(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-06
(45)【発行日】2023-02-14
(54)【発明の名称】研磨方法および研磨装置
(51)【国際特許分類】
B24B 37/013 20120101AFI20230207BHJP
H01L 21/304 20060101ALI20230207BHJP
B24B 49/12 20060101ALI20230207BHJP
G01B 11/06 20060101ALI20230207BHJP
【FI】
B24B37/013
H01L21/304 622S
B24B49/12
G01B11/06 Z
(21)【出願番号】P 2019038173
(22)【出願日】2019-03-04
【審査請求日】2021-11-29
(73)【特許権者】
【識別番号】000000239
【氏名又は名称】株式会社荏原製作所
(74)【代理人】
【識別番号】100118500
【氏名又は名称】廣澤 哲也
(74)【代理人】
【識別番号】100091498
【氏名又は名称】渡邉 勇
(72)【発明者】
【氏名】金馬 利文
【審査官】大光 太朗
(56)【参考文献】
【文献】特開2012-028554(JP,A)
【文献】特開2018-099772(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B24B 37/013
H01L 21/304
B24B 49/12
G01B 11/06
(57)【特許請求の範囲】
【請求項1】
基板を研磨するための研磨方法であって、
光検出器およびフラッシュ光源に光学的に連結された光学センサヘッドとともに研磨テーブルを回転させ、
前記光学センサヘッドを基板を横切って移動させながら、前記基板を前記研磨テーブル上の研磨パッドに押し付けて前記基板を研磨し、
前記光学センサヘッドが前記基板を横切って移動する間に、前記光検出器の第1の露光時間内に前記フラッシュ光源を複数回発光させて、光を前記光学センサヘッドを通じて前記基板に導き、かつ前記基板からの反射光を前記光学センサヘッドを通じて前記光検出器に取り込み、さらに前記光検出器の第2の露光時間内に前記フラッシュ光源を複数回発光させて、光を前記光学センサヘッドを通じて前記基板に導き、かつ前記基板からの反射光を前記光学センサヘッドを通じて前記光検出器に取り込み、
前記反射光のスペクトルを生成し、
前記スペクトルから前記基板の表面状態を検出する、研磨方法。
【請求項2】
前記第1の露光時間内に前記フラッシュ光源が発光する回数は、前記第2の露光時間内に前記フラッシュ光源が発光する回数と同じである、請求項1に記載の研磨方法。
【請求項3】
前記第2の露光時間は、前記第1の露光時間よりも長い、請求項1または2に記載の研磨方法。
【請求項4】
前記第1の露光時間は、前記光学センサヘッドが前記基板のエッジ部を横切って移動しているときの露光時間である、請求項3に記載の研磨方法。
【請求項5】
前記第2の露光時間は、前記光学センサヘッドが前記基板の中心部を横切って移動しているときの露光時間である、請求項3または4に記載の研磨方法。
【請求項6】
基板を研磨するための研磨装置であって、
研磨パッドを支持するための研磨テーブルと、
前記研磨テーブルを回転させるテーブルモータと、
前記研磨テーブル内に設置された光学センサヘッドと、
前記光学センサヘッドに光学的に連結されたフラッシュ光源および光検出器と、
基板を前記研磨パッドに押し付けて該基板を研磨するための研磨ヘッドと、
前記フラッシュ光源および前記光検出器の動作を制御する動作制御部を備え、
前記動作制御部は、
前記光学センサヘッドが前記基板を横切って移動する間に、前記フラッシュ光源に指令を発して、前記光検出器の第1の露光時間内に複数回発光させ、かつ前記光検出器に指令を発して前記基板からの反射光を前記光学センサヘッドを通じて前記光検出器に取り込ませ、さらに前記フラッシュ光源に指令を発して、前記光検出器の第2の露光時間内に複数回発光させ、かつ前記光検出器に指令を発して前記基板からの反射光を前記光学センサヘッドを通じて前記光検出器に取り込ませ、
前記反射光のスペクトルを生成し、
前記スペクトルから前記基板の表面状態を検出するように構成されている、研磨装置。
【請求項7】
前記第1の露光時間内に前記フラッシュ光源が発光する回数は、前記第2の露光時間内に前記フラッシュ光源が発光する回数と同じである、請求項6に記載の研磨装置。
【請求項8】
前記第2の露光時間は、前記第1の露光時間よりも長い、請求項6または7に記載の研磨装置。
【請求項9】
前記第1の露光時間は、前記光学センサヘッドが前記基板のエッジ部を横切って移動しているときの露光時間である、請求項8に記載の研磨装置。
【請求項10】
前記第2の露光時間は、前記光学センサヘッドが前記基板の中心部を横切って移動しているときの露光時間である、請求項8または9に記載の研磨装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ウェーハなどの基板を研磨する研磨方法および研磨装置に関し、特に光学式表面監視システムで基板の膜厚を測定しながら、基板を研磨する研磨方法および研磨装置に関する。
【背景技術】
【0002】
半導体デバイスの製造プロセスには、SiO2などの絶縁膜を研磨する工程や、銅、タングステンなどの金属膜を研磨する工程などの様々な工程が含まれる。ウェーハの研磨は研磨装置を使用して行われる。研磨装置は、一般に、研磨パッドを支持する研磨テーブルと、ウェーハを研磨パットに押し付ける研磨ヘッドと、スラリーを研磨パッド上に供給するスラリー供給ノズルを備えている。研磨テーブルを回転させながら、研磨テーブル上の研磨パッドにスラリーが供給され、研磨ヘッドは、ウェーハを研磨パットに押し付ける。ウェーハは、スラリーの存在下で研磨パッドと摺接される。ウェーハの表面は、スラリーの化学的作用と、スラリーに含まれる砥粒の機械的作用との組み合わせにより平坦化される。
【0003】
ウェーハの研磨は、その表面を構成する膜(絶縁膜、金属膜、シリコン層など)の厚さが所定の目標値に達したときに終了される。研磨装置は、絶縁膜やシリコン層などの非金属膜の厚さを測定するために、一般に、光学式表面監視システムを備える。この光学式表面監視システムは、光源から発せられた光をウェーハの表面に導き、ウェーハからの反射光の強度を分光器で測定し、反射光のスペクトルを解析することで、ウェーハの表面状態を検出(例えば、ウェーハの膜厚を測定、またはウェーハの表面を構成する膜の除去を検出)するように構成される(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
最近では、光源には、キセノンフラッシュランプが使用される傾向がある。このキセノンフラッシュランプは、数マイクロ秒オーダーの点灯時間を有するパルス点灯光源である。
図5は、キセノンフラッシュランプの光の強度と波長の関係を示すスペクトルを示す図である。キセノンフラッシュランプは、約200nm~1100nmの多波長の光を発することが可能である。
【0006】
しかしながら、
図5に示すように、200nm~250nmの波長範囲での光の強度は低い。このため、光学式表面監視システムは、短波長の光を利用した膜厚の測定を有効に行うことが難しい。
【0007】
そこで、本発明は、キセノンフラッシュランプなどのフラッシュ光源の光の強度を補強して、ウェーハなどの基板の膜厚を正確に測定することができる研磨方法および研磨装置を提供する。
【課題を解決するための手段】
【0008】
一態様では、基板を研磨するための研磨方法であって、光検出器およびフラッシュ光源に光学的に連結された光学センサヘッドとともに研磨テーブルを回転させ、前記光学センサヘッドを基板を横切って移動させながら、前記基板を前記研磨テーブル上の研磨パッドに押し付けて前記基板を研磨し、前記光学センサヘッドが前記基板を横切って移動する間に、前記光検出器の第1の露光時間内に前記フラッシュ光源を複数回発光させて、光を前記光学センサヘッドを通じて前記基板に導き、かつ前記基板からの反射光を前記光学センサヘッドを通じて前記光検出器に取り込み、さらに前記光検出器の第2の露光時間内に前記フラッシュ光源を複数回発光させて、光を前記光学センサヘッドを通じて前記基板に導き、かつ前記基板からの反射光を前記光学センサヘッドを通じて前記光検出器に取り込み、前記反射光のスペクトルを生成し、前記スペクトルから前記基板の表面状態を検出する、研磨方法が提供される。
【0009】
一態様では、前記第1の露光時間内に前記フラッシュ光源が発光する回数は、前記第2の露光時間内に前記フラッシュ光源が発光する回数と同じである。
一態様では、前記第2の露光時間は、前記第1の露光時間よりも長い。
一態様では、前記第1の露光時間は、前記光学センサヘッドが前記基板のエッジ部を横切って移動しているときの露光時間である。
一態様では、前記第2の露光時間は、前記光学センサヘッドが前記基板の中心部を横切って移動しているときの露光時間である。
【0010】
一態様では、基板を研磨するための研磨装置であって、研磨パッドを支持するための研磨テーブルと、前記研磨テーブルを回転させるテーブルモータと、前記研磨テーブル内に設置された光学センサヘッドと、前記光学センサヘッドに光学的に連結されたフラッシュ光源および光検出器と、基板を前記研磨パッドに押し付けて該基板を研磨するための研磨ヘッドと、前記フラッシュ光源および前記光検出器の動作を制御する動作制御部を備え、前記動作制御部は、前記光学センサヘッドが前記基板を横切って移動する間に、前記フラッシュ光源に指令を発して、前記光検出器の第1の露光時間内に複数回発光させ、かつ前記光検出器に指令を発して前記基板からの反射光を前記光学センサヘッドを通じて前記光検出器に取り込ませ、さらに前記フラッシュ光源に指令を発して、前記光検出器の第2の露光時間内に複数回発光させ、かつ前記光検出器に指令を発して前記基板からの反射光を前記光学センサヘッドを通じて前記光検出器に取り込ませ、前記反射光のスペクトルを生成し、前記スペクトルから前記基板の表面状態を検出するように構成されている、研磨装置が提供される。
【0011】
一態様では、前記第1の露光時間内に前記フラッシュ光源が発光する回数は、前記第2の露光時間内に前記フラッシュ光源が発光する回数と同じである。
一態様では、前記第2の露光時間は、前記第1の露光時間よりも長い。
一態様では、前記第1の露光時間は、前記光学センサヘッドが前記基板のエッジ部を横切って移動しているときの露光時間である。
一態様では、前記第2の露光時間は、前記光学センサヘッドが前記基板の中心部を横切って移動しているときの露光時間である。
【発明の効果】
【0012】
本発明によれば、光検出器の各露光時間内にフラッシュ光源が複数回発光する。したがって、光検出器は、1つの露光時間内に基板からの反射光を複数回取り込む。反射光の強度は光検出器内で重畳され、各露光時間内での反射光の強度が増加する。本発明によれば、フラッシュ光源の光の強度が低い波長範囲内での反射光の強度が補強され、結果として、膜厚の正確な測定が達成できる。
【図面の簡単な説明】
【0013】
【
図2】
図1に示す研磨装置の詳細な構成の一実施形態を示す断面図である。
【
図3】フラッシュ光源の発光タイミングと、光検出器の光検出タイミングの一実施形態を示す図である。
【
図4】フラッシュ光源の発光タイミングと、光検出器の光検出タイミングの他の実施形態を示す図である。
【
図5】キセノンフラッシュランプの光の強度と波長の関係を示すスペクトルを示す図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態について説明する。
図1は、研磨装置の一実施形態を示す模式図である。
図1に示すように、研磨装置は、研磨パッド2を支持する研磨テーブル3と、基板の一例であるウェーハWを研磨パッド2に押し付ける研磨ヘッド1と、研磨テーブル3を回転させるテーブルモータ6と、研磨パッド2上にスラリーを供給するためのスラリー供給ノズル5を備えている。
【0015】
研磨ヘッド1はヘッドシャフト10に連結されており、ヘッドシャフト10とともに研磨ヘッド1は矢印で示す方向に回転する。研磨テーブル3はテーブルモータ6に連結されており、テーブルモータ6は研磨テーブル3および研磨パッド2を矢印で示す方向に回転させるように構成されている。研磨装置は、研磨テーブル3の回転角度を検出するロータリーエンコーダ11を備えている。ロータリーエンコーダ11はテーブルモータ6に連結されている。
【0016】
ウェーハWは次のようにして研磨される。研磨テーブル3および研磨ヘッド1を
図1の矢印で示す方向に回転させながら、スラリー供給ノズル5からスラリーが研磨テーブル3上の研磨パッド2の研磨面2aに供給される。ウェーハWは研磨ヘッド1によって回転されながら、研磨パッド2上にスラリーが存在した状態でウェーハWは研磨パッド2の研磨面2aに押し付けられる。ウェーハWの表面は、スラリーの化学的作用と、スラリーに含まれる砥粒による機械的作用により研磨される。
【0017】
研磨装置は、ウェーハWの表面状態を検出する光学的表面監視システム40を備えている。光学的表面監視システム40は、光学センサヘッド7と、フラッシュ光源44と、分光器47と、動作制御部9を備えている。光学センサヘッド7、フラッシュ光源44、および分光器47は研磨テーブル3に取り付けられており、研磨テーブル3および研磨パッド2とともに一体に回転する。光学センサヘッド7の位置は、研磨テーブル3および研磨パッド2が一回転するたびに研磨パッド2上のウェーハWの表面を横切る位置である。
【0018】
図2は、
図1に示す研磨装置の詳細な構成の一実施形態を示す断面図である。ヘッドシャフト10は、ベルト等の連結手段17を介して研磨ヘッドモータ18に連結されて回転されるようになっている。このヘッドシャフト10の回転により、研磨ヘッド1が矢印で示す方向に回転する。
【0019】
分光器47は、光検出器48を備えている。一実施形態では、光検出器48は、CCDまたはCMOSなどのイメージセンサである。光学センサヘッド7は、フラッシュ光源44および光検出器48に光学的に連結されている。光検出器48は動作制御部9に電気的に接続されている。
【0020】
光学的表面監視システム40は、フラッシュ光源44から発せられた光をウェーハWの表面に導く投光用光ファイバーケーブル31と、ウェーハWからの反射光を受け、反射光を分光器47に送る受光用光ファイバーケーブル32をさらに備えている。投光用光ファイバーケーブル31の先端および受光用光ファイバーケーブル32の先端は、研磨テーブル3内に位置している。
【0021】
投光用光ファイバーケーブル31の先端および受光用光ファイバーケーブル32の先端は、光をウェーハWの表面に導き、かつウェーハWからの反射光を受ける光学センサヘッド7を構成する。投光用光ファイバーケーブル31の他端はフラッシュ光源44に接続され、受光用光ファイバーケーブル32の他端は分光器47に接続されている。分光器47は、ウェーハWからの反射光を波長に従って分解し、所定の波長範囲に亘って反射光の強度を測定するように構成されている。
【0022】
フラッシュ光源44は、光を投光用光ファイバーケーブル31を通じて光学センサヘッド7に送り、光学センサヘッド7は光をウェーハWに向けて放つ。ウェーハWからの反射光は光学センサヘッド7に受けられ、受光用光ファイバーケーブル32を通じて分光器47に送られる。分光器47は反射光をその波長に従って分解し、各波長での反射光の強度を測定する。分光器47は、反射光の強度の測定データを動作制御部9に送る。
【0023】
動作制御部9は、反射光の強度の測定データから反射光のスペクトルを生成する。このスペクトルは、反射光の強度と波長との関係を示し、スペクトルの形状はウェーハWの膜厚に従って変化する。動作制御部9は、反射光のスペクトルからウェーハWの膜厚を決定する。反射光のスペクトルからウェーハWの膜厚を決定する方法には、公知の技術が用いられる。例えば、反射光のスペクトルに対してフーリエ変換を実行し、得られた周波数スペクトルから膜厚を決定する。
【0024】
ウェーハWの研磨中、光学センサヘッド7は、研磨テーブル3が一回転するたびに、研磨パッド2上のウェーハWの表面を横切りながら、ウェーハW上の複数の測定点に光を照射し、ウェーハWからの反射光を受ける。動作制御部9は、反射光の強度の測定データからウェーハWの膜厚を決定し、膜厚に基づいてウェーハWの研磨動作を制御する。例えば、動作制御部9は、ウェーハWの膜厚が目標膜厚に達した時点である研磨終点を決定する。
【0025】
一実施形態では、動作制御部9は、反射光のスペクトルの変化からウェーハWの表面を構成する膜が除去された状態を検出してもよい。この場合は、動作制御部9は、ウェーハWの表面を構成する膜が除去された時点である研磨終点を決定する。動作制御部9は、反射光のスペクトルからウェーハWの膜厚を決定しなくてもよい。
【0026】
研磨テーブル3に、その上面で開口する第1の孔50Aおよび第2の孔50Bを有している。また、研磨パッド2には、これら孔50A,50Bに対応する位置に通孔51が形成されている。孔50A,50Bと通孔51とは連通し、通孔51は研磨面2aで開口している。第1の孔50Aは液体供給ライン53に連結されており、第2の孔50Bはドレインライン54に連結されている。投光用光ファイバーケーブル31の先端および受光用光ファイバーケーブル32の先端から構成される光学センサヘッド7は、第1の孔50Aに配置されており、かつ通孔51の下方に位置している。
【0027】
本実施形態では、フラッシュ光源44として、キセノンフラッシュランプが使用されている。投光用光ファイバーケーブル31は、フラッシュ光源44によって発せられた光をウェーハWの表面まで導く光伝送部である。投光用光ファイバーケーブル31および受光用光ファイバーケーブル32の先端は、第1の孔50A内に位置しており、ウェーハWの被研磨面の近傍に位置している。投光用光ファイバーケーブル31および受光用光ファイバーケーブル32の各先端から構成される光学センサヘッド7は、研磨ヘッド1に保持されたウェーハWを向いて配置される。研磨テーブル3が回転するたびにウェーハWの複数の測定点に光が照射される。本実施形態では、1つの光学センサヘッド7のみが設けられているが、複数の光学センサヘッド7が設けられてもよい。
【0028】
ウェーハWの研磨中、研磨テーブル3が一回転するたびに、光学センサヘッド7はウェーハWを横切って移動する。光学センサヘッド7がウェーハWの下方にある間、フラッシュ光源44は、所定の間隔で光を発する。光は、投光用光ファイバーケーブル31を通ってウェーハWの表面(被研磨面)に導かれ、ウェーハWからの反射光は受光用光ファイバーケーブル32を通って分光器47に受けられ、光検出器48に取り込まれる。光検出器48は、各波長での反射光の強度を所定の波長範囲に亘って測定し、得られた測定データを動作制御部9に送る。この測定データは、ウェーハWの膜厚に従って変化する膜厚信号である。動作制御部9は、波長ごとの光の強度を表わす反射光のスペクトルを測定データから生成し、さらに反射光のスペクトルからウェーハWの膜厚を決定する。
【0029】
ウェーハWの研磨中は、リンス液として純水が液体供給ライン53を介して第1の孔50Aに供給され、さらに第1の孔50Aを通って通孔51に供給される。純水は、ウェーハWの表面(被研磨面)と光学センサヘッド7との間の空間を満たす。純水は、第2の孔50Bに流れ込み、ドレインライン54を通じて排出される。第1の孔50Aおよび通孔51内を流れる純水は、スラリーが第1の孔50Aに浸入することを防止し、これにより光路が確保される。
【0030】
液体供給ライン53およびドレインライン54は、ロータリージョイント19に接続されており、さらに研磨テーブル3内を延びている。液体供給ライン53の一端は、第1の孔50Aに接続されている。液体供給ライン53の他端は、図示しない純水供給源に接続されている。純水は、液体供給ライン53を通って第1の孔50Aに供給され、さらに第1の孔50Aを通って通孔51に供給される。
【0031】
ドレインライン54の一端は、第2の孔50Bに接続されている。通孔51に供給された純水は、第2の孔50Bを流れ、さらにドレインライン54を通って研磨装置の外に排出される。液体供給ライン53には開閉弁68が取り付けられている。開閉弁68は、電磁弁または電動弁である。開閉弁68は、動作制御部9に電気的に接続されている。動作制御部9は、ウェーハWの研磨中、研磨テーブル3の回転に同期して開閉弁68を周期的に開閉する。具体的には、ウェーハWが通孔51の上にないときは、動作制御部9は開閉弁68を閉じ、ウェーハWが通孔51の上にあるときは、動作制御部9は開閉弁68を開く。
【0032】
ロータリーエンコーダ11は動作制御部9に電気的に接続されており、ロータリーエンコーダ11の出力信号(すなわち、研磨テーブル3の回転角度の検出値)は、動作制御部9に送られる。動作制御部9は、ロータリーエンコーダ11の出力信号、すなわち研磨テーブル3の回転角度から、研磨ヘッド1に対する光学センサヘッド7の相対位置を決定し、光学センサヘッド7の相対位置に基づいて、フラッシュ光源44の発光タイミング、および光検出器48の光検出タイミングを制御する。
【0033】
動作制御部9は、ウェーハWの研磨中、フラッシュ光源44および光検出器48に指令を発して、フラッシュ光源44の発光動作および光検出器48の光検出動作を制御する。すなわち、動作制御部9は、光学センサヘッド7がウェーハWの下方にあるときに、発光トリガー信号をフラッシュ光源44に送信し、かつ光検出トリガー信号を光検出器48に送信する。フラッシュ光源44は、発光トリガー信号を受けると、光を瞬間的に発する。光検出器48は、光検出トリガー信号を受けると、反射光の取り込みを開始し、光検出トリガー信号の送信が停止されると、反射光の取り込みを停止する。
【0034】
動作制御部9は、互いに同期する発光トリガー信号および光検出トリガー信号を生成する。光学センサヘッド7がウェーハWを横切って移動している間、フラッシュ光源44は、複数の発光トリガー信号を受けて複数回発光し、同時に、光検出器48は、複数の光検出トリガー信号を受けてウェーハWからの反射光を複数回取り込む。光学センサヘッド7がウェーハWを横切って移動している間にフラッシュ光源44が受け取る発光トリガー信号の数は、光検出器48が受け取る光検出トリガー信号の数よりも多い。すなわち、光学センサヘッド7がウェーハWを横切って移動している間にフラッシュ光源44が発光する回数は、光検出器48が反射光を取り込む回数よりも多い。
【0035】
図3は、フラッシュ光源44の発光タイミングと、光検出器48の光検出タイミングの一実施形態を示す図である。
図3に示す実施形態では、光学センサヘッド7がウェーハWを横切って移動している間、フラッシュ光源44は27回発光し、光検出器48は反射光を取り込む動作を9回実行する。
図3から分かるように、光検出トリガー信号は、発光トリガー信号に同期している。
【0036】
本明細書では、光検出器48が反射光を取り込む動作の1回当たりの時間を、露光時間という。露光時間の間は、光検出器48は反射光を取り込み続ける(反射光を検出し続ける)。光検出器48は、電子シャッター機能を有している。すなわち、光検出器48は、光検出トリガー信号を受けると、電子シャッターが開き、光検出トリガー信号の送信が停止されると、電子シャッターが閉じる。電子シャッターが開いた時点から、電子シャッターが閉じた時点までの時間が、露光時間である。
【0037】
図3に示す実施形態では、光学センサヘッド7がウェーハWを横切って移動している時間(以下、1スキャン時間という)内に、9つの露光時間E1~E9が存在する。これら9つの露光時間E1~E9は、互いに同じ長さである。9つの露光時間E1~E9は、光学センサヘッド7がウェーハW上の9つの領域R1~R9を横切って移動しているときの露出時間である。領域R1,R9は、ウェーハWのエッジ部であり、領域R4,R5,R6は、ウェーハWの中心部であり、領域R2,R3,R7,R8は、ウェーハWのエッジ部と中心部の間に位置する中間部である。
【0038】
露光時間E1~E9のそれぞれにおいてフラッシュ光源44が発光する回数は互いに同じである。本実施形態では、1つの露光時間内に、フラッシュ光源44は3回発光する。したがって、光検出器48は、1つの露光時間内に反射光を3回取り込む。反射光の強度は光検出器48内で重畳され、各露光時間内での反射光の強度が増加する。本実施形態によれば、フラッシュ光源44の光の強度が低い波長範囲内での反射光の強度が補強され、結果として、膜厚の正確な測定が達成できる。
【0039】
本実施形態によれば、1つの露出時間内で検出される複数の反射光に含まれる膜厚情報が重畳される。各露出時間内に検出された複数の反射光の強度のばらつきは小さいため、膜厚の決定の精度は実質的に低下しない。また、本実施形態によれば、複数の反射光の強度が重畳されるので、反射光の強度を平均化する効果と同等の効果が得られる。
【0040】
本実施形態では、光学センサヘッド7の1スキャン時間内に、9つの露光時間E1~E9が存在するが、本発明は本実施形態に限定されない。一実施形態では、光学センサヘッド7の1スキャン時間内に、8つ以下の露光時間が存在してもよいし、他の実施形態では、光学センサヘッド7の1スキャン時間内に、10以上の露光時間が存在してもよい。
【0041】
図4は、フラッシュ光源44の発光タイミングと、光検出器48の光検出タイミングの他の実施形態を示す図である。特に説明しない本実施形態の詳細は、
図3を参照して説明した実施形態と同じであるので、その重複する説明を省略する。
図4に示す実施形態では、学センサヘッドの1スキャン時間内に、7つの露光時間E1~E7が存在する。7つの露光時間E1~E7は、光学センサヘッド7がウェーハW上の7つの領域R1~R7を横切って移動しているときの露出時間である。領域R1,R7は、ウェーハWのエッジ部であり、領域R4は、ウェーハWの中心部であり、領域R2,R3,R5,R6は、ウェーハWのエッジ部と中心部の間に位置する中間部である。
【0042】
露光時間E1~E7のそれぞれにおいてフラッシュ光源44が発光する回数は互いに同じであるが、露光時間E4は、他の露光時間E1,E2,E3,E5,E6,E7のそれぞれよりも長い。
【0043】
露光時間E4は、光学センサヘッド7がウェーハWの中心部R4を横切って移動しているときの露光時間である。一般に、ウェーハWの膜厚プロファイルは、ウェーハWの中心部R4では概ね一定である。よって、ウェーハWの中心部R4に対応する露光時間E4は、他の露光時間よりも長くしても、ウェーハWの膜厚プロファイルの制御にはほとんど影響しない。本実施形態によれば、光学センサヘッド7の1スキャン時間内のフラッシュ光源44の発光回数が低減されるので、フラッシュ光源44の寿命が長くなる。さらに、光学センサヘッド7の1スキャン時間内に取得される膜厚データ量が低減されるので、動作制御部9の処理負荷を低減することができる。
【0044】
上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
【符号の説明】
【0045】
1 研磨ヘッド
2 研磨パッド
3 研磨テーブル
5 スラリー供給ノズル
6 テーブルモータ
7 光学センサヘッド
9 動作制御部
10 ヘッドシャフト
17 連結手段
18 研磨ヘッドモータ
19 ロータリージョイント
31 投光用光ファイバーケーブル
32 受光用光ファイバーケーブル
40 光学的表面監視システム
44 フラッシュ光源
47 分光器
48 光検出器
50A 第1の孔
50B 第2の孔
51 通孔
53 液体供給ライン
54 ドレインライン
68 開閉弁