(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-02-20
(45)【発行日】2023-03-01
(54)【発明の名称】光位相変調器
(51)【国際特許分類】
G02B 26/06 20060101AFI20230221BHJP
【FI】
G02B26/06
(21)【出願番号】P 2019119993
(22)【出願日】2019-06-27
【審査請求日】2022-02-01
【新規性喪失の例外の表示】特許法第30条第2項適用 平成30年9月5日 2018年第79回応用物理学会秋季学術講演会 講演予稿集 「側壁Au構造を用いた内面駆動型光位相差変調素子の開発」にて公開
(73)【特許権者】
【識別番号】504132881
【氏名又は名称】国立大学法人東京農工大学
(74)【代理人】
【識別番号】100084995
【氏名又は名称】加藤 和詳
(74)【代理人】
【識別番号】100099025
【氏名又は名称】福田 浩志
(72)【発明者】
【氏名】岩見 健太郎
(72)【発明者】
【氏名】城光寺 佑樹
【審査官】近藤 幸浩
(56)【参考文献】
【文献】特開2013-178498(JP,A)
【文献】特開2011-099936(JP,A)
【文献】特開2015-222331(JP,A)
【文献】特開2018-013365(JP,A)
【文献】特表2010-529504(JP,A)
【文献】米国特許第06430322(US,B1)
【文献】M.Ishii et al.,Highly-efficient and angle-independent zero-order half waveplate at broad visible wavelength based on Au nanofin array embedded in dielectric,Optics express,米国,2016年,vol.24,No.8,p.7966-7976,DOI:10.1364/OE.24.007966
(58)【調査した分野】(Int.Cl.,DB名)
G02B 26/06 - 26/08
(57)【特許請求の範囲】
【請求項1】
光を透過する基板と、
前記光の透過方向に沿うように面方向が形成され、かつ少なくとも一方の面に金属膜が形成されて所定
剛性の板状の可動部と、前記所定
剛性より大きい
剛性であり、前記可動部の少なくとも一部が前記光の透過方向と交差する方向に可動可能になるように前記可動部の両端部の各々を一端で保持し、かつ他端が前記基板に固定された固定部とを、各々の前記可動部の前記光の透過方向と交差する方向に可動可能な領域が重複しないように、各々の前記金属膜の形成面が所定間隔を隔てて対向するように配置して形成される複数のフィンと、
前記複数のフィンのうちの少なくとも1つのフィンに電圧印加して、前記光が透過する方向と交差する方向に前記複数のフィンが接近又は離間するように制御する電圧印加制御部と、
を含む光位相変調器。
【請求項2】
前記複数のフィンは、各々の前記可動可能な領域を含む空間を前記光の透過方向と交差する方向の面に投影した領域を光透過有効領域とし、前記光透過有効領域へ前記光が照射されるように配置された
請求項1に記載の光位相変調器。
【請求項3】
前記複数のフィンが対向して配置された複数の前記金属膜の形成面により形成される空間を含む固定領域と、前記可動部の前記所定
剛性及び前記固定部の前記所定
剛性より大きい
剛性に基づいて定められる前記可動部の可動領域と、を前記光の透過方向と交差する方向の面に投影した領域を含む光透過有効領域について、前記複数のフィンに向う光を抑制すること、及び、前記複数のフィンからの光を抑制することのいずれかを行う抑制部
を含む請求項1又は請求項2に記載の光位相変調器。
【請求項4】
前記可動部は、前記光の透過方向
と直交する方向であって前記可動部が変位する変位方向の長さより前記光の透過方向
及び前記変位方向と
直交する方向の長さを長くした
請求項1から請求項3の何れか1項に記載の光位相変調器。
【請求項5】
前記可動部の
、前記光の透過方向
及び前記光の透過方向と直交する方向であって前記可動部が変位する変位方向と
直交する方向の長さは、45
μm以上でかつ60μm以下の長さに形成される
請求項1から請求項4の何れか1項に記載の光位相変調器。
【請求項6】
前記金属膜は、金を含む金属により形成された膜である
請求項1から請求項5の何れか1項に記載の光位相変調器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光位相変調器に関する。
【背景技術】
【0002】
特許文献1~特許文献4は、透過し又は反射する光の波長又は位相を変調する装置(サブ波長格子、カラーフィルタ、及びメタサーフェス)を開示する。より詳しくは、特許文献1に記載のサブ波長格子は、間隙を構成する二対の梁体と、当該間隙の方向にテンションを付与するアクチュエータとを有し、前記間隙により特定の波長のみを通過させ、また、前記間隙を変化させて異なる特定の波長のみを通過させる。特許文献2に記載のカラーフィルタは、平行かつ周期的に配置された微細な金属ワイヤの周期を光波長よりも狭くし、前記金属ワイヤの前記周期を同時に拡張方向または収縮方向へ適宜変化させることにより、光の透過波長帯域を変化させる。特許文献3に記載のメタサーフェスは、880nm~40μmの波長を含む入力光を変調可能であり、GaAs基板と、GaAsの屈折率よりも低い屈折率を有する中間層と、中間層のGaAs基板側とは反対側に設けられた複数のV字型アンテナ素子と、を備える。特許文献4に記載のメタサーフェスは、基板と、前記基板の光出力面側に設けられ、かつ、厚み方向における寸法が、100nm~400nmである複数のV字型アンテナ素子と、を備える。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2011-099936号公報
【文献】特開2015-222331号公報
【文献】特開2018-046395号公報
【文献】特開2018-045073号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上記した特許文献1~4に記載された装置は、光の波長又は位相を変調することができるものの、位相変調に関しては、詳細な考慮がなされていない。光を変調する素子では、一般的に、位相の大きさを自由に変えることができることが望まれている。一方、上記の装置では、位相の変調を固定的に行うので、位相の大きさが異なる複数の変調を行うためには、複数の装置を要し、装置が大型かつ複雑になる等、改善の余地がある。
【0005】
本開示は、変調された光の位相の大きさが固定的である従来に比して、高い自由度で位相を変調可能な光位相変調器を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記した課題を解決すべく、本開示の第1態様は、光を透過する基板と、前記光の透過方向に沿うように面方向が形成され、かつ少なくとも一方の面に金属膜が形成されて所定硬度の板状の可動部と、前記所定硬度より大きい硬度であり、前記可動部の少なくとも一部が前記光の透過方向と交差する方向に可動可能になるように前記可動部の両端部の各々を一端で保持し、かつ他端が前記基板に固定された固定部とを、各々の前記可動部の前記光の透過方向と交差する方向に可動可能な領域が重複しないように、各々の前記金属膜の形成面が所定間隔を隔てて対向するように配置して形成される複数のフィンと、前記複数のフィンのうちの少なくとも1つのフィンに電圧印加して、前記光が透過する方向と交差する方向に前記複数のフィンが接近又は離間するように制御する電圧印加制御部と、を含む光位相変調器である。
【0007】
本開示の第2態様は、第1態様の光位相変調器において、前記複数のフィンは、各々の前記可動可能な領域を含む空間を前記光の透過方向と交差する方向の面に投影した領域を光透過有効領域とし、前記光透過有効領域へ前記光が照射されるように配置される。
【0008】
本開示の第3態様は、第1態様又は第2態様の光位相変調器において、前記複数のフィンが対向して配置された複数の前記金属膜の形成面により形成される空間を含む固定領域と、前記可動部の前記所定硬度及び前記固定部の前記所定硬度より大きい硬度に基づいて定められる前記可動部の可動領域と、を前記光の透過方向と交差する方向の面に投影した領域を含む光透過有効領域について、前記複数のフィンに向う光を抑制すること、及び、前記複数のフィンからの光を抑制することのいずれかを行う抑制部を含む。
【0009】
本開示の第4態様は、第1態様から第3態様の何れか1態様に記載の光位相変調器において、前記可動部は、前記光の透過方向に沿う方向の長さより前記光の透過方向と交差する方向の長さを長くする。
【0010】
本開示の第5態様は、第1態様から第4態様の何れか1態様に記載の光位相変調器において、前記可動部の前記光の透過方向と交差する方向の長さは、45以上μmでかつ60μm以下の長さに形成される。
【0011】
本開示の第6態様は、第1態様から第5態様の何れか1態様に記載の光位相変調器において、前記金属膜は、金を含む金属により形成された膜である。
【発明の効果】
【0012】
本発明に係る光位相変調器によれば、透過する光の透過率及び位相を容易に可変することができる。
【図面の簡単な説明】
【0013】
【
図3】実施形態の光位相変調器及び遮光板の上面図である。
【
図4】実施形態の光位相変調器の動作(概要)を示す上面図である。
【
図5】実施形態の光位相変調器の動作(詳細)を示す上面図である。
【
図6】実施形態の光位相変調器の製造プロセスを示す断面図である。
【
図7】製造プロセスによって作成した光位相変調器の性能について検証結果を示す図であり、(A)は位相差スペクトルを示し、(B)はスリット幅と位相差との関係を示し、(C)は電圧印加による位相差変調特性を示す。
【
図8】実施形態の光位相変調器のスリットの幅及び高さと、TE偏光の透過率との関係、TM偏光の透過率との関係、及び、TE偏光及びTM偏光間の位相差との関係(その1)を示す図である。
【
図9】実施形態の光位相変調器のスリットの幅及び高さと、TE偏光の透過率との関係、TM偏光の透過率との関係、及び、TE偏光及びTM偏光間の位相差との関係(その2)を示す図である。
【
図10】比較例の光位相変調器を含む軸対称偏光子の構成を示す図である。
【
図11】比較例の光位相変調器の動作原理を示す斜視図である。
【
図12】比較例の光位相変調器の動作原理を示す側面図である。
【発明を実施するための形態】
【0014】
〈実施形態の概要〉
以下、本開示の技術を実現する実施形態について、図面を参照して説明する。なお、作用、機能が同じ働きを担う構成要素及び処理には、全図面を通して同じ符合を付与し、重複する説明を適宜省略する場合がある。
【0015】
図1は、実施形態の光位相変調器の構成を示す。
図2は、実施形態の光位相変調器の断面図である。
図3(A)は、実施形態の光位相変調器の上面図であり、
図3(B)は、実施形態の光位相変調器の遮光板の上面図である。
【0016】
実施形態の光位相変調器1は、
図1~
図3に示されるように、2つの梁部2A、2Bと、2つの固定電極部3A、3Bと、基板4と、制御部5と、遮光板6とを含む。
【0017】
ここで、2つの梁部2A、2Bは、本開示の『複数のフィン』に対応する。制御部5は、本開示の『電圧印加制御部』に対応する。遮光板6は、本開示の『抑制部』に対応する。
【0018】
〈光位相変調器(比較例)の原理〉
実施形態の光位相変調器1の構成を詳述することに先立ち、光位相変調器の原理について説明する。
【0019】
図10は、比較例の光位相変調器を含む軸対称偏光子の構成を示す。
【0020】
軸対称偏光子100は、
図10に示されるように、軸対称偏光子100に向けて入射する入射光101に偏光を施すことにより、偏光された光(例えば、広く知られているラジアル偏光)である出射光102を出力すべく、4つの光位相変調器103A~103Dを含む。光位相変調器103A~103Dは、それぞれ、2分の1波長板の機能を有する。「2分の1波長板」の機能とは、入射光を複屈折させることにより、入射光を構成する2つの偏光成分(TE偏光、TM偏光)間に位相差(光路差)を与えることをいう。具体的には、例えば、光位相変調器103Aの光学軸(
図10中で、光位相変調器における白黒の縞状の直線と平行)が、入射光101Aの偏光方位(矢印で示される方位)からθ傾いているとき、出射光102Aの偏光方位は、入射光101Aの偏光方位から2θ傾くことになる。
【0021】
入射光101の偏光方位と、光位相変調器103A~103Dの光学軸とにより規定される角度θは、
図10から明らかであるように、それぞれ、0°、+45°(または-135°)、+90°(または-90°)、+135°(または-45°)である。
【0022】
光位相変調器103Aに入射する入射光101Aの偏光方位と、光位相変調器103Aの光学軸との角度θは、上記したように、0°である。従って、光位相変調器103Aからは、何ら偏光を受けていない、換言すれば、入射光101Aの偏光方位と同一の偏光方位を有する出射光102Aが出力される。
【0023】
光位相変調器103Bに入射する入射光101Bの偏光方位と、光位相変調器103Bの光学軸との角度θは、上記したように、+45°である。従って、光位相変調器103Bからは、入射光101Bの偏光方位と90°相違する偏光方位を有する出射光102Bが出力される。
【0024】
光位相変調器103Cに入射する入射光101Cの偏光方位と、光位相変調器103Cの光学軸との角度θは、上記したように、+90°である。従って、光位相変調器103Cからは、入射光101Cの偏光方位と180°相違する偏光方位を有する出射光102Cが出力される。
【0025】
光位相変調器103Dに入射する入射光101Dの偏光方位と、光位相変調器103Dの光学軸との角度θは、上記したように、-45°である。従って、光位相変調器103Dからは、入射光101Dの偏光方位と-90°相違する偏光方位を有する出射光102Dが出力される。
【0026】
上記したように、入射光101を軸対称偏光子100に入射し通過させることにより、光位相変調器103A~103Dを通過した出射光102A~102Dから構成される、広く知られたラジアル偏光を得ることができる。
【0027】
図10に図示された軸対称偏光子100に代えて、入射光101の偏光方位と光位相変調器103A~103Dの光学軸との角度θが上記とは異なる軸対称偏光子100(図示せず。)に入射光101が入射することにより、上記したラジアル偏光に代えて、広く知られたアジマス偏光を得ることができる。
【0028】
図11は、比較例の光位相変調器の動作原理を示す斜視図である。
図12は、比較例の光位相変調器の動作原理を示す側面図である。
【0029】
光位相変調器103(
図10に示された光位相変調器103A~103Dの総称)は、
図11に示されるように、ガラス基板110上に、複数のフィン111A~111Eが、Y軸方向に沿って、かつ、相互に平行に配列されている。
図12に示されるように、Z軸方向に沿って、ガラス基板110の底面から入射する入射光112は、光位相変調器103を通過すると、入射光を構成するTE偏光112A(Y軸方向の成分)とTM偏光112B(X軸方向の成分)との間で位相差が生じる。より詳しくは、TE偏光112Aについては、例えば、隣接するフィン111A、111B間のスリット113中で、TE偏光112Aの波長が長くなることにより、TE偏光112Aの位相が進む。他方で、TM偏光112Bについては、スリット113中で、TM偏光112Bの波長が短くなることにより、TM偏光112Bの位相が遅れる。この結果、光位相変調器103を透過した後の出射光114を構成するTE偏光114AとTM偏光114Bとの間には、位相差(例えば、位相差D)が存在することになる。
【0030】
図10を用いて上述したように、入射光101の偏光方位と光位相変調器103A~103Dの光学軸との角度を相互に異ならせることにより、換言すれば、
図11及び
図12を用いて上述したように、入射光112の偏光方位と、光位相変調器103を構成する複数のフィン111A~111Eの光学軸との角度を異ならせることにより、TE偏光114A及びTM偏光114B間の位相差Dを変えることができ、即ち、入射光112の偏光方位と複数のフィン111A~111Eの光学軸との角度の大きさに応じて、位相差Dが異なる出射光114を得ることができる。
【0031】
〈実施形態の構成〉
〈梁部の構成〉
図1~
図3に戻り、実施形態の光位相変調器1では、梁部2Aは、可動部20と、固定部21、22とを有する。梁部2Bは、可動部23と、固定部24、25とを有する。
【0032】
〈梁部の可動部の構成〉
可動部20、23は、
図1に示されるように、入射光60が入射する(透過しようとする)Z軸方向と交差するY軸方向に伸びる板状の部材である。可動部20、23は、
図1及び
図2に示されるように、相互に対峙する側面20A、23A(Y軸方向に沿う平面であるYZ平面に平行な面)に、金属膜M(例えば、金。以下、同じ。)が形成されている。可動部20は、
図1及び
図2に示されるように、固定電極部3Aの側面30Aと対峙する側面20Bにも、金属膜Mが形成されている。同様に、可動部23は、
図1及び
図2に示されるように、固定電極部3Bの側面31Aと対峙する側面23Bにも、金属膜Mが形成されている。
【0033】
可動部20の側面20A、20B(正確には、側面20Aの金属膜M、側面20Bの金属膜M)は、
図1に示されるように、他の側面(XZ平面に平行な面)、例えば、側面20Cに形成された金属膜Mによる側面20Aの金属膜Mと側面20Bの金属膜Mとの接続により、同電位である。同様に、可動部23の側面23A、23B(正確には、側面23Aの金属膜M、側面23Bの金属膜M)は、他の側面(XZ平面に平行な面)、例えば、側面23Cに形成された金属膜Mによる側面23Aの金属膜Mと側面23Bの金属膜Mとの接続により、同電位である。
【0034】
可動部20、23は、少なくとも撓むことが可能に予め定められた硬度を有する。
【0035】
可動部20、23は、入射光60の透過方向であるZ軸方向と交差する方向であるX軸方向(又は逆方向)に変位する。可動部20の変位可能な領域(範囲)と、可動部23の変位可能な領域(範囲)とが重複することを回避すべく、梁部2A、2Bは、可動部20の側面20Aと可動部23の側面23Aとが予め定められた間隔を置いて離れ、かつ、相互に対向するように、配置されている。即ち、梁部2Aの側面20Aと梁部2Bの側面23Aは、
図1及び
図2に示されるように、相互間の間隙であるスリットSを形成している。ここで、
図2に示されるように、スリットSのX軸方向の長さを、「W」と定義し、また、可動部20の側面20A及び可動部23の側面23Aの、Z軸方向の長さ(厚さ)を「t」と定義する。
【0036】
〈梁部の固定部の構成〉
梁部2Aの固定部21、22は、
図1から明らかであるように、梁部2Aの可動部20を両持ち形式で支持する。より具体的には、梁部2Aの固定部21は、梁部2Aの可動部20が、上記したように、X軸方向に変位することができるようにすべく、その一端が可動部20の一端を保持し、その他端が基板4(
図2に図示。)に固定されている。梁部2Aの固定部22は、梁部2Aの固定部21と同様に、梁部2Aの可動部20が、X軸方向に変位することができるようにすべく、その一端が可動部20の他端を保持し、その他端が基板4(
図2に図示。)に固定されている。
【0037】
梁部2Bの固定部24、25は、
図1から明らかであるように、梁部2Aの可動部20と梁部2Aの固定部21、22との関係と同様に、梁部2Bの可動部23を両持ち形式で支持する。より具体的には、梁部2Bの固定部24は、梁部2Bの可動部23が、上記したように、X軸方向に変位することができるようにすべく、その一端が可動部23の一端を保持し、その他端が基板4(
図2に図示。)に固定されている。梁部2Bの固定部25は、梁部2Bの固定部24と同様に、梁部2Bの可動部23が、X軸方向に変位することができるようにすべく、その一端が可動部23の他端を保持し、その他端が基板4(
図2に図示。)に固定されている。
【0038】
固定部21、22、24、25は、可動部20、23が可動する(少なくとも撓む)場合であっても固定された位置に位置するように、可動部20、23の硬度より大きい硬度を有する。
【0039】
〈固定電極部の構成〉
固定電極部3Aは、
図1及び
図2に示されるように、梁部2Aと対峙している。固定電極部3Aは、少なくとも、梁部2Aの側面20Bと対峙する側面30A(YZ平面に平行な面)に、金属膜Mが形成されている。
【0040】
固定電極部3Bは、
図1及び
図2に示されるように、梁部2Bと対峙している。固定電極部3Bは、少なくとも、梁部2Bの側面20Bと対峙する側面31A(YZ平面に平行な面)に、金属膜Mが形成されている。
【0041】
2つの梁部2A、2B、及び、2つの固定電極部3A、3Bは、上記した構成を有することから、協働して平行平板型の静電アクチュエータとして機能する。
【0042】
〈制御部の構成〉
上記した機能を確保すべく、制御部5は、例えば、
図1に示されるように、梁部2A及び固定電極部3Bに、電圧(電圧Vcnt、接地電圧GND)を印加する。当該電圧の印加のために、制御部5は、電源PS及びスイッチSWを有する。
【0043】
梁部2B(正確には、可動部23の側面23A、23Bの金属膜M)は、接地電圧GNDに接続されている。また、固定電極部3A(正確には、固定電極部3Aの側面31Aの金属膜M)は、予め定められた電圧Vrefに接続されている。
【0044】
他方で、梁部2A(正確には、可動部20の側面20A、20Bの金属膜M)、及び、固定電極部3B(正確には、固定電極部3Bの側面31Aの金属膜M)は、制御部5から、電源PSの電圧Vcnt(電圧cntの大きさは可変)、または、接地電圧GNDの印加を受ける。
【0045】
なお、
図1に示す制御部5の構成は、電圧印加のための一例を示したものであり、
図1に示す構成に限定されるものではない。すなわち、制御部5は、光位相変調器で可動部の変位(撓み)により透過する光を所定の位相変調するに十分な電圧印加を行えばよく、印加する電圧値は設定値に応じて変化するように制御してもよい。
【0046】
図4(A)~(C)は、実施形態の光位相変調器の動作(概要)を示す上面図である。なお、
図4は、光位相変調器の動作についての説明を明瞭に表現するために形状の変化を誇張して示している。
【0047】
梁部2A及び固定電極部3Bが、制御部5から電圧の印加を何ら受けていないとき、又は初期値として設定された基準電圧(例えばバイアス電圧)が印加されたときには、
図4(A)に示されるように、可動部20、23は、可動部20の側面20Aと可動部23の側面23Aとが平行のままで、静止している。
【0048】
梁部2A及び固定電極部3Bが、制御部5から電圧の印加を受けると、
図4(B)に示されるように、可動部20、23は、可動部20の側面20Aと可動部23の側面23Aとが相互に接近するように、変位(
図4では湾曲に変形)する。
【0049】
梁部2A及び固定電極部3Bが、制御部5から上記とは異なる電圧の印加を受けると、
図4(C)に示されるように、可動部20、23は、可動部20の側面20Aと可動部23の側面23Aが、相互から離間するように、変位(
図4では湾曲に変形)する。
【0050】
〈梁部、固定電極部の構造〉
図2に戻り、梁部2A、2Bの可動部20、23は、絶縁材料40(例えば、SiO
2)から構成されている。可動部20、可動部23の表面には、金属膜Mとは異なる他の金属膜41(例えば、Cr)が被覆されている。
【0051】
固定電極部3A、3Bは、
図2に示されるように、絶縁材料40から構成されている。固定電極部3A、3Bの表面には、上記したと同様な他の金属膜41が被覆されている。固定電極部3A、3Bの絶縁材料40は、半導体材料42(例えば、Si)により支持されている。
【0052】
〈基板の構成〉
基板4は、
図2に示されるように、入射光60を透過させるべく、例えば、ガラスで構成されている。
【0053】
〈寸法について〉
図1に示されるように、梁部2Aの可動部20、及び、梁2Bの可動部23について、Y軸方向(入射光60の透過方向であるZ軸方向と交差する方向)の長さは、可動部20、23がX軸方向(及び逆方向)に変位することを容易にすべく、X軸方向の長さより長いことが望ましい。
【0054】
図1に示されるように、固定電極部3Aの側面30Aに印加されている電圧Vref、及び、制御部5の電圧Vcntが比較的低くても、梁部2Aの可動部20、梁部2Bの可動部23が変位することができるように、梁部2Aの可動部20、及び、梁部2Bの可動部23のY軸方向の長さLは、概ね、45μmから60μmまでであることが望ましい。
【0055】
図2に示されるように、梁部2A、2B、及びスリットSのX軸方向についての合計の長さは、光位相変調器1の光学素子としての応用の観点からは、例えば、概ね2μmであることが望ましい。
【0056】
〈光透過有効領域について〉
光位相変調器1の上面図である
図3(A)に一例として示されるように、円状の光透過有効領域ARが、仮想的に存在する。光透過有効領域ARは、光位相変調器1へ照射される光のうち、移動部の変位によって位相変調の対象として有効な透過光の光束を規定する予め定めた領域である。例えば、光透過有効領域ARは、
図4(A)~(C)を用いて説明した、可動部20の側面20A及び可動部23の側面23AがX軸方向(及び逆方向の少なくとも一方向)に変位可能な範囲(空間)が、XY平面(入射光60の透過方向であるZ軸方向と交差する平面)に投影されていると定義される。換言すれば、可動部20、23は、入射光60が光透過有効領域ARに照射されるような位置に設けられている。
【0057】
光透過有効領域ARは、固定領域AR1と可動領域AR2とを含む。固定領域AR1は、相互に対向して配置された可動部20の側面20A、及び、可動部23の側面23Aにより形成される範囲(空間)である。すなわち、固定領域AR1は、可動部20の可動の有無に拘らず、位相変調の対象となる透過光の透過領域のみを規定する。可動領域AR2は、可動部20、23の硬度及び固定部21、22、24、25の硬度に基づき定められる、可動部20の側面20A及び可動部23の側面23Aが変位可能な範囲(空間)である。すなわち、可動領域AR2は、可動部20が可動した場合を含めて、位相変調の対象となる透過光の透過領域を規定する。
【0058】
また
図3に示す例では、光透過有効領域ARの中心CCは、X軸方向の中心線XCとY軸方向の中心線YCとが交差する点にある。
【0059】
なお、
図3に示す例では、光透過有効領域ARは、円型状としているが、円型状に限定されるものではない。光透過有効領域ARは、上記の可動部20の側面20A及び可動部23の側面23Aが変位可能な空間へ入射光60が照射可能な形状であればよく、楕円、矩形、その他多角形状でもよい。
【0060】
〈遮光板の構成〉
光位相変調器の上面図である
図3(B)に示されるように、遮光板6の外形は、概ね矩形である。遮光板6には、穴arが設けられている。穴arの中心ccのXY座標上の位置は、光透過有効領域ARの中心CCのXY座標上の位置と一致する。穴arの半径は、固定領域AR1の半径の長さ以上であり、かつ、可動領域AR2の半径の長さ以下である。
【0061】
遮光板6は、
図1で、光位相変調器1のY軸方向の下方に、又は、光位相変調器1のY軸方向の上方に、設けられる。遮光板6は、光位相変調器1のY軸方向の下方に設けられているときには、梁部2A、2B、より正確には、光透過有効領域ARに向けて入射する入射光60の量を穴arにより抑制する。遮光板6は、また、光位相変調器1のY軸方向の上方に設けられているときには、梁部2A、2Bを透過した出射光70の量を穴arにより抑制する。
【0062】
〈実施形態の動作〉
〈梁部の変位〉
図5(A)~(G)は、実施形態の光位相変調器の動作(詳細)を示す上面図である。
図5(B)~(G)の光位相変調器1における梁部2A、2Bの位置は、
図5(A)の光位相変調器1における梁部2A、2Bの位置を基準とする。
【0063】
〈静止〉
梁部2A及び固定電極部3Bが、制御部5から電圧Vcnt及び接地電圧GNDの印加を何ら受けていないとき、又は基準電圧が印加されたとき、即ち、
図5(A)に示されるように、梁部2A、2Bが静止しているとき、Y軸方向の中心線YCから梁部2Aの側面20Aまでの距離LAと、Y軸方向の中心線YCから梁2Bの側面23Aまでの距離LBとは同一である。換言すれば、梁部2A、2Bは、Y軸方向の中心線YCについて、線対称の位置にある。このとき、スリットSの幅は、W(=LA+LB)である。
【0064】
〈相違する方向に変位(その1)〉
制御部5によって、(1)梁部2Aと固定電極部3Aと間に、相互に引き合うための電圧差(第1の電圧差)が印加され、(2)梁部2Bと固定電極部3Bとの間に、相互に引き合うための電圧差(第2の電圧差)が印加され、(3)梁部2Aに印加される電圧と、梁部2Bに印加される電圧との間に、電圧差が無く、(4)第1の電圧差と第2の電圧差とが同一であるとき、梁部2Aと梁部2Bとは、相互に離間する方向に変位する。
【0065】
詳細には、
図5(B)に示されるように、梁部2A、2Bが、X軸に沿って相互に反対方向に変位し(梁部2Aが、X軸のマイナス方向に変位し、梁部2Bが、X軸のプラス方向に変位し)、かつ、両変位の大きさが同一であるとき、Y軸方向の中心線YCから可動部20の側面20Aまでの距離LA1(>LA)と、Y軸方向の中心線YCから可動部23の側面23Aまでの距離LB1(>LB)とは、等しくなる。このとき、スリットSの幅は、W1(=LA1+LB)であり、W1>Wである。
【0066】
なお、図示は省略したが、梁部2Aと固定電極部3Aと間、及び梁部2Bと固定電極部3Bと間に、相互に離間するための電圧差が印加されることにより、接近する方向に変位する。
【0067】
〈相違する方向に変位(その2)〉
制御部5によって、(1)梁部2Aと固定電極部3Aと間に、相互に引き合うための電圧差(第1の電圧差)が印加され、(2)梁部2Bと固定電極部3Bとの間に、相互に引き合うための電圧差(第2の電圧差)が印加され、(3)梁部2Aに印加される電圧と、梁部2Bに印加される電圧との間に、電圧差が無く、(4)第1の電圧差が第2の電圧差より大きいとき、梁部2Aと梁部2Bとは、相互に離間する方向に変位する。
【0068】
詳細には、
図5(C)に示されるように、梁部2A、2Bが、X軸に沿って相互に反対方向に変位し(梁部2Aが、X軸のマイナス方向に変位し、梁部2Bが、X軸のプラス方向に変位し)、かつ、梁部2Aの変位が、梁部2Bの変位より大きいとき、Y軸方向の中心線YCから可動部20の側面20Aまでの距離LA2(>L1)は、Y軸方向の中心線YCから可動部23の側面23Aまでの距離LB2(≧LB1)より大きくなる。このとき、スリットSの幅は、W2(=LA2+LB2)であり、W2>W1である。
【0069】
〈同一の方向に変位(その1)〉
制御部5によって、(1)梁部2Aと固定電極部3Aと間に、相互に引き合うための電圧差(第1の電圧差)が印加され、(2)梁部2Aと梁部2Bとの間に、相互に引き合うための電圧差(第2の電圧差)が印加され、(3)梁部2Bに印加される電圧と、固定電極部3Bに印加される電圧との間に、電圧差が無いとき、梁部2Aと梁部2Bとは、相互に同一の方向に変位する。
【0070】
詳細には、
図5(D)に示されるように、梁部2A、2Bが、X軸に沿って相互に同一方向に変位し(X軸のマイナス方向に変位し)、かつ、梁部2Aの変位が、梁部2Bの変位より大きいとき、Y軸方向の中心線YCから可動部20の側面20Aまでの距離LA3(>LA)は、Y軸方向の中心線YCから可動部23の側面23Aまでの距離LB3(<LB)より大きくなる。このとき、スリットSの幅は、W3(=LA3+LB3)であり、また、LA3、LB3の大小関係により、W3>W、W3=W、W3<Wのいずれにもなり得る。
【0071】
〈同一の方向に変位(その2)〉
制御部5によって、(1)梁部2Aと固定電極部3Aと間に、相互に引き合うための電圧差(第1の電圧差)が印加され、(2)梁部2Aと梁部2Bとの間に、相互に引き合うための電圧差(第2の電圧差)が印加され、(3)梁部2Bに印加される電圧と、固定電極部3Bに印加される電圧との間に、電圧差が無く、(4)第1の電圧差が、第2の電圧差より大きいとき、梁部2Aと梁部2Bとは、相互に同一の方向に変位する。
【0072】
詳細には、
図5(E)に示されるように、梁部2A、2Bが、X軸に沿って相互に同一方向に変位し(X軸のマイナス方向に変位し)、かつ、両変位の大きさが同一であるとき、Y軸方向の中心線YCから可動部20の側面20Aまでの距離LA4は、Y軸方向の中心線YCから可動部23の側面23Aまでの距離LB4より大きくなる。このとき、スリットSの幅は、W4(=LA4-LB4)であり、W4>Wになり得る。
【0073】
〈一方の梁部のみが変位(その1)〉
制御部5によって、(1)梁部2Aと梁部2Bとの間に、相互に引き合うための電圧差(第1の電圧差)が印加され、(2)梁部2Bと固定電極部3Bとの間に、相互に引き合うための電圧差(第2の電圧差)が印加され、(3)梁部2Aに印加される電圧と、固定電極部3Aに印加される電圧との間に、電圧差が無いとき、梁部2Aのみが変位する。
【0074】
詳細には、
図5(F)に示されるように、梁部2Bが、静止しており、かつ、梁部2Aのみが、X軸に沿って変位するとき(X軸のプラス方向に変位するとき)、Y軸方向の中心線YCから可動部20の側面20Aまでの距離LA5(<LA)は、Y軸方向の中心線YCから可動部23の側面23AまでのLB5(=LB)より小さくなる。このとき、スリットSの幅は、W5(=LA5+LB5)であり、W5<Wである。
【0075】
〈一方の梁部のみが変位(その2)〉
制御部5によって、(1)梁部2Aと固定電極3Aとの間に、相互に引き合う電圧差が印加され、(3)梁部2Aに印加される電圧と、梁部2Bに印加される電圧との間に、電圧差が無く、(3)梁部2Bに印加される電圧と固定電極部3Bに印加される電圧との間に、電圧差が無いとき、梁部2Aのみが変位する。
【0076】
詳細には、梁部2Bが、静止しており、かつ、梁部2Aのみが、X軸に沿って(X軸のマイナス方向に)変位するとき、
図5(G)に示されるように、Y軸方向の中心線YCから可動部20の側面20Aまでの距離LA6(>LA)は、Y軸方向の中心線YCから可動部23の側面23Aまでの距離LB6(=LB)より大きくなる。このとき、スリットSの幅は、W6(=LA6+LB6)であり、W6>Wである。
【0077】
図5(A)~
図5(G)に示されるように、Y軸方向の中心線YCに対して対称に、梁部2A、2Bを変位させることで、光透過有効領域ARに対して、中心部位を主として、変調対象として制御することが可能になる。
【0078】
一方、Y軸方向の中心線YCに対して非対称に梁部2A、2Bを変位させることで、変調対象の光束の領域を光透過有効領域AR内で設定することが可能になる。例えば、入射光60の光プロファイルに応じて、変調対象の光束の領域を設定することが可能になる。
【0079】
〈光位相変調器の製造プロセス〉
上述の光位相変調器1を形成するため、すなわち、側壁に金属(Au)を有する両持ち梁構造の光位相変調器1を形成するための製造プロセスの一例について説明する。
【0080】
図6は、実施形態の光位相変調器の製造プロセスの各過程における光位相変調器1に対応する光学素子部分の断面図である。
図6に示すように、犠牲層としてSi、誘電体であるSiO
2、電極のためのCrをスパッタにより成膜し、電子線描画装置により構造を描画する。表面をCrエッチング、反応性イオンエッチング(RIE)により構造状に成形した後、金属(Au)をスパッタにより覆うように成膜する。Arプラズマにより異方性エッチングすることで側壁に金属(Au)を残し、最後に犠牲層をXeF
6ガスにより等方性にエッチングして両持ち梁を形成する。
【0081】
具体的には、
図6(A)に示されるように、スパッタリングにより、基板4の表面に、半導体層42(Si層)を形成する。
【0082】
次に、
図6(B)に示されるように、スパッタリングにより、半導体層42(Si層)の表面に、絶縁層40(SiO
2層)を形成する。
【0083】
次に、
図6(C)に示されるように、スパッタリングにより、絶縁層40(SiO
2層)の表面に、金属膜Mとは異なる、他の金属膜41(Cr膜)を形成する。
【0084】
以上のようにしてSi、SiO
2、及びCrの成膜後に、電子線描画装置により構造を描画(パターンニング)する。これにより、
図6(D)に示されるように、構造状のレジスト層Rが形成される。
【0085】
次に、
図6(E)に示されるように、基板表面にCrマスクを生成するためCrウェットエッチングを行う。
【0086】
次に、
図6(F)に示されるように、反応性イオンエッチング(RIE)によるSiO
2層の異方性エッチングを行う。
【0087】
次に、
図6(G)に示されるように、金属(Au)のスパッタリング成膜によって表面(絶縁層40より上部)を金属(Au)で覆い、金属膜M(Au膜)を形成する。
【0088】
次に、
図6(H)に示されるように、垂直エッチング、すなわちイオン・ミリング(ion milling)、例えばArプラズマによる異方性エッチングによって、側面以外の金属(Au)を除去する。このArプラズマによる異方性エッチングによる工程は、形成される光位相変調器1の性能に影響すると考えられる。このため、Arプラズマによる異方性エッチングによる工程における環境及びその他のパラメータを適切に調整することが好ましい。
【0089】
次に、
図6(I)に示されるように、犠牲層Siを等方性のガス(XeF
6ガス)によるエッチングによって、梁構造を形成する。
【0090】
上述の製造プロセスによって作成した光位相変調器の性能を検証する。なお、光位相変調器の製作上の都合及び性能検証の都合から、可動部-固定部間のスリット(w2)を測定した結果を検証する。すなわち、可動部-固定部間のスリット(w2)に光透過領域を設定して測定した性能について検証する。
【0091】
図7に、上述の製造プロセスによって作成した光位相変調器の性能を検証した結果を示す。
図7(A)は、位相差スペクトルを示す図であり、
図7(B)は、スリット幅と位相差との関係を示す図であり、
図7(C)は、電圧印加による位相差変調特性を示す図である。
【0092】
図7(A)に示すように、電圧非印加時(V=0V)の透過光の位相差スペクトルにより、波長632.5nmのとき最大の位相差Δ=39.0度が得られた。光位相変調器における設計波長は633nmであり、この結果と一致した。一方、スリットw2の設計値1000nmから計算される初期位相差Δ(W2,t)は63.0度であった。計測結果は、初期位相差63.0度に比べて小さい値となった。しかし、製作結果は、表1に示すように位相差に大きく関わるスリットの幅wと、Au層の厚さtは設計値と異なった。そこで、誤差要因は製作した素子の寸法誤差にあると考えられる。
【0093】
【0094】
図7(B)に示すように、スリット幅wを独立変数とした際の設計時の位相差Δ(W,t)及び測定時のΔ(W,t’)の各々の特性から次のことが検証された。実線は設計値(厚さt=1000nm)、一点鎖線は測定値(厚さt=576nm)のプロットである。スリットの長さwが大きくなると位相差は減少する。そして、厚さtが小さくなると曲線全体が下方にシフトする。結果として測定した寸法から計算された位相差の計算値は位相差Δ=29.9度となり,測定した位相差に近似した値となった。このため、スリットの長さwと厚さtが位相差に与える影響が大きくなることが検証された。
【0095】
また、
図7(C)に位相差変調量が示される。
図7(C)では入射光波長633nmでの電圧印加による位相差変調量を示す。
図7(C)に示すように、V=70(V)で位相差変調量13.9度が確認された。V=80(V)ではΔ=26.9度と減少しているが、これは素子の破損による影響と考えられる。測定点のばらつきに関しては、測定時の振動による誤差やデータ処理時のフィッティングの影響、および実験時の電圧印加時間が関係すると推察される。
【0096】
図8(A)は、実施形態の光位相変調器のスリットの幅及び高さと、TE偏光の透過率との関係を示す。
図8(B)は、実施形態の光位相変調器のスリットの幅及び高さと、TM偏光の透過率との関係を示す。
図8(C)は、実施形態の光位相変調器のスリットの幅及び高さと、TE偏光及びTM偏光間の位相差との関係を示す。
図8(A)~(C)のいずれでも、入射光60の波長は、633nmである。
【0097】
TE偏光及びTM偏光の透過率は、
図8(A)、(B)に示されるように、スリットSの幅W(
図2に図示。)の大きさに左右される。また、TE偏光及びTM偏光間の位相差D(
図12に図示。)は、
図8(C)に示されるように、可動部20、23の厚さt(
図2に図示。)に左右される。
【0098】
TE偏光及びTM偏光の透過率を0より大きくする観点から、スリットSの幅Wは、
図8(A)、(B)から明らかであるように、50nmより大きいことが望ましい。
【0099】
また、TE偏光及びTM偏光間の位相差Dを180°まで可変する観点から、可動部20の側面20A及び可動部23の側面23Aの厚さt(
図2に図示。)は、
図8(C)から明らかであるように、200nmより大きいことが望ましい。
【0100】
図9(A)は、実施形態の光位相変調器のスリットの幅及び高さと、TE偏光の透過率との関係を示す。
図9(B)は、実施形態の光位相変調器のスリットの幅及び高さと、TM偏光の透過率との関係を示す。
図9(C)は、実施形態の光位相変調器のスリットの幅及び高さと、TE偏光及びTM偏光間の位相差との関係を示す。
図9(A)~(C)のいずれでも、入射光60の波長は、730nmである。
【0101】
TE偏光及びTM偏光の透過率は、
図9(A)、(B)に示されるように、入射光60の波長が633nmであるとき(
図8(A)、(B))と同様に、スリットSの幅Wの大きさに左右される。また、TE偏光及びTM偏光間の位相差Dは、
図9(C)に示されるように、入射光60の波長が633nmであるとき(
図8(C))と同様に、可動部20、23の厚さtに左右される。
【0102】
TE偏光及びTM偏光の透過率を0より大きくする観点から、スリットSの幅Wは、
図9(A)、(B)から明らかであるように、50nmより大きいことが望ましい。
【0103】
また、TE偏光及びTM偏光間の位相差Dを180°まで可変する観点から、可動部20の側面20A及び可動部23の側面23Aの厚さtは、
図9(C)から明らかであるように、250nmより大きいことが望ましい。
【0104】
〈実施形態の効果〉
実施形態の光位相変調器1では、上記構成とすることで、対峙するフィンの間隔を広げたり狭めたりすることが可能となり、透過する入射光60の透過率及び位相を容易に可変することができ、高い自由度で位相を変調可能な光位相変調器を提供することができる。
【0105】
以上、本開示の技術について実施形態を用いて説明したが、本開示の技術的範囲は上記実施形態に記載の範囲には限定されない。要旨を逸脱しない範囲で上記実施形態に多様な変更または改良を加えることができ、当該変更または改良を加えた形態も本開示の技術的範囲に含まれる。
【0106】
また、上記実施形態では、制御部5によって光学位相変調器1における位相差制御を行う場合を説明したが、位相差制御は、CPUを含むプロセッサによるソフトウエア処理によって実現する形態としてもよく、各処理をハードウェア構成により実現する形態としてもよい。
【符号の説明】
【0107】
1:光位相変調器
2A、2B:梁部
3A、3B:固定電極部
20、23:可動部
21、22、24、25:固定部
20A、20B、23A、23B、30A、31A:側面
S:スリット
4:基板
5:制御部