IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立ハイテクノロジーズの特許一覧

<>
  • 特許-プラズマ処理装置 図1
  • 特許-プラズマ処理装置 図2
  • 特許-プラズマ処理装置 図3
  • 特許-プラズマ処理装置 図4
  • 特許-プラズマ処理装置 図5
  • 特許-プラズマ処理装置 図6
  • 特許-プラズマ処理装置 図7
  • 特許-プラズマ処理装置 図8
  • 特許-プラズマ処理装置 図9
  • 特許-プラズマ処理装置 図10
  • 特許-プラズマ処理装置 図11
  • 特許-プラズマ処理装置 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-13
(45)【発行日】2023-03-22
(54)【発明の名称】プラズマ処理装置
(51)【国際特許分類】
   H01L 21/3065 20060101AFI20230314BHJP
   H05H 1/46 20060101ALI20230314BHJP
【FI】
H01L21/302 101G
H01L21/302 101D
H05H1/46 C
【請求項の数】 7
(21)【出願番号】P 2020026843
(22)【出願日】2020-02-20
(65)【公開番号】P2021132125
(43)【公開日】2021-09-09
【審査請求日】2022-05-12
(73)【特許権者】
【識別番号】501387839
【氏名又は名称】株式会社日立ハイテク
(74)【代理人】
【識別番号】110000062
【氏名又は名称】弁理士法人第一国際特許事務所
(72)【発明者】
【氏名】中谷 侑亮
(72)【発明者】
【氏名】園田 靖
(72)【発明者】
【氏名】田中 基裕
【審査官】高柳 匡克
(56)【参考文献】
【文献】特開2009-016453(JP,A)
【文献】国際公開第2013/175897(WO,A1)
【文献】特開2012-079968(JP,A)
【文献】特開2017-143186(JP,A)
【文献】特開平04-237123(JP,A)
【文献】特開2005-294516(JP,A)
【文献】国際公開第2016/190036(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/3065
H05H 1/46
(57)【特許請求の範囲】
【請求項1】
試料がプラズマ処理される処理室と、プラズマを生成するためのマイクロ波の高周波電力を供給する高周波電源と、前記処理室内に磁場を形成する磁場形成機構と、前記試料が載置される試料台と、前記試料台へ入射するイオンを遮蔽する第1の遮蔽板と、前記試料台へ入射するイオンを遮蔽し前記第1の遮蔽板の下方に配置される第2の遮蔽板とを備えるプラズマ処理装置において、
前記第1の遮蔽板は、複数の第1の開口部を有し、
前記第2の遮蔽板は、複数の第2の開口部を有し、
前記第2の開口部の各々は、前記第1の開口部の各々を通過した磁力線の各々が前記第2の遮蔽板と交差する位置に配置されていないことを特徴とするプラズマ処理装置。
【請求項2】
請求項1に記載のプラズマ処理装置において、
平面図における、前記第1の開口部および前記第2の開口部は、円形であり、
前記第2の開口部の各々の直径は、前記第2の遮蔽板の中心から外周に向かって漸化しながら大きくなっていることを特徴とするプラズマ処理装置。
【請求項3】
請求項1に記載のプラズマ処理装置において、
前記第1の開口部及び前記第2の開口部が放射状に配置され、前記第1の遮蔽板の厚さをa、前記第1の遮蔽板と前記第2の遮蔽板の間隔をb、前記第1の開口部を通過する磁力線と前記第1の遮蔽板の厚さ方向とのなす角をθ、前記第1の遮蔽板および前記第2の遮蔽板の平面図における、前記第1の開口部と前記第2の開口部が重複する部分の所定方向の幅をsとした場合、前記a、前記b、前記θ及び前記sの各々がs≦(a+b)tanθの関係を満たし、
前記所定方向は、前記第2の遮蔽板の径方向であることを特徴とするプラズマ処理装置。
【請求項4】
請求項1に記載のプラズマ処理装置において、
平面図における、前記第1の開口部および前記第2の開口部は、円形またはスリット状であることを特徴とするプラズマ処理装置。
【請求項5】
請求項1に記載のプラズマ処理装置において、
平面図における、前記第1の開口部および前記第2の開口部は、スリット状であり、
前記第1の開口部のスリットと前記第2の開口部のスリットは、同心円状に配置されていることを特徴とするプラズマ処理装置。
【請求項6】
請求項5に記載のプラズマ処理装置において、
前記第1の開口部のスリットの幅は、前記第2の開口部のスリットの幅より狭いことを特徴とするプラズマ処理装置。
【請求項7】
試料がプラズマ処理される処理室と、プラズマを生成するためのマイクロ波の高周波電力を供給する高周波電源と、前記処理室内に磁場を形成する磁場形成機構と、前記試料が載置される試料台と、前記試料台へ入射するイオンを遮蔽する第1の遮蔽板と、前記試料台へ入射するイオンを遮蔽し前記第1の遮蔽板の下方に配置される第2の遮蔽板とを備えるプラズマ処理装置において、
前記磁場形成機構により形成された磁力線の方向の変化を基に前記第1の遮蔽板の開口部を通過する磁力線が前記第2の遮蔽板の開口部を通過しないように前記第2の遮蔽板の開口部に対する前記第1の遮蔽板の開口部の相対変位または前記第1の遮蔽板の開口部に対する前記第2の遮蔽板の開口部の相対変位を制御する駆動機構をさらに備えることを特徴とするプラズマ処理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラズマ処理装置に関する。
【背景技術】
【0002】
半導体デバイスの製造工程においては、半導体装置に含まれるコンポーネントの微細化や集積化への対応が求められている。例えば、集積回路やナノ電気機械システムにおいて、構造物のナノスケール化がさらに推進されている。
【0003】
通常、半導体デバイスの製造工程において、微細パターンを成形するためにリソグラフィ技術が用いられる。この技術は、レジスト層の上にデバイス構造のパターンを適用し、レジスト層のパターンによって露出した基板を選択的にエッチング除去するものである。その後の処理工程において、エッチング領域内に他の材料を堆積させれば、集積回路を形成できる。
【0004】
特に近年では、半導体デバイスに対し、市場からの省電力・高速化の要求が高まり、デバイス構造の複雑化・高集積化の傾向が顕著である。例えばロジックデバイスにおいては、積層させたナノワイヤでチャネルを構成したGAA(Gate All Around)の適用が検討されており、GAAのエッチング工程では、従来の異方性エッチングによる垂直加工に加え、ナノワイヤ形成のため等方性エッチングによる側方への加工が必要となる。
【0005】
ここで、異方性エッチングとは、イオンによりラジカルの反応を促進する、イオンアシスト反応を利用したエッチングであり、等方性エッチングとは、ラジカルのみによる表面反応を主体としたエッチングである。したがって、プラズマエッチング装置には、イオンとラジカルの両方を照射してエッチングを行う機能と、ラジカルのみを照射してエッチングを行う機能の両方が必要になりつつある。
【0006】
例えば、エッチング深さを高精度に制御する原子層エッチングでは、ラジカルのみを試料に照射する第1ステップと、イオンを試料に照射する第2ステップとを交互に繰り返して、エッチング深さを制御する方法が検討されている。このエッチング方法は、第1ステップで試料表面にラジカルを吸着させた後、第2ステップで希ガスのイオンを照射して試料表面に吸着したラジカルを活性化させることでエッチング反応を生じさせて、エッチング深さを高精度に制御するものである。
【0007】
また、例えば多品種少量生産の量産工場において、イオンとラジカルの両方を照射する異方性エッチングと、ラジカルのみを照射する等方性エッチングの両方の機能を有するエッチング装置を設置することで、1台のエッチング装置で複数の工程を実行でき、それにより省スペースの実現とともに、設備コストを大幅に低減できる。
【0008】
このように、半導体デバイス加工で用いられるプラズマエッチング装置には、イオンとラジカルの両方を照射してエッチングを行う機能と、ラジカルのみを照射してエッチングを行う機能の両方が求められるようになっている。
【0009】
このような要求に対して、特許文献1において、イオンの入射を遮蔽する遮蔽板をチャンバ内に設置し、前記遮蔽板の下方でプラズマを生成することでイオンとラジカルの両方を照射するプラズマ処理を実行し、あるいは前記遮蔽板の上方でプラズマを生成することでラジカルのみによる処理を実行することが可能な装置が提案されている。
【0010】
また、ラジカルのみによる処理をより高精度に行うためには、イオンの遮蔽性を高める必要がある。このような要求に対して、特許文献2において、プラズマ生成室と処理室の間に間隔を開けて重ね合わせた複数の板状の隔壁部材を備え、板状部材にそれぞれ複数の貫通孔を形成し、それぞれの貫通孔が他の板状部材の貫通孔と互いに重ならないようにずらして配置することで、プラズマ生成室で生成されたプラズマから発生する紫外線と水素イオンを遮蔽して水素ラジカルのみを処理室に供給可能な装置が提案されている。
【先行技術文献】
【特許文献】
【0011】
【文献】特開2018-093226号公報
【文献】特開2009-016453号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
ところで、イオンとラジカルの両方を照射してエッチングを行う工程と、ラジカルのみを照射してエッチングを行う工程の双方を同一チャンバ内で高精度に実施する場合において、試料のエッチングレートを向上させるには、等方性エッチング時に、十分なイオン遮蔽性を保持しつつ、失活するラジカル量を極力抑制する必要がある。
【0013】
ところが、特許文献1に示す2枚構造遮蔽板の場合、下部のドーナッツ状の遮蔽板の上面におけるラジカル失活量が多く、また斜め孔構造遮蔽板の場合、イオン遮蔽性を高めるために貫通孔部分を高アスペクト比とする必要があり、孔の内壁でのラジカル失活量が多いという課題がある。
【0014】
また、特許文献2の技術では、遮蔽板下部でのプラズマ生成ができず、イオンおよびラジカル照射の切り替えができないという課題がある。さらに、イオン軌道が上部遮蔽板と下部遮蔽板の両方の孔を通過する場合があり、イオン遮蔽性が不十分となる可能性がある。
【0015】
本発明は、等方性エッチング時に、試料へのイオン入射を抑制しつつ、失活するラジカル量を極力抑制するプラズマ処理装置を提供することを目的とする。
【課題を解決するための手段】
【0016】
上記課題を解決するために、代表的な本発明にかかるプラズマ処理装置の一つは、試料がプラズマ処理される処理室と、プラズマを生成するためのマイクロ波の高周波電力を供給する高周波電源と、前記処理室内に磁場を形成する磁場形成機構と、前記試料が載置される試料台と、前記試料台へ入射するイオンを遮蔽する第1の遮蔽板と、前記試料台へ入射するイオンを遮蔽し前記第1の遮蔽板の下方に配置される第2の遮蔽板とを備えるプラズマ処理装置において、前記第1の遮蔽板は、複数の第1の開口部を有し、前記第2の遮蔽板は、複数の第2の開口部を有し、前記第2の開口部の各々は、前記第1の開口部の各々を通過した磁力線の各々が前記第2の遮蔽板と交差する位置に配置されていないことにより達成される。
さらに、代表的な本発明にかかるプラズマ処理装置の一つは、試料がプラズマ処理される処理室と、プラズマを生成するためのマイクロ波の高周波電力を供給する高周波電源と、前記処理室内に磁場を形成する磁場形成機構と、前記試料が載置される試料台と、前記試料台へ入射するイオンを遮蔽する第1の遮蔽板と、前記試料台へ入射するイオンを遮蔽し前記第1の遮蔽板の下方に配置される第2の遮蔽板とを備えるプラズマ処理装置において、
前記磁場形成機構により形成された磁力線の方向の変化を基に前記第1の遮蔽板の開口部を通過する磁力線が前記第2の遮蔽板の開口部を通過しないように前記第2の遮蔽板の開口部に対する前記第1の遮蔽板の開口部の相対変位または前記第1の遮蔽板の開口部に対する前記第2の遮蔽板の開口部の相対変位を制御する駆動機構をさらに備えることにより達成される。
【発明の効果】
【0017】
本発明によれば、等方性エッチング時に、試料へのイオン入射を抑制しつつ、失活するラジカル量を極力抑制するプラズマ処理装置を提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
【図面の簡単な説明】
【0018】
図1図1は、本発明の第1の実施形態に係るプラズマ処理装置の概略全体構成断面図である。
図2図2は、本発明の第1の実施形態に係る第1の遮蔽板を示す平面図である。
図3図3は、本発明の第1の実施形態に係る第2の遮蔽板を示す平面図である。
図4図4は、図2図3に示す遮蔽板を重ね合わせた平面図である。
図5図5は、遮蔽板、イオン、ラジカル、磁力線の関係を模式的に示す拡大断面図である。
図6図6は、本発明の第1の実施形態に係る遮蔽板と、特許文献1に記載の遮蔽板のそれぞれを用いた場合の試料上のラジカル濃度分布を示すグラフである。
図7図7は、遮蔽板の厚さと2枚の遮蔽板間の距離と貫通孔の孔径の関係を模式的に示す拡大断面図である。
図8図8は、本発明の第1の実施形態に係る第1の遮蔽板の変形例を示す平面図である。
図9図9は、本発明の第1の実施形態に係る第2の遮蔽板の変形例を示す平面図である。
図10図10は、図8図9に示す遮蔽板を重ね合わせた平面図である。
図11図11は、本発明の第2の実施形態に係る遮蔽板を示す拡大断面図である。
図12図12は、本発明の第3の実施形態に係るプラズマ処理装置の概略全体構成断面図である。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態を、図面を参照して説明する。なお、本明細書中、処理室内で「上方」とはマグネトロンに近い側を言い、「下方」とは試料台に近い側を言う。また、「等方性エッチング時」とは、ラジカルのみによる試料表面反応を主体としたエッチングを行う時をいう。
【0020】
[第1の実施形態]
本発明の第1の実施形態に係るプラズマ処理装置の概略全体構成断面図を図1に示す。本実施形態の装置では、高周波電源であるマグネトロン103から誘電体窓111を介して真空処理室117に供給される2.45GHzのマイクロ波(高周波電力)と、磁場形成機構であるソレノイドコイル108の作る磁場との電子サイクロトロン共鳴(ElectronCyclotronResonance、ECR)によって、真空処理室117内にプラズマを生成することができる。このようなプラズマ処理装置をECRプラズマ処理装置という。
【0021】
また、試料台115に載置した試料116に整合器123を介して高周波電源124が接続されている。真空処理室117の内部は、バルブ121を介してポンプ122に接続されており、バルブ121の開度によって内部圧力を調節できるようになっている。
【0022】
また、本プラズマ処理装置は、真空処理室117の内部に誘電体製の遮蔽板(遮蔽ユニット)112を有する。遮蔽板112は、試料台115へ入射するイオンを遮蔽する第1の遮蔽板113、および試料台115へ入射するイオンを遮蔽し第1の遮蔽板113の下方に配置される第2の遮蔽板114からなり、第2の遮蔽板114は第1の遮蔽板113の下方に間隔をあけて平行に設置される。遮蔽板112により、真空処理室117内を、第1の領域118と第2の領域119とに分割している。
【0023】
本実施形態で用いたプラズマ処理装置は、マイクロ波の周波数が2.45GHzの場合、磁場強度0.0875Tの面付近でプラズマを生成できるという特性を有する。このため、プラズマ生成領域が遮蔽板112と誘電体窓111の間(第1の領域118)に位置するように磁場を調整すれば、遮蔽板112の誘電体窓111側でプラズマを生成でき、発生したイオンは遮蔽板112をほとんど通過できないことから、ラジカルのみを試料116に照射することができる。この時、試料116では、ラジカルのみによる表面反応を主体とした等方性エッチングが進行する。
【0024】
これに対し、プラズマ生成領域が遮蔽板112と試料116の間(第2の領域119)に位置するように磁場を調整すれば、遮蔽板112より試料116側でプラズマを生成でき、イオンとラジカルの両方を試料116に供給できる。この時、試料116ではイオンによりラジカルの反応を促進する、イオンアシスト反応を利用した異方性エッチングが進行する。
【0025】
なお、遮蔽板112の高さ位置に対するプラズマ生成領域の高さ位置の調整あるいは切り替え(上方か下方か)、それぞれの高さ位置を保持する期間の調整等は、制御装置120を用いて行うことができる。
【0026】
図2は、本発明の第1の実施形態に係る第1の遮蔽板113を示す平面図である。第1の遮蔽板113には同じ孔径の貫通孔(第1の開口部)130が面内一様に配置されている。本実施形態で「一様」とは、径の差が等しい同心円(半径ゼロである場合を含む)を描いたときに、同じ円上に中心点を有する貫通孔130が周方向に等しいピッチで配置されていることをいう。径方向に沿って貫通孔130が連続している場合、径方向のピッチが等しいと、より好ましい。
【0027】
図3は、本発明の第1の実施形態に係る第2の遮蔽板114を示す平面図である。第2の遮蔽板114の全面に配置されている貫通孔(第2の開口部)131は、等方性エッチング時に第1の遮蔽板113の貫通孔130を通過する磁力線が第2の遮蔽板114と交差する箇所以外の箇所に配置されている。換言すれば、貫通孔131の各々は、貫通孔130の各々を通過した磁力線の各々が第2の遮蔽板114と交差する位置に配置されていない。平面図で見て、貫通孔130,131はそれぞれ円形を有し、放射状に配置されている。
【0028】
本実施形態のプラズマ処理装置では、真空処理室117の上部から下部に向かうほど磁力線の間隔が広がった磁場配置となっているため、図3の第2の遮蔽板114に配置されている貫通孔131は、第2の遮蔽板114の中心に近いものほど孔径が小さく、外周に近いものほど孔径が大きくなっている。すなわち、貫通孔131の各々の直径は、第2の遮蔽板114の中心から外周に向かって漸化しながら大きくなっている。
【0029】
図4は、図2図3に示す遮蔽板を重ね合わせた平面図であり、貫通孔131を点線で示している。第1の遮蔽板113と第2の遮蔽板114は、間隔を開けて真空処理室117の中に保持されている。
【0030】
ここで、遮蔽板、イオン、ラジカル、磁力線の関係を拡大断面図で模式的に示すと図5のようになる。第1の領域118のプラズマから生成されたイオン140は電荷をもつため、磁力線150に沿った螺旋運動をする電子との両極性拡散により、軌道151に示すように移動する。一方、ラジカル141は電荷をもたないため、流体の流れに沿って、第1の遮蔽板113の貫通孔130、および第2の遮蔽板114の貫通孔131を通過し、第2の領域119へ移動する。
【0031】
ここで、等方性エッチング時において、第1の遮蔽板113の貫通孔130を通過する磁力線が第2の遮蔽板114と交差する箇所以外の箇所に第2の遮蔽板114の貫通孔131を配置しているため、イオン140は第2の領域119へ移動できず、試料116まで到達しない。これによりイオン遮蔽が可能になる。
【0032】
また、第1の遮蔽板113、第2の遮蔽板114には、全面に貫通孔130、131が配置されているため、試料116に到達するラジカル141の分布は試料116の面内で均一となる。さらに、第2の遮蔽板114には、等方性エッチング時に第1の遮蔽板113の貫通孔130を通過した磁力線150と交差する位置以外の全ての位置に貫通孔131を設置できる。このため、イオンの遮蔽性を向上しつつ、ラジカル141が遮蔽板112を通過する際に遮蔽板112に衝突して失活する割合を減少させることができ、試料116に到達するまでに失活するラジカル141の量を極力抑制することができる。
【0033】
以上により、等方性エッチング時に、試料へのイオン入射を抑制しつつ、試料表面に到達するラジカルの分布を均一化させ、かつ、失活するラジカル量を極力抑制することができる。
【0034】
なお、図2および図3では、貫通孔130および貫通孔131は同心円状および放射状に配置されているが、この配置に限るものではなく、等方性エッチング時に第1の遮蔽板113の貫通孔130を通過する磁力線が第2の遮蔽板114と交差する箇所以外の箇所に、第2の遮蔽板114の貫通孔131が配置されているという関係を満たしていれば、格子状配置などでも良い。なお、格子状配置においても貫通孔は一様に配置されていると好ましく、かかる場合、「一様」とは行方向および列方向に並んだ貫通孔のピッチが等しいことを言う。
【0035】
ここで、本実施形態の遮蔽板と、比較例としての特許文献1における1枚構造遮蔽板および2枚構造遮蔽板とをそれぞれを用いた場合の、試料116上のラジカル濃度分布を計算した結果を図6に示す。図6に示すように、本実施形態の遮蔽板を用いることで、試料116において1枚構造遮蔽板よりもラジカル濃度分布が面内均一となり、かつ、2枚構造遮蔽板よりも大きなラジカル濃度が得られることが分かる。
【0036】
図7は、遮蔽板の厚さと、2枚の遮蔽板間の距離と、貫通孔の孔径の関係を説明するために用いる遮蔽板の拡大断面図である。ここで、第1の遮蔽板113の厚さをa、第1の遮蔽板113と第2の遮蔽板114の間隔をb、第2の遮蔽板114の厚さをc、第1の遮蔽板113の貫通孔130の上面の縁部内方を通過する磁力線150と第1の遮蔽板113の厚さ方向(真空処理室117の軸線方向)とのなす角をθとする。
【0037】
各寸法a、b、cは、真空処理室117の垂直方向の長さと比較して十分に小さいため、1つの磁力線150により規定される角θは、(a+b+c)の範囲において一定とみなすことができる。この時、真空処理室117を上方より平面視した場合、第1の遮蔽板113の貫通孔130と、第2の遮蔽板114の貫通孔131とが重なる重複部分が生じる。第2の遮蔽板114の上面で、この重複部分の第2の遮蔽板114の中心から外周方向に向かう方向(径方向)の長さをsとする時、sの上限を(a+b)tanθとすることで、試料116へのイオン入射を抑制することができる。
【0038】
なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、図8および図9の平面図に示すように、第1の遮蔽板113の貫通孔130は第1の遮蔽板113の貫通スリット160に置き換えることが可能であり、第2の遮蔽板114の貫通孔131は第2の遮蔽板114の貫通スリット161に置き換えることが可能である。この時、図8図9に示す遮蔽板を重ね合わせた平面図を示すと図10のようになるが、ここでは貫通スリット161を点線で示す。同心円状に配置される貫通スリット160,161の周方向長さ及びピッチはそれぞれ等しいと好ましい。また、貫通スリット161は、第2の遮蔽板114の中心に近いものほど幅が狭く、外周に近いものほど幅が大きくなっていると好ましい。貫通スリット160の幅は、平面図で見て、貫通スリット161の幅より狭いと好ましい。
【0039】
また、図8および図9では、貫通スリット160および貫通スリット161は同心円状および放射状に配置されているが、この配置に限るものではなく、格子状配置などでも良い。
【0040】
[実施形態2]
図11は、本発明の第2の実施形態に係る遮蔽板を示す拡大断面図である。本実施形態の装置では、ソレノイドコイル108に流す電流値によって、磁力線の分布が変化する。具体的には、等方性エッチング時に上記電流値を連続的に変化させると磁力線の分布が磁力線150-1から磁力線150-2まで連続的に変化する。すなわち、第2の遮蔽板114の上面と磁力線の交差する位置が距離Lだけ変位する。
【0041】
本実施形態では、第1の遮蔽板113には、第1の実施形態と同様に同じ孔径の貫通孔130が面内一様に配置されている。また、第2の遮蔽板114の全面に配置されている貫通孔131は、等方性エッチング時に第1の遮蔽板113の貫通孔130を通過する磁力線が第2の遮蔽板114と交差する箇所以外の箇所に配置されている。そして、等方性エッチング時に第2の遮蔽板114の上面と磁力線150の交差する位置の上記電流値の変化に伴う変位距離Lの分、第2の遮蔽板114の貫通孔131の孔径を小さくしている。
【0042】
なお、第1の遮蔽板113と第2の遮蔽板114は、間隔を開けて真空処理室117の中に保持されている。これにより、等方性エッチング時に、上記電流値を変化させてもイオンの遮蔽性が保たれ、ソレノイドコイル108に流す上記電流値を可変とすることができる。
【0043】
等方性エッチング時に、試料へのイオン入射を抑制しつつ、試料表面に到達するラジカルの分布を均一化させ、かつ、失活するラジカル量を極力抑制することができる機構については、図5に示す第1の実施形態と同様であるため重複記載を省略する。
【0044】
[実施形態3]
図12は、本発明の第3の実施形態に係るプラズマ処理装置の概略全体構成断面図である。本実施形態の装置では、ソレノイドコイル108に流す電流値を変更することによって、磁力線150の分布を変化させることができる。具体的には、上記電流値を連続的に変化させることで、磁力線150の分布も連続的に変化する。すなわち、第2の遮蔽板114の上面と磁力線150の交差する位置が、連続的に変位する。
【0045】
本実施形態では、第1の遮蔽板113には、第1の実施形態と同様に同じ孔径の貫通孔130が面内一様に配置されている。また、第2の遮蔽板114の全面に配置されている貫通孔131は、等方性エッチング時に第1の遮蔽板113の貫通孔130を通過する磁力線が第2の遮蔽板114と交差する箇所以外の箇所に配置されている。ここでは、等方性エッチング時に第2の遮蔽板114の上面と磁力線150の交差する位置の上記電流値の変化に伴う変位分、第1の遮蔽板113と第2の遮蔽板114の間隔bを変化させる。
【0046】
ここで、間隔bの制御は、駆動制御装置(駆動機構)170からの制御に従い、ソレノイドコイル108に流す電流値に応じて、不図示のアクチュエータを駆動して第1の遮蔽板113または第2の遮蔽板114(すなわち貫通孔130または貫通孔131)を、上下に相対変位させることにより行うことができる。これにより、等方性エッチング時に、上記電流値を変化させてもイオンの遮蔽性が保たれ、ソレノイドコイル108に流す上記電流値を可変とすることができる。
【0047】
等方性エッチング時に、試料へのイオン入射を抑制しつつ、試料表面に到達するラジカルの分布を均一化させ、かつ、失活するラジカル量を極力抑制することができる機構については、図5に示す第1の実施形態と同様であるため重複記載を省略する。
【0048】
上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【符号の説明】
【0049】
103…マグネトロン、108…ソレノイドコイル、111…誘電体窓、112…遮蔽板、113…第1の遮蔽板、114…第2の遮蔽板、115…試料台、116…試料、117…真空処理室、118…第1の領域、119…第2の領域、120…制御装置、121…バルブ、122…ポンプ、123…整合器、124…高周波電源、130…第1の遮蔽板113の貫通孔、131…第2の遮蔽板114の貫通孔、140…イオン、141…ラジカル、150…磁力線、151…イオン140の軌道、160…第1の遮蔽板113の貫通スリット、161…第2の遮蔽板114の貫通スリット、170…駆動制御装置
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12