(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-30
(45)【発行日】2023-02-07
(54)【発明の名称】核酸増幅法および核酸増幅試薬
(51)【国際特許分類】
C12Q 1/6865 20180101AFI20230131BHJP
C12Q 1/6851 20180101ALI20230131BHJP
C12Q 1/686 20180101ALI20230131BHJP
C12Q 1/6853 20180101ALI20230131BHJP
【FI】
C12Q1/6865 Z ZNA
C12Q1/6851 Z
C12Q1/686 Z
C12Q1/6853 Z
(21)【出願番号】P 2018232607
(22)【出願日】2018-12-12
【審査請求日】2021-11-10
(31)【優先権主張番号】P 2017243005
(32)【優先日】2017-12-19
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003300
【氏名又は名称】東ソー株式会社
(72)【発明者】
【氏名】牧野 友理子
(72)【発明者】
【氏名】加藤 智久
(72)【発明者】
【氏名】小林 裕美子
(72)【発明者】
【氏名】二見 達
(72)【発明者】
【氏名】服部 篤紀
(72)【発明者】
【氏名】飯嶋 和樹
【審査官】西村 亜希子
(56)【参考文献】
【文献】特開2015-116136(JP,A)
【文献】特開2006-311867(JP,A)
【文献】特表2006-504512(JP,A)
【文献】ウイルス,1999年,vol. 49, no. 1,p. 27-32
(58)【調査した分野】(Int.Cl.,DB名)
C12Q 1/6865
C12Q 1/6851
C12Q 1/686
C12Q 1/6853
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
GenBank/EMBL/DDBJ/GeneSeq
(57)【特許請求の範囲】
【請求項1】
(i)RNA依存性DNAポリメラーゼ活性を有する酵素、
(ii)DNA依存性DNAポリメラーゼ活性を有する酵素、
(iii)リボヌクレアーゼH(RNase H)活性を有する酵素、
(iv)RNAポリメラーゼ活性を有する酵素、
(v)標的核酸の一部と相補的な配列を有する第一のプライマー、および
(vi)標的核酸の一部と相同的な配列を有する第二のプライマー
を含む前記標的核酸の増幅試薬(ただし、(v)第一のプライマーおよび(vi)第二のプライマーのいずれか一方には、その5’末端側に(iv)RNAポリメラーゼ活性を有する酵素のプロモータ配列を付加している)であって、
(vii)3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼ活性を有する酵素
をさらに含む、前記増幅試薬。
【請求項2】
(ii)DNA依存性DNAポリメラーゼ活性を有する酵素が、5’→3’エキソヌクレアーゼ活性を有さない酵素である、請求項1に記載の増幅試薬。
【請求項3】
(i)RNA依存性DNAポリメラーゼ活性を有する酵素、(ii)DNA依存性DNAポリメラーゼ活性を有する酵素、および(iii)RNase H活性を有する酵素が、AMV逆転写酵素である、請求項1又は2に記載の増幅試薬。
【請求項4】
鎖置換酵素をさらに含む、請求項1から3のいずれかに記載の増幅試薬。
【請求項5】
RNAポリメラーゼ活性を有する酵素のプロモータ配列を5’末端側に付加したプライマーに対して、標的核酸において5’末端側の位置にある標的核酸の一部と相同的な配列を有する第三のプライマーをさらに含む、請求項1から4のいずれかに記載の増幅試薬。
【請求項6】
(vii)3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼ活性を有する酵素が、Bst DNAポリメラーゼ(Full Length)またはTth DNAポリメラーゼである、請求項1から5のいずれかに記載の増幅試薬。
【請求項7】
請求項1から6のいずれかに記載の増幅試薬と、標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブと、を含む前記標的核酸の検出試薬。
【請求項8】
以下の(1)から(7)の工程を含む、標的核酸の増幅方法(ただし、第一のプライマーおよび第二のプライマーのいずれか一方には、その5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加している)。
(1)標的RNAの一部と相補的な配列を有する第一のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的RNAから当該RNAに相補的なcDNAを合成する工程
(2)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA-DNA二本鎖のRNAを分解する工程
(3)標的RNAの一部と相同的な配列を有する第二のプライマー、および3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼを用いて、前記(2)の工程で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(5)前記(4)の工程で合成したRNA転写産物の一部と相補的な配列を有するプライマー、およびRNA依存性DNAポリメラーゼ活性を用いて、前記(4)のRNA転写産物に相補的なcDNAを合成する工程、
(6)RNase H活性を有する酵素を用いて、RNA-DNA二本鎖のRNAを分解する工程
(7)前記(6)の工程で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
【請求項9】
以下の(1)から(7)の工程を含む、標的核酸の増幅方法。
(1)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相補的な配列を有する第一のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的DNAから、当該DNAに相補的なDNAを合成する工程
(2)少なくとも鎖置換活性を有する酵素および/または5’→3’エキソヌクレアーゼ活性を有さないDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(1)の工程で合成したDNAを一本鎖DNAとする工程
(3)標的DNAの一部と相同的な配列を有する第二のプライマー、および3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼを用いて、前記(2)の工程で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(5)第二のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(4)の工程で合成したRNA転写産物から、標的DNAに相補的なcDNAを合成する工程、
(6)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA-DNA二本鎖のRNAを分解する工程
(7)(6)で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
【請求項10】
以下の(1)から(7)の工程を含む、標的核酸の増幅方法。
(1)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相同的な配列を有する第二のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的DNAの相補鎖から、当該DNAに相同的なDNAを合成する工程
(2)少なくとも鎖置換活性を有する酵素および/または5’→3’エキソヌクレアーゼ活性を有さないDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(1)の工程で合成したDNAを一本鎖DNAとする工程
(3)標的DNAの一部と相補的な配列を有する第一のプライマー、および3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼを用いて、前記(2)の工程で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(5)第一のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(4)の工程で合成したRNA転写産物から、標的DNAに相補的なcDNAを合成する工程、
(6)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA-DNA二本鎖のRNAを分解する工程
(7)前記(6)の工程で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
【請求項11】
(2)の工程が、鎖置換活性を有する酵素および/または5’→3’エキソヌクレアーゼ活性を有さないDNA依存性DNAポリメラーゼ活性を有する酵素、ならびに5’末端側に前記RNAポリメラーゼ活性を有する酵素のプロモータ配列を付加したプライマーに対して5’末端側の位置にある標的核酸の一部と相同的な配列を有する第三のプライマーを用いて、(1)の工程で合成したDNAを一本鎖DNAとする工程である、請求項9または10に記載の増幅方法。
【請求項12】
請求項8から
11のいずれかに記載の増幅方法で得られたRNA転写産物を、当該転写産物の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブを用いて検出する、標的核酸の検出方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、DNAやRNA等の遺伝子混合物中に含まれると予想される、標的核酸の増幅方法および増幅試薬に関する。さらに本発明は、前記標的核酸を増幅し、定性的または定量的に検出する方法および検出試薬に関する。本発明は遺伝子診断等の臨床診断分野での利用に有用であり、検体から直接、標的核酸を増幅・検出できることから、病気の迅速診断およびその治療に役立つだけでなく、前記病気が微生物に起因する場合、当該微生物の迅速かつ高感度な同定や、薬剤耐性遺伝子の検出にも有用である。
【背景技術】
【0002】
臨床診断で用いられる遺伝子検査では、臨床試料中に含まれる標的核酸が極微量であることが多いため、当該試料中に含まれる標的核酸を増幅して信号強度を向上することで、高感度かつ良好な再現性のある測定を実現している。
【0003】
標的核酸の増幅方法としては、例えばPCR(ポリメラーゼチェーンリアクション)法があげられる。この方法は、標的核酸中の特定DNA配列の両末端部に相補的なプライマーおよび相同なプライマーからなる一組のプライマーと、耐熱性DNAポリメラーゼを用いて、熱変性、アニーリング、伸長反応からなる3ステップのサイクルを繰り返すことで、前記特定DNA配列を含むポリヌクレオチドを増幅できる。一方、標的核酸がRNAの場合は、PCR法を実施する前に、鋳型となるRNAから逆転写酵素によってcDNAを合成する必要がある。すなわち、cDNA合成工程およびPCR反応工程の2つの工程を要するため、操作が煩雑である。またPCR法は、急激な昇温、降温を必要とするため、特殊なインキュベーターを必要とし、大量処理を目的とした自動化への適用は容易ではない。さらに熱変性、アニーリング、伸長反応からなる3ステップのサイクルを繰り返し行なう必要があるため、迅速化にも限界がある。なお逆転写反応およびPCR反応を用いて簡便に標的RNAから特定の二本鎖DNAを増幅する方法として、特許文献1では、逆転写反応で得られた一本鎖DNAから3’→5’エキソヌクレアーゼ活性および鎖置換活性を有さないDNAポリメラーゼを用いて二本鎖DNAを取得する方法を開示している。
【0004】
一方、標的RNAの簡便な増幅方法として、NASBA(Nucleic Acid Sequence-Based Amplification)法(特許文献2および3、非特許文献1)、TMA(Transcription Mediated Amplification)法(特許文献4)、TRC(Transcription-Reverse transcription Concerted reaction)法(特許文献5および非特許文献2)などが報告されている。これらの方法は、標的RNAに対してプロモーター配列を含むプライマーと、逆転写酵素およびリボヌクレアーゼH(RNase H)を用いて、プロモーター配列を含む二本鎖DNAを生成し、RNAポリメラーゼにより特定塩基配列を含むRNAを生成し、以後は、当該生成されたRNAを、前記プロモーター配列を含む二本鎖DNA合成の鋳型とする連鎖反応を行なうものである。これらの方法でRNAを増幅する際、RNAに対する相補DNA鎖を合成するRNA依存性DNAポリメラーゼ活性、RNA-cDNA二本鎖のRNAを分解するRNase H活性、およびcDNAに対する相補DNA鎖を合成するDNA依存性DNAポリメラーゼ活性を有する、AMV逆転写酵素がよく用いられる。これらの増幅方法は、比較的低温(例えば40℃から50℃)の一定温度下でのRNA増幅が可能なため、自動化への適用が容易である。また鎖置換活性を有する酵素を添加することで、比較的低温の一定温度下でのDNA増幅も可能である(特許文献6)。なお特許文献6では、前記鎖置換活性を有する酵素として、96-7 DNAポリメラーゼを用いている。
【0005】
前述した方法で増幅した標的核酸の検出は通常、当該標的核酸中の一部と特異的に結合可能な蛍光色素で標識されたプローブを接触させ、増幅産物と結合した前記プローブ由来の蛍光を検出して行なう。この際、S/N比(signal-to-noise ratio)とも呼ばれる、蛍光強度比が大きいことが、精度良い検出ができる点で好ましい。また測定項目によっては検出時間が早いほど好ましい。しかしながら前記標的核酸の検出において、S/N比の向上と検出時間は必ずしも相関しない。これは、検出時間が早いほど、増幅産物が連鎖反応に使用されてしまい、蛍光強度が大きく上がらないためと考えられる。したがって標的核酸を高精度に検出する際は、検出時間の早さだけでなく、蛍光強度比の大きさも重要である。
【0006】
試料中に含まれる標的核酸を定量する方法として、リアルタイムPCRが知られている。しかしながら、PCRによる増幅効率および正確さは、処理温度、前記核酸の塩基配列、反応溶液成分の濃度や種類等の様々な要因によって左右される。そのため標的核酸量(濃度)をPCR最終産物の濃度測定またはPCR過程におけるリアルタイム測定によって正確に決定することは、困難であった。
【0007】
近年、この問題を解決し、微量な標的DNAを正確に定量する技術として、デジタルPCRが開発された(非特許文献3)。デジタルPCRでは、標的DNAを含む溶液を、多数の微小区画に分配して、個々の微小区画で同時並行にPCRが行なわれる。1つまたは複数のターゲット分子を含む微小区画もあれば、ターゲット分子を全く含まない微小区画も存在するが、PCR終了後に微小区画毎にPCR増幅の有無を検出し、ポアソンモデルを用いることで、標的DNAの濃度が定量できる。また微量な標的RNAを正確に定量する方法としては、あらかじめ逆転写酵素を用いてcDNAを合成した後、前述したデジタルPCRを用いる方法や、増幅方法をNASBA法に置き換えたデジタルNASBA(特許文献7、非特許文献3)を用いる方法があげられる。
【0008】
デジタルPCRやデジタルNASBAなどのデジタル核酸増幅で得られた標的核酸の増幅産物を検出する際、各微小区画の蛍光強度(シグナル)等に基づき陽性または陰性と判定するが、微弱なシグナルの微小区画も検出されるため、反応条件や検出時の陽性と陰性を判断するシグナル値の閾値の設定が課題となっている。したがってデジタルで核酸増幅・検出する場合でも、試料中に存在する極微量の特定RNA配列をより高感度に、偽陽性なく検出するためには、S/N比が重要である。
【先行技術文献】
【特許文献】
【0009】
【文献】WO2010/131645号
【文献】特開平2-005864号公報
【文献】特表平4-503451号公報
【文献】特表平4-500759号公報
【文献】特開2000-014400号公報
【文献】特開2015-116136号公報
【文献】米国公開2014/0141502号公報
【非特許文献】
【0010】
【文献】de Baar,M.P.et.al, Journal of Clinical Microbiology,39,1895-1902(2001)
【文献】Ishiguro,T.et al,Analytical Biochemistry,314,77-86(2003)
【文献】Vogelstein,B.et al,Proc.Natl.Acad.Sci.U.S.A.,96,9236-9241(1999)
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明の課題は、標的核酸の増幅・検出方法において、試料中に存在する極微量の標的核酸を、より高効率かつ再現性良く(高精度に)増幅し検出するための方法、および当該方法を利用した試薬を提供することにある。
【課題を解決するための手段】
【0012】
本発明者らは上記課題を解決するために鋭意研究を重ねた結果、本発明を完成するに至った。
【0013】
すなわち、本発明の態様は以下の通り例示できる。
【0014】
[1]
(i)RNA依存性DNAポリメラーゼ活性を有する酵素、
(ii)DNA依存性DNAポリメラーゼ活性を有する酵素、
(iii)リボヌクレアーゼH(RNase H)活性を有する酵素、
(iv)RNAポリメラーゼ活性を有する酵素、
(v)標的核酸の一部と相補的な配列を有する第一のプライマー、および
(vi)標的核酸の一部と相同的な配列を有する第二のプライマー
を含む前記標的核酸の増幅試薬(ただし、(v)第一のプライマーおよび(vi)第二のプライマーのいずれか一方には、その5’末端側に(iv)RNAポリメラーゼ活性を有する酵素のプロモータ配列を付加している)であって、
(vii)3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼ活性を有する酵素
をさらに含む、前記増幅試薬。
【0015】
[2]
(ii)DNA依存性DNAポリメラーゼ活性を有する酵素が、5’→3’エキソヌクレアーゼ活性を有さない酵素である、[1]に記載の増幅試薬。
【0016】
[3]
(i)RNA依存性DNAポリメラーゼ活性を有する酵素、(ii)DNA依存性DNAポリメラーゼ活性を有する酵素、および(iii)RNase H活性を有する酵素が、AMV逆転写酵素である、[1]又は[2]に記載の増幅試薬。
【0017】
[4]
鎖置換酵素をさらに含む、[1]から[3]のいずれかに記載の増幅試薬。
【0018】
[5]
RNAポリメラーゼ活性を有する酵素のプロモータ配列を5’末端側に付加したプライマーに対して、標的核酸において5’末端側の位置にある標的核酸の一部と相同的な配列を有する第三のプライマーをさらに含む、[1]から[4]のいずれかに記載の増幅試薬。
【0019】
[6]
(vii)3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼ活性を有する酵素が、Bst DNAポリメラーゼ(Full Length)またはTth DNAポリメラーゼである、[1]から[5]のいずれかに記載の増幅試薬。
【0020】
[7]
[1]から[6]のいずれかに記載の増幅試薬と、標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブと、を含む前記標的核酸の検出試薬。
【0021】
[8]
以下の(1)から(7)の工程を含む、標的核酸の増幅方法(ただし、第一のプライマーおよび第二のプライマーのいずれか一方には、その5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加している)。
(1)標的RNAの一部と相補的な配列を有する第一のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的RNAから当該RNAに相補的なcDNAを合成する工程
(2)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA-DNA二本鎖のRNAを分解する工程
(3)標的RNAの一部と相同的な配列を有する第二のプライマー、および3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼを用いて、前記(2)の工程で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(5)前記(4)の工程で合成したRNA転写産物の一部と相補的な配列を有するプライマー、およびRNA依存性DNAポリメラーゼ活性を用いて、前記(4)のRNA転写産物に相補的なcDNAを合成する工程、
(6)RNase H活性を有する酵素を用いて、RNA-DNA二本鎖のRNAを分解する工程
(7)前記(6)の工程で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
[9]
以下の(1)から(7)の工程を含む、標的核酸の増幅方法。
(1)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相補的な配列を有する第一のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的DNAから、当該DNAに相補的なDNAを合成する工程
(2)少なくとも鎖置換活性を有する酵素および/または5’→3’エキソヌクレアーゼ活性を有さないDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(1)の工程で合成したDNAを一本鎖DNAとする工程
(3)標的DNAの一部と相同的な配列を有する第二のプライマー、および3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼを用いて、前記(2)の工程で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(5)第二のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(4)の工程で合成したRNA転写産物から、標的DNAに相補的なcDNAを合成する工程、
(6)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA-DNA二本鎖のRNAを分解する工程
(7)(6)で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
[10]
以下の(1)から(7)の工程を含む、標的核酸の増幅方法。
(1)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した標的核酸の一部と相同的な配列を有する第二のプライマー、およびDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、標的DNAの相補鎖から、当該DNAに相同的なDNAを合成する工程
(2)少なくとも鎖置換活性を有する酵素および/または5’→3’エキソヌクレアーゼ活性を有さないDNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(1)の工程で合成したDNAを一本鎖DNAとする工程
(3)標的DNAの一部と相補的な配列を有する第一のプライマー、および3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼを用いて、前記(2)の工程で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(4)前記プロモータ配列に対応したRNAポリメラーゼ活性を有する酵素を用いて、前記(3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(5)第一のプライマー、およびRNA依存性DNAポリメラーゼ活性を有する酵素を用いて、前記(4)の工程で合成したRNA転写産物から、標的DNAに相補的なcDNAを合成する工程、
(6)リボヌクレアーゼH(RNase H)活性を有する酵素を用いて、RNA-DNA二本鎖のRNAを分解する工程
(7)前記(6)の工程で得られた一本鎖DNAを鋳型に連鎖的にRNA転写産物を合成する工程
[11]
(2)の工程が、鎖置換活性を有する酵素および/または5’→3’エキソヌクレアーゼ活性を有さないDNA依存性DNAポリメラーゼ活性を有する酵素、ならびに5’末端側に前記RNAポリメラーゼ活性を有する酵素のプロモータ配列を付加したプライマーに対して5’末端側の位置にある標的核酸の一部と相同的な配列を有する第三のプライマーを用いて、(1)の工程で合成したDNAを一本鎖DNAとする工程である、[9]または[10]に記載の増幅方法。
【0022】
[12]
(i)RNA依存性DNAポリメラーゼ活性を有する酵素、(ii)DNA依存性DNAポリメラーゼ活性を有する酵素、(iii)リボヌクレアーゼH(RNase H)活性を有する酵素、(iv)RNAポリメラーゼ活性を有する酵素、(v)標的核酸の一部と相補的な配列を有する第一のプライマー、(vi)標的核酸の一部と相同的な配列を有する第二のプライマー、および(vii)3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼ活性を有する酵素を含み、塩類は含まない第一の増幅試薬(ただし、前記第一のプライマーおよび前記第二のプライマーのいずれか一方には、その5’末端側に(iv)RNAポリメラーゼ活性を有する酵素のプロモータ配列を付加している)、ならびに前記塩類を含む第二の増幅試薬を反応開始温度に温調する工程、
温調された各増幅試薬を反応が起こらないように混じった状態にする工程、
前記混じった状態の反応液と混和しない非混和性液体とを接触させる工程、
前記混じった状態の反応液を前記非混和性液体と接触させる直前または後に撹拌を行なう工程、
を含む、標的核酸を増幅する方法。
【0023】
[13]
[8]から[12]のいずれかに記載の増幅方法で得られたRNA転写産物を、当該転写産物の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブを用いて検出する、標的核酸の検出方法。
【0024】
以下、本発明について詳細に説明する。
【0025】
<1>本発明の増幅試薬
本発明の増幅試薬は、NASBA法、TMA法、TRC法といった比較的低温(例えば、40℃から50℃)の一定温度で一本鎖RNAを増幅可能な方法で用いる酵素およびプライマーに加え、3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼをさらに加えることを特徴としている。本発明の増幅試薬が、標的RNAを増幅する試薬である場合の一態様として、以下の(A)から(I)の成分を含む試薬があげられる。なお以下の(A)および(B)のいずれか一方には、その5’末端側に以下の(G)のプロモータ配列を付加している。また一般的に使用される増幅反応に必要という理由以外の理由で、より好ましい別の成分を添加してもよく、一方、下記が増幅反応に必須な試薬を必ずしも網羅しているわけではない。
(A)標的核酸の一部と相補的な配列を有する第一の一本鎖オリゴヌクレオチド(第一のプライマー)、
(B)標的核酸の一部と相同的な配列を有する第二の一本鎖オリゴヌクレオチド(第二のプライマー)、
(C)RNA依存性DNAポリメラーゼ活性を有する酵素、
(D)デオキシリボヌクレオシド三リン酸(dNTPs)、
(E)RNaseH活性を有する酵素、
(F)DNA依存性DNAポリメラーゼ活性を有する酵素、
(G)DNA依存性RNAポリメラーゼ活性を有する酵素、
(H)リボヌクレオシド三リン酸(NTPs)、
(I)3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼ、
本発明の増幅試薬で増幅される増幅核酸は、他の核酸から区別し得る程度に特異的な配列部分を(A)および(B)に含んでいる限り、任意に決定できる。
【0026】
前述したように(A)および(B)のいずれか一方は、その5’末端側に以下の(G)のプロモータ配列を付加している。なお付加するプライマーと前記プロモータ配列との間に、数から数十ヌクレオチドからなるエンハンサー配列を挿入してもよい。
【0027】
(A)から(I)の成分のうち、(C)、(E)および(F)の成分は、それぞれ異なる酵素を用いてもよいし、一部または全部を共通の酵素としてもよい。中でも、トリ筋芽細胞腫ウイルス(AMV)逆転写酵素は、(C)、(E)および(F)の成分を全て包含する酵素であり、本発明の増幅試薬として特に好ましい態様である。
【0028】
(F)の成分は、一本鎖DNAから二本鎖DNAを合成可能な酵素であれば特に限定はないが、5’→3’エキソヌクレアーゼ活性を有さない酵素を用いると好ましい。前記酵素の一例として、96-7 DNA Polymerase(ニッポンジーン社製)、DNA Polymerase I Large (Klenow) Fragment,Exonuclease Minus(Promega社製)、Bst DNA Polymerase,Large Fragmentといった3’→5’エキソヌクレアーゼ活性および5’→3’エキソヌクレアーゼ活性の両方を有していない酵素や、DNA Polymerase I,Large(Klenow) Fragment(New England Biolabs社製)といった3’→5’エキソヌクレアーゼ活性は有しており5’→3’エキソヌクレアーゼ活性を有さない酵素があげられる。なお前述したAMV逆転写酵素も5’→3’エキソヌクレアーゼ活性を有さない酵素である。
【0029】
(G)の成分の一例として、T7 RNAポリメラーゼ、T3RNAポリメラーゼ、SP6 RNAポリメラーゼがあげられる。なお(A)および(B)のいずれか一方に付加させるプロモータ配列は、(G)で用いる成分(ポリメラーゼ)に対応した配列を付加させればよい。
【0030】
本発明の増幅試薬の特徴は(I)の成分を含むことである。(I)の成分の一例として、Tth DNAポリメラーゼ(Roche社製)やBst DNA Polymerase,Full Length(New England Biolabs社製)があげられる。なお(F)の成分が(I)の機能も有している場合、当該(F)の成分を含むことにより(I)の成分を含むとみなせる。(I)の機能を有した(F)の成分の一例として、HIV逆転写酵素があげられる。
【0031】
5’末端側に(G)のプロモータ配列を付加したプライマーが(A)の場合、本態様の増幅試薬による標的RNAの増幅は、以下の工程で進行する。
(a-1)(A)、(C)および(D)によって、標的RNAから当該RNAに相補的なcDNAを合成する工程
(a-2)(E)によって、RNA-DNA二本鎖のRNAを分解する工程
(a-3)(B)、(D)および(I)によって、(a-2)の工程で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(a-4)(A)で付加したプロモータ配列に対応した(G)および(H)によって、(a-3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(a-5)(B)、(C)もしくは(I)および(D)によって、(a-4)のRNA転写産物に相補的なcDNAを合成する工程、
(a-6)(E)によって、RNA-DNA二本鎖のRNAを分解する工程
(a-7)(a-6)の工程で得られた一本鎖DNAを鋳型に、(D)、(F)、(G)および(H)によって、連鎖的にRNA転写産物を合成する工程
一方、5’末端側に(G)のプロモータ配列を付加したプライマーが(B)の場合、本態様の増幅試薬による標的RNAの増幅は、以下の工程で進行する。
(b-1)(A)、(C)および(D)によって、標的RNAから当該RNAに相補的なcDNAを合成する工程
(b-2)(E)によって、RNA-DNA二本鎖のRNAを分解する工程
(b-3)(B)、(D)および(I)によって、(b-2)の工程で得られた一本鎖DNAから、5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加した二本鎖DNAを合成する工程
(b-4)(B)で付加したプロモータ配列に対応した(G)および(H)によって、(b-3)で得られた二本鎖DNAから、RNA転写産物を合成する工程
(b-5)(A)、(C)もしくは(I)および(D)によって、(b-4)のRNA転写産物に相補的なcDNAを合成する工程、
(b-6)(E)によって、RNA-DNA二本鎖のRNAを分解する工程
(b-7)(b-6)の工程で得られた一本鎖DNAを鋳型に、(D)、(F)、(G)および(H)によって、連鎖的にRNA転写産物を合成する工程
本発明の増幅試薬を用いて標的RNAの増幅を行なう場合、例えば、前述した(A)から(I)の試薬を、標的RNAを含むと予想される試料に前述した工程に従い成分を順次添加してもよいし、前述した複数の工程に対応した成分をまとめて添加してもよいし、一度に全ての成分を添加してもよい。
【0032】
なお本発明の増幅試薬を標的DNAの増幅に適用する場合、NASBA法、TMA法、TRC法といった比較的低温(例えば、40℃から50℃)の一定温度で一本鎖RNAを増幅可能な方法で用いる酵素およびプライマー、ならびに3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼに加え、以下の(J)から(L)に示すいずれかの成分を添加すればよい。ただし以下の(K)の成分添加は、(F)がAMV逆転写酵素など5’→3’エキソヌクレアーゼ活性を有さない酵素である場合のみ有効である。
(J)鎖置換酵素
(K)5’末端側にRNAポリメラーゼ活性を有する酵素のプロモータ配列を付加したプライマーに対して5’末端側の位置にある標的核酸の一部と相同的な配列を有する第三のプライマー
(L)(J)および(K)の成分
なお(K)または(L)の成分を添加した本発明の増幅試薬を用いて、標的DNAの増幅を行なう場合は、5’→3’エキソヌクレアーゼ活性を有さない酵素や鎖置換酵素による反応と(I)による反応とが競合するため、前者の反応が優勢に働くよう、酵素量を調製する必要がある。
本発明の反応開始温度とは、40℃から50℃が好ましく、より好ましくは、41℃から46℃の範囲である。
【0033】
<2>微小区画化方法
本発明の増幅試薬を用いて、標的核酸をデジタル核酸増幅させる場合は、本発明の増幅試薬を微小区画化する必要がある。微小区画化する方法として、微細孔をもった特殊なプレートを用いて、その微細孔に反応液を分配する方法(微細孔分配方式)や、反応液を特別な乳化剤やマイクロ流路チップを用いて多数の微小の液滴(ドロップレット)に分割する方法(ドロップレット方式)があげられる。微小区画のサイズは、5nL以下であることが好ましく、より好ましくは2nL以下であり、さらに好ましくは1nL以下である。微細孔分配方式で微小区画化する装置として、Thermo Fisher Scientific社製QuantStudio 3DデジタルPCRシステム、JN Medsys社製Clarity digital PCRシステムが市販されている。また、ドロップレット方式で微小区画化する装置として、Bio-Rad社製QX200TM Droplet Digital PCRシステム、RainDance Technologies社製RainDrop Plus Digital PCRシステムが市販されている。
【0034】
<3>デジタル核酸増幅法
<2>で微小区画化した試薬を用いてデジタル核酸増幅を行なう際に、2液を混合して増幅反応を開始してもよい。例えば、マイクロ流路チップを用いて、Y字路により分散相の2液並行流を形成した直後に、連続相のシースフローによる流体抵抗力で液滴を生成(微小区画化)させる方法がある。またSlipChipを用いて、互いに対向する2つの表面(複数の第一の微小区画領域を有する第一の表面および複数の第二の微小区画領域を有する第二の表面)をスリップさせて、前記複数の第一の微小区画領域と、前記複数の第二の微小区画領域とを、1:1で連結させることで、各微小領域内の液を混合できる。
【0035】
また、2以上の反応液を保持する反応液保持部と、前記反応液とは混和しない非混和性液体を保持する液体保持部と、各反応液保持部で保持された反応液同士を層流状態で合流させた後、前記液体保持部で保持された前記非混和性液体と接触させて液滴を形成させるための流路と、前記液滴を保持する液滴保持部と、反応液合流地点と非混和性液体接触地点との間または流路出口と前記液滴保持部の間に設けられた撹拌部と、前記液滴保持部に設けられた排出口と、を有するマイクロ流路チップと、前記マイクロ流路チップと近接する温調装置とを備えた、反応装置(一例として、
図2から4に示す装置)を用いてデジタル核酸増幅を行なってもよい。本発明の増幅試薬を前記反応装置に適用する場合、例えば、単独では反応が起こらない2以上の反応液(一例として、前記(A)から(I)の成分を含み、塩類は含まない第一の反応液と、前記塩類を含む第二の反応液)を反応液保持部に導入し、反応開始温度に温調後、温調された各反応液を反応が起きないよう層流状態で合流させ(混じった状態とし)、非混和性液体と接触させることで液滴を形成後、当該液滴を撹拌部で撹拌することで(混合した状態)核酸増幅反応を開始すればよい。なお、本発明の反応が起こらないように混じった状態とは、デバイス内部での状態を詳細に表した状態であり、2つの反応液が界面を作った状態で並行に進む層流の場合には混じった状態だが反応はしない。その後撹拌されて混合した状態ではじめて反応が開始される。
【0036】
<4>検出方法
本発明の増幅試薬で増幅した標的核酸は、あらかじめまたは増幅反応後に検出用成分を添加し、当該成分由来の蛍光や化学発光強度を測定することで、標的核酸を検出すればよい。検出用成分の好ましい態様として、標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブがあげられる。
【0037】
前記プローブの一例として、標的核酸の一部と相補的または相同的な配列を有するインターカレーター性蛍光色素を結合したDNAがあげられる。前記DNA部分の配列は、標的核酸中に存在する配列であって、標的核酸以外の核酸と十分に区別可能な部分と相補的な配列である必要がある。前記DNA部分の長さは、標的核酸の特異的分析のため、6から100ヌクレオチド、さらに好ましくは10から30ヌクレオチドとすることが好ましい。なお前記DNA部分は、増幅した標的核酸と相補結合を形成した場合に、RNA依存性DNAポリメラーゼ活性を有する酵素による3’末端からの伸長が生じないように、当該3’末端が標的核酸と非相補的な配列が付加されているか、または、その3’末端が化学的に修飾(例えばアミノ化)されていることが好ましい。
【0038】
インターカレーター性蛍光色素は、前述したDNA部分が他の核酸と相補結合を形成すると二本鎖部分にインターカレーションして蛍光特性が変化するものである。この目的のためには、例えば、インターカレーター性蛍光色素を、二本鎖部分へのインターカレーションを妨げない程度の適当な分子長リンカーを介してDNAと結合すればよい。かかるリンカーとしては、インターカレーター性蛍光色素が二本鎖部分にインターカレーションすることを妨げない分子であれば特に制限はない。特に両末端に官能基を有する二官能性炭化水素から選択されるリンカー分子は、オリゴヌクレオチドへの修飾を行なう上で簡便で好ましい。また市販の試薬セット(例えば、Clontech社製C6-Thiolmodifier)を使用してもよい。
【0039】
インターカレーター性蛍光色素としては、二本鎖にインターカレーションすることで、例えば発する蛍光波長が変動したりする等、その蛍光特性が変化するものであれば特に制限はないが、測定の容易さ等の観点からインターカレーションにより蛍光強度が増加する性質を有するものが特に好ましい。具体的には、蛍光強度の変化が特に著しい、チアゾールオレンジやオキサゾールイエロー、ならびにそれらの誘導体が、好ましいインターカレーター性蛍光色素として例示できる。
【0040】
インターカレーター性蛍光色素をリンカーを介してDNA部分に結合させる位置は、当該DNA部分の5’末端、3’末端又は中央部等、インターカレーター性蛍光色素の二本鎖へのインターカレーションが妨げられず、かつ、DNA部分とRNAとの相補結合を阻害しない限り特に制限はない。
【0041】
標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブの別の例として、モレキュラービーコンがあげられる。モレキュラービーコンは、標的核酸の一部と相補的または相同的な配列を有するDNAであり、その両端に蛍光色素とクエンチャーを有するステムループ構造になっている。ステムループ構造の状態では、蛍光色素の蛍光がクエンチャーにより抑制されているが、ループ配列中に存在する標的RNAに相補的な領域が反応中に生じた増幅産物とハイブリダイズするとステム部分が開裂し発光を発する。ステムの形成は、分子内でDNAの二本鎖を形成し、会合能の高い蛍光色素(Cy3など)とクエンチャー(アゾ化合物など)のペアをDNAに導入することで形成できる。
【0042】
標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブのさらに別の例として、FRET(Fluorescence Resonance Energy Transfer)プローブがあげられる。この場合、標的核酸の配列において、増幅に用いた第一および第二のプライマーの内側に設計された2本のプローブを使用する。2本のプローブのうち、一方のプローブの3’末端にはドナー蛍光色素を、もう一方のプローブの5’末端にはアクセプター蛍光色素を、それぞれ修飾する。2本のプローブのDNA配列をハイブリダイゼーションするとドナー蛍光色素とアクセプター蛍光色素が近接するように設計することで、2本のプローブが反応中に生じた増幅産物とハイブリダイゼーションすることにより生じるFRET現象により検出できる。
【0043】
標的核酸の一部と相補的二本鎖を形成すると形成前と比較し蛍光特性が変化するオリゴヌクレオチドプローブのさらにまた別の例として、TaqManプローブがあげられる。この場合、標的核酸の配列において、増幅に用いた第一および第二のプライマーの内側に設計された1本のプローブを使用する。TaqManプローブの5’末端には蛍光色素(レポーター色素)を、3’末端にはクエンチャーを、それぞれ標識する。レポーター色素の蛍光はクエンチャーにより抑制されているが、DNAポリメラーゼによるプライマーの伸長反応時に、標的RNAにプローブがハイブリダイズしていると、5’→3’エキソヌクレアーゼ活性によりプローブが分解され、リポーター色素が遊離することで生じる蛍光により検出できる。
【発明の効果】
【0044】
本発明の標的核酸増幅試薬は、RNA依存性DNAポリメラーゼ活性を有する酵素と、DNA依存性DNAポリメラーゼ活性を有する酵素と、リボヌクレアーゼH(RNase H)活性を有する酵素と、RNAポリメラーゼ活性を有する酵素と、標的核酸の一部と相補的な配列を有する第一のプライマーと、標的核酸の一部と相同的な配列を有する第二のプライマーと、を含む試薬(ただし、前記第一のプライマーおよび前記第二のプライマーのいずれか一方には、その5’末端側に前記RNAポリメラーゼ活性を有する酵素のプロモータ配列を付加している)であって、3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼをさらに含むことを特徴としている。
【0045】
本発明によれば、比較的低温の一定温度下での、試料中に含まれる標的核酸の増幅反応において、増幅効率を飛躍的に向上させることができる。したがって、試料中に存在する極微量の標的核酸を、従来の方法より、高効率かつ再現性良く(高精度に)増幅し検出できる。
【図面の簡単な説明】
【0046】
【
図1】実施例3の結果を示した図(蛍光プロファイル)。
【
図2】実施例5および比較例1で用いた反応装置を示す図(平面図)である。
【
図3】
図2に示す反応装置のA-A’断面図(正面図)である。
【
図4】
図2のうち点線四角で囲まれた部分を拡大した図である。
【
図5】実施例5および比較例1における、液滴保持部に保持された液滴の様子を示す図である。
【実施例】
【0047】
以下、実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明はこれら例に限定されるものではない。
【0048】
実施例1 DNAポリメラーゼの追加によるRNA検出への影響(その1)
一定温度で1本鎖RNAを増幅可能な系(NASBA法、TMA法、TRC法など)に、種々のDNAポリメラーゼをさらに添加することによる、RNA検出への影響を評価した。
【0049】
(1)C型肝炎ウイルス標準RNA(以下、単に標準RNAとも表記する)遺伝子が挿入されたプラスミドから、in vitro転写により、前記標準RNA(配列番号1)を調製した。当該標準RNAを注射用水を用いて103コピー/2μLとなるように希釈し、これをRNA試料とした。
【0050】
(2)以下の組成からなる反応液10μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI社製)に分注した後、前記RNA試料2μLを添加した。なお標準RNA検出用プローブであるINAFプローブ(配列番号2)は、当該配列の10番目のCと11番目のGとの間にリンカーを介してインターカレーター性蛍光色素であるオキサゾールイエローを結合し、かつ3’末端をビオチン修飾したオリゴヌクレオチドプローブである。また第一のプライマー(配列番号3)は、標準RNAの相補鎖の一部(具体的には配列番号1の125番目から145番目まで:配列番号5)の5’末端側にT7プロモーター配列(配列番号6)を付加したオリゴヌクレオチドである。またDNAポリメラーゼは、表1に示すいずれかのDNAポリメラーゼであり、その添加量は各ポリメラーゼで濃度(U/μL)が異なるため、濃度に関係なく一律2μLとした。
【0051】
反応液の組成:濃度は後述の開始剤添加後(20μL中)の最終濃度
66mM Tris-HCl緩衝液(pH8.36)
各0.33mM dATP、dCTP、dGTP、dTTP
各2.0mM ATP、CTP、GTP、TTP
3.3mM ITP
122.2mM トレハロース
50nM INAFプローブ(標準RNAの相同鎖の一部[配列番号1の107番目から123番目まで]:配列番号2)
1.0μM 第一のプライマー(配列番号3)
1.0μM 第二のプライマー(標準RNAの相同鎖の一部[配列番号1の1番目から16番目まで]:配列番号4)
4.3U AMV逆転写酵素
95U T7 RNAポリメラーゼ
2μL 追加DNAポリメラーゼまたは注射用水
(3)上記の反応液を46℃で3分間保温後、以下の組成からなる開始剤8μLを添加した。
【0052】
開始剤の組成:濃度は開始剤添加後(20μL中)の最終濃度
18.4mM 塩化マグネシウム
90.0mM 塩化カリウム
0.1%(w/v) Tween 20(10%Tween20(和光純薬社製)を注射用水で10倍希釈)
9.0%(v/v) DMSO
(4)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、46℃で反応させると同時に反応液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に30分間測定した。
【0053】
開始剤添加時を0分として、反応液の蛍光強度比(所定時間の蛍光強度値をバックグラウンドの蛍光強度比で割った値)が1.2を超えた場合を陽性判定とした。20分以内に陽性判定となった場合を(+)、陽性判定とならなかった(陰性判定)場合を(-)とした。結果を表1に示す。
【0054】
【0055】
今回検討したDNAポリメラーゼのうち、3’→5’エキソヌクレアーゼ活性を有するDNAポリメラーゼ(DNA Polymerase IおよびDNA Polymerase I,Large (Klenow) Fragment)は5’→3’エキソヌクレアーゼ活性の有無にかかわらず陰性判定となり、検出を大きく阻害することがわかった。そのため、一定温度で1本鎖RNAを増幅する系に添加するDNAポリメラーゼとして、3’→5’エキソヌクレアーゼ活性を有するDNAポリメラーゼは好ましくないことが判明した。
【0056】
実施例2 DNAポリメラーゼの追加によるRNA検出への影響(その2)
実施例1で陽性判定となった、追加DNAポリメラーゼのうち、Bst DNA Polymerase,Full Length、Bst DNA Polymerase,Large Fragmentおよび96-7 DNA Polymeraseを選択し、標準RNAを検出した。
【0057】
(1)以下の組成からなる反応液10μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI社製)に分注した後、実施例1(1)で調製したRNA試料2μLを添加した。
【0058】
反応液の組成:濃度は後述の開始剤添加後(20μL中)の最終濃度
66mM Tris-HCl緩衝液(pH8.36)
各0.33mM dATP、dCTP、dGTP、dTTP
各2.0mM ATP、CTP、GTP、TTP
3.3mM ITP
96.3mM トレハロース
50nM INAFプローブ(配列番号2)
1.0μM 第一のプライマー(配列番号3)
1.0μM 第二のプライマー(配列番号4)
12.8U AMV逆転写酵素
166U T7 RNAポリメラーゼ
追加DNAポリメラーゼまたは注射用水(添加量は表2に記載)
(2)上記の反応液を46℃で3分間保温後、以下の組成からなる開始剤8μLを添加した。
【0059】
開始剤の組成:濃度は開始剤添加後(20μL中)の最終濃度
18.4mM 塩化マグネシウム
90.0mM 塩化カリウム
0.1%(w/v) Tween 20
9.0%(v/v) DMSO
(3)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、46℃で反応させると同時に反応液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に30分間測定した。
【0060】
開始剤添加時を0分として、反応液の蛍光強度比(所定時間の蛍光強度値をバックグラウンドの蛍光強度比で割った値)が1.2を超えた場合を陽性判定とし、そのときの時間を検出時間とした結果を表2に示す。
【0061】
【0062】
結果、Bst DNA Polymerase,Full Lengthを用いたときは10U/testが、Bst DNA Polymerase,Large Fragmentを用いたときは1.6U/testが、96-7 DNA Polymeraseは8U/testが、それぞれ最適添加量であった。なお前記最適添加量でのRNA試料(標準RNA:103コピー/test)の検出時間は5.5分から5.7分と、DNAポリメラーゼを追加しない系(注射用水を添加した系)での検出時間(6.2分)よりも0.5分から0.7分向上した。一般的にTRC法による核酸増幅では、1分の検出時間短縮は10倍の高感度化に相当することから、今回検討したDNAポリメラーゼの添加により感度が約3倍から5倍向上していることがわかる。
【0063】
実施例3 DNAポリメラーゼの追加による蛍光強度比への影響
実施例2で決定した、追加DNAポリメラーゼ添加量を最適化した系で、標準RNAを検出し、得られた蛍光プロファイルを比較した。
【0064】
(1)以下の組成からなる反応液10μLを0.5mL容量PCRチューブ(Individual Dome Cap PCR Tube、SSI社製)に分注した後、実施例1(1)で調製したRNA試料2μLを添加した。
【0065】
反応液の組成:濃度は後述の開始剤添加後(20μL中)の最終濃度
66mM Tris-HCl緩衝液(pH8.36)
各0.33mM dATP、dCTP、dGTP、dTTP
各2.0mM ATP、CTP、GTP、TTP
3.3mM ITP
96.3mM トレハロース
50nM INAFプローブ(配列番号2)
1.0μM 第一のプライマー(配列番号3)
1.0μM 第二のプライマー(配列番号4)
12.8U AMV逆転写酵素
166U T7 RNAポリメラーゼ
追加DNAポリメラーゼ(10U Bst DNA Polymerase,Full Length、1.6U Bst DNA Polymerase,Large Fragmentおよび8U 96-7 DNA Polymeraseのいずれか)または注射用水
(2)上記の反応液を46℃で3分間保温後、以下の組成からなる開始剤8μLを添加
した。
【0066】
開始剤の組成:濃度は開始剤添加後(20μL中)の最終濃度
18.4mM 塩化マグネシウム
90.0mM 塩化カリウム
0.1%(w/v) Tween 20
9.0%(v/v) DMSO
(3)引き続きPCRチューブを直接測定可能な温調機能付き蛍光分光光度計を用い、46℃で反応させると同時に反応液の蛍光強度(励起波長470nm、蛍光波長520nm)を経時的に30分間測定した。
【0067】
開始剤添加時を0分として、各測定時間における反応液の蛍光強度比(所定時間の蛍光強度値をバックグラウンドの蛍光強度比で割った値)をプロットした図(蛍光プロファイル)を
図1に、蛍光強度比の最大値をまとめた結果を表3に、それぞれ示す。なお
図1に示す通り、最も高い値が測定された後は、蛍光強度比はほぼプラトーになるため、前記蛍光強度比の最大値を、エンドポイントなどで検出する場合のS/N比として考えてよい。
【0068】
【0069】
本実施例で検討した追加DNAポリメラーゼのうち、3’→5’エキソヌクレアーゼ活性は有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNAポリメラーゼ(Bst DNA Polymerase,Full Length)を用いたときの蛍光強度比の最大値(S/N比)は4.7倍と、DNAポリメラーゼを追加しない系(注射用水を添加した系)(5.0倍)ほぼ同等であった。以上の結果から、一定温度で1本鎖RNAを増幅可能な系(NASBA法、TMA法、TRC法など)に、3’→5’エキソヌクレアーゼ活性は有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNAポリメラーゼをさらに添加することで、添加前と同等の精度(S/N比)を維持しつつ、検出時間(感度)を向上できることがわかる。
【0070】
一方、3’→5’エキソヌクレアーゼ活性および5’→3’エキソヌクレアーゼ活性の両方を有さないDNAポリメラーゼ(Bst DNA Polymerase,Large Fragmentおよび96-7 DNA Polymerase)を用いたときのS/N比は、DNAポリメラーゼを追加しない系よりも低下していた(ともに3.4倍)。
【0071】
実施例4 マイクロ流路チップの作製
本発明の増幅試薬をデジタル核酸増幅に適用するにあたり、デジタル核酸増幅のためのマイクロ流路チップを作製した。具体的には、フォトリソグラフィーおよびソフトリソグラフィー技術を用いて、
図2から4に示すマイクロ流路チップ100を作製した。作製手順を以下に示す。
【0072】
(1)4インチベアシリコンウェハ(フィルテック社)上へ、フォトレジストSU-8 3050(Microchem社)を滴下後、スピンコーター(MIKASA社)を用いてフォトレジスト薄膜を形成した。
【0073】
(2)マスクアライナー(ウシオ電機社)とマイクロ流路チップ100の流路パターンを形成したクロムマスクとを用いて、前記流路パターンをフォトレジスト膜へ形成後、SU-8 Developer(Microchem社)を用いて流路パターンを現像することで、マイクロ流路チップ100を構成する流路の鋳型を作製した(流路の高さ80μm)。
【0074】
(3)SU-8への吸着を抑えるために、Trichloro(1H,1H,2H,2H-perfluoro-octyl)silane(Thermo Fisher Scientific社)による蒸着表面処理を行なった。
【0075】
(4)(3)の処理を行なった鋳型へ、SYLGARD SILICONE ELASTOMER KIT(東レ・ダウコーニング社)を用いて調製した未硬化のシロキサンモノマーと重合開始剤との混合物(重量比10:1)を流し込み、80℃で2時間加熱することで、流路の形状が転写されたポリマー(PDMS)基板101を作製した。
【0076】
(5)ポリマー基板101を鋳型から慎重に剥がし、カッターで成形後、パンチャーを用いて反応液10および非混和性液体20の導入口、ならびに排出口80を形成した。
【0077】
(6)導入口及び吸引口を形成したポリマー基板101並びにカバーガラス102(松浪硝子社)を酸素プラズマ発生装置(メイワフォーシス社)で表面処理後、PDMS基板101パターン面とカバーガラス102とを貼り合わせた。
【0078】
(7)2% Trichloro(1H,1H,2H,2H-perfluoro-octyl)silane(Thermo Fisher Scientific社)含有エタノールを流路に導入し、30分間放置することで、流路壁面の表面を修飾後、エタノールを用いて流路内を洗浄し、風乾することでマイクロ流路チップ100を作製した。作製したチップは真空デシケーター内に保存した。
【0079】
作製したマイクロ流路チップ100は、縦24mm×横60mmの大きさであり、反応液保持部10a/10b並びに液体保持部20への導入口としてφ4mmの穴を、排出口80としてφ1.5mmの穴を、それぞれ設けている。
【0080】
反応液保持部10a/10bから反応液合流部30に至るまでの流路11a/11bは幅100μm×長さ47mmの蛇行流路であり、液体保持部20から液滴形成部40に至るまでの流路21a/21bは屈曲部を二箇所有した幅100μm×長さ22mmの直線流路である。反応液合流部30は反応液流路11aと反応液流路11bとが合流角度90度で合流し、幅200μmから幅100μmまで角度10度の割合で流路が狭窄される。液滴形成部40は、前記狭窄後の流路(幅100μm×長さ150μm)と流路21a/21bとが角度90度で十字に交差することで合流した反応液と非混和性液体とを接触させ、液滴生成流路(交差部から幅80μm×長さ100μm)内で合流した反応液の液滴を形成する。液滴形成部40で形成した液滴は、流路出口50(幅200μm×長さ800μm)を経て、分岐部60に流れる。分岐流路60は、二方向に、角度90度で、それぞれ5回分岐した構造となっており、1回目の分岐では幅200μm×長さ4mm、2回目の分岐では幅200μm×長さ2mm、3回目の分岐では幅200μm×長さ1.3mm、4回目の分岐では幅200μm×長さ1mm、5回目の分岐では幅270μm×長さ500μmである。分岐流路60で32分割した後は、液滴保持部70(幅15mm×長さ40mm)に導入され、液滴が保持される。
【0081】
実施例5 DNAポリメラーゼの追加によるデジタル核酸増幅における検出率の向上
実施例4で作製したマイクロ流路デバイス100を備えた反応装置1(
図2および3)を用いて、C型肝炎ウイルス(HCV)RNA(配列番号1)のデジタル等温核酸増幅に適用した。
【0082】
(1)HCV遺伝子が挿入されたプラスミドから、in vitro転写によりHCV標準RNA(配列番号1)を調製した。当該標準RNAを注射用水を用いて107コピー/2μLとなるように希釈し、これをRNA試料とした。
【0083】
(2)10μL中に 以下の組成を含む水溶液を調製し、これを標準RNAを含む反応液とした。なおモレキュラービーコンプローブ(配列番号7)は、標準RNAの相同鎖の5’末端側および3’末端側に、当該標準RNAと相補的二本鎖を形成しないときにはステムループ構造を形成できるようなオリゴヌクレオチドを、それぞれ6塩基付加しており(5’側の1塩基のみ重複している)、さらに5’末端側にはFAMを、3’末端側にはIDT社製IowaBlackFQをそれぞれ結合させている。
【0084】
132mM Tris-HCl緩衝液(pH8.36)
5.0%(v/v) グリセロール
各0.66mM dATP、dCTP、dGTP、dTTP
各4.0mM ATP、CTP、GTP、TTP
6.6mM ITP
192.5mM トレハロース
100nM モレキュラービーコンプローブ(標準RNAの相同鎖の一部[配列番号1の107番目から123番目まで]を含む:配列番号7)
2.0μM 第一のプライマー(配列番号3)
2.0μM 第二のプライマー(配列番号4)
2.5U Bst DNA Polymerase,Full Length
12.8U AMV逆転写酵素
166U T7 RNAポリメラーゼ
104コピー 標準RNA
(3)10μL中に以下の組成を含む水溶液を調製し、これを開始液とした。
【0085】
36.8mM 塩化マグネシウム
180.0mM 塩化カリウム
0.2%(w/v) Tween 20
18.0%(v/v) DMSO
2.5%(v/v) グリセロール
100nM モレキュラービーコンプローブ(配列番号7)
(4)実施例4で作製したマイクロ流路チップ100を温調ブロック200(Mastercycler nexus flat eco、Eppendorf社)の上に固定して、46℃に加熱した。
【0086】
(5)マイクロ流路チップ100内にオイルを充填後 、液体保持部20にオイルを100μL滴下した。
【0087】
(6)反応液保持部10a/10b内のオイルを取り除いてから、反応液保持部10aには(2)で作製した反応液を、反応液保持部10bには(3)で作製した開始液を、それぞれ液温46℃の条件下で30μL滴下した。
【0088】
(7)ポンプ300を用いて排出口80からオイルを吸引した。吸引開始後1から2分で反応合流部30付近は層流となり、液滴形成部40で反応液と開始液とが概ね1:1の液滴生成が開始された。
【0089】
(8)吸引開始後3から5分後に当該吸引を停止し、そのまま46℃で20分間放置することで、液滴内等温増幅反応を完了させた。
【0090】
(9)(8)の反応終了後のマイクロ流路チップ100を倒立型顕微鏡IX71(オリンパス社)に載置し、デジタルCMOSカメラ(ORCA-FLASH、浜松フォトニクス社)を用いて、液滴保持部70に保持された液滴の蛍光画像を取得した。
【0091】
(10)画像解析ソフト(ImageJ)を利用して、前記蛍光画像から、液滴の平均直径および陽性液滴(陰性液滴の平均蛍光強度に対し、蛍光強度比2.5倍以上の液滴)の個数割合を測定した。液滴の平均直径は、蛍光画像からランダムに抽出した9個の液滴の直径の平均値とした。陽性液滴の個数割合は、まず液滴が400から700個含まれる画像をランダムに選定し、これら画像中の全液滴数と陽性液滴数を測定後、当該測定結果を足し合わせることで、計3000から6000個の液滴に対する陽性液滴の個数割合を測定した。
【0092】
(11)(10)で得られた液滴の平均直径(D[μm])から下記(式1)を用いて、
液滴の平均直径(V[nL])を算出後、(10)で得られた陽性液滴の個数割合(PP
ositive)および平均直径Vからポアソン分布による近似(式2)を用いて標準RNA濃度(C[コピー/μL)を算出し、添加した標準RNA(5×102コピー/μL)に対する検出率を算出した。
【0093】
V=(4/3)×π×(D/2)3×10-6 (式1)
C=-ln(1-PPositive)×(103/V)×20 (式2)
比較例1
実施例5(2)においてBst DNA Polymerase,Full Lengthを添加しない以外は、実施例5と同様な方法で蛍光画像を取得し、検出率を算出した。
【0094】
実施例5および比較例1で取得した蛍光画像を
図5に示し、検出率を算出した結果を表4に示す。3’→5’エキソヌクレアーゼ活性を有さず、かつ5’→3’エキソヌクレアーゼ活性を有するDNA依存性DNAポリメラーゼ活性を有する酵素(Bst DNA Polymerase,Full Length)を添加する(実施例5)ことで、添加しないとき(比較例1)と比較し、検出率が向上していることがわかる(実施例5:62.9%、比較例1:54.0%)。
【0095】
【符号の説明】
【0096】
1:反応装置
100:マイクロ流路チップ
101:ポリマー基板
102:カバーガラス(ガラス基板)
10:反応液保持部
11、21:流路
20:液体保持部
30:反応液合流部
40:液滴形成部
50:流路出口
60:分岐流路
70:液滴保持部
80:排出口
200:温調ブロック
300:ポンプ
【配列表】