請求項4】
前記ゲルマニウムの濃度は、少なくとも5×10
19atoms/cm
3であり、1×10
22atoms/cm
3未満である、請求項1乃至
3のいずれか1項に記載の単結晶シリコンウェハ。
【請求項5】
前記ゲルマニウムの濃度は、少なくとも5×10
19atoms/cm
3である、請求項1乃至
3のいずれか1項に記載の単結晶シリコンウェハ。
【請求項6】
少なくとも5×10
14atoms/cm
3で、1×10
16atoms/cm
3未満の濃度の窒素を含む、請求項1乃至
5のいずれか1項に記載の単結晶シリコンウェハ。
【請求項7】
少なくとも1×10
15atoms/cm
3で、1×10
16atoms/cm
3未満の濃度の窒素を含む、請求項1乃至
5のいずれか1項に記載の単結晶シリコンウェハ。
【請求項8】
中心軸、クラウン、前記クラウンの反対の端部、及び前記クラウンと前記反対の端部との間の本体であって、前記本体は、側面と、前記中心軸から前記側面へ延びる半径Rを有する、中心軸、クラウン、クラウンの反対の端部、及びクラウンと反対の端部との間の本体と、を備える単結晶シリコンインゴットであって、
前記単結晶シリコンインゴットの前記本体は、少なくとも5×10
14atoms/cm
3の濃度の窒素、少なくとも5×10
19atoms/cm
3の濃度のゲルマニウム、または少なくとも5×10
14atoms/cm
3の濃度の窒素と少なくとも5×10
19atoms/cm
3の濃度のゲルマニウムとの組み合わせ、及び
4ppma未満(New ASTM:ASTM F 121,1980-1983;DIN 50438/1,1978)の濃度の格子間酸素を含む不純物を含み、
さらに前記単結晶シリコンインゴットの前記本体は、少なくとも10000Ωcmの抵抗率を有し、
さらに総インゴット長さが少なくとも500mmである、単結晶シリコンインゴット。
【請求項9】
前記抵抗率は、少なくとも15000Ωcmである、請求項
8に記載の単結晶シリコンインゴット。
【請求項10】
前記抵抗率は、少なくとも20000Ωcmである、請求項
8に記載の単結晶シリコンインゴット。
【請求項11】
前記ゲルマニウムの濃度は、少なくとも5×10
19atoms/cm
3であり、1×10
22atoms/cm
3未満である、請求項
8乃至
10のいずれか1項に記載の単結晶シリコンインゴット。
【請求項12】
前記ゲルマニウムの濃度は、少なくとも5×10
19atoms/cm
3である、請求項
8乃至
10のいずれか1項に記載の単結晶シリコンインゴット。
【請求項13】
少なくとも5×10
14atoms/cm
3で、2×10
15atoms/cm
3未満の濃度の窒素を含む、請求項
8乃至
12のいずれか1項に記載の単結晶シリコンインゴット。
【請求項14】
少なくとも1×10
15atoms/cm
3で、1×10
16atoms/cm
3未満の濃度の窒素を含む、請求項
8乃至
12のいずれか1項に記載の単結晶シリコンインゴット。
【発明の詳細な説明】
【技術分野】
【0001】
関連する出願の相互参照
本開示は、2016年6月8日に出願された米国仮特許出願62/347143の利益、2016年6月8日に出願された米国仮特許出願62/347145の利益を主張する。両方の優先書類の開示は、ここで、そのすべてにおいて記載されているように、参照することによって組み込まれる。
【0002】
本開示は、一般的に、単結晶シリコンインゴット及びウェハの生産に関連し、インゴット及びウェハは、低酸素濃度、高抵抗率、及び改善された機械的強度を有する。
【背景技術】
【0003】
単結晶シリコンは、半導体電子部品及び太陽電池材料を製造するための多くのプロセスの出発材料である。例えば、シリコンインゴットから生産された半導体ウェハは、一般的に、集積回路チップの生産に使われる。太陽電池工業において、単結晶シリコンは、グレインバウンダリ及び転位の欠如によって、微結晶シリコンの代わりに使われることができる。単結晶シリコンインゴットは、半導体または太陽電池ウェハが生産されることができる、例えばシリコンウェハなど、所望の形状に機械加工される。
【0004】
高純度単結晶シリコンインゴットの生産のための既存の方法は、フロートゾーン法及び磁場印加チョクラルスキ(MCZ)プロセスを含む。フロートゾーン法は、超高純度多結晶シリコンのロッドの狭い領域を溶融するステップと、高純度単結晶シリコンインゴットを生産するためのロッドに沿って溶融した領域をゆっくり平行移動させるステップを含む。MCZプロセスは、るつぼに多結晶シリコンを溶融し、溶融したシリコンに種結晶を浸し、インゴットの所望の直径を達成するために十分な方法で、種結晶を引き出すことによって、単結晶シリコンインゴットを生産する。水平及び/または垂直磁場は、成長する単結晶シリコンインゴットの中に、例えば酸素など、不純物の組み込みを抑制するために、溶融したシリコンに印加されてもよい。フロートゾーンシリコンインゴットは、通常、例えば酸素など、比較的低濃度の不純物を含むが、フロートゾーン法を用いて成長されたインゴットの直径は、通常、表面張力によって強いられる限界のために、約200mmより大きくない。MCZシリコンインゴットは、フロートゾーンインゴットと比較して大きいインゴット直径で生産されることができるが、MCZシリコンインゴットは、通常、高い濃度の不純物を含む。
【0005】
MCZ法を使った単結晶シリコンインゴットを生産するプロセスの間、酸素は、液-固または溶融結晶界面を通ってシリコン結晶インゴットに導入される。酸素は、インゴットから生産されるウェハに様々な欠陥を引き起こし、インゴットを使用して製造される半導体装置の収率を減少させるかもしれない。例えば、絶縁ゲートバイポーラトランジスタ(insulated-gate bipolar transistors(IGBTs))、高品質の無線周波数(high quality radio-frequency(RF))、高抵抗シリコンオンインシュレータ(high resistivity silicon on insulator(HR-SOI))、電荷トラップ層SOI(charge trap layer SOI(CTL-SOI))、及びGaNのエピタキシャル成長の用途のための基板は、通常、高抵抗を達成するために、低酸素濃度(Oi)を必要とする。
【0006】
少なくともいくつか知られた半導体装置は、低Oi及び高抵抗を達成するために、フロートゾーンシリコン材料を使って製造される。しかしながら、フロートゾーン材料は、比較的高価であり、約200mmより小さい直径を有するインゴットを生産する際の使用に限定される。したがって、フロートゾーンシリコン材料は、高価であり、比較的低酸素濃度の、直径の大きいシリコン単結晶インゴットを生産することができない。
【0007】
高抵抗シリコンオンインシュレータ(HR-SOI)で作られた高品質無線周波数(RF)装置は、よい2次高調波性能(HD2)のために非常に高抵抗であることを必要とする。装置の製造及びパッケージの間、ウェハの高抵抗を維持するために、非常に低いOiが、Oiのサーマルドナーインパクトを最小化し、PN接合の形成を避けるために、必要とされる。しかしながら、低Oiウェハの機械的強度は、ひどく劣り、これらのウェハは、SOIライン、EPI反応器、及び装置の製造工程の高温プロセス工程の間、スリップする傾向がある。これは、SOIウェハ製造者及び装置製造者の両方に収率の高い損失を引き起こす。
【0008】
この背景部は、以下で記載され及び/または権利主張される、本開示の様々な態様に関連することができる技術の様々な態様へ読み手を導入する意図がある。本開示は、読み手に本開示の様々な態様をより理解することを容易にするために背景情報を提供する際の助けになると信じる。したがって、これらの記述は、この観点から読むべきで、従来技術の自白として読むべきでないことが理解されるべきである。
【発明の概要】
【0009】
1つの実施形態において、本発明は、一方が、単結晶シリコンウェハの前面であり、他方が、前記単結晶シリコンウェハの裏面である、2つの主要で、平行な表面と、前記単結晶シリコンウェハの前記前面と前記裏面を接合する周縁エッジと、前記前面と前記裏面の間のバルク領域と、前記単結晶シリコンウェハの前記前面と前記裏面の間の前記単結晶シリコンウェハの中央平面と、を備える単結晶シリコンウェハであって、前記バルク領域は、少なくとも約1×1014atoms/cm3の濃度の窒素、少なくとも約1×1019atoms/cm3の濃度のゲルマニウム、または少なくとも約1×1014atoms/cm3の濃度の窒素と少なくとも約1×1019atoms/cm3の濃度のゲルマニウムとの組み合わせ、及び約6ppma未満(New ASTM:ASTM F 121,1980-1983;DIN 50438/1,1978)の濃度の格子間酸素とを含む不純物を備え、さらに単結晶シリコンインゴットの本体は、少なくとも約1000Ωcmの抵抗率を有する、単結晶シリコンウェハに案内される。
【0010】
1つの実施形態において、本発明はさらに単結晶シリコンインゴットを成長する方法に案内される。方法は、シリコンの溶融物を準備するステップであって、前記シリコンの溶融物は、石英内張るつぼに多結晶シリコンを溶融するステップと、前記石英内張るつぼへ不純物のソースを加えるステップとによって準備され、前記不純物は、ゲルマニウム、窒素、またはゲルマニウムと窒素の組み合わせを含む、ステップと、前記シリコンの溶融物から単結晶シリコンインゴットを引くステップであって、前記単結晶シリコンインゴットは、中心軸、クラウン、前記クラウンの反対の端部、及び前記クラウンと前記反対の端部との間の本体とを備え、前記本体は、側面と、前記中心軸から前記側面へ延びる半径Rを有するステップと、を備え、前記単結晶シリコンインゴットの前記本体は、少なくとも約1×1014atoms/cm3の濃度の窒素、少なくとも約1×1019atoms/cm3の濃度のゲルマニウム、または少なくとも約1×1014atoms/cm3の濃度の窒素と少なくとも約1×1019atoms/cm3の濃度のゲルマニウムとの組み合わせを含み、さらに前記引く条件は、約6ppma未満(New ASTM:ASTM F 121,1980-1983;DIN 50438/1,1978)の前記単結晶シリコンインゴットの前記本体の格子間酸素の濃度を得るのに十分であり、さらに前記単結晶シリコンインゴットの前記本体は、少なくとも約1000Ωcmの抵抗率を有する、方法である。
【0011】
1つの実施形態において、本発明は、さらに、中心軸、クラウン、前記クラウンの反対の端部、及び前記クラウンと前記反対の端部との間の本体とを備え、前記本体は、側面と、前記中心軸から前記側面へ延びる半径Rを有するステップと、を備える単結晶シリコンインゴットであって、前記単結晶シリコンインゴットの前記本体は、少なくとも約1×1014atoms/cm3の濃度の窒素、少なくとも約1×1019atoms/cm3の濃度のゲルマニウム、または少なくとも約1×1014atoms/cm3の濃度の窒素と少なくとも約1×1019atoms/cm3の濃度のゲルマニウムとの組み合わせ、及び約6ppma(New ASTM:ASTM F 121,1980-1983;DIN 50438/1,1978)より低い濃度の格子間酸素を含む不純物を備え、さらに前記単結晶シリコンインゴットの前記本体は、少なくとも約1000Ωcmの抵抗率を有する、単結晶シリコンインゴットに案内される。
【0012】
様々な改善が上述の態様に関連して記載された特徴に存在する。さらなる特徴は、上述の態様に同様に組み込まれることもできる。これらの改善及び追加の特徴は、個々にまたは任意の組み合わせで存在するかもしれない。例えば、説明された実施形態のいずれかに関連した以下に議論される様々な特徴は、単独でまたは任意の組み合わせで、上記に記載された態様に、組み込まれることができる。
【図面の簡単な説明】
【0013】
【
図3】単結晶成長器具の中の溶融物を含むるつぼに与えられたカスプ磁場を描く概略図である。
【
図4】
図1として同じ実施形態の結晶成長システムのブロック図である。
【
図5A】与えられた結晶回転率における中間本体成長のるつぼ壁の近くの流線と酸素濃度を示す、るつぼの一部の断面図である。
【
図5B】結晶回転率における後半本体成長のるつぼ壁の近くの流線と酸素濃度をマッピングする実施例るつぼの一部の断面図である。
【
図5C】異なる結晶回転率における後半本体成長におけるるつぼ壁の近くの流線と酸素濃度をマッピングするるつぼの一部の断面図である。
【
図6】結晶に沿った後半本体成長対位置(BL)における結晶回転率の関数としてシミュレートされた酸素濃度(Oi)をプロットするグラフである。
【
図7A】結晶本体回転率6rpmの後半本体成長対るつぼ回転率における酸素濃度をプロットするグラフである。
【
図7B】結晶本体回転率8rpmの後半本体成長対るつぼ回転率における酸素濃度をプロットするグラフである。
【
図8A】平衡化された50%に対応する磁場強度における後半本体成長のるつぼ壁の近くの流線と速度の大きさをマッピングする実施例るつぼの断面図である。
【
図8B】平衡化された95%に対応する磁場強度における後半本体成長のるつぼ壁の近くの流線と速度の大きさをマッピングする実施例るつぼの断面図である。
【
図8C】平衡化された150%に対応する磁場強度における後半本体成長のるつぼ壁の近くの流線と速度の大きさをマッピングする実施例るつぼの断面図である。
【
図9】2つの異なる結晶回転率プロファイルの結晶本体長さの関数として酸素濃度をプロットするグラフである。
【
図10A】実施例3によるノンスリップ温度ウィンドウテストを描くグラフである。
【
図10B】実施例3によるノンスリップ温度ウィンドウテストを描くグラフである。
【
図11】実施例4によるノンスリップ温度ウィンドウテストを描くグラフである。
【0014】
様々な図において類似の符号は類似の要素を示す。
【発明を実施するための形態】
【0015】
本発明の方法は、低酸素濃度、高抵抗率、及び改善された機械的強度を有するインゴットを生産するために十分な条件下で、単結晶シリコンインゴットの成長に案内される。本発明は、さらに方法によって生産された単結晶シリコンインゴットに案内され、またさらに、単結晶シリコンインゴットから薄く切り出された単結晶シリコンウェハに案内され、ウェハは、低酸素濃度、高抵抗率、及び改善された機械的強度を有する。
【0016】
本発明のいくつかの実施形態によると、単結晶成長条件は、チョクラルスキ法によって単結晶シリコンインゴットを準備するために十分であり、インゴットは、少なくとも1×1019atoms/cm3濃度のゲルマニウムドーパント(Ge)を含み、約6.0ppma未満の濃度の格子間酸素(Oi)を有する。本発明のいくつかの実施形態によると、結晶成長条件は、チョクラルスキ法によって単結晶シリコンインゴットを準備するために十分であり、インゴットは、少なくとも約1×1014atoms/cm3の濃度の窒素(N)ドーパントを含み、約6.0ppma未満の濃度の格子間酸素(Oi)を有する。本発明のいくつかの実施形態によると、結晶成長条件は、チョクラルスキ法によって単結晶シリコンインゴットを準備するために十分であり、インゴットは、少なくとも約1×1014atoms/cm3の濃度の窒素(N)ドーパントと少なくとも約1×1019atoms/cm3濃度のゲルマニウムドーパント(Ge)を含み、約6.0ppma未満の濃度の格子間酸素(Oi)を有する。さらに、単結晶シリコンインゴット、及びそれから薄く切り出されたウェハは、すくなくとも約1000Ωcmの抵抗率を有する。好ましい実施形態において、インゴットは、チョクラルスキバッチ結晶引き上げプロセスによって引かれる。ゲルマニウムを単結晶シリコンインゴットにドーピングすることは、有利に、インゴットの機械的強度を改善しつつ、Siの抵抗率に影響しない。いくつかの実施形態において、窒素は、抵抗率に多くの影響なく、機械的強度を改善するためにGeと共ドープされることができる。Ge及び/またはNドーパントの濃度は、ウェハが熱プロセスの間、サーマルドナー生成が少ないかないことによって特徴付けられるほど十分に低い。さらに、Geドーピングは、例えば、窒素、ボロン、または金属などの他のドーパントによって低下されることがかもしれない、2次高調波性能を低下させない。
【0017】
いくつかの実施形態において、抵抗率は、抵抗率>1000Ωcmの高純度多結晶シリコンを選択することによって及び高純度合成石英内張りるつぼの溶融物を準備することによって制御されることができる。いくつかの実施形態において、補償P/N型少量希薄ドーパントは、結晶の所望の抵抗率を達成するために電気的に活性な不純物を補償するために追加されることができる。したがって、結晶を引き出す条件と材料は、単結晶シリコンインゴットを提供するために選択されることができ、単結晶シリコンインゴットの本体は、少なくとも約1000Ωcm、少なくとも約3000Ωcm、少なくとも約4000Ωcm、少なくとも約5000Ωcm、少なくとも約10000Ωcm、少なくとも約15000Ωcm、またはさらに少なくとも約20000Ωcmの抵抗率を有する。
【0018】
いくつかの実施形態において、格子間酸素、Oiは、引き上げプロセスの最適化によって、要求される範囲内に制御されることができる。非常に低いOi単結晶シリコンインゴットを製造するための方法論は、3つのキープロセスメカニズムの組み合わせを含むことができる。3つのキーメカニズムは、1)るつぼ内壁の温度及びるつぼの溶解の最適化、2)るつぼ壁から成長結晶へOiの移動、3)溶融物表面から気相へのSiOの蒸発を含む。上記で述べられた3つのメカニズムは、印加された磁場によって、重く確立され、影響される溶融物流れ条件に強く依存する。いくつかの実施形態において、引く条件は約6ppma未満、例えば約5ppma未満、約4ppma未満、またはさらに約3ppma未満など、単結晶シリコンインゴットの本体の格子間酸素の濃度を生じるために十分である。これらの濃度は、New ASTM:ASTM F 121,1980-1983;DIN 50438/1,1978による。
【0019】
いくつかの実施形態において、ゲルマニウムは、溶解プロセスの間、溶融物に、例えばゲルマニウム元素及び/またはシリコンゲルマニウムなど、ゲルマニウムのソースを加えることによって、単結晶シリコンインゴットに組み込まれることができる。ゲルマニウムはそれによって分離原理に基づいて単結晶シリコンインゴットに組み込まれる。したがって、いくつかの実施形態において、例えばゲルマニウム元素及び/またはシリコンゲルマニウムなど、十分なゲルマニウムは、シリコン溶融物に加えられ、それにより、単結晶シリコンインゴットを引き上げることができ、単結晶シリコンインゴットの本体は、少なくとも約1×1019atoms/cm3、例えば、少なくとも約3×1019atoms/cm3、または少なくとも約5×1019atoms/cm3などの濃度のゲルマニウムを含む。単結晶シリコンインゴットの本体は、約1×1022atoms/cm3未満、例えば約1×1021atoms/cm3未満、約1×1020atoms/cm3未満などの濃度のゲルマニウムを含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約1×1019atoms/cm3で、約1×1022atoms/cm3未満の濃度のゲルマニウムを含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約3×1019atoms/cm3で、約1×1022atoms/cm3未満、例えば、約5×1019atoms/cm3から約1×1021atoms/cm3未満、または約5×1019atoms/cm3から約1×1020atoms/cm3未満の濃度のゲルマニウムを含む。
【0020】
いくつかの実施形態において、窒素は、溶解プロセスの間、溶融物に、例えばシリコン窒素または窒素ガスなど窒素のソースを加えることによって、単結晶シリコンインゴットの中に組み込まれることができる。窒素は、それによって、分離原理に基づいて単結晶シリコンインゴットに組み込まれる。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約1×1014atoms/cm3、例えば、少なくとも約2×1014atoms/cm3、または少なくとも約5×1014atoms/cm3などの濃度の窒素を含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約1×1014atoms/cm3で、約1×1016atoms/cm3未満の濃度の窒素を含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、約2×1014atoms/cm3から約2×1015atoms/cm3未満、例えば、少なくとも約5×1014atoms/cm3で約1×1016atoms/cm3未満の濃度の窒素を含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約1×1015atoms/cm3で約1×1016atoms/cm3未満の濃度の窒素を含む。
【0021】
いくつかの実施形態において、ゲルマニウムは、溶解プロセスの間、溶融物に例えばゲルマニウム元素及び/またはシリコンゲルマニウムなど、ゲルマニウムのソースを加えることによって、単結晶シリコンインゴットに組み込まれることができ、窒素は、例えばシリコン窒素または窒素ガスなど窒素のソースを加えることによって、単結晶シリコンインゴットの中に組み込まれることができる。したがって、いくつかの実施形態において、例えば、ゲルマニウム元素及び/またはシリコンゲルマニウムなど、十分なゲルマニウムがシリコン溶融物に加えられ、それによって単結晶シリコンインゴットが引き上げることができ、単結晶シリコンインゴットの本体は、少なくとも約1×1019atoms/cm3、例えば、少なくとも約3×1019atoms/cm3、または少なくとも約5×1019atoms/cm3などの濃度のゲルマニウムを含み、単結晶シリコンインゴットの本体は、少なくとも約1×1014atoms/cm3、例えば、少なくとも約2×1014atoms/cm3、または少なくとも約5×1014atoms/cm3などの濃度の窒素を含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約1×1019atoms/cm3で、約1×1022atoms/cm3未満の濃度のゲルマニウムと少なくとも約1×1014atoms/cm3で、約1×1016atoms/cm3未満の濃度の窒素を含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約3×1019atoms/cm3で、約1×1022atoms/cm3未満のゲルマニウム及び少なくとも約2×1014atoms/cm3で、約1×1015atoms/cm3未満の濃度の窒素を含む。
【0022】
図1及び2を参照して、1つの実施形態のるつぼは、一般的に10で示される。るつぼ10の円筒座標システムは、半径方向R12、角度方向θ14、及び軸方向Z16を含む。座標、R12、θ14及びZ16は、低酸素シリコンインゴットを生産するための方法とシステムを記載するために本明細書で使われる。るつぼ10は、溶融表面36を有する溶融物25を含む。結晶27は溶融物25から成長される。溶融物25は、るつぼ10の加熱及び角度方向θ14にるつぼ10及び/または結晶27の回転によって誘導された1以上の対流フローセル17、18を含むことができる。これらの1以上の対流フローセル17、18の構造と相互作用は、本明細書で以下に詳細に記載されるように、形成結晶27の中の酸素の含有物を減らすために、さらなるプロセスパラメータの1つの調整によって調節される。るつぼ壁103(
図5A-5C及び8A-8C参照)は、抵抗率の制御を強化するために高純度石英で内張りされることができる。いくつかの実施形態において、るつぼ10は、るつぼ壁103を内張りする高純度石英を備える合成るつぼであることができる。
【0023】
図3を参照すると、ブロック図は、結晶成長器具に溶融物23を含むるつぼ10に与えられるカスプ磁場を描く。示されるように、るつぼ10は、結晶27が成長するシリコン溶融物23を含む。カスプ磁場形態は、軸及び水平の磁場形態の欠点を克服するように設計される。コイル31及び33の組(例えばヘルムホルツコイル)は、溶融物表面36の上及び下に同軸で設置される。コイル31及び33は、溶融物表面36の近くの純粋に半径の場の成分(すなわち、R12に沿って)と結晶27の対称軸38の近くの純粋に軸の場の成分(すなわち、Z16に沿って)を有する磁場を発生する対向電流モードで動作する。コイル31と33によって発生された上の磁場40と下の磁場42の組み合わせは、それぞれ、軸及び半径のカスプ磁場成分をもたらす。
【0024】
図4は、結晶成長システム100のブロック図である。結晶成長システム100、結晶成長システム100の要素、及び結晶成長システム100の様々な動作パラメータは、本明細書に全て参照して組み込まれる、国際特許出願PCT/US2014/039164(WO2014/190165として公開される)に追加の詳細が記載される。
図4を再び参照して、システム100は、半導体インゴットを生産するためのチョクラルスキ結晶成長法を用いる。この実施形態において、システム100は、150ミリメータより大きい、さらに特には約150mmから460mmの範囲で、よりさらに特には約300ミリメータ(300mm)の直径でインゴット直径を有する円筒半導体インゴットを生産するために構成される。他の実施形態において、システム100は、200ミリメータ(200mm)のインゴット直径または450ミリメータ(450mm)のインゴット直径を有する半導体インゴットを生産するように構成される。さらに、1つの実施形態において、システム100は、少なくとも500ミリメータ(500mm)、例えば少なくとも900mmなどの総インゴット長さの半導体インゴットを生産するように構成される。他の実施形態において、システム100は、約500ミリメータ(500mm)から3000ミリメータ(3000mm)の範囲、例えば900mmから1200mmの総インゴット長さの半導体インゴットを生産するように構成される。
【0025】
図4を再び参照して、結晶成長システム100は、るつぼ10が入っている真空チャンバ101を含む。側部ヒータ105、例えば抵抗ヒータは、るつぼ10を囲う。底部ヒータ106、例えば抵抗ヒータは、るつぼ10の下に配置される。加熱及び結晶引き上げの間、るつぼ駆動ユニット107(例えば、モータ)は、例えば、矢印108によって示されるような時計回り方向にるつぼ10を回転する。るつぼ駆動ユニット107は、また、成長プロセスの間、所望のように、るつぼ10を持ち上げ、及び/または下げることもできる。るつぼ10内に、シリコン溶融物25は、溶融物レベルまたは溶融物表面36を有する。動作において、システム100は、溶融物25から、プルシャフトまたはケーブル117に取り付けられた種結晶115で始められる、単結晶27を引き上げる。プルシャフトまたはケーブル117の1つの端部は、ドラム(図示せず)へのプーリ(図示せず)、または例えばシャフトなど、持ち上げ機構の、その他の適当なタイプを経由して、接続され、他の端部は、種結晶115及び種結晶115から成長された結晶27を保持するチャック(図示せず)と接続される。
【0026】
るつぼ10及び単結晶27は、対称共通軸38を有する。るつぼ駆動ユニット107は、溶融物25が所望の高さで溶融物レベル36を維持して消耗されるように、軸38に沿って、るつぼ10を持ち上げることができる。結晶駆動ユニット121は、同様にるつぼ駆動ユニット107が、るつぼ10を回転する方向と反対の方向110にプルシャフトまたはケーブル117を回転する(例えば反対回転)。等回転を使う実施形態において、結晶駆動ユニット121は、るつぼ駆動ユニット107がるつぼ10を回転する(例えば、時計方向に)同じ方向に、プルシャフトまたはケーブル117を回転することができる。等回転は、共回転ともいうことができる。さらに、結晶駆動ユニット121は、成長プロセスの間に、所望のように溶融物レベル36に対して、結晶27を持ち上げ、下げる。
【0027】
チョクラルスキ単結晶成長プロセスによると、多量の多結晶シリコン、またはポリシリコンがるつぼ10に満たされる。さらに、多結晶シリコン充填物は、溶融物から引き上げられた単結晶シリコンインゴットをドープするための、ゲルマニウム元素またはシリコンゲルマニウムであることができる、ゲルマニウムのソース、窒素ガスまたは窒化シリコンであることができる、窒素のソース、またはゲルマニウムのソース及び窒素のソースの両方を含む。ゲルマニウムの適当なソースは、ゲルマニウム元素及びシリコンゲルマニウムを含む。いくつかの実施形態において、元素、純粋ゲルマニウムは、フロートゾーンプロセスによって純化される。フロートゾーンで純化したゲルマニウムは、小さなチップ/大きな塊に砕かれ、その後、シリコン溶融物をドープするために、使われる。シリコンゲルマニウムは、おおむね約0.1から約0.9のモル率でゲルマニウム含有量を含む。したがって、いくつかの実施形態において、例えばゲルマニウム元素及び/またはシリコンゲルマニウムなどの、十分なゲルマニウムは、シリコン溶融物に加えられ、それによって単結晶シリコンインゴットを引き上げることができ、単結晶シリコンインゴットの本体は少なくとも約1×1019atoms/cm3、例えば少なくとも約3×1019atoms/cm3、または少なくとも約5×1019atoms/cm3の濃度のゲルマニウムを含む。単結晶シリコンインゴットの本体は、約1×1022atoms/cm3未満、例えば約1×1021atoms/cm3未満、または約1×1020atoms/cm3未満の濃度のゲルマニウムを含むことができる。十分なゲルマニウムは、単結晶シリコンインゴットの結果の本体が、少なくとも約1×1019atoms/cm3であり、約1×1022atoms/cm3未満、例えば、少なくとも約3×1019atoms/cm3、または約5×1019atoms/cm3から約1×1021atoms/cm3未満、または約5×1019atoms/cm3から約1×1020atoms/cm3未満の濃度のゲルマニウムを含む。
【0028】
いくつかの実施形態において、多結晶シリコン充填物は、例えば窒化シリコン及び/または窒素ガスなどの窒素のソースを含む。いくつかの実施形態において、十分な窒素は、単結晶シリコンインゴットの本体が、少なくとも約1×1014atoms/cm3で、約1×1016atoms/cm3未満の濃度の窒素を含むように加えられることができる。いくつかの実施形態において、単結晶シリコンインゴットの本体は約2×1014atoms/cm3から約2×1015atoms/cm3未満の濃度の窒素を含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約5×1014atoms/cm3で約1×1016atoms/cm3未満の濃度の窒素を含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約1×1015atoms/cm3で約1×1016atoms/cm3未満の濃度の窒素を含む。
【0029】
いくつかの実施形態において、多結晶シリコン充填物は、ゲルマニウムのソースと窒素のソースを含む。したがって例えばゲルマニウム元素及び/またはシリコンゲルマニウムなどの、十分なゲルマニウムは、シリコン溶融物に加えられ、それによって単結晶シリコンインゴットを引き上げることができ、単結晶シリコンインゴットの本体は少なくとも約1×1019atoms/cm3、例えば少なくとも約3×1019atoms/cm3、または少なくとも約5×1019atoms/cm3の濃度のゲルマニウムを含み、十分な窒素は、シリコン溶融物に加えられ、それによって、少なくとも約1×1014atoms/cm3、例えば、少なくとも約2×1014atoms/cm3または少なくとも約5×1014atoms/cm3の濃度の窒素を含む、単結晶シリコンインゴットを引き上げることができる。
【0030】
ヒータ電源サプライ123は、抵抗ヒータ105及び106にエネルギーを与え、断熱材125が真空チャンバ101の内壁を内張りする。ガスサプライ127(例えばボトル)は、真空ポンプ131が真空チャンバ101から気体を取り除くので、ガスフローコントローラ129を経由して、真空チャンバ101にアルゴンガスを供給する。リザーバ135から冷却水が供給される外側チャンバ133は、真空チャンバ101を囲う。
【0031】
冷却水は、その後、冷却水戻りマニホールド137に排出される。通常、フォトセル139(またはパイロメータ)などの温度センサは、溶融物の表面における溶融物25の温度を測定し、直径トランスデューサ141は、単結晶27の直径を測定する。この実施形態において、システム100は、上部ヒータを含まない。上部ヒータが存在または上部ヒータの欠如は、結晶27の冷却特性を変える。
【0032】
例えばソレノイドコイル31などの上部磁石、及び例えばソレノイドコイル33などの下部磁石は、この実施形態で、溶融物レベル36の上部と下部にそれぞれ設置される。コイル31と33は、断面図に示されるように、真空チャンバ(図示せず)を囲い、対称軸38で軸を分ける。1つの実施形態において、上部と下部コイル31と33は、これに限定されるものではないが、それぞれが、コントロールユニット143に接続され、コントロールユニット143によって制御された、上部コイル電源サプライ149及び下部コイル電源サプライ151を含む、分離した電源サプライを有する。
【0033】
この実施形態において、電流は、磁場(
図3に示されるように)を発生するために2つのソレノイドコイル31と33で、反対の方向に流れる。リザーバ153は、冷却水戻りマニホールド137を通って排出する前に、上部と下部コイル31と33に冷却水を提供する。鉄のシールド155は浮遊磁場を減らし、発生される場の強度を強化するためにコイル31と33を囲う。
【0034】
制御ユニット143は、これに限定されるものではないが、結晶回転率、るつぼ回転率、及び磁場強度の少なくとも1つを含む、複数のプロセスパラメータを調整するために使われる。様々な実施形態において、コントロールユニット143は、これに限定されるものではないが、フォトセル139及び直径トランスデューサ141を含むシステム100の様々なセンサから受ける信号、及び、これに限定されるものではないが、るつぼ駆動ユニット107、結晶駆動ユニット121、ヒータ電源サプライ123、真空ポンプ131、ガスフローコントローラ129(例えばアルゴンフローコントローラ)、上部コイル電源サプライ149、下部コイル電源サプライ151、及びそれらの任意の組み合わせを含む、システム100の1以上の装置を制御する信号、を処理するプロセッサ144を含んでもよい。
【0035】
実施例実施形態において、システム100は、装置製造に使用するのに適したシリコン結晶インゴットを生産する。単結晶シリコンインゴットは、おおむね円筒形で、引き上げ条件によって、円すい形のクラウン及びクラウンの反対の円すいの端部で被せられる。したがって、本発明の方法によって引き上げられた単結晶シリコンインゴットは、中心軸、クラウン、クラウンの反対の端部、及びクラウンと反対の端部との間の本体とを備え、本体は、側面と、中心軸から側面へ延びる半径Rを有する。有利に、システム100は、実質的な部分または全てが、凝集真性点欠陥を実質的に含まない、単結晶シリコンインゴット27を生産するために使われることができる。さらに、システム100は、直径約120ナノメータ(nm)、または特に、直径約90nmより大きい凝集欠陥を実質的に有しない単結晶シリコンインゴット27を生産するために使われてもよい。固液または溶融物-結晶界面の形状及び引き上げ速度は、凝集真性点欠陥の形成を限定及び/または抑制するために結晶成長の間、制御される。
【0036】
生産の間、酸素は、固液または溶融物-結晶界面を通して、単結晶シリコンインゴットの中に導入される。しかしながら、酸素は、インゴットから生産されたウェハに様々な欠陥を引き起こし、半導体装置の収率を減らす。したがって、低酸素濃度の単結晶シリコンインゴットを生産することが望ましい。本明細書で記載された方法を使って、単結晶シリコンインゴットは、約6ppma未満、または約5ppma未満、または約4ppma未満、約3ppma未満の酸素濃度を有して生産される。これらの濃度は、New ASTM:ASTM F 121,1980-1983;DIN 50438/1,1978による。
【0037】
いかなる特定の理論に限定されることなく、酸素は、相互作用する一連のイベントによって溶融物から出現する成長シリコン結晶インゴットの中に導入され、イベントのそれぞれは、本明細書で以下に記載されるように少なくとも1つのプロセスパラメータによって影響を与えられる。SiOは、るつぼ壁の溶解によって溶融物の中に導入される。るつぼ壁において導入されたSiOは、るつぼ壁の近くの溶融物の局所的な加熱よって作り出された浮力によって誘導された流れを通して溶融物の他の場所に移動されることができる。SiOは、さらに溶融物結晶界面における結晶の回転率及びるつぼ自身の回転率によって誘導された追加の流れによって移動されることができる。溶融物のSiOの濃度は、溶融物の曝された表面において、溶融物から蒸発によって減らすことができる。溶融物の中のSiOの溶解、対流、及び蒸発の任意の組み合わせの相互作用は、シリコン結晶インゴットの中に形成された結晶-溶融物界面の近くに位置づけられた溶融物のSiOの濃度に影響を与える。様々な態様において、任意の1以上のプロセスパラメータは、同時に、溶融物-結晶界面の近くに位置づけられたSiOの濃度を減らすために調整され、その結果として、方法によって形成されたシリコン結晶インゴットの中の酸素濃度を減らす。
【0038】
様々な実施形態において、様々なプロセスパラメータは、低酸素濃度のシリコン結晶インゴットを生産することを容易にするために同時に調整される。1つの実施形態において、様々なプロセスパラメータは、約800mmの中間インゴット長さまでのシリコン結晶インゴットの成長に対応する中間本体成長ステージと、約800mmの中間インゴット長さから総インゴット長さまでのシリコン結晶インゴットの成長に対応する後半本体成長ステージを含む、少なくとも2つのステージで調整される。この実施形態において、少なくとも2つの異なるステージにおけるさまざまなプロセスパラメータの調整は、溶融物の中のSiOの溶解、対流、蒸発の相互作用の働きの変化、るつぼの中の溶融物の深さ、及びシリコン結晶インゴットが長さに成長するときのるつぼの溶融物の中のフローセルから成る。
【0039】
特に、対流の役割は、以下に詳細に記載されるように、シリコン結晶インゴットの成長に関連された、るつぼの中の溶融物の深さの減少によって、全シリコン結晶インゴットの形成を通して、変更される。結果として、後半本体成長ステージにおいて、少なくとも1つのプロセスパラメータの調整は、中間本体成長ステージにおいて、これらの同じパラメータの調整に対して、異なって変更される。いくつかの実施形態において、後半本体成長ステージにおいて、少なくとも3つのプロセスパラメータの調整は、中間本体成長ステージにおけるこれらの同じパラメータの調整に対して、異なって変更される。本明細書で以下に記載されるように、プロセスパラメータの調整は、後半本体成長ステージにおいて溶融物の中のSiOの対流に関連したさまざまな要因を調節する。1つの実施形態において、後半本体成長ステージの間に変更される調整のプロセスパラメータは、これに限定されるものではないが、種回転率、るつぼ回転率、及び磁場強度を含む。
【0040】
再び
図4を参照すると、種回転率は、プルシャフトまたはケーブル117が、軸38の周りを種結晶115が回転する、率をいう。種回転率は、るつぼ10から結晶27へのSiOの流れと、溶融物25からSiO蒸発の率に影響を及ぼす。再び
図2を参照すると、るつぼ10から結晶27へのSiOの流れは、溶融物25の中の種回転率において、結晶27の回転によって駆動される結晶フローセル18と、るつぼ10の中の溶融物25の加熱によって駆動される浮力のフローセル17の間の相互作用によって、一般的に影響を与えられる。るつぼ10から結晶27へのSiOの流れの種回転率の影響は、結晶27の成長のステージによって、異なる。
【0041】
図5Aは、約800mmの中間インゴット長さまでの結晶27(
図1を参照すると)の成長に対応する、中間本体成長ステージにおける溶融物25(
図2を参照すると)の中のシミュレートされた流線と酸素濃度の断面図である。中間本体成長ステージにおいて、るつぼ10の中の溶融物25の深さ200は、結晶フローセル18と浮力フローセル17によって誘導される流体運動の間の相互作用を効果的に切り離すのに足りるほど深い。高い種回転率(すなわち、12rpm)は、SiO蒸発を増加するための、溶融物線36と溶融物25上のガスの間の境界層厚さを減らす。さらに、高い種回転率は、
図5Aに描かれているように、誘導された結晶フローセル18と共に浮力フローセル17を抑制することによって、るつぼ10から結晶27へ溶融物フローを減らす。さらに、高い種回転率は、るつぼ10からSiOの内部フロー(すなわち、輸送)を遅らせる外側半径フローを作り出し、結晶27の酸素濃度を減らす。
【0042】
図5Bは、約800mmの中間インゴット長さから総インゴット長さまでの結晶27の成長に対応する、後半本体成長ステージにおける溶融物25の中のシミュレートされた流線と酸素濃度の断面図である。結晶27の形成に関連したるつぼ10から溶融物25の除去により、後半本体成長ステージにおける深さ200は、
図5Aに描かれたように、中間本体成長ステージにおいて、深さ200に関してより浅い。
図5Aにおいて描かれた、シミュレーションを処理するために使われる物に対して同様の高い速度の回転率(すなわち、12rpm)において、結晶フローセル18は、るつぼ10の内側壁に接触し、後半本体成長ステージにおいて形成される結晶27の中のるつぼ10の内壁において形成されるSiOの対流を引き起こす。
【0043】
図5Cは、低い種回転率(例えば、8rpm)において計算された後半本体成長ステージにおいて、溶融物25の中にシミュレートした流線及び酸素濃度の断面図である。低い種回転率によって誘導された結晶フローセル18は、るつぼ10の内壁に伸びないが、代わりに、浮力セル17によって、排除される。結果として、結晶27へるつぼ10の内壁において生産されるSiOの流れは、邪魔され、それによって、減少された種回転率で、後半本体成長ステージにおいて形成される結晶27の中の酸素濃度を減少する。
【0044】
本明細書で記載されたように、中間から後半本体成長ステージへの遷移は、穏やかな遷移である。遷移は、例えば、るつぼの大きさ、形状、溶融物の深さ、モデリングパラメータなどのプロセスの様々なパラメータによって変わることができる。一般的に、中間本体成長ステージにおいて、パラメータは、結晶フローセル18及び浮力フローセル17によって誘導された流体運動の間の相互作用が限定されるかまたは相互作用がないようなものであり、結晶フローセル18及び浮力フローセル17は効果的に分断される。後半本体成長ステージにおいて、パラメータは、結晶フローセル18と浮力フローセル17によって誘導される流体運動の間の相互作用があるようなものであり、結晶フローセル18と浮力フローセル17は効果的に結合される。限定されない実施例を手段として、後半本体成長ステージは、約36インチの内側直径のるつぼ10に180kgから450kgの初期溶融物質量を含む実施形態で、溶融物25の最初の質量の37%未満が、るつぼ10に残っているときに起こる。様々な実施形態において、るつぼ10の中の溶融物25の深さ200は、中間から後半本体成長ステージの遷移を識別するためにモニタされる。他の実施形態において、後半本体成長ステージは、溶融物25の初期質量の約35%未満、約40%未満、約45%未満、または約50%未満が、るつぼ10に残っているときに起こる。いくつかの実施形態において、中間から後半本体成長ステージの遷移は、溶融物25の深さ、または他の適切なパラメータに基づいて決定される。
【0045】
さまざまな実施形態において、方法は、これに限定されるものではないが、中間本体成長ステージ及び後半本体成長ステージを含む、少なくとも2つのステージで種回転率を調整することを含む。1つの実施形態において、方法は、約8から14rpmの範囲、さらに特には12rpmの種回転率において、中間本体成長ステージの間の結晶27を回転すること含む。この実施形態において、方法はさらに、約6rpmから8rpmの範囲、さらに特には8rpmの種回転率へ、後半本体成長ステージにおける種回転率を減らすことを含む。
【0046】
別の実施形態において、種回転率は、中間インゴット長さによって減少されてもよい。限定されない実施例を手段として、種回転率は、
図9に描かれるように約850mmまでの中間インゴット長さで約12rpmに調整されてもよく、さらに約950mmの中間インゴット長さにおいて、約8rpmに直線的に減らすように調整されてもよく、その後、総インゴット長さまで、約8rpmに種回転率を調整する。
図9にも記載されているように、約800mmから総インゴット長さの範囲の本体長さの中の結晶の酸素含有量は、約12rpmの一定の種回転率で形成された結晶と比較して減少される。
図6は、3つの回転スケジュールによる種回転率で形成される結晶のシミュレートした酸素濃度を比較したグラフである。a)全結晶の形成で12rpmで回転、b)900mmの中間結晶長さまで12rpmで回転に続いて、残りの結晶長さの形成で8rpmで回転、及びc)900mmの中間結晶長さまで12rpmで回転に続いて、残りの結晶長さの形成で6rpmで回転。
図6に描かれているように、低い種回転率は、後半本体成長ステージにおいて形成された結晶の一部の中の酸素濃度を減らした。
【0047】
るつぼ回転率は、さらに、方法の実施形態によって形成された結晶27の中の酸素濃度に影響を与えることができる。るつぼ回転率は、るつぼ10がるつぼ駆動ユニット107を使って軸38の周りを回転する率をいう。るつぼ回転率は、るつぼ10から結晶27へのSiOの流れ及び溶融物25から蒸発するSiOの量に影響を与える。高いるつぼ回転率は、るつぼ10と溶融物25の間の境界層厚さと、溶融物線36と溶融物25より上のガスの間の境界層厚さの両方を減らす。しかしながら、結晶27の酸素濃度を最小化するために、るつぼ10と溶融物25の間の厚い境界層は、SiO輸送率を減らすことが切望される一方で、溶融物線36と溶融物25の上のガスの間の薄い境界層は、SiO蒸発率を増やすことが切望される。したがって、るつぼ回転率は、低いるつぼ回転率からもたらされるるつぼ10と溶融物25の間の高い境界層厚さと、高いるつぼ回転率からもたらされる溶融物線36と溶融物25上のガスの間の低い境界層厚さの競合する利益の均衡を保つように選択される。
【0048】
上記の本明細書で記載された中間本体成長ステージと後半本体成長ステージの間の溶融物10の深さ200の変化は、前に本明細書で記載された種回転率の影響と同様な方法で、酸素濃度のるつぼ回転率の調整に影響を与える。様々な実施形態において、方法は、これに限定されるものではないが、中間本体成長ステージと後半本体成長ステージを含む、少なくとも2つのステージで、るつぼ回転率を調整することを含む。1つの実施形態において、方法は、約1.3rpmから約2.2の範囲、さらに特には、1.7rpmのるつぼ回転率で、中間本体成長ステージにおいて、るつぼ10を回転することを含む。この実施形態において、方法はさらに、約0.5rpmから約1.0rpmの範囲、さらに特には、1rpmのるつぼ回転率へ、後半本体成長ステージにおいて、るつぼ回転率を減らすことを含む。
【0049】
図7A及び7Bは、後半本体成長ステージにおいて、るつぼ回転率の関数として、シリコンインゴットの中のシミュレートした酸素濃度を示すグラフである。
図7Aのシリコンインゴットは、種回転率が、後半本体成長ステージにおいて、12rpmから6rpmに減らされ、るつぼ回転率が、後半本体成長ステージにおいて、約1.7rpmから1rpmまたは1.5rpmに減らされた方法の実施形態を使って形成された。
図7Bのシリコンインゴットは、種回転率が、後半本体成長ステージにおいて、12rpmから8rpmに減らされ、るつぼ回転率が、後半本体成長ステージにおいて、約1.7rpmから0.5rpm、1rpm、または1.5rpmに減らされた方法の実施形態を使って形成された。両方のシミュレーションにおいて、低いるつぼ回転率は、もたらされたシリコンインゴットの中の低酸素濃度と関連づけられた。
【0050】
方法はさらに、これに限定されるものではないが、中間本体成長ステージと後半本体成長ステージを含む少なくとも2つのステージで、磁場強度を調整することを含む。磁場強度は、真空チャンバ中のカスプ磁場の強度をいう。さらに特には、磁場強度は、磁場強度を調整するために制御されるコイル31と33に流れる電流によって特徴付けられる。磁場強度は、るつぼ10から結晶27へのSiOの流れに影響を与える。すなわち、高い磁場強度は、溶融物25の中の浮力を抑制することによって、るつぼ10から結晶27へのSiOの流れを最小化する。磁場は浮力フローを抑制するので、石英るつぼの溶解率を減らし、それゆえ、結晶の中に組み込まれる格子間酸素を低減する。しかしながら、磁場強度があるレベルを超えて増加すると、浮力フローのさらなる妨害が、溶融物自由表面における蒸発率を減らす結果をもたらし、それゆえ、格子間酸素レベルが上がる。本明細書で前に記載されたように、中間本体形成ステージに対して、後半本体形成ステージにおける結晶の酸素含有量への浮力フローの相対的な貢献の違いにより、後半本体形成ステージにおける磁場強度の調整は、後半本体形成ステージにおいて形成された結晶の中の酸素を減らすための浮力フローの適切な調整を可能とする。
【0051】
様々な実施形態において、方法は、これに限定されるものではないが、中間本体成長ステージと後半本体成長ステージを含む、少なくとも2つのステージにおいて、磁場強度を調整することを含む。1つの実施形態において、方法は、磁場強度が、固液界面の結晶27の端部において、約0.02から0.05テスラ(T)であり、るつぼ10の壁において約0.05から0.12Tであるように、中間本体成長ステージにおいて、磁場強度を調整することを含む。別の態様において、方法は、磁場強度が、固液界面の結晶27の端部において、約0.03から0.075テスラ(T)、るつぼ10の壁において約0.075から0.18Tに対応する、中間本体成長ステージの間使われた磁場強度の約150%であるように、後半本体成長ステージにおいて磁場強度を調整することを含む。
【0052】
図8A、8B、及び8Cは、後半本体成長ステージにおいて、溶融物25の中のシミュレートした流線と総速度の断面図である。
図8Aは、中間本体成長ステージにおいて使われた磁場の50%(すなわち固液界面の結晶27の端部において、約0.01から0.025テスラ(T)、るつぼ10の壁において約0.025から0.06T)に対応する磁場強度を使ってシミュレートされた。
図8Bは、中間本体成長ステージにおいて使われた磁場の95%(すなわち固液界面の結晶27の端部において、約0.019から0.0475テスラ(T)、るつぼ10の壁において約0.0475から0.114T)に対応する磁場強度を使ってシミュレートされた。
図8Cは、中間本体成長ステージにおいて使われた磁場の150%(すなわち固液界面の結晶27の端部において、約0.03から0.075テスラ(T)、るつぼ10の壁において約0.075から0.18T)に対応する磁場強度を使ってシミュレートされた。
図8A、8B、及び8Cを比較すると、磁場の強度が増加するので、るつぼ10の底部から溶融物-結晶界面302への流れ300は、低い磁場強度(
図8A)における溶融物-結晶界面302への相対的に大きい対流から、高い磁場強度における相対的に小さい対流へ遷移する。増加された磁場によって溶融物25の中の浮力フローのこの抑制は、以下の表1に要約されるように、結果物のシリコンインゴットに低い酸素濃度をもたらす結果となる。150%磁場強度において、シミュレートされた酸素濃度は、5%パーツパーミリオン原子(ppma)より低い所望の範囲内であった。
【0053】
表1:シリコンインゴットの酸素濃度における後半本体成長ステージの磁場強度の効果
【表1】
【0054】
1以上の追加のプロセスパラメータは、低酸素濃度のシリコン結晶インゴットを生産することを容易にするために調整されてもよい。しかしながら、これらの追加のプロセスパラメータの効果は、結晶27の成長の間、るつぼ10の中の溶融物25の深さ200の変化に敏感ではない。結果として、本明細書で記載された追加のプロセスパラメータの調整は、以下に追加の詳細で記載されるように、結晶成長の異なるステージの間、本質的に同じ状態のままである。
【0055】
制御された1つの追加のプロセスパラメータは、少なくともいくつかの実施形態において、るつぼ10の壁の温度である。るつぼ10の壁の温度は、るつぼ10の溶解率に対応する。特に、るつぼ10の壁の温度を高くすると、るつぼ10の一部が溶融物25と反応して中に溶解することを速くし、溶融物の中にSiOを発生し、潜在的に溶融物-結晶界面を通して結晶27の酸素濃度を増加させる。したがって、るつぼ10の壁の温度を減少することは、本明細書で使われるように、るつぼ10の溶解率を減らすことと同等である。るつぼ10の壁の温度を減らすことによって(すなわち、るつぼ10の溶解率を減らす)、結晶27の酸素濃度を減らすことができる。壁の温度は、これに限定されるものではないが、ヒータ電源、溶融物対反射体間隙を含む1以上の追加のプロセスパラメータを制御することによって、調整することができる。
【0056】
ヒータ電源は、るつぼ10の壁の温度を調整するためのいくつかの実施形態で制御されることができる、別のプロセスパラメータである。ヒータ電源は、側部及び底部ヒータ105及び106の電源をいう。特に、典型的な加熱構成に対して、側部ヒータ105の電源を増加し、底部ヒータ106の電源を減らすことによって、るつぼ10の壁の加熱スポットは、溶融物線36の近くに上がる。溶融物線36においてまたは下のるつぼ10の壁の温度が低いとき、るつぼ10と反応する溶融物25によって発生されたSiOの量もまた低い。ヒータ電源構成は、また、るつぼ10から単結晶27へSiOの流れ(すなわち、輸送)を減らすことによって、溶融物フローに影響を与える。この実施形態において、底部ヒータ106の電源は、約0から5キロワット、さらに特には約0キロワットであり、側部ヒータ105の電源は、約100から125キロワットの範囲である。側部ヒータ105の電源のバリエーションは、例えば、引き上げるものから引き上げるものへの加熱ゾーンのバリエーションに起因してもよい。
【0057】
いくつかの実施形態において、溶融物対反射体間隙は、るつぼ10の壁の温度を調整するために制御される追加のプロセスパラメータである。溶融物対反射体間隙は、溶融物線36と加熱反射体(図示せず)の間の間隙をいう。溶融物対反射体間隙は、るつぼ10の壁の温度に影響を与える。特に、大きい溶融物対反射体間隙は、るつぼ10の壁の温度を減らす。この実施形態において、溶融物対反射体間隙は、約60mmから80mm、さらに特には70mmである。
【0058】
種の持ち上げは、るつぼ10から結晶27へSiOの流れを調整するために制御された追加のプロセスパラメータである。種の持ち上げは、プルシャフトまたはケーブル117が溶融物25の外へ種結晶115を持ち上げる率をいう。1つの実施形態において、種結晶115は、300mm生産物で、約0.4mm/minから約0.7mm/min、例えば、約0.42から0.55ミリメータパー分(mm/min)の範囲、さらに特には、0.46mm/minの率で持ち上げられる。この引く率は、小さい直径(例えば、200mm)結晶で典型的に使われる引く率よりも遅い。例えば、200mm生産物で種の持ち上げは、約0.55mm/minから約0.95mm/min、例えば、約0.55から0.85mm/minの範囲など、さらに特には、0.7mm/minであることができる。
【0059】
引く速度は、結晶の欠陥品質を制御するために調整されることができる追加のプロセスパラメータである。例えば、SP2レーザ光散乱を使って、本明細書で記載されたプロセスによって発生した検知された格子点欠陥は、60nm未満の欠陥で400個未満、60から90nmの間の欠陥で100個未満、90から120nmの間の欠陥で100個未満であることができる。
【0060】
いくつかの実施形態において、不活性ガス流は、溶融物25からSiO蒸発を調整するために制御される追加のプロセスパラメータである。不活性ガス流は、本明細書で記載されるように、アルゴンガスが、真空チャンバ101を通って流れる率をいう。アルゴンガス流量の増加は、結晶27から離れる溶融物線36の上のさらなるSiOガスを一掃し、SiOガスの分圧を最小化し、次にSiO蒸発を増加する。この実施形態において、アルゴンガス流量は、約100slpmから150slpmの範囲である。
【0061】
不活性ガス圧力は、いくつかの実施形態において溶融物27からSiO蒸発を調整するためにも制御される追加のプロセスパラメータである。不活性ガス圧は、本明細書で記載されるように、真空チャンバ101を通って流れるアルゴンガスの圧力をいう。アルゴンガス圧を減少させることにより、SiO蒸発を増加させ、このため、溶融物25のSiO濃度が減少する。この実施形態において、アルゴンガス圧は、約10torrから30torrの範囲である。
【0062】
適切な実施形態において、カスプ位置は、るつぼ10の壁の温度と、るつぼ10から結晶27へのSiOの流れを調整するために制御される追加のプロセスパラメータである。カスプ位置は、本明細書で記載されるように、コイル31と33によって発生される磁場のカスプの位置をいう。溶融物線36より下のカスプ位置を維持することは、酸素濃度を減らすことを促進する。この実施形態において、カスプ位置は、溶融物線36の下、約10mmから40mmの範囲、さらに特には、溶融物線36の下、約25mmから35mmの範囲、及びさらに特には、約30mmおいて、設定される。
【0063】
上記で記載されるように、プロセスパラメータを制御することによって(すなわち、ヒータ電源、るつぼ回転率、磁場強度、種の持ち上げ、溶融物対反射体間隙、不活性ガス流、不活性ガス圧、種回転率、及びカスプ位置)、複数のプロセスパラメータが(すなわち、るつぼの壁の温度、るつぼから単結晶へのSiOの流れ、及び溶融物からSiOの蒸発)、低酸素濃度を有するシリコンインゴットを生産するために調整される。1つの実施形態において、本明細書で記載された方法は、約150ミリメータ(mm)より大きいインゴット直径、少なくとも約900mmの総インゴット長さ、6ppma未満、例えば、約5ppma未満、約4ppma未満、またはさらに約3ppma未満の酸素濃度を備えるシリコンインゴットを生産することを容易にする。別の実施形態において、本明細書で記載された方法は、約150mmから460mmの範囲、特に約300mmのインゴット直径、6ppma未満、例えば、約5ppma未満、約4ppma未満、またはさらに約3ppma未満の酸素濃度を備えるシリコンインゴットを生産することを容易にする。さらに別の追加の実施形態において、本明細書で記載された方法は、約900mmから1200mmの範囲の総インゴット長さ、6ppma未満、例えば、約5ppma未満、約4ppma未満、またはさらに約3ppma未満の酸素濃度を備えるシリコンインゴットを生産することを容易にする。これらの濃度は、New ASTM:ASTM F 121,1980-1983;DIN 50438/1,1978による。
【0064】
単結晶シリコンウェハは、本発明の方法によって準備された単結晶シリコンインゴットまたはスラグから従来の技術により薄く切り出されることができる。一般に、単結晶シリコンウェハは、一方が、単結晶シリコンウェハの前面であり、他方が、前記単結晶シリコンウェハの裏面である、2つの主要で、平行な表面と、単結晶シリコンウェハの前面と裏面を接合する周縁エッジと、前面と裏面の間のバルク領域と、単結晶シリコンウェハの前面と裏面の間の単結晶シリコンウェハの中央平面と、を備える。ウェハは、その後従来のプロセスを経る。したがって、任意の鋭く、もろい端部は、ウェハに強度と安定性を提供するために、丸められまたはプロファイルされる。これは、続くプロセスにおいて、チッピングまたは破損を最終的に防ぐ。次にそれぞれのウェハは、とても小さな英数字またはバーコード文字でレーザマークされる。このレーザマークIDは、ウェハが製造された具体的な日、機械、及び設備に対して完全なトレーサビリティを与える。ウェハは、その後さらに均一に、同時に、前面と裏面の表面に存在する切断ダメージを取り除くこと確実にするために、回転板及び研磨剤スラリからの圧力を使う精密な「ラッピング」機械に積み込まれる。このステップは、また原料除去を提供し、平坦度の均一性を促進する。これからウェハは、「エッチング」サイクルを通るに違いない。化学エッチングは、ラッピングによって引き起こされた残りの表面ダメージを除去するのに必要であり、またいくらかの原料除去を提供する。エッチングサイクルの間、ウェハは、正確な流体力学で、別の一連の化学バスとリンスに進む。これらの薬液は、光沢仕上げされた平らな強いウェハを生産する。全てのウェハは、その後、機械特性とプロセスフィードバックのためにサンプリングされる。
【0065】
本明細書で記載されたシステム及び方法を使った、低酸素濃度(すなわち、約6ppma未満、約5ppma未満、約4ppma未満、またはさらに約3ppma未満)を有するウェハは、さまざまな用途において利点があることができる。例えば、絶縁ゲートバイポーラトランジスタ(insulated-gate bipolar transistors(IGBTs)、高品質の無線周波数(high quality radio-frequency(RF))、高抵抗率シリコンオンインシュレータ(high resistivity silicon on insulator(HR-SOI)、及び電荷捕獲層SOI(charge trap layer SOI(CTL-SOI))、GaN EPIのための基板の用途は、それらが高抵抗率を達成し、p-n接合を有さないため、低酸素濃度から利益を得ることができる。いくつかの実施形態において、単結晶シリコンウェハの抵抗率は、少なくとも約3000Ωcm、例えば少なくとも約4000Ωcm、少なくとも約5000Ωcm、少なくとも約10000Ωcm、例えば、少なくとも約15000Ωcm、またはさらに少なくとも約20000Ωcmである。本明細書で記載された方法を使って、IGBT用途で生産されたウェハは、例えば、30から300オームセンチメータ(Ωcm)のN型抵抗率または750Ωcmより大きいN/P型抵抗率を有することができる。さらに、本明細書で記載された方法を使って、無線周波数(RF)、高抵抗率シリコンオンインシュレータ(HR-SOI)、及び/または電荷捕獲層SOI(CTL-SOI)及び/またはGaN EPI用途で生産されたウェハは、例えば、750Ωcmより大きいP型ウェハ、または少なくとも約3000Ωcm、例えば少なくとも約4000Ωcm、少なくとも約5000Ωcm、少なくとも約10000Ωcm、例えば、少なくとも約15000Ωcm、またはさらに少なくとも約20000Ωcmを有することができる。記載されたシステム及び方法で生産されたウェハは、ハンドルウェハとして使われることもできる。本明細書で記載された方法を使って生産されたP型ウェハのために、ボロン、アルミニウム、ガリウム、及び/またはインジウムは、多数キャリアとして適宜使われることができ、赤リン、リン、ヒ素、及び/またはアンチモンは、小数キャリアとして使われることができる。本明細書で記載された方法を使って生産されたN型ウェハのために、赤リン、リン、ヒ素、及び/またはアンチモンは、多数キャリアとして使われることができ、ボロン、アルミニウム、ガリウム、及び/またはインジウムは、小数キャリアとして使われることができる。
【0066】
機械的強度とスリップ性能を改善するために、記載された方法を使って生産されたウェハは、ゲルマニウム及び/または窒素(例えば、インゴットを形成する単結晶をドーピングすることによって)共ドープすることができる。ゲルマニウムは、溶解プロセスの間、溶融物に、例えばゲルマニウム元素及び/またはシリコンゲルマニウムなど、ゲルマニウムのソースを加えることによって、単結晶シリコンインゴットに組み込まれることができる。ゲルマニウムは、それによって分離原理に基づいて単結晶シリコンインゴットに組み込まれる。したがって、いくつかの実施形態において、本発明の方法によって、引き上げられたインゴットから薄く切り出された単結晶シリコンウェハは、少なくとも約1×1019atoms/cm3、例えば、少なくとも約3×1019atoms/cm3、または少なくとも約5×1019atoms/cm3などの濃度のゲルマニウムを含む。本発明の方法によって、引き上げられたインゴットから薄く切り出された単結晶シリコンウェハは、約1×1022atoms/cm3未満、例えば約1×1021atoms/cm3未満、約1×1020atoms/cm3未満などの濃度のゲルマニウムを含む。いくつかの実施形態において、単結晶シリコンウェハは、少なくとも約1×1019atoms/cm3で、約1×1022atoms/cm3未満の濃度のゲルマニウムを含む。いくつかの実施形態において、単結晶シリコンウェハは、少なくとも約5×1019atoms/cm3で、約1×1022atoms/cm3未満の濃度のゲルマニウムを含む。単結晶シリコンインゴットの本体部分から薄く切り出された単結晶シリコンウェハは、これらの濃度範囲内のゲルマニウムを含む。
【0067】
いくつかの実施形態において、窒素は、溶解プロセスの間、溶融物に、例えばシリコン窒素または窒素ガスなど窒素のソースを加えることによって、単結晶シリコンインゴットの中に組み込まれることができる。機械的強度を改善することに加えて、窒素ドーパントは、サーマルドナーを形成することによって、ウェハの電気特性を部分的に変えるために、Oiと相互作用することができる。この電気特性は、そのような種の発生と消去温度は、それぞれ個々の種で異なるので、温度の関数であることができる。O-O、N-O、Ge-Oによって発生されたサーマルドナーは、異なる熱安定性を有する。例えば、N-Oサーマルドナーは、600℃あたりで発生し、<900℃まで安定であることができる。それゆえ、N-Oサーマルドナーを分離するために、>900℃サーマルドナー消去(thermal donor kill(TDK))ステップは、ウェハの抵抗率を制御するために必要とされることができる。代わりに、そのようなTDKプロセスステップの欠如において、結晶のドーピングは、目標抵抗率を達成するために、TDによって、抵抗率シフトを補償するために調整されることができる。いくつかの実施形態において、単結晶シリコンインゴットは、ゲルマニウムと窒素が共ドープされる。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約1×1019atoms/cm3、少なくとも約3×1019atoms/cm3、または例えば少なくとも約5×1019atoms/cm3などの濃度のゲルマニウムと、少なくとも約1×1014atoms/cm3の濃度の窒素を含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約1×1019atoms/cm3で、約1×1022atoms/cm3未満の濃度のゲルマニウムと、少なくとも約1×1014atoms/cm3で、約1×1016atoms/cm3未満の濃度の窒素を含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約5×1014atoms/cm3で約1×1016atoms/cm3未満の濃度の窒素を含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約2×1014atoms/cm3で、約1×1015atoms/cm3未満の濃度の窒素を含む。いくつかの実施形態において、単結晶シリコンインゴットの本体は、少なくとも約3×1019atoms/cm3で、約1×1022atoms/cm3未満の濃度のゲルマニウムと、少なくとも約1×1015atoms/cm3で約1×1016atoms/cm3未満の濃度の窒素を含む。単結晶シリコンインゴットの本体部分から薄く切り出された単結晶シリコンウェハは、この濃度の範囲内のゲルマニウムと窒素を含む。
【0068】
多結晶シリコンから形成された溶融物から比較的低酸素濃度の単結晶シリコンインゴットを生産する実施例のシステム及び方法は、本明細書で記載される。これらの方法は、比較的低酸素シリコンを生産するためのインゴットの生産の第1及び第2のステージの間の溶融物のフローセルの構造の変化を利用する。第1のステージの間、シリコンインゴットは比較的小さく、溶融物の深さは比較的深い。第2のステージは、シリコンインゴットの形成によって、るつぼの中の使い果たされた溶融物の深さに特徴付けられる。この第2のステージにおいて、溶融物の中のシリコンインゴットの回転によって誘導されるフローセルは、るつぼの底部と接触し、成長する結晶インゴットの中にるつぼの底部で形成された酸化シリコンの望まれない含有を引き起こすことができる。本明細書で記載された方法とシステムは、望まれない酸化シリコンの含有を制限するために、インゴットの生産を制御する。一般的に、少なくとも1つのプロセスパラメータは、第1のステージの間のその値に対して第2のステージの間に変化される。第1のステージから第2のステージのプロセスパラメータの変化の限定されない実施例は、減少した結晶回転率、減少したるつぼ回転率、増加した磁場強度、及びそれらの任意の組み合わせを含む。例えば、いくつかの実施形態において、シリコンインゴットは、るつぼの底部のフローセルが誘導する、回転の接触を減らすために、第2のステージの間、さらにゆっくり回転され、それによって、シリコンインゴットに含有された酸素の量を減らす。
【0069】
本明細書で記載されたシステムと方法により、以前の方法を使って達成されたシリコンインゴットの長さを超えて、維持された低酸素濃度の単結晶シリコンインゴットの形成ができる。るつぼの中のフローセルの構造のプロセスパラメータのこれらの変化の効果と、さまざまな実施形態の方法を使って形成されたシリコンインゴットの酸素含有量の詳細な記載は、本明細書でさらに詳細に記載される。
【0070】
本明細書で記載された方法の実施形態は、以前の方法及びシステムと比較して、優れた結果を達成する。例えば、本明細書で記載された方法は、少なくともいくつか知られた方法より低酸素濃度のシリコンインゴットを生産することが容易である。さらに、少なくともいくつか知られた方法とは異なり、本明細書で記載された方法は、150mmより大きい直径、例えば300mmなどを有するインゴットの生産に使うことができる。
【0071】
さらに、低酸素含有量で高抵抗率なウェハへのゲルマニウム不純物及び/または窒素不純物の組み込みは、高温動作の間、低下した機械的強度に苦しみ、ウェハスリップに影響を受ける通常のウェハの機械的強度を改善する。ゲルマニウムがドープされた低酸素ウェハの破壊強度は、成長及びポストアニールとして両方を改善することができる。ゲルマニウムをドーピングする別の利点は、サーマルドナー形成を低下させ、それによって、フリーキャリア濃度を減らし、高抵抗率なウェハができることである。またさらに、単結晶シリコンインゴット及びウェハのゲルマニウムドーピングは、効率的にボイド欠陥を抑制する。ゲルマニウムドーパント原子は、空孔と結合し、それによってボイドを形成するために必要な空孔集合を抑制する。空孔結合の追加の効果は、シリコン結晶格子のゲルマニウム原子のミスマッチに基づくひずみ緩和である。自由空孔の減少は、成長するボイドの抑制を導き、形成温度とそれゆえボイドの大きさを減らし、劣化したボイドの熱安定性を導く。さらに、単結晶シリコンインゴット及びウェハのゲルマニウムドーピングは、表面近傍領域のデヌーデッドゾーン(DZ、すなわち酸素の沈殿が低い又はない領域)の形成を改善し、バルク領域のゲルマニウムで強化した酸素沈殿と表面近傍領域の酸素の外拡散の結果として、ワンステップ高温アニーリングの下で達成されることができる。
【0072】
さらに、シリコン結晶にNとGeドーピングの両方は、効果的にボイド欠陥を抑制し、著しく自由空孔の濃度を減らす(J. Cry. Growth 243(2002)371-374)。それゆえ、結晶成長の間、従来のプロセスと比較して、同じ欠陥濃度で早く引き上げることができ、それゆえプロセスのスループットを改善する。これは、特に電荷捕獲層SOI(CTL-SOI)用途に有益であり、ポリシリコンベースの電荷捕獲層は、高抵抗低酸素ハンドル及びP型ドナーウェハの間に追加される。ポリシリコン層の存在のために、高密度結晶欠陥(COP)は、装置製造の間、プロセスフローが途絶することなく、ハンドルウェハに許可されることができる(特にLLS検査の間)。
【0073】
本発明の方法によって準備されたインゴットから薄く切り出されたウェハは、絶縁物構造上のシリコンの製造で、ハンドルウェハ及び/またはドナーウェハとして使用するために適当である。半導体ウェハ(例えば、シリコンウェハ)は、コンポジット層構造の準備に利用される。コンポジット層構造(例えば、セミコンダクタオンインシュレータ、及びさらに特には、シリコンオンインシュレータ(SOI)構造)は、一般的に、ハンドルウェハまたは層、装置層、及びハンドル層と装置層の間の絶縁(すなわち、誘電体)フィルム(通常、酸化物層)を備える。一般に、装置層は、0.01から20マイクロメータの厚さであり、例えば、0.05から20マイクロメータの厚さなどである。厚いフィルム装置層は、約1.5マイクロメータから約20マイクロメータの厚さの装置層を有することができる。薄いフィルム装置層は、約0.01マイクロメータから約0.20マイクロメータの厚さを有することができる。一般に、例えば、シリコンオンインシュレータ(SOI)、シリコンオンサファイア(SOS)、及びシリコンオンクォーツなどのコンポジット層構造は、密接な接触で2つのウェハを設置し、それによって、ファンデルワールス力によって密結合に続いて、結合を強化するための熱処理をする。アニールは、2つの界面の間で末端シラノール基からシロキサン結合に変換され、それによって結合を強化することができる。
【0074】
熱アニール後、結合された構造は、さらに、層の転置を達成するために、ドナーウェハの実質的な部分を取り除くプロセスを経る。例えば、エッチング、研削などのウェハ薄化技術を使うことができ、しばしばバックエッチSOI(すなわちBESOI)と言われ、シリコンウェハは、ハンドルウェハに結合され、その後ハンドルウェハにシリコンの薄い層のみが残るまで、ゆっくりエッチングされる。例えば米国特許第5,189,500を参照して、その開示は、あたかもその全てが記載されるように、参照することによって本明細書に組み込まれる。この方法は、時間を消費し、コストが高く、基板の1つを捨て、一般に数マイクロよりも薄い層のために、適切な厚さの均一性を有しない。
【0075】
層転置を達成するための別の一般的な方法は、水素埋め込みの利用に続いて熱誘導層分離する。粒子(例えば水素原子または水素及びヘリウム原子の組み合わせなど、原子またはイオン化された原子)は、ドナーウェハの前面の下に特定の深さで埋め込まれる。埋め込まれた粒子は、埋め込まれた特定の深さにおいてドナーウェハの劈開面を形成する。ドナーウェハの表面は、埋め込みプロセスの間にウェハに堆積された、有機組成物またはボロン組成物など、その他の汚染物を取りのくために洗浄される。
【0076】
ドナーウェハの前面は、その後、親水結合プロセスによって、結合されたウェハを形成するためにハンドルウェハに結合される。結合前に、ドナーウェハ及び/またはハンドルウェハを、例えば、酸素または窒素などを含むプラズマにウェハ表面を曝すことによって活性化する。プラズマへの曝露は、活性化プロセスがドナー水(water)及びハンドルウェハの1つまたは両方の表面を親水性にする、しばしば表面活性と言われるプロセスの表面構造を改質する。ウェハの表面は、追加的に、例えばSC1洗浄またはフッ化水素酸などのウェット処理によって、化学的に活性化されることができる。ウェット処理及びプラズマ活性は、順番にしたがって行われる、またはウェハは1つの処理のみなされてもよい。ウェハは、その後、プレスされ、結合は、それらの間に形成される。この結合は、ファンデルワールス力によって比較的弱く、さらにプロセスが起きるまえに強化されることが必要である。
【0077】
いくつかのプロセスにおいて、ドナーウェハとハンドルウェハ(すなわち結合されたウェハ)との親水性結合は、結合されたウェハの組を加熱またはアニールすることによって強化される。いくつかのプロセスにおいて、ウェハ結合は、例えば約300℃から500℃の低温で起こることができる。いくつかのプロセスにおいて、ウェハ結合は、例えば約800℃から1100℃の高温で起こることができる。昇温した温度は、ドナーウェハ及びハンドルウェハの隣接表面の間の共有結合の形成を引き起こし、それゆえ、ドナーウェハとハンドルウェハの間の結合を固める。一般に、結合されたウェハの加熱とアニーリングによって、ドナーウェハに前に埋め込まれた粒子は、劈開面を弱くする。
【0078】
ドナーウェハの一部は、その後SOIウェハを形成するために、結合されたウェハから劈開面に沿って、分離(すなわち劈開)される。劈開は、機械力が、結合されたウェハから離れるドナーウェハの一部を引っ張るために、結合されたウェハの反対側に垂直に与えられる、治具に結合されたウェハを設置することによって、実行されることができる。いくつかの方法によって、吸着カップは、機械力を与えるために利用される。ドナーウェハの一部の分離は、劈開面に沿った亀裂の伝播を開始するために、劈開面における結合されたウェハの端部において、機械的なくさびを適用することによって開始される。吸着カップによって与えられた機械力は、その後、結合されたウェハからドナーウェハの一部を引っ張り、それゆえSOIウェハを形成する。ドナーは、SOIドナーウェハとして複数回の使用のために再利用されることができる。
【0079】
他の方法によると、結合された組は、代わりに結合されたウェハからドナーウェハの一部を分離するための期間を通して昇温にさらされてもよい。昇温への曝露は、劈開面に沿った亀裂の開始と伝播を引き起こし、それゆえドナーウェハの一部を分離する。亀裂は、オストワルド成長によって成長する、埋め込まれたイオンからのボイドの形成によって形成する。ボイドは、水素及びヘリウムで満たされる。ボイドは、プレートレットになる。プレートレットの圧力ガスは、埋め込み平面のシリコンを弱らせる、マイクロキャビティ、マイクロクラックを伝播する。アニールが適当な時間において止められるならば、弱まった結合されたウェハは、機械プロセスによって劈開されることができる。しかしながら、熱処理は、長い期間及び/または高い温度で続けられるならば、マイクロクラックの伝播は、全ての亀裂が劈開面に沿って合体するレベルに到達し、それゆえ、ドナーウェハの一部を分離する。この方法は、ドナーウェハの再利用を可能とするが、通常、500℃に達する温度へ埋め込まれた及び結合された組を加熱することが必要である。
【0080】
例えばアンテナスイッチなどの装置に関連する、RFの高抵抗率セミコンダクタオンインシュレータ(例えばシリコンオンインシュレータ)ウェハの使用は、コストと集積度に関して、従来の基板を超えた利益を提供する。高周波用途に導電性基板を使用したときの固有の寄生電力損失を減らし、高調波歪みを最小化するために、十分ではないが、高抵抗率な基板ウェハを使用することが必要である。したがって、RF装置のハンドルウェハの抵抗率は、一般に、約500Ωcmより大きい。ハンドルウェハとして、本発明の方法によって準備されたウェハは、特に、RF装置の使用のための高抵抗率SOI構造に適する。HR-SOI構造は、低酸素濃度で、高抵抗率を有し、改善された機械的強度のためにゲルマニウムがドープされた高抵抗率ハンドルウェハを備えることができる。したがって、本発明のいくつかの実施形態は、ゲルマニウムがドープされたハンドルウェハ、誘電体層(一般に、埋め込み酸化シリコン層またはBOX)及び装置層を備える、HR-SOI構造に案内される。
【0081】
そのような基板は、装置が、RF周波数で動作されたときに、基板の実行抵抗率を減らし、寄生電力損失と装置の非線形性を生じさせるフリーキャリア(電子またはホール)の発生を引き起こすBOX/ハンドル界面において、高伝導性電荷反転または蓄積層を形成する傾向がある。これらの反転/蓄積層は、電荷を固定されたBOX、電荷が捕獲された酸化物、電荷が捕獲された界面及びさらに装置自身に与えられたDCバイアスであることができる。
【0082】
方法は、それゆえ、基板の高抵抗率が、非常に表面領域の近傍でさえ維持されるように、任意の誘導反転または蓄積層で電荷をトラップすることが必要とされる。高抵抗率ハンドル基板と埋め込み酸化物層(buried oxide(BOX))の間の電荷捕獲層(CTL)は、SOIウェハを使って製造されたRF装置の性能を改善することができる。多数の方法は、これらの高界面捕獲層を形成するために提案されてきた。例えば、RF装置用途のためのCTLを備えるセミコンダクタオンインシュレータ(例えば、シリコンオンインシュレータ、またはSOI)を作り出す方法の1つは、高抵抗率を有するシリコン基板にドープされていない多結晶シリコンフィルムの堆積と、その後のその上の酸化物とトップシリコン層の積層を形成することに基づく。多結晶シリコン層は、シリコン基板と埋め込み酸化物層の間の高欠陥層として機能する。代わりの方法は、表面近傍の損傷層を作り出すための重イオンの埋め込みである。例えば、高周波装置などの装置は、トップシリコン層に作られる。
【0083】
酸化物と基板の間の多結晶シリコン層が装置分離を改善し、伝送線路損失を減らし、高調波歪みを減少することが学術研究に示された。例えば、H.S.Gamble, et al. ’Low-loss CPW lines on surface stabilized high resistivity silicon,’ Microwave Guided Wave Lett.,9(10),pp.395-397,1999;D.Lederer, R. Lobet and J. -P. Raskin,“Enhanced high resistivity SOI wafers for RF applications,” IEEE Intl. SOI Conf., pp. 46-47, 2004; D. Lederer and J.-P. Raskin, “New substrate passivation method dedicated to high resistivity SOI wafer fabrication with increased substrate resistivity,” IEEE Electron Device Letters, vol. 26, no. 11, pp.805-807, 2005; D. Lederer, B. Aspar, C. Laghae and J.-P. Raskin, “Performance of RF passive structures and SOI MOSFETs transferred on a passivated HR SOI substrate,” IEEE International SOI Conference, pp. 29-30, 2006; and Daniel C. Kerret al. “Identification of RF harmonic distortion on Si substrates and its reduction using a trap-rich layer”, Silicon Monolithic Integrated Circuits in RF Systems, 2008. SiRF 2008 (IEEE Topical Meeting), pp. 151-154, 2008参照のこと。
【0084】
いくつかの実施形態において、高抵抗率、低酸素で、ガリウムがドープされたウェハは、エピタキシャル堆積のための基板に適当である。エピタキシャル堆積は、化学蒸着によって実行されることが好ましい。一般に言えば、化学蒸着は、例えば、Applied Materials社から入手可能なセンチュラリアクタなど、エピタキシャル堆積反応器のシリコンを含む大気にウェハの表面を曝露することを含む。ウェハの表面は、シリコンを含む揮発性ガス(例えば、SiCl4、SiHCl3、SiH2Cl2、SiH3Cl、またはSiH4)を含む大気に曝されることが好ましい。大気は、またキャリアガス(好ましくはH2)を含むことが好ましい。例えば、エピタキシャル堆積の間のシリコンのソースは、SiH2Cl2またはSiH4であることができる。SiH2Cl2が使われるならば、堆積の間の反応器真空圧力は、約500から約760Torrが好ましい。他方、SiH4が使われるならば、反応器圧力は、約100Torrが好ましい。さらに、堆積の間のシリコンのソースは、SiHCl3であることが好ましい。これは、他のソースよりとても安くなる傾向がある。さらに、SiHCl3を使ったエピタキシャル堆積は、大気圧で実施されることができる。これは、真空ポンプが必要とされない及び反応器チャンバが崩壊を防止するほど頑強である必要がないため有利である。さらに、いくつかの安全上の問題があり、反応器チャンバに空気または他のガスがリークする機会が少なくなる。
【0085】
エピタキシャル堆積の間、ウェハ表面の温度は、シリコンを含む大気が表面上に多結晶シリコンの堆積することを防ぐために、十分な温度に傾斜をつけられ、維持されることが好ましい。一般に、この期間の間の表面の温度は、少なくとも約900℃であることが好ましい。さらに、表面の温度は、約1050から約1150℃の範囲で維持されることが好ましい。特に、表面の温度は、酸化シリコンが取り除かれる温度で維持されることが好ましい。
【0086】
エピタキシャル堆積の成長率は、約0.5から約7.0μm/minが好ましい。約3.5から約4.0μm/minの率は、例えば、基本的に約1150℃の温度で、約1atmの絶対圧力で、約2.5モル%SiHCl3及び約97.5モル%H2のからなる雰囲気を使って達成されることができる。
【0087】
いくつかの用途において、ウェハは、電気特性を与えるエピタキシャル層を備える。いくつかの実施形態において、エピタキシャル層は、リンが軽くドープされる。それゆえ、エピタキシャル堆積の雰囲気は、例えばフォスフィン、PH3などの揮発性化合物として存在するリンを含む。いくつかの実施形態において、エピタキシャル層はボロンを含む。そのような層は、例えば堆積の間、雰囲気にB2H6を含むことによって準備されることができる。
【0088】
堆積されたエピタキシャル層は、実質的に下層のウェハと同じ電気特性を備えることができる。もう一つの方法として、エピタキシャル層は、下層のウェハと異なる電気特性を備えることができる。エピタキシャル層は、シリコン、炭化ケイ素、シリコンゲルマニウム、ヒ化ガリウム、窒化ガリウム、リン化インジウム、ヒ化インジウムガリウム、ゲルマニウム、及びそれらの組み合わせからなるグループから選ばれた材料を含むことができる。最終の集積回路装置の所望の特性により、エピタキシャル層は、ボロン、ヒ素、及びリンからなるグループから選ばれたドーパントを含む。エピタキシャル層の抵抗率は、1から50Ωcm、典型的には、5から25Ωcmの範囲であることができる。いくつかの実施形態において、エピタキシャル層は、約20ナノメートルから約3マイクロメートル、例えば約20ナノメートルから約2マイクロメートル、例えば約20ナノメートルから約1.5マイクロメートルまたは約1.5マイクロメートルから約3マイクロメートルの厚さを有することができる。
【0089】
いくつかの実施形態において、高抵抗率、低酸素で、ゲルマニウムがドープされたウェハは、例えば分子線エピタキシーなど、窒化ガリウムのエピタキシャル堆積のための基板に適当である。GaN分子線エピタキシー(MBE)成長は、エヒュージョンセルからのGa蒸気ビーム及びプラズマソースからの活性窒素ビームが加熱された基板に向けられる非平衡プロセスである。適切な条件下で、GaとN原子平面の層ごとの堆積は、可能である。MBE手法は、超高真空チャンバで実行され、フィルム汚染を最小化する。
【0090】
次の限定しない実施例は、さらに本発明を記載することによって提供される。
【実施例1】
【0091】
結晶成長
ゲルマニウムがドープされた単結晶シリコン短インゴット(結晶ID#1)及びゲルマニウムがドープされた単結晶シリコン全長インゴット(結晶ID#2)は、200mmFF炉(サンエジソン、韓国)で生産された。多結晶シリコン及びゲルマニウムは、高純度石英内張合成るつぼ(東芝)へ充填された。ゲルマニウムがドープされた単結晶シリコン全長インゴット(結晶ID#2)を準備するための充填物は、5N等級のゲルマニウム1.3kgと高抵抗率多結晶シリコン(>1000Ωcm)180kgからなった。さらに、リン0.024グラムが約1.1×106ppbaのリンドーパント濃度を提供するために溶融物に添加された。充填物は、溶融され、結晶は、本明細書で開示された技術によって引き上げられた。単結晶シリコンインゴットは、結晶成長プロセスを始める前に、溶融物のドーパント濃度を調整することによって、>16,000Ωcmを目標にされた。これは、直径<200mm、重さ<15kgの短い結晶を成長することによって計算された溶融物の抵抗率に基づいた。単結晶シリコンインゴットは、Oiを<5.0ppma含む。
【実施例2】
【0092】
アニールされたインゴットの抵抗率
実施例1によって準備されたゲルマニウムがドープされた単結晶シリコン全長インゴット(結晶ID#2)は、熱アニール手順を受ける。引き上げられたインゴットをアニールする前に、引き上げられたインゴットは、種とコーンを取り除くことによって丈を短くされた。分析のために、インゴットは、異なる位置で薄く切り出され、それによって、約1350マイクロメータの厚さを有する複数のスラグを準備した。それぞれの短くされたスラグは、エッジグラウンドで、約1180マイクロメータの最終厚さへ混酸エッチを受け、1150マイクロメータの最終厚さへラップされたウェハ洗浄と前RTA洗浄が続いた。スラグは、360℃/分の温度傾斜で、750℃の急速熱アニールのサーマルドナー消去を受けた。ラッピングとアニールの後、アニールされたスラグは、4点プローブ測定前に4時間冷却され、保持された。アニールされたスラグは、表2に提供されるように抵抗率と追加の特性のための4点プローブ測定技術を受けた。
【0093】
【実施例3】
【0094】
ウェハ機械的強度
実施例1によって準備されたインゴットから薄く切り出された単結晶シリコンウェハの機械的強度は、温度傾斜によってEPI反応器スリップ発生テストを使って低Oiをも有するゲルマニウムがドープされていないシリコンウェハ(ID#0)と比較された。このテストによって、発生したスリップの数は少なく、機械的強度は大きかった。それによって、収率の損失が低いことが期待される。さらに、このテストでスリップしない温度ウィンドウが大きく、SOIウェハと装置製造の間のプロセスウィンドウが大きかった。
図10A及び10Bのグラフによって指し示されたように、ゲルマニウムドーピングと窒素ドーピングは、スリップ数の重要な改善を提供する。ゲルマニウムがドープされていないシリコンウェハは、1100℃、250秒のプロセス条件で、~3℃の温度オフセットウィンドウを実証した。比較して、ゲルマニウムがドープされたウェハは、似た条件下で、~6℃の温度オフセットウェインドウを実証した。この改善は、多くの厳しい条件下で、高抵抗率、低Oiウェハのスリップのないプロセスを改善するために十分に重要である。
【実施例4】
【0095】
ウェハ機械的強度
実施例1によって準備されたインゴットから薄く切り出された単結晶シリコンウェハの機械的強度は、温度傾斜によってEPI反応器スリップ発生テストを使って低Oiを有するゲルマニウムがドープされていないシリコンウェハ(ID#0)と比較した。このテストによると、発生したスリップの数は少なく、機械的強度は大きかった。それによって、収率の損失が低いことが期待される。さらに、このテストでスリップしない温度ウィンドウが大きく、SOIウェハと装置製造の間のプロセスウィンドウが大きかった。
図11のグラフによって指し示されたように、ゲルマニウムドーピングは、スリップ数の重要な改善を提供する。ゲルマニウムがドープされていないシリコンウェハは、1100℃、250秒のプロセス条件で、~3℃の温度オフセットウィンドウを実証した。比較して、ゲルマニウムがドープされたウェハは、似た条件下で、~6℃の温度オフセットウェインドウを実証した。この改善は、多くの厳しい条件下で、高抵抗率、低Oiウェハのスリップのないプロセスを改善するために十分に重要である。
【実施例5】
【0096】
機械的強度
窒素ドープされた単結晶シリコンインゴットは、韓国のサンエジソンセミコンダクタファシリティにおいて200mmFF炉で生産された。種の終端の窒素濃度は、溶解プロセスの間、窒化シリコンを同じ量加えることによって、ウェハに~1.4×1014窒素atoms/cm3を目標とした(結晶ID#3)。同様に別の結晶は、種終端において、~5×1014窒素atoms/cm3濃度を目標とすることによって成長させた(結晶ID#4)。結晶の抵抗率は、結晶成長プロセスを始める前に溶融物のドーパント濃度を調整することによって、種の終端において>3000Ωcmを目標とした(直径<200mmで重さ15kgの短結晶を成長することによって、計算された溶融物の抵抗率に基づく)。プロセスは、所望の<6.0ppmaのOiを得るように最適化される。
【0097】
ゲルマニウムがドープされた単結晶シリコンインゴット(結晶ID#2)は、韓国のサンエジソンファシリティにおいて、200mmFF炉で生産された。5N等級のGeの1.3kgは、高純度石英内張合成るつぼに高抵抗Si(>1000Ωcm)の180kgと共溶融された。結晶は、溶融物にドーパント濃度を調整することによって16,000Ωcmの抵抗率を目標とした。
【0098】
ウェハの機械的強度は、温度傾斜によるEPI反応器スリップ発生テストを使って、ゲルマニウムがドープされていないシリコンウェハ(高抵抗率、>1000Ωcmで低Oi<6.0ppma)と異なる濃度の窒素とゲルマニウムがドープされた低Oiを比較した。このテストによると、発生したスリップの数は少なく、機械的強度は大きく、収率の損失が低いことが期待される。さらに、スリップしない温度ウィンドウが大きく、SOIウェハと装置製造の間のプロセスウィンドウが大きかった。このテストに基づいて、これらは、スリップ数の重要な改善が観察される。ゲルマニウムがドープされていないシリコンウェハは、1100℃、250秒のプロセス条件で、~3℃の温度オフセットウィンドウを有する一方で、低濃度窒素ドーピング(~1.4×1014窒素atoms/cm3)は、9℃を有し、高濃度窒Nドーピング(~5×1014窒素atoms/cm3)は、>20℃の温度オフセットを有する。表3を参照のこと。Geがドープされたウェハは、同様の条件で、~6℃の温度オフセットウィンドウを有する。この改善は、多くの厳しい条件下で、高抵抗率、低Oiウェハのスリップのないプロセスを改善するために十分に重要である。
【0099】
【0100】
本発明の要素または本発明の実施形態を導入したとき、項目「1つの」(a)、「1つの」(an)、「その」(the)及び「前記」(said)は、1以上の要素があることを意味することを意図する。「備える」(comprising)、「含む」(including)及び「有する」(having)という用語は、挙げられた要素の他に追加の要素があってもよいことを含み、意味することを意図する。
【0101】
幅のある言語は、明細書及び請求項を通して本明細書で使われるように、関連する基本的な機能の変化をもたらすことなく、許容範囲で変化することができる、任意の量に関する表現を変更するために適用されることができる。したがって、例えば、「約」(about)、「約」(approximately)、及び「実質的に」(substantially)などの用語、複数の用語によって変更された値は、特定された正確な値に限定されるものではない。少なくともいくつかの例において、幅のある言語は、値を測定するための手段の正確性に対応する。ここで、及び明細書と請求項を通して、範囲の限定は、組み合わせられ及び/または置き換えられることができる。そのような範囲は、内容または言語が別のことを指し示すことがないならば、識別され、範囲に含まれるサブレンジをすべて含む。
【0102】
さまざまな変更が本発明の範囲から逸脱することなく上記になされることができるので、上記の記載に含まれる及び添付した図面に示されたすべての内容は、描かれたように解釈され、限定した意味で解釈されないことを意図する。