(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-15
(45)【発行日】2023-02-24
(54)【発明の名称】触媒製造用金属錯体分散液及び触媒の製造方法
(51)【国際特許分類】
B01J 37/34 20060101AFI20230216BHJP
B01J 37/04 20060101ALI20230216BHJP
B01J 23/46 20060101ALI20230216BHJP
B01D 53/86 20060101ALI20230216BHJP
C07F 15/00 20060101ALN20230216BHJP
【FI】
B01J37/34 ZAB
B01J37/04 102
B01J23/46 311A
B01D53/86 222
C07F15/00 B
(21)【出願番号】P 2019036459
(22)【出願日】2019-02-28
【審査請求日】2022-01-20
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成29年度、国立研究開発法人新エネルギー・産業技術総合開発機構「エネルギー・環境新技術先導プログラム/極微小液滴が形成する反応場を用いたナノ材料の構造・機能制御技術の研究開発」委託研究、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】301021533
【氏名又は名称】国立研究開発法人産業技術総合研究所
(73)【特許権者】
【識別番号】000104607
【氏名又は名称】株式会社キャタラー
(74)【代理人】
【識別番号】110002468
【氏名又は名称】弁理士法人後藤特許事務所
(72)【発明者】
【氏名】寺本 慶之
(72)【発明者】
【氏名】脇坂 昭弘
(72)【発明者】
【氏名】二橋 裕樹
(72)【発明者】
【氏名】内藤 功
【審査官】森坂 英昭
(56)【参考文献】
【文献】国際公開第2008/038834(WO,A1)
【文献】特開2018-130659(JP,A)
【文献】国際公開第2017/014108(WO,A1)
【文献】国際公開第2015/060342(WO,A1)
【文献】国際公開第2016/052728(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B01J 21/00 - 38/74
B01D 53/86
C07F 15/00
(57)【特許請求の範囲】
【請求項1】
触媒製造用金属錯体分散液の製造方法であって、
少なくとも1種の金属塩を含む溶液又は分散液を有機塩基を含む溶液又は分散液に
媒体気体存在下において静電噴霧し、前記金属塩を含む溶液又は分散液を、前記有機塩基を含む溶液又は分散液と反応させることで、触媒製造用金属錯体分散液を生成する、
ことを特徴とする触媒製造用金属錯体分散液の製造方法。
【請求項2】
請求項1
に記載の触媒製造用金属錯体分散液の製造方法であって、
前記金属塩が排気ガス浄化用として用いられる触媒用金属の金属塩である、触媒製造用金属錯体分散液の製造方法。
【請求項3】
請求項
2に記載の触媒製造用金属錯体分散液の製造方法であって、
前記金属塩が硝酸ロジウムであり、前記有機塩基が水酸化テトラメチルアンモニウムである、触媒製造用金属錯体分散液の製造方法。
【請求項4】
請求項1から
3のいずれか1項に記載の触媒製造用金属錯体分散液の製造方法によって製造された触媒製造用金属錯体分散液を担体に担持させて触媒を製造する、ことを特徴とする触媒の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、触媒製造用金属錯体分散液及び触媒の製造方法に関する。
【背景技術】
【0002】
微小サイズの金属粒子(特に、金属ナノ粒子)は、燃料電池電極、燃料改質触媒、排気ガス浄化用触媒等に利用されている。一例として、排気ガス浄化用触媒の担体に対して高い担持効率で担持させることのできる金属複合粒子の分散液を製造する方法が提案されている(特許文献1参照)。特許文献1では、分散液中に得られた金属複合粒子を担体に担持した後、これを焼成することによって、排気ガス浄化用触媒を形成することができる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
排気ガス浄化用触媒の製造に用いられる、特許文献1に記載の金属複合粒子分散液の製造方法では、例えば、高分子量の分散剤と還元剤とを含む非水性溶媒中に金属を添加して生じる還元反応により金属粒子の分散液を得る方法に比べて、分散液中における金属複合粒子の分散性や、担体への担持効率を改善することができるようになった。
【0005】
特に、排気ガス浄化用途等に用いられる触媒では、良好な触媒効率を得るために、担体に担持される金属粒子のサイズが可能な限り揃っていることが望まれる。このためには、金属粒子を担体に担持するために用いる分散液が担持後の金属粒子のサイズを均一化できるものであることが要求される。しかしながら、このような要求に対して、特許文献1に記載の製造方法には、更なる改良の余地があった。
【0006】
そこで、本発明は、触媒担体に担持される金属粒子のサイズの均一化が可能な触媒製造用金属錯体分散液の製造方法の提供を目的とする。
【課題を解決するための手段】
【0007】
本発明に係る触媒製造用金属錯体分散液の製造方法は、少なくとも1種の金属塩を含む溶液又は分散液を有機塩基を含む溶液又は分散液に静電噴霧し、前記金属塩を含む溶液又は分散液を、前記有機塩基を含む溶液又は分散液と反応させることで、触媒製造用金属錯体分散液を生成することを特徴とする。
【発明の効果】
【0008】
本発明によれば、触媒担体に担持される金属粒子のサイズの均一化が可能な触媒製造用金属錯体分散液の製造方法を提供することができる。
【図面の簡単な説明】
【0009】
【
図1】本発明の第1実施形態に係る製造装置を説明する構成図である。
【
図2】本発明の第2実施形態に係る製造装置を説明する構成図である。
【
図3】実施例1及び比較例1として得られた触媒製造用金属錯体の粒子径分布を比較する図である。
【
図4】実施例2及び比較例2として得られた触媒製造用金属錯体の粒子径分布を比較する図である。
【
図5】実施例3及び比較例3として得られた触媒製造用金属錯体の粒子径分布を比較する図である。
【
図6】実施例4及び比較例4として得られた触媒製造用金属錯体の粒子径分布を比較する図である。
【
図7】実施例5及び比較例5として得られた触媒製造用金属錯体の粒子径分布を比較する図である。
【
図8】ペレット触媒(実施例6及び比較例6)のNOx浄化性能評価結果を表した図である。
【発明を実施するための形態】
【0010】
本発明の実施形態に係る触媒製造用金属錯体分散液の製造方法は、少なくとも1種の金属塩を含む溶液又は分散液を有機塩基を含む溶液又は分散液に静電噴霧し、金属塩を含む溶液又は分散液を、有機塩基を含む溶液又は分散液と反応させることで触媒製造用金属錯体分散液を生成する、という方法である。
【0011】
本実施形態において、触媒とは、主に車両等に搭載される排気ガス浄化用触媒を表す。金属錯体とは、金属塩を含む溶液又は分散液と、有機塩基を含む溶液又は分散液とを反応させて生じた金属錯体であって、金属錯体分散液とは、金属錯体粒子の分散溶液を表す。
【0012】
以下、上述の製造方法を実現する第1実施形態及び第2実施形態について説明する。
【0013】
[第1実施形態]
<製造装置>
図1は、第1実施形態に係る触媒製造用金属錯体分散液の製造方法を実現するための製造装置1を説明する構成図である。
【0014】
製造装置1は、金属塩を含む溶液又は分散液を媒体液体存在下において有機塩基を含む溶液又は分散液に静電噴霧し、触媒製造用金属錯体分散液を得る装置である。第1実施形態において、金属塩を含む溶液又は分散液として、導入液L1が用いられる。また、有機塩基を含む溶液又は分散液として、有機塩基溶液L2が用いられる。
【0015】
図1に示すように、製造装置1は、有機塩基溶液L2及び媒体液体LLが貯留される反応器10と、反応器10の内部に導入液L1を導入する構成を有する原料供給部20と、反応器10の内部において電位差を形成する電位差形成部30とを備える。媒体液体LLは、良好な静電場を形成し、導入液L1の噴霧状態の液滴を形成しやすくするために用いられる液体である。
【0016】
本実施形態において、媒体液体LLは、導入液L1及び有機塩基溶液L2と非相溶であって低誘電率の液体である。本実施形態においては、媒体液体LLが反応器10における上側に位置し、有機塩基溶液L2が反応器10における下側に位置するような比重となるものが選択される。導入液L1、有機塩基溶液L2及び媒体液体LLの詳細については、後述する。
【0017】
反応器10は、上部が開口された有底筒状であり、内部には、有機塩基溶液L2及び媒体液体LLが相分離した状態で貯留される。反応器10の開口には、原料供給部20から反応器10の内部へ導入液L1を供給する供給管22が引き込まれており、反応時には、供給管22が引き込まれた状態で上部の開口が密閉可能とされている。
【0018】
原料供給部20は、導入液L1が貯留された供給源21と、供給源21からの導入液L1を反応器10へ供給するための供給管22とを備える。供給源21には、導入液L1が貯留された貯留タンクと、導入液L1を送液するためのインジェクタ等の構成が含まれる。
【0019】
供給管22の先端部23は、反応器10の内部に貯留された媒体液体LLの内部に達するように配置されている。先端部は、導入液L1を静電噴霧可能に構成されたエレクトロスプレーノズル(以下、ノズル24という)を構成する。ノズル24には、導入液L1を媒体液体LL中に導入するノズル口24aが形成されている。
【0020】
電位差形成部30は、反応器10において、有機塩基溶液L2とノズル24(ノズル口24a)との間に電位差を形成する。電位差形成部30は、反応器10において有機塩基溶液L2が貯留された底面11に配置された電極31と、ノズル24(ノズル口24a)と電極31との間に電圧を印加する電源32とを備える。
【0021】
電極31は、平板状に形成される。本実施形態では、電極31は、底面11の形状に合わせた円板状とされている。電極31は、底面11に配置されて、反応器10に貯留され有機塩基溶液L2に接触する。さらに、電極31は、ノズル24(ノズル口24a)に対して、電極31の中央部が反応器10の底面11の中心を通るX軸方向において、相互に対向する位置に配置される。これにより、有機塩基溶液L2の全体が通電され、有機塩基溶液L2そのものを電極として作用させることができる。
【0022】
本実施形態において、電源32は直流電源である。電源32は、導線を介して接続されたノズル24を電極31よりも高電位にするように構成されている。
【0023】
製造装置1では、媒体液体LL中に挿入されたノズル24のノズル口24aと電極31との距離は、W1に設定される。また、製造装置1では、媒体液体LLと有機塩基溶液L2との界面Bとノズル口24aとの距離は、W2に設定される。
【0024】
距離W1は、電場強度、或いは、噴霧状態の液滴を形成するためのプロセスに応じて、適宜、最適化することができる。また、距離W2は、反応器10の容器容量や電位差等に応じて、適宜、最適化することができる。
【0025】
<原料物質>
続いて、本実施形態に係る製造装置1を用いて実現される触媒製造用金属錯体分散液の製造方法において適用可能な原料物質について説明する。
【0026】
(導入液の組成)
導入液L1は、所定の溶媒に金属塩が溶解又は分散した液体である。所定の溶媒としては、有機塩基溶液L2と相溶する水溶液、又は水溶性溶媒であることが好ましく、水、又は水と親水性溶媒との混合液を用いることができる。親水性溶媒としては、メタノール、エタノール等の炭素数1~3の低級アルコール類、メチルエチルケトンなどのケトン類、N,N-ジメチルホルムアミド(DMF)、アセトン、又はこれらのうち2種類以上の混合物を用いることができる。
【0027】
また、ノズル24(ノズル口24a)から媒体液体LL中に噴霧されてできる液滴の表面張力を下げる観点から、親水性溶媒は、メタノール、エタノール、2-プロパノール等の炭素数1~3の低級アルコール類;アセトン、メチルエチルケトンなどのケトン類;又はこれらのうち2種類以上の混合物を含有していることが好ましい。
【0028】
また、有機塩基溶液L2と良好に相溶する観点から、溶媒は、水(単独)、水とエタノールとの混合液、DMF、アセトン等の水溶性溶媒と水との混合液であることが好ましい。
【0029】
・金属塩について
導入液L1に適用可能な金属塩を形成する金属イオンは、排気ガス浄化用として用いられる触媒用金属の金属イオンであって、白金、金、銀、銅、錫、ニッケル、鉄、パラジウム、亜鉛、鉄、コバルト、タングステン、ルテニウム、インジウム、モリブテン、ロジウム、及びバナジウムからなる群から選択される少なくとも一種の金属イオンを用いることができる。
【0030】
とりわけ、金属イオンとしては、排気ガス浄化用として用いられる触媒用金属の金属イオンであることが好ましく、より好ましくは、白金、パラジウム及びロジウムである。
【0031】
また、上記金属イオンによって水素原子を置換可能な酸としては、塩酸、硫酸、硝酸等の無機酸を使用できる。
【0032】
金属源としては、上述の金属のほか、上述の金属を含む複合塩、又は上述の金属を含む錯体化合物が使用できる。また、上述した金属の金属塩が2種類以上含まれた金属塩の混合物、上述の金属のうち2種類以上が含まれてなる複合塩、又は上述の金属のうち2種類以上が含まれる錯体化合物が使用できる。
【0033】
また、導入液L1中における金属塩の濃度は、0.01mol/L以上5mol/L以下の範囲とすると好ましいく、より好ましくは、2mol/L以下とすることである。金属塩濃度は、金属イオンの由来となる化合物の溶解度、金属錯体分散液の使用目的などに対応して適宜調整可能である。
【0034】
(有機塩基溶液の組成)
続いて、有機塩基溶液L2について説明する。有機塩基溶液L2は、親水性であって、導入液L1と相溶する溶媒であること、また、水溶性溶媒であることが好ましい。有機塩基溶液L2の溶媒の一例として、水、又は水と親水性溶媒との混合液を用いることができる。親水性溶媒としては、メタノール、エタノール等の炭素数1~3の低級アルコール類、メチルエチルケトンなどのケトン類、N,N-ジメチルホルムアミド(DMF)、アセトン、又はこれらのうち2種類以上の混合物を用いることができる。
【0035】
なかでも、導入液L1と相溶する観点から、有機塩基溶液L2の溶媒は、有機塩基溶液L2と良好に相溶する観点から、水(単独)、水とエタノールとの混合液、DMF、アセトン等の水溶性溶媒と水との混合液であることが好ましい。なお、有機塩基溶液L2の溶媒と導入液L1に用いられる溶媒とが同一であることが好ましい。
【0036】
・有機塩基について
有機塩基溶液L2に含まれる有機塩基の種類は、特に限定されないが、低分子量の有機塩基であることが好ましい。低分子量の有機塩基を使用することにより、金属複合粒子を高濃度で含むことができる。例えば、有機塩基の分子量が、500以下であることが好ましく、400以下であることが特に好ましい。有機塩基の分子量の下限としては、例えば、30とする。
【0037】
有機塩基は親水性であることが好ましい。より具体的には、25℃で水100gに0.1g以上溶解する有機塩基であることが好ましい。また、有機塩基の主鎖に含まれる炭素の数が20以下であることが好ましい。さらに、有機塩基はその構造中にハロゲンと芳香環とを含まないことが好ましい。
【0038】
具体的には、有機塩基として、アミノアルコール、シクロアルキルアミン、環状アミン、アルキルアミン、水酸化テトラアルキルアンモニウム等を挙げることができる。より具体的には、有機塩基として、水酸化テトラメチルアンモニウム(TMAH)、水酸化テトラエチルアンモニウム(TEAH)、水酸化テトラプロピルアンモニウム(TPAH)、水酸化テトラブチルアンモニウム(TBAH)、モノエタノールアミン、N,N-ジメチル-2-アミノエタノール、3-アミノ-1-プロパノール、シクロヘキシルアミン、ジアザビシクロウンデセン(DBU)、ジアザビシクロノネン(DBN)、プロピルアミン、メチルアミン、エチルアミン、ジメチルアミン、トリエチルアミン等を使用することができる。
【0039】
なかでも、有機塩基溶液L2の溶媒に対する分散性が向上する観点から、有機塩基としては、TMAH、TEAH、TPAH、TBAH、モノエタノールアミン、N,N-ジメチル-2-アミノエタノール、3-アミノ-1-プロパノール、シクロヘキシルアミン、DBU、DBN、及びプロピルアミンを使用することが好ましい。
【0040】
また、同様に、有機塩基溶液L2の溶媒に対する分散性が向上する観点から、有機塩基としては、TMAH、TEAH、TPAH、TBAH、モノエタノールアミン、N,N-ジメチル-2-アミノエタノール、3-アミノ-1-プロパノール、及びシクロヘキシルアミンを使用することが、特に好ましい。
【0041】
導入液L1と有機塩基溶液L2との反応によって得られる金属錯体に含まれる複数種の金属の合計モル数と有機塩基のモル数との比率は、特に限定されないが、例えば、1:0.1~10、1:0.5~7、又は1:1~5とすることができる。
【0042】
有機塩基溶液L2は、有機塩基を1質量%以上含んでいることが好ましい。有機塩基の含有量の上限は特に限定されないが、例えば、20質量%、10質量%、5質量%等を挙げることができる。
【0043】
(媒体液体について)
第1実施形態に用いられる媒体液体LLとしては、電場印加状態において、導入液L1の良好な液滴を生じる観点から、比誘電率の低い低誘電率液体を使用することができる。媒体液体LLは、導入液L1及び有機塩基溶液L2のどちらにも相溶しない有機溶剤系であることが好ましい。さらに、媒体液体LLは、非水溶性の有機溶媒であるとことが好ましい。また、媒体液体LLの比誘電率は、導入液L1及び有機塩基溶液L2の比誘電率よりも低くなっていると好ましい。
【0044】
本実施形態においては、媒体液体LLと有機塩基溶液L2は、媒体液体LLが反応器10における上側に位置し、有機塩基溶液L2が反応器10における下側に位置するような比重のものが選択される。
【0045】
媒体液体LLの比誘電率は、25以下、好ましくは20以下、より好ましくは15以下、さらに好ましくは10以下、さらに好ましくは5以下であるとよい。媒体液体LLの一例としては、ヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカンなどのノルマルパラフィン系炭化水素、イソオクタン、イソデカン、イソドデカンなどのイソパラフィン系炭化水素、シクロヘキサン、シクロオクタン、シクロデカン、デカリンなどのシクロパラフィン系炭化水素、流動パラフィン、ケロシンなどの炭化水素系溶媒;ベンゼン、トルエン、キシレンなどの芳香族系溶媒;クロロホルム、四塩化炭素などの塩素系溶媒;パーフルオロカーボン、パーフルオロポリエーテル、ハイドロフルオロエーテルなどのフッ素系溶媒;1-ブタノール(比誘電率17.51)、1-ペンタノール(比誘電率13.90)、1-オクタノール(比誘電率10.30)などのアルコール系溶媒;並びにこれらのうち2種類以上の混合物であるとよい。
【0046】
媒体液体LLとして用いることのできるイソパラフィン系炭化水素としては、例えば、出光興産株式会社製のIPソルベント1016、又はIPクリーンLX(登録商標)、丸善石油化学株式会社製のマルカゾールR、エクソンモービル社製のアイソパーH(登録商標)、アイソパーE(登録商標)、又はアイソパーL(登録商標)などが挙げられる。
【0047】
<触媒製造用金属錯体分散液の製造方法>
続いて、
図1を用いて、製造装置1による触媒製造用金属錯体分散液の製造方法について説明する。
【0048】
製造装置1による触媒製造用金属錯体分散液の製造方法によれば、電位差形成部30によって、ノズル口24aと電極31との間に電位差が形成される。これにより、ノズル口24aと媒体液体LLと有機塩基溶液L2との間に静電場が形成され、導入液L1がノズル口24aから静電噴霧される。すなわち、導入液L1は、当該静電場によって、媒体液体LL中において、帯電された微細な液滴Dを形成する。
【0049】
微細な液滴Dとなった導入液L1は、媒体液体LL中に形成された電場勾配に沿って、有機塩基溶液L2と媒体液体LLとの界面Bに向かって移動する。導入液L1の液滴Dが界面Bにおいて有機塩基溶液L2と接触することにより、有機塩基溶液L2との中和反応によって、金属錯体が形成される(本実施形態においては、触媒製造用金属錯体という)。反応によって生成された触媒製造用金属錯体は、有機塩基溶液L2中に分散されて、分散溶液を形成する。
【0050】
<製造装置1における各パラメータの制御について>
第1実施形態において、静電噴霧後に得られる触媒製造用金属錯体の粒子径分布幅及び平均粒子径は、媒体液体LL中における導入液L1の液滴Dのサイズ、液滴Dが有機塩基溶液L2にて拡散する速度等に起因する。
【0051】
これらは、導入液L1及び有機塩基溶液L2に適用する溶媒の種類、導入液L1の表面張力、粘度、比誘電率、イオン強度等の導入液L1の特性、ノズル口24aからの導入量(すなわち、供給源21からノズル口24aに向かう導入液L1の送液速度)、ノズル口24aと電極31との距離W1、媒体液体LLと有機塩基溶液L2との界面Bとノズル口24aとの距離W2、ノズル口24aと電極31との間の電位差、導入液L1の濃度、及び有機塩基溶液L2の濃度等によって調整することができる。
【0052】
上述した条件のなかでは、例えば、導入液L1の表面張力を低下させることによって、液滴Dのサイズを小さくできる。また、導入液L1のイオン強度を低下させることによって、液滴Dのサイズを小さくできる。また、導入液L1の比誘電率を低下させることによって、液滴Dのサイズを小さくできる。また、ノズル24(ノズル口24a)及び電極31間の電位差を増加させることによっても液滴Dのサイズを小さくできる。
【0053】
上述のように、導入液L1の液滴Dのサイズを調整することによって、分散液中に得られる触媒製造用金属錯体の粒子径分布幅及び平均粒子径を調整することができる。ひいては、焼成後に得られる触媒用金属ナノ粒子の粒子径分布幅及び平均粒子径を調整することが可能となる。
【0054】
具体的には、触媒製造用金属錯体から得られる触媒用金属ナノ粒子の大きさをナノメートルオーダとする観点から、導入液L1の液滴Dのサイズは、0.1μm以上100μm以下の範囲とすることが好ましく、1μm以上10μm以下の範囲とすることがより好ましい。
【0055】
媒体液体LL中における導入液L1の液滴サイズを上記サイズにするためには、ノズル口24aと電極31との間の距離W1は、1cm以上であるとよく、2cm以上であるとより好ましい。距離W1の上限は、反応器10の容量に依存する。媒体液体LLと有機塩基溶液L2との界面Bとノズル口24aとの間の距離W2は、反応器10の容量、電位差等に応じて適宜調整することができる。
【0056】
ノズル24側の電位は、-30kV以上30kV以下の範囲に設定することができる。電極31側の電位もまた-30kV以上30kV以下の範囲に設定することができる。ノズル口24aと電極31との間の電位差は、所望とする触媒製造用金属錯体のサイズに応じて調整可能である。
【0057】
例えば、ノズル口24aと電極31との間の電位差は、絶対値にて0.3kV以上30kV以下の範囲に設定することができる。また、媒体液体LL中における導入液L1の液滴サイズの安定性を考慮すると、ノズル口24aと電極31との間の電位差は、絶対値にて2.5kV以上であると好ましい。また、製造装置1の安全性及びコストを考慮すると、絶対値にて10kV以下であるとことが好ましい。
【0058】
ノズル24からの導入液L1の導入量は、所望とする反応量に適合して選択可能である。例えば、反応量を100mLとする場合であれば、導入液L1の送液速度は、0.001mL/min以上0.1mL/min以下の範囲に設定することが好ましい。
【0059】
上述のようにして得られた触媒製造用金属錯体分散液は、所定の濃度に希釈又は濃縮可能であり、使用用途に応じて、濃度の調整が適宜可能である。さらに、触媒製造用金属錯体分散液には、使用用途に応じて、高分子樹脂分散剤、顔料、可塑剤、安定剤、酸化防止剤、その他の添加剤及びこれらのうち2種類以上の混合物を含有していてもよい。また、副産物としての塩類を除去するために、遠心分離、限外ろ過、イオン交換樹脂、膜透過等の通常の手法を用いることができる。
【0060】
以上のように、第1実施形態に係る製造装置1によって実現される触媒製造用金属錯体分散液の製造方法によれば、導入液L1が媒体液体LL中に静電噴霧され、静電噴霧によってサイズのばらつきが少ない微細な液滴Dとなった導入液L1が、媒体液体LLを通って、有機塩基溶液L2に到達する。これにより、導入液L1と有機塩基溶液L2とを直接混合して撹拌した場合などに比べて、サイズのばらつきが少ない反応生成物(触媒製造用金属錯体)が有機塩基溶液L2中に分散した状態で得られる。また、導入液L1が静電噴霧によって微細な液滴Dとなるため、有機塩基溶液L2との反応を効率的に進行させることができる。
【0061】
さらには、導入液L1、媒体液体LL及び有機塩基溶液L2の種類や静電場の電位差等の条件の少なくとも1つを調整して導入液L1の液滴Dの特性を最適化することにより、金属塩の溶液と有機塩基溶液とを混合し撹拌して金属錯体を得るという従来の方法に比べて、粒子径分布幅及び平均粒子径等において、特定の性状を有する触媒製造用金属錯体を安定して製造することができる。
【0062】
[第2実施形態]
<製造装置2>
図2は、第2実施形態に係る触媒製造用金属錯体分散液の製造方法を実現するための製造装置2を説明する構成図である。
【0063】
製造装置2は、水溶性金属塩を含む溶液又は分散液を有機塩基を含む溶液又は分散液に、媒体気体としてのアシストガスの存在下において、静電噴霧して反応させて触媒製造用金属錯体分散液を得る装置である。第2実施形態において、導入液L1及び有機塩基溶液L2の定義は、第1実施形態と同様とする。
【0064】
製造装置2は、
図2に示すように、有機塩基溶液L2が貯留される反応器40と、反応器40に貯留された有機塩基溶液L2の表面に向けて導入液L1等を供給する原料供給部50と、原料供給部50の一部分と有機塩基溶液L2との間に電位差を形成する電位差形成部60とを備える。
【0065】
反応器40は、上部が開口され、高さ方向の長さが開口部の直径よりも短い形状を有し、内部に、有機塩基溶液L2が貯留される。
【0066】
原料供給部50は、導入液L1が貯留された供給源51と、供給源51からの導入液L1を反応器40へ供給するための供給管52と、供給管52が内部に挿通されており導入液L1を反応器40に貯留された有機塩基溶液L2へ向けて導入するための導入管53とを有する。供給源51には、導入液L1が貯留された貯留タンクと、導入液L1を送液するためのインジェクタ等の構成が含まれる。
【0067】
導入管53は、円筒状であって、上側端部53aと下側端部53bには、それぞれ開口が形成されている。導入管53は、反応器40に貯留された有機塩基溶液L2に対向して配置されている。導入管53の上側端部53aには、供給源51に接続された供給管52、及び後述する電源62からの導線が挿入されている。
【0068】
下側端部53bの開口径は、上側端部53aの開口径よりも小さく、供給管52の外径よりも大きく形成されている。
【0069】
供給管52の先端部54は、導入管53の下側端部53bの開口から下方に突出している。また、供給管52の先端部54は、反応器40の開口から反応器40に貯留された有機塩基溶液L2の表面に対向して配置されている。供給管52の先端部54は、導入液L1を静電噴霧可能に構成されたエレクトロスプレーノズル(以下、ノズル55という)を構成する。ノズル55は、導入液L1を反応器40に貯留された有機塩基溶液L2の表面に導入するためのノズル口55aを有する。
【0070】
導入管53の上側端部53aと下側端部53bの間には、ガス流入口56が形成されている。媒体気体は、ガス流入口56から導入管53の内部に導入される。媒体気体としては、導入液L1及び有機塩基溶液L2と意図的な反応を生じさせないものであれば使用可能であり、一例として、空気、窒素、酸素、二酸化炭素、六フッ化硫黄(SF6)、又はこれらのうち2種類以上を混合した混合ガス等が挙げられる。これらの媒体気体を、以下、アシストガスGと表す。
【0071】
アシストガスGは、導入管53の下側端部53bの開口から反応器40に貯留された有機塩基溶液L2に向けて供給され、導入液L1の液滴を有機塩基溶液L2に向けて誘導するとともに、導入液L1が反応器40の外側の領域に不要に拡散することを防止する。
【0072】
図2に示すように、導入液L1は、供給管52の内部を移動して、ノズル55のノズル口55aから反応器40に貯留された有機塩基溶液L2に向けて送出されるようになっている。また、導入管53の下側端部53bの開口径は、供給管52の外径よりも大きく形成されているため、ガス流入口56から導入管53の内部に導入されたアシストガスGは、下側端部53bの開口とノズル55の外径との間から反応器40に貯留された有機塩基溶液L2に向けて吹き出すことができる。
【0073】
電位差形成部60は、反応器40において、ノズル55(ノズル口55a)と有機塩基溶液L2との間に電位差を形成する。電位差形成部60は、反応器40において、有機塩基溶液L2が貯留された底面41に配置された電極61と、ノズル55(ノズル口55a)と電極61との間に電圧を印加する電源62とを備える。
【0074】
電極61は、平板状に形成される。本実施形態では、電極61は、底面41の形状に合わせた円板状とされている。電極61は、底面41に配置されて、反応器40に貯留され有機塩基溶液L2に接触する。さらに、電極61は、ノズル55(ノズル口55a)に対して、電極61の中央部が反応器40の底面41の中心を通るX軸方向において、相互に対向する位置に配置される。これにより、有機塩基溶液L2の全体が通電され、有機塩基溶液L2そのものを電極として作用させることができる。
【0075】
本実施形態において、電源62は直流電源である。電源62は、導線を介して接続されたノズル55を電極61よりも高電位にするように構成されている。
【0076】
製造装置2では、ノズル55のノズル口55aと有機塩基溶液L2の液面との距離は、距離W3に設定される。また、下側端部53bからのノズル口55aの突出量W4は、導入液L1の液滴を有機塩基溶液L2に向けて誘導するとともに、導入液L1の不要な拡散を防止できる効果が得られる値に設定することができる。
【0077】
距離W3は、電場強度、或いは、噴霧状態の液滴を形成するためのプロセスに応じて、適宜、最適化することができる。また、突出量W4は、反応器10の容器容量や電位差等に応じて、適宜、最適化することができる。
【0078】
<原料物質>
続いて、本実施形態に係る製造装置2を用いて実現される触媒製造用金属錯体分散液の製造方法において適用可能な原料物質について説明する。
【0079】
(導入液の組成)
導入液L1は、製造装置1を用いて実現される触媒製造用金属錯体分散液の製造方法において使用される導入液と同一のものを使用可能である。
【0080】
(有機塩基溶液の組成)
有機塩基溶液L2は、製造装置1を用いて実現される触媒製造用金属錯体分散液の製造方法において使用される有機塩基溶液と同一のものを使用可能である。
【0081】
<触媒製造用金属錯体分散液の製造方法>
続いて、
図2を用いて、製造装置2による触媒製造用金属錯体分散液の製造方法について説明する。
【0082】
製造装置2による触媒製造用金属錯体分散液の製造方法によれば、電位差形成部60によって、ノズル口55aと電極61との間に電位差が形成される。これにより、ノズル口55aと反応器40に貯留された有機塩基溶液L2との間に静電場が形成され、導入液L1がノズル口55aから静電噴霧される。すなわち、導入液L1は、当該静電場によって、媒体気体であるアシストガスG中において、帯電された微細な液滴Hを形成する。
【0083】
微細な液滴Hとなった導入液L1は、電位差形成部60によってノズル口55aと電極61との間に形成された電場勾配に沿って、媒体気体としてのアシストガスGにアシストされて、反応器40に貯留された有機塩基溶液L2に向かって移動する。導入液L1の液滴Hが有機塩基溶液L2と接触することにより、有機塩基溶液L2との中和反応によって、金属錯体が形成される(本実施形態においては、触媒製造用金属錯体という)。反応によって生成された触媒製造用金属錯体は、有機塩基溶液L2中に分散されて、分散溶液を形成する。
【0084】
<製造装置2における各パラメータの制御について>
第2実施形態において、得られる触媒製造用金属錯体の粒子径分布幅及び平均粒子径は、導入液L1の液滴Hのサイズ、液滴Hが有機塩基溶液L2にて拡散する速度、及び還元反応速度等に起因する。これらは、製造装置1と同様に、導入液L1及び有機塩基溶液L2に適用する溶媒の種類、導入液L1の表面張力、粘度、比誘電率、イオン強度等の導入液L1の特性、ノズル口55aからの導入量(すなわち、供給源51からノズル口55aに向かう導入液L1の送液速度)、ノズル口55aと電極61との距離W3、下側端部53bからのノズル口55aの突出量W4、ノズル口55aと電極61との間の電位差、導入液L1の濃度及び有機塩基溶液L2の濃度等によって調整することができる。
【0085】
また、液滴Hのサイズと導入液L1の表面張力の関係、液滴Hのサイズと導入液L1のイオン強度の関係、液滴Hのサイズと導入液L1の比誘電率との関係、ノズル55(ノズル口55a)及び電極61間の電位差と液滴Hのサイズの関係は、製造装置1の場合と同じであるため、第2実施形態に係る製造装置2においても同様の方法によって液滴Hのサイズを調整可能である。
【0086】
また、ノズル口55aと電極61との間の距離W3も、製造装置1と同様に適宜調整することができる。
【0087】
突出量W4は、一例として、2mmである。下側端部53bの開口径は、アシストガスGを反応器40に貯留された有機塩基溶液L2に十分に供給するという観点から、直径1mm以上20mm以下とすることが好ましい。
【0088】
電位差形成部60によるノズル55側の電位の設定及び電極61側電位の設定も、製造装置1と同様に適宜調整可能である。
【0089】
ノズル55からの導入液L1の導入量も、製造装置1と同様に設定可能である。
【0090】
上述のようにして得られた触媒製造用金属錯体分散液は、所定の濃度に希釈又は濃縮可能であり、使用用途に応じて、濃度の調整が適宜可能である。さらに、触媒製造用金属錯体分散液には、使用用途に応じて、高分子樹脂分散剤、顔料、可塑剤、安定剤、酸化防止剤、その他の添加剤及びこれらのうち2種類以上の混合物を含有していてもよい。また、副産物としての塩類を除去するために、遠心分離、限外ろ過、イオン交換樹脂、膜透過等の通常の手法を用いることができる。
【0091】
以上のように、第2実施形態に係る製造装置2によって実現される触媒製造用金属錯体分散液の製造方法によれば、導入液L1が媒体気体であるアシストガスGとともに有機塩基溶液L2に向けて静電噴霧され、静電噴霧によってサイズのばらつきが少ない微細な液滴Hとなった導入液L1が有機塩基溶液L2に到達する。これにより、導入液L1と有機塩基溶液L2とを直接混合して撹拌した場合などに比べて、サイズのばらつきが少ない反応生成物(触媒製造用金属錯体)が有機塩基溶液L2中に分散した状態で得られる。また、導入液L1が静電噴霧によって微細な液滴Dとなるため、有機塩基溶液L2との反応を効率的に進行させることができる。
【0092】
さらには、導入液L1、媒体気体であるアシストガスGの導入条件及び有機塩基溶液L2の種類や静電場の電位差等の条件の少なくとも1つを調整して導入液L1の液滴Hの特性を最適化することにより、金属塩の溶液と有機塩基溶液とを混合し撹拌して金属錯体を得るという従来の方法に比べて、粒子径分布幅及び平均粒子径等において、特定の性状を有する触媒製造用金属錯体を安定して製造することができる。
【0093】
[その他の実施形態]
以上、本発明の実施形態について説明したが、上記実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
【0094】
第1実施形態に係る製造装置1において、反応器10は有底筒状であるとしたが、方形状であってもよい。また、電極31は、底面11に配置されているとしたが、その少なくとも一部が有機塩基溶液L2に接触していればよく、底面11と間隔をあけて配置されていてもよい。
【0095】
電極31の形状は、有機塩基溶液L2に接して、有機塩基溶液L2に通電させることができればよく、リング形状、筒形状、棒形状、球形状、半球形状などであってもよい。
【0096】
また、第2実施形態に係る製造装置2において、反応器40の底面41は円形状であるとしたが、方形状であってもよい。また、電極61は、その少なくとも一部が有機塩基溶液L2に接触していればよく、底面41と間隔をあけて配置されていてもよい。
【0097】
電極61も同様に、有機塩基溶液L2に接して、有機塩基溶液L2に通電させることができればよく、リング形状、筒形状、棒形状、球形状、半球形状などであってもよい。
【0098】
電位差形成部30は、本実施形態とは反対に、電源32によって、ノズル24側に負電位を付与するとともに電極31に正電位を付与することにより、ノズル24と電極31との間に電位差を与えるものであってもよい。
【0099】
電位差形成部60も同様に、電源62によって、ノズル55側に負電位を付与するとともに電極61に正電位を付与するものであってもよい。
【0100】
第1実施形態に係る製造装置1において、反応器10は有底筒状であるとしたが、方形状であってもよい。また、電極31は、底面11に配置されているとしたが、有機塩基溶液L2中であればよく、底面11と間隔をあけて配置されていてもよい。
【実施例】
【0101】
以下、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
【0102】
<評価方法>
・触媒製造用金属錯体の粒子径分布
供試体として得られた分散液中における触媒製造用金属錯体の粒子径分布を、動的光散乱法(大塚電子株式会社製、「Photal ELSZ-1000」)を用いて測定した。
【0103】
・ペレット触媒の浄化性能評価
供試体として得られた分散液中における触媒製造用金属錯体を用いてペレット触媒を製造し、NOx浄化性能を評価した。ペレット触媒の作製方法及び評価試験の詳細は、後段にて説明する。
【0104】
<実施例及び比較例>
(実施例1)
図1に示した製造装置1を用い、下記のとおり、各種条件を変更して、触媒製造用金属錯体分散液を作製した。
・導入液L1(水/硝酸ロジウム) ロジウム量4.52Wt%
・導入液L1総量:5mL
・印加電圧:+4.5kV,-1kV
・導入液L1の送液速度:100μL/min
・媒体液体LL:IPソルベント1016 出光興産株式会社製
・有機塩基溶液L2
TMAH(水酸化テトラメチルアンモニウム)水溶液(25%)100mL
・ノズル口24aと媒体液体LLと有機塩基溶液L2との界面Bとの距離W2=10mm
・反応系温度:20℃
【0105】
(実施例2)
・反応系温度を45℃とした以外は、実施例1と同条件にて触媒製造用金属錯体分散液を作製した。
【0106】
(実施例3)
・反応系温度を70℃とした以外は、実施例1と同条件にて触媒製造用金属錯体分散液を作製した。
【0107】
(比較例1)
・実施例1と同じ温度条件において、実施例1で用いた導入液L1と有機塩基溶液L2の溶液同士を単純混合し、撹拌して、触媒製造用金属錯体分散液を作製した。
【0108】
(比較例2)
・実施例2と同じ温度条件において、導入液L1と有機塩基溶液L2の溶液同士を単純混合し、撹拌して、触媒製造用金属錯体分散液を作製した。
【0109】
(比較例3)
・実施例3と同じ温度条件において、導入液L1と有機塩基溶液L2の溶液同士を単純混合し、撹拌して、触媒製造用金属錯体分散液を作製した。
【0110】
(実施例4)
図2に示した製造装置2を用い、下記のとおり、各種条件を変更して、触媒製造用金属錯体分散液を作製した。
・導入液L1(水/硝酸ロジウム) ロジウム量4.52Wt%
・導入液L1総量:5mL
・印加電圧:+7.5kV、-1kV
・導入液L1の送液速度:100μL/min
・アシストガス種:窒素(純度100%)
・ガス流量:3L/min
・有機塩基溶液L2
TMAH(水酸化テトラメチルアンモニウム)水溶液(25%)100mL
・ノズル口55aと有機塩基溶液L2の液面との距離W3=75mm
・下側端部53bからのノズル55の突出量W4=2mm
・反応系温度:20℃
【0111】
(実施例5)
・反応系温度を65℃とした以外は、実施例4と同条件にて触媒製造用金属錯体分散液を作製した。
【0112】
(比較例4)
・実施例4と同じ温度条件において、導入液L1と有機塩基溶液L2の溶液同士を単純混合し、撹拌して、触媒製造用金属錯体分散液を作製した。
【0113】
(比較例5)
・実施例5と同じ温度条件において、導入液L1と有機塩基溶液L2の溶液同士を単純混合し、撹拌して、触媒製造用金属錯体分散液を作製した。
【0114】
(実施例6)
・ペレット触媒の調製
担持触媒におけるロジウムの濃度が0.5質量%となるように、実施例1で得られた金属錯体分散液とアルミナ粉末とを混合し、30分間撹拌して、スラリーをそれぞれ調製した。その後、このスラリーを100℃の温度で一晩乾燥させて乾燥品を得た。次いで、乳鉢でこの乾燥品を粉砕し、得られた粉砕品を600℃の温度で1時間焼成して、担持触媒粉末を得た。その後、この担持触媒粉末をペレット状に成型し、実施例6のペレット触媒を得た。
【0115】
(比較例6)
比較例1で得られた金属錯体分散液を用いた以外は、実施例6と同様にして、比較例6のペレット触媒を得た。
【0116】
<評価結果>
・触媒製造用金属錯体の粒子径分布
図3は、実施例1及び比較例1として得られた触媒製造用金属錯体の粒子径分布を比較する図である。
図4は、実施例2及び比較例2として得られた触媒製造用金属錯体の粒子径分布を比較する図である。
図5は、実施例3及び比較例3として得られた触媒製造用金属錯体の粒子径分布を比較する図である。
【0117】
また、
図6は、実施例4及び比較例4として得られた触媒製造用金属錯体の粒子径分布を比較する図である。
図7は、実施例5及び比較例5として得られた触媒製造用金属錯体の粒子径分布を比較する図である。
【0118】
図3に示された、実施例1の、反応系温度20℃で反応させて得られた分散液中における触媒製造用金属錯体の粒子径分布では、平均粒子径が1.8nm近傍にシャープなピーク値が現れた。一方、導入液L1と有機塩基溶液L2とを単純に混合し撹拌して得られた比較例1の触媒製造用金属錯体は、ブロードな粒子径分布を示した。
【0119】
図4に示された、実施例2の、反応系温度45℃で反応させて得られた触媒製造用金属錯体の粒子径分布では、平均粒子径が1.8nm近傍にシャープなピーク値が現れた。一方、単純混合により得られた比較例2の触媒製造用金属錯体では、平均粒子径が5~7nm近傍にピーク値が現れた。
【0120】
図5に示された、実施例3の、反応系温度70℃で反応させて得られた触媒製造用金属錯体の粒子径分布では、平均粒子径が1.8nm近傍にシャープなピーク値が現れた。一方、単純混合により得られた比較例3の触媒製造用金属錯体では、平均粒子径が5~7nm近傍にピーク値が現れた。
【0121】
また、
図6に示された、実施例4の、反応系温度20℃で反応させて得られた分散液中における触媒製造用金属錯体の粒子径分布では、平均粒子径が3.0nm近傍にシャープなピーク値が現れた。一方、導入液L1と有機塩基溶液L2とを単純混合し、撹拌して得られた比較例4の触媒製造用金属錯体は、ブロードな粒子径分布を示した。
【0122】
図7に示された、実施例5の、反応系温度65℃で反応させて得られた分散液中における触媒製造用金属錯体の粒子径分布では、平均粒子径が1~1.5nm近傍にシャープなピーク値が現れた。一方、単純混合により得られた比較例5の触媒製造用金属錯体では、平均粒子径が6~8nm近傍にピーク値が現れた。
【0123】
したがって、以上の結果から、本発明によれば、比較例によって得られる触媒製造用金属錯体分散液に比べて、平均粒子径が安定した触媒製造用金属錯体分散液が得られることがわかった。
【0124】
さらに、本発明によれば、製造装置1又は製造装置2における各種パラメータを最適化して用いることにより、例えば、排気ガス浄化用触媒に有用な金属ナノ粒子の粒子径分布幅及び平均粒子径を得るために必要な触媒製造用金属錯体の粒子径分布幅及び平均粒子径を、特定の数値範囲に調整することができることがわかった。
【0125】
・ペレット触媒のNOx浄化性能評価
実施例6及び比較例6のペレット触媒について、NOx浄化性能を評価した。NOx浄化性能評価試験には、モデルガス評価装置(ベスト測器株式会社製)を使用した。当該評価装置に、上記ペレット触媒を設置した。次いで、この評価装置に、23.3L/minの流量でモデルガスを供給しながら、25℃/minの昇温速度で、評価装置内の温度を100℃から500℃まで昇温させて、NOxの浄化率が50%に到達したときの温度を測定した。
【0126】
モデルガスとしては、窒素ガスに、0.77体積%の酸素と、5000ppmの一酸化炭素と、2400ppmのジメチルメタンと、600ppmのプロピレンと、2000ppmの水素と、1900ppmの一酸化窒素と、10体積%の水と、10体積%の二酸化炭素とを混入させた混合ガスを用いた。結果を表1及び
図8に示す。
【0127】
【0128】
表1及び
図8に示されるように、実施例1で得られた触媒製造用金属錯体分散液を用いて作製された実施例6のペレット触媒の方が、より低温でNOxを浄化できた。また、実施例6のペレット触媒では、ロジウムの粒子径分布幅及び平均粒子径を、特定の数値範囲に調整することができており、これにより、NOx浄化性能が向上したものと考えられる。
【符号の説明】
【0129】
1,2 製造装置
10,40 反応器
20,50 原料供給部
30,60 電位差形成部
L1 導入液
L2 有機塩基溶液